
One-More Unforgeability for Multi- and
Threshold Signatures

Sela Navot and Stefano Tessaro

Paul G. Allen School of Computer Science & Engineering
University of Washington, Seattle, WA, USA

{senavot,tessaro}@cs.washington.edu

Abstract. This paper initiates the study of one-more unforgeability for
multi-signatures and threshold signatures as a stronger security goal, en-
suring that ℓ executions of a signing protocol cannot result in more than
ℓ signatures. This notion is widely used in the context of blind signatures,
but we argue that it is a convenient way to model strong unforgeability
for other types of distributed signing protocols. We provide formal secu-
rity definitions for one-more unforgeability (OMUF) and show that the
HBMS multi-signature scheme does not satisfy this definition, whereas
MuSig and MuSig2 do. We also show that mBCJ multi-signatures do not
satisfy OMUF, as well as expose a subtle issue with their existential un-
forgeability (which does not contradict their original security proof). For
threshold signatures, we show that FROST satisfies OMUF, but ROAST
does not.

Table of Contents

1 Introduction 3

2 Preliminaries 4

3 Specifications and Usage 5
3.1 Multi-Signatures . 5
3.2 Threshold Signatures . 6

4 Existential and Strong Unforgeability 7
4.1 Extending Strong Unforgeability to Multi-Signatures . 8
4.2 Strong Unforgeability of Threshold Signatures . 10

5 Multi-Signature Schemes 11
5.1 Analysis of HBMS . 11
5.2 Analysis of MuSig . 14
5.3 Analysis of MuSig2 . 18
5.4 Analysis of mBCJ . 20

6 Threshold Signatures Schemes 23
6.1 Comparison to Previous SUF-TS Definition, and FROST . 23
6.2 Analysis of ROAST . 25

7 Acknowledgements 26

References 27

A Toy Strongly Unforgeable Multi-Signature Scheme 30

B SUF of Underlying Plain Signature Schemes 30
B.1 Underlying Scheme of HBMS . 31
B.2 Underlying Scheme of mBCJ . 32

C Proof of Lemma 5 34

D Statement and Proof of Lemma 10 40

One-More Unforgeability for Multi- and Threshold Signatures 3

1 Introduction

There has been growing interest in protocols for distributed generation of signatures, in the form of threshold
signatures (TS) [22, 23] and multi-signatures (MS) [29]. While these primitives have been studied for decades,
their recent widespread use has been driven by applications in blockchain ecosystems, such as digital wal-
lets [27], and to enforce the need for multiple signatures to authorize a transaction. Threshold signatures are
also at the center of standardization efforts by NIST [38] and IETF [18].

Recall that in a t-out-of-n threshold signature, a secret signing key, associated with a public verification
key, is secret shared amongst a set of n signers (often as the result of running a distributed key generation
protocol). Any subset of at least t signers should be able to sign a message, whereas an adversary corrupting
fewer than t signers should not be able to come up with a signature on their own. In multi-signatures, in
contrast, parties generate their own keys, independently. Then, any group of signers can come together to
generate signature shares and aggregate them into a multi-signature, which can be verified using a verification
key obtained by aggregating the verification keys of all involved signers.
Security definitions. Security definitions for distributed signing are far more challenging than definitions
for signatures in isolation. A key point is that issuance of signatures generally involves an interactive protocol
(this is the case for all pairing-free schemes, such as FROST [31, 6] and MuSig/MuSig2 [37, 42]), and
executions are subject to adversarial corruptions. Often, the adversary can not only corrupt a subset of
the signers, but also control communication between signers—this is the case for a common model where
inter-signer communication is mediated by a proxy.

This makes it hard to define when a signature on a message has been issued, and, in turn, to formalize
a notion of unforgeability. A number of works (for example, [9, 37, 14, 7, 20]) sidestep this question by
considering a message signed as long as a signing session started on it. In other cases the definition is tailored
to the specific structure of the scheme (for example, in the analysis of MuSig2 [42]) or a very limited class
of schemes, as in [6, 12], where Bellare et al. put forward a hierarchy of security notions for partially
non-interactive threshold signatures.
Strong unforgeability. This paper considers a further challenge in the study of security definitions for
TS/MS, namely the definition of strong unforgeability. This standard notion of security for plain signatures
ensures that, in addition to achieving regular unforgeability, an adversary cannot come up with a different
signature for a message for which it has already seen valid signatures. It is natural to expect that a distributed
signing protocol for a strongly unforgeable signature scheme, like Schnorr signatures [47, 44], should also
ensure strong unforgeability. However, somewhat jumping ahead, we will show that in general this is not
true: there are strongly unforgeable signature schemes with distributed signing protocols that are not strongly
unforgeable.

Beyond theoretical interest, this may be of practical interest in the context of blockchain ecosystems,
where multi-signatures are used to generate strongly unforgeable plain signatures [41, 52]. Lack of strong
unforgeability of plain signatures has attracted attention [51, 33, 52] and has historically been associated with
costly transaction malleability attacks [21, 2], warranting the study and prevention of similar weaknesses
that may be introduced by the usage of multi-signatures. We point out that such a weakness is, to some
extent, inherent in probabilistic threshold signature schemes, since not all signers are required to participate
in each signing session. When corrupting enough signers, an adversary can obtain multiple signatures for a
message even if each honest signer only signs the message once, allowing execution of a malleability attack.
Moreover, regardless of the number of corrupt signers, an adversary can obtain more signatures for some
message then the maximum number of signature shares that any single signer provided.

Our work on threshold signatures, however, is motivated by NIST’s interest in strong unforgeability,
which is part of the requirements for submissions to its threshold signatures call [15], and we seek to pro-
vide a formalization candidate candidate schemes could use. Furthermore, system designers often assume
strong unforgeability in unpredictable ways, especially when the underlying scheme is known to be strongly
unforgeable, and it is prudent not to break this guarantee when the signatures are issued in a threshold
setting.

It turns out that a rigorous definition of strong unforgeability for distributed signing is challenging, as the
winning condition requires defining which signatures have been generated by interactive signing protocols
subject to adversarial behavior, but it is not always clear how to do this. The security notions of Bellare et
al. [6, 12], for example, give definitions of strong unforgeability for a limited class of semi non-interactive

4 Sela Navot, Stefano Tessaro

threshold signatures where the signature is uniquely defined by the input to one of the signing rounds, but
this is not a property we expect a protocol to have, and no general definition is known.
This paper: one-more unforgeability. In order to give a generic definition of strong unforgeability,
this paper proposes the notion of one-more unforgeability (OMUF) as the better approach to model strong
unforgeability. OMUF requires that after a certain number ℓ of executions of the signing protocol for a
message m, the adversary can generate no more than ℓ signatures for that message. A similar notion is
widely used for blind signatures and was introduced by Poitncheval and Stern [43, 45], and we argue that it
is natural for distributed signing. In particular, for non-distributed plain digital signatures, OMUF and the
classical definition of strong unforgeability are in fact equivalent.
Our contributions. Concretely, we make the following contributions.

– New Definitions. We formalize the notion of one-more unforgeability for multi-signature and threshold
signature schemes.

– Attacks. We show that the HBMS multi-signature scheme [7] does not satisfy one-more unforgeability
using a polynomial time attack based on the algorithm of Benhamouda et al. [13] to solve the ROS
problem [48]. We also show that mBCJ multi-signatures [24] do not satisfy OMUF using a similar
attack, and reveal a subtle issue with their existential unforgeability: an adversary can use signatures
for a message m and a signing set S to forge a signature for the same message that is valid for a
different arbitrary signing set.1 Lastly, we point out that the ROAST threshold signature scheme [46]
is not strongly unforgeable using a trivial attack. This is despite the fact that the underlying plain
signatures that HBMS and mBCJ generate are strongly unforgeable, which we prove, and that the
standard instantiation of ROAST produces ordinary Schnorr signatures.

– Proofs of security. We prove that the MuSig [37] and MuSig2 [42] multi-signature schemes satisfy
our one-more unforgeability definition. We also show that a previous security proof [6, 12] implies that
FROST [32, 6, 19] satisfies one-more unforgeability, assuming idealized key generation.

On UC Security. We stress that in this paper we target game-based definitions of security for distributed
signing primitives. An alternative approach is to consider schemes with UC Security [16], as done in [35],
for example. It is not hard to see that a UC-secure threshold signature which implements signatures for
a strongly unforgeable signature scheme has to achieve one-more unforgeability. However, many practical
threshold and multi-signatures are not UC secure, and hence our game-based approach is meant to capture
strong unforgeability for a broader class of schemes.

2 Preliminaries

Games framework. We use the game playing framework of [11] for all security definitions and hardness
assumptions, with minor simplifications.

A game consists of an initialization algorithm (Init), finalization algorithm (Fin), and any number of
algorithms that can be queried as oracles. When a randomized algorithm A (usually called an adversary)
plays a game Gm, which we denote by Gm(A), A is executed with the output of Init as its input. A may
query the oracles repeatedly at the cost of a single time unit per query. When A terminates, Fin is executed
with the output of A and outputs true or false, which is the output of the game. We use Pr[Gm(A)] as a
shorthand for Pr[Gm(A) = true] where the probability is taken over the randomness of A and Gm. A game
may have parameters params, such as a group used by the game or the number of permitted queries to some
oracle.

All schemes and hardness assumptions in this paper are parameterized by an underlying group G of
publicly known prime order p, and their security parameter is log(p).

Definition 1. We define the advantage of an adversary A against an assumption ASMP defined by the game
Gmasmp

params as
Advasmp

params(A) := Pr[Gmasmp
params(A)].

The assumption ASMP holds if Advasmp
params(A) is negligible for all polynomial time adversaries A, where

polynomial and negligible are in terms of the security parameter defined by params.
1 Note that this attack does not contradict the security proof of [24], since their security definition does not cover

such forgeries.

One-More Unforgeability for Multi- and Threshold Signatures 5

Definition 2. Let S be a cryptographic scheme with scheme parameters params and suppose DEFN is a
security definition defined by the game Gdefn[S]. We define the advantage of an adversary A against S as

Advdefn
S (A) := Pr[Gdefn[S](A)].

The scheme S is DEFN-secure if Advdefn
S (A) is negligible for all polynomial time adversaries A, where

polynomial and negligible are in terms of the security parameter defined by params.

Definitions 1 and 2 convert a game definition to a concrete assumption or security definition. Thus, in
the rest of the paper, we only write the game definitions.

All of our security proofs are in the random oracle model (ROM) [10], where hash functions are modeled
as random oracles. Our security definitions do not rely on the ROM.
Notation. We use multiplicative notation for all groups except for Zp, which denotes the integers modulus
p. Addition and multiplication operations of Zp elements are modular. Logarithms use base 2.

In pseudocode, we use ← for assignment and ←$ for randomized assignment. In particular, x←$ S
denotes sampling an element uniformly at random from a finite set S and x←$A(x1, . . .) denotes assigning
the output of a randomized algorithm A with uniformly random random tape and input x1, . . . to x. We use
⊥ to denote an error value, and use subscripts for array indexing. All variables are assumed to be uninitialized
until assigned a value. Arrays and lists are one-indexed.

3 Specifications and Usage

3.1 Multi-Signatures

A multi-signature scheme allows a group of signers to provide a succinct joint signature for an agreed upon
message. More specifically, a valid multi-signature by a group of n signers intends to convince verifiers that
each of the n signers have participated in the signing protocol in order to sign this message with this group
of signers.

In this paper, we primarily consider multi-signature in the plain public key model [9], the setting where
each signer has their own long-standing public key that they generate independently (as opposed to using
a distributed key generation protocol). This allows signers to use the same public key with multiple signing
groups.
Key aggregation. A multi-signature scheme supports key aggregation if a signature can be verified using
a single short key, called the aggregate key of the group, as opposed to the public keys of all the signers.
In particular, MuSig [37] and MuSig2 [42] produce ordinary Schnorr signatures that can be verified with
respect to the aggregate key.
Broadcasting versus an aggregator node. In our syntax, the signers sends the output of each signing
round to every other signer. It is sometimes more efficient to use an aggregator node (may be one of the
signers) whose role is to aggregate the output of each signing round and forward it to the signers, as well as
output the final multi-signature. Some authors describe schemes this way (for example [28, 42]) and every
scheme can be described in this manner. Since the aggregator is not trusted and all the information available
to the aggregator is also available to the adversary in our security model, using an aggregator node does not
affect the unforgeability of schemes.
Formal syntax and correctness. A multi-signature scheme MS is a collection of algorithms MS.Kg,
(MS.Signr)MS.nr

r=1 , and MS.Verify, where nr is the number of signing rounds specified by the scheme. A scheme
also specifies the last interactive round MS.lir, after which it is possible to construct a multi-signature without
knowledge of the signers secret information. If a scheme supports key aggregation, it also has an MS.KeyAgg
algorithm accompanied by MS.AggVer for key aggregation and for verification using the aggregated key. The
intent of the algorithms is as follows:

Key generation: The randomized algorithm MS.Kg is used for key generation by each signing party indi-
vidually. It takes no input apart from the scheme parameters and outputs a secret-public key pair.

Signing: The collection of algorithms (MS.Signr)MS.nr
r=1 specifies the signing procedures to be run by each

signing party, where MS.nr (the number of rounds) is specified by the scheme. Each round takes a subset
of the following as input: a message, a vector of public keys along with the signer’s index in the vector, the

6 Sela Navot, Stefano Tessaro

Algorithm ExecMS((vki)n
i=1, (ski)n

i=1, m):
1 For i = 1, . . . , n do:
2 i.st.sk ← ski, i.st.vk ← vki

3 out← (0)n
i=1 // output of current round

4 For r = 1, . . . , MS.nr do:
5 For i = 1, . . . , n do:
6 (σi, i.st)←$ MS.Signr(i.st, (vkj)n

j=1, m, out)
7 out← (σi)n

i=1
8 Return σ1

Game Gms-cor
n,m [MS]

Fin:
1 For i = 1, . . . , n do:
2 (vki, ski)←$ MS.Kg()
3 σ←$ ExecMS((vki)n

i=1, (ski)n
i=1, m)

4 Return MS.Verify((vki)n
i=1, m, σ)

Fig. 1. Left: an honest execution of the signing protocol of a multi-signature scheme MS. Note that signing rounds
may only use a subset of the provided input. Right: a game defining the correctness of a scheme. A scheme satisfies
perfect correctness for a natural number n if Pr[Gms-cor

n,m [MS]] = 1 for each supported message m.

output of previous signing rounds, and some other information saved in the state of at most one signer
(including the secret key). The algorithm produces an output and updates the state of the signing party,
and the multi-signature is the output of the last round SignMS.nr. These algorithms may be randomized.

Key aggregation: If the scheme supports key aggregation, the algorithm MS.KeyAgg takes a list of n public
keys (vki)n

i=1 as input and outputs a single aggregated verification key.
Verification: If MS does not support key aggregation, then it has an algorithm MS.Verify that takes a

list of public keys, a signature, and a message as input and returns a boolean value signifying whe-
ther the signature is valid. If MS supports key aggregation, it has the algorithm MS.AggVer with
the same functionality that takes an aggregated public key as input instead of a list of public keys.
In this case, a standard Verify algorithm can be obtained by setting MS.Verify((vki)n

i=1, m, σ) =
MS.AggVer(MS.KeyAgg((vki)n

i=1), m, σ). Hence, without loss of generality, we will only consider MS.Verify
in the correctness and security definitions.

The signers maintain a state st which may change throughout the protocol. In particular, using the convention
from [7], each signer i has a long-standing secret key i.st.sk and public key i.st.vk as well as information
associated with each signing session s that they participate in, denoted by i.sts. The session state includes
sts.n, (sts.vkj)sts.n

j=1 , sts.m, sts.rnd, and sts.me which refers to the number of parties, the public keys of those
signers, the message being signed, the last completed signing round, and the index of the party within the
signers. It is required that signers refuse requests to run the algorithm Signr for a session s if r ̸= sts.rnd + 1.
The state may also include other information such as the output of previous signing rounds or the discrete
log of a nonce.

Figure 1 describes an honest execution of a multi-signature scheme and provides a correctness definition.

3.2 Threshold Signatures

A threshold signature scheme allows any subset of sufficient size of a group of signers to provide succinct joint
signatures for an agreed upon message. This allows the group to produce signatures even if some signers are
offline, unresponsive, or adversarial. The group has an aggregated group public key for signature verification,
and honestly generated signatures by any subset of the signers are valid with respect to that key.
Idealized key generation. Typically, threshold signatures require a distributed key generation protocol
or a trusted dealer of secret keys. For the sake of simplicity, and in line with the framework of [6, 12], we
idealize key generation, which allows for simpler security definitions. While this model is not representative
of some applications, it is straightforward to extend our definitions to include distributed key generation and
other security goals.
Aggregator node. As with multi-signature, we require that in each signing round the signers broadcasts
the output to all other signers. It is possible to use a single aggregator node to facilitate communication
between the signers, which does not affect the unforgeability of a scheme.
Formal syntax. A threshold signature scheme TS is a collection of algorithms TS.Kg, (TS.Signr)TS.nr

r=1 , and
TS.Verify, where TS.nr is the number of signing rounds specified by the scheme. The scheme also specifies

One-More Unforgeability for Multi- and Threshold Signatures 7

Algorithm ExecTS(ṽk, (vki)n
i=1, S, (ski)i∈S , t, m):

1 Initialize the state of each signer i ∈ S with i, ski, (vkj)n
j=1, ṽk, t and initialize i.st1 with S, m

2 out← (0)i∈S // output of current round
3 For r = 1, . . . , TS.nr do:
4 For i ∈ S do:
5 (σi, i.st)←$ TS.Signr(i.st, (vki)n

i=1, S, m, out)
6 out← (σi)s∈S

7 Return σi for some i ∈ S

Game Gts-cor
n,t,m[TS]

Fin:
1 ((ski, vki)n

i=1, ṽk)←$ TS.Kg(n, t)
2 S←$ {R ∈ P({1, . . . , n}) : |R| ≥ t} // P denotes the power set
3 σ←$ ExecTS(ṽk, (vki)n

i=1, S, (ski)i∈S , t, m)
4 Return TS.Verify(ṽk, m, σ)

Fig. 2. Top: an honest execution of the signing protocol of a threshold signature scheme TS. Note that signing rounds
may only use a subset of the provided input. Bottom: a game defining the correctness of a scheme. A scheme satisfies
perfect correctness for a group size n and a threshold t if Pr[Gts-cor

n,t,m[TS]] = 1 for each message m that is supported
by TS.

the last interactive signing round TS.lir, after which it is possible to construct a threshold-signature without
knowledge of the signers secret information. The intent of the algorithms is as follows:

Key generation: We use idealized key generation, where the randomized algorithm TS.Kg takes the number
of signers n and the threshold t as input and outputs the keys for each signer (ski, vki)n

i=1 and an
aggregate verification key ṽk.

Signing: The collection of algorithms (TS.Signr)TS.nr
r=1 specifies the signing procedure to be run by each

participating signing party, and TS.nr (the number of rounds) is specified by the scheme. Each round
takes a subset of the following as input: a message, a vector of public keys who participate in the
session, the output of previous signing rounds, and other information saved in the state of at most one
signer (including the secret key). The algorithm produces an output, as well as updates the state of the
signing party. The threshold signature is the output of the last round SignTS.nr. These algorithms may
be randomized.

Verification: The verification algorithm takes an aggregated public key ṽk, a message, and a threshold
signature as an input and returns a boolean value signifying whether the signature is valid.

As in the case of multi-signatures, signers have a state st which is updated through the protocol. For each
signer i the state i.st includes the fields st.n and st.t denoting the number of signers in the group and the
required threshold for signatures, st.vk and st.sk denoting the signers own public and secret keys, (st.vkj)n

j=1
denoting the public keys of all signers in the group as well as the group verification key st.ṽk, and st.me
denoting the index of signer i in the signing group. Additionally, signers hold information for each session
s that they participate in, which includes sts.m (the message being signed) and sts.rnd (the most recent
signing round they completed). It is assumed and required that signers refuse requests to run the algorithm
Signr for a session s if r ̸= sts.rnd + 1.

Figure 2 describes an honest execution of a threshold signature scheme and provides a correctness defi-
nition.

4 Existential and Strong Unforgeability

Figure 3 defines existential and strong unforgeability for plain (single signer) digital signature schemes.
In both security games, the adversary is given an input public key vk and attempts to forge a signature

σ for a message m of their choice that is valid for the said key. The adversary also has access to a signing

8 Sela Navot, Stefano Tessaro

Games Gsuf-cma[Σ] , Geuf-cma[Σ]

Init():
1 (vk, sk)←$ Σ.Kg()
2 Q ← ∅ // message-signature pairs obtained legit-

imately
3 Return vk

SignO(m):
4 σ ← Σ.sign(m)
5 Q← Q ∪ {(m, σ)}
6 Return σ

Fin(m, σ):
7 If Σ.Verify(vk, m, σ):
8 If (m, σ) ̸∈ Q:
9 If {(m′, σ′) ∈ Q : m′ = m} = ∅:

10 Return true
11 Return false

Fig. 3. Games used to define the existential and strong unforgeability of a single signer digital signature scheme
Σ. The definition for strong unforgeability, Gsuf-cma, contains all but the dashed box. The definition for existential
unforgeability, Geuf-cma, contains all but the solid box.

oracle that they can query for signatures on adaptively chosen messages. To win, the adversary needs to
output a non-trivial forgery. For existential unforgeability, a forgery (m, σ) is non-trivial if m was not a
signing oracle query. For strong unforgeability (m, σ) is non-trivial if σ was not a signing oracle response on
query m. Thus, a strongly unforgeable scheme guarantees that every signature that an adversary possesses
was obtained from the signing oracle, or equivalently that the adversary cannot obtain more signatures for
a message than the number of such signature produced by the signing oracle.

In this section, we extend the definition of strong unforgeability to multi- and threshold signature using
one-more unforgeability.

4.1 Extending Strong Unforgeability to Multi-Signatures

Existential unforgeability of multi-signature in the plain public key model is an extension of the existential
unforgeability definition for plain signatures. In the standard definition, the adversary is given a public key
vk of an “honest signer” as input, and is able to query a signing oracle in which the honest signer completes
the signing algorithms for messages and signing groups chosen by the adversary. If the scheme contains
multiple signing rounds, then the adversary may also adaptively choose the input to each signing round as
well as interweave the rounds of different signing sessions. The adversary wins if they output a non-trivial
valid signature for a message m and a group of public keys (vki)n

i=1 that contains vk, where non-trivial
means that the signing oracle did not complete a signing session to sign m with this group of signers.

Extending strong unforgeability to multi-signature schemes is more challenging. The natural security
goal is the guarantee that every valid signature was legitimately obtained, but it is unclear how to formalize
this goal into a precise definition. First, an interaction with the signing oracle does not output a multi-
signature but a signature share, whereas the winning condition for the adversary includes producing a valid
multi-signature. Furthermore, the single signature share may not uniquely define the aggregate signature,
which also depends on input from signers that are controlled by the adversary. Therefore, simply tracking
the outputs of the signing oracle does not allow us to distinguish between trivial and non-trivial forgeries.

Thus, we turn to a different approach to defining strong unforgeability. For plain signatures, strong
unforgeability is equivalent to the guarantee that an adversary cannot obtain more valid signatures for each
message than the number of signatures obtained legitimately via the signing oracle. This notion does apply to
multi-signatures, and can be formalized using one-more unforgeability. In our strong unforgeability definition,
we count how many signature shares the adversary obtains from the signing oracles for each message and
signing group, and require that the adversary cannot compute more valid signatures. Thus, a secure scheme
guarantees that the adversary cannot obtain more signatures than those that can be computed trivially from
the shares it obtained from the signing oracles.

We put this notion into a game definition in Figure 4, which compares it with the definition of existential
unforgeability. Note that the only difference between the existential and strong unforgeability games is the

One-More Unforgeability for Multi- and Threshold Signatures 9

Games Gsuf-ms[MS] , Geuf-ms[MS]

Init():
1 (vk, sk)←$ MS.Kg() // generates keys and initializes state
2 Q← Empty Dictionary
3 Return vk

SignOj(s, some subset of {m, k, (vki)n
i=1, out}):

4 // An oracle for each j ∈ {1, . . . , MS.nr}
5 σ←$ MS.Signj(input of SignOj)
6 If σ = ⊥: return ⊥
7 If j = MS.lir: // on last interactive signing round
8 If Q[((sts.vki)n

i=1, sts.m)] uninitialized:
9 Q[((sts.vki)n

i=1, sts.m)]← 1
10 Else:
11 Q[((sts.vki)n

i=1, sts.m)]← Q[((sts.vki)n
i=1, sts.m)] + 1

12 Return σ

Fin(k, (vki)n
i=1, m, (σj)ℓ

j=1):
13 If vkk ̸= vk: return false
14 If σi = σj for some i ̸= j: return false
15 For j = 1, . . . , ℓ do:
16 If not MS.Verify((vki)n

i=1, m, σj):
17 Return false
18 If Q[(vki)n

i=1, m] initialized and Q[(vki)n
i=1, m] ≥ ℓ:

19 If Q[(vki)n
i=1, m] initialized:

20 Return false
21 Return true

Fig. 4. Games used to define the existential and strong unforgeability of a multi-signature scheme MS. The definition
for strong unforgeability, Gsuf-ms, contains all but the dashed box. The definition for existential unforgeability,
Geuf-ms, contains all but the solid box.

winning condition, and whenever an adversary wins the existential unforgeability game it also wins the strong
unforgeability game. Hence, strong unforgeability implies existential unforgeability, as expected.

At which round is a message signed. Some authors (for example [9, 37, 14, 7]) consider a forgery for
a message and a group of signers trivial if the adversary initiated a signing session with those parameters.
However, for multi-round schemes, an adversary should not be able to obtain a signature unless all interactive
signing rounds have been completed.

Thus, in our syntax a scheme specifies its last interactive signing round, MS.lir. It is expected that after
querying the signing oracle for the last interactive round the adversary can produce a multi-signature, but not
before, for both existential and strong unforgeability. Therefore, our security game registers that a legitimate
multi-signature has been provided only on calls to the signing oracle for the last interactive round.

Which signing rounds are message and group dependent. In some multi-signature schemes, some
signing rounds can be completed before the message to sign or the identities of the signers in the group are
determined (for example, [42, 49]). Our definitions support such schemes by allowing each scheme to define
the input for each signing round in our syntax and security definitions.

Toy strongly unforgeable scheme. We present a toy multi-signature scheme in Appendix A to help
demonstrates the difference and separation between existential and strong unforgeability.

Comparison to OMUF of blind signatures. While we refer to our security notion as one-more un-
forgeability, it is more similar to the so called strong one-more unforgeability of blind signatures. Whereas
existential one-more unforgeability of blind signatures typically means that an adversary cannot come up

10 Sela Navot, Stefano Tessaro

with ℓ+1 signatures for distinct messages after completing ℓ signing sessions, strong OMUF does not require
the messages to be distinct.

Our approach to defining OMUF and strong OMUF of blind signatures are similar. On one hand, if the
number of message-signature pairs exceeds the number of signing sessions, there must be one message that
has been signed fewer times than the number of signatures the adversary produced for that message, breaking
our definition of OMUF. Conversely, if for some message the adversary can produce more signatures than
the number of sessions that signed it, we can extend this to an attack producing more message-signature
pairs than the number of signing executions.

4.2 Strong Unforgeability of Threshold Signatures

As with multi-signature, we define strong unforgeability for threshold signatures using one-more unforgeabil-
ity.

One of the challenges with threshold signatures is the abundance of different security definitions, even
for existential unforgeability. In this paper, we only formally define strong unforgeability that corresponds
to the simple TS-UF-0 unforgeability definition of [6, 12]. We also discuss stronger definitions of existential
unforgeability, and how to extend them to strong unforgeability.
Existential and strong unforgeability. A t-out-of-n threshold signature scheme with n signers and a
signing threshold t can only provide security as long as less than t of the signers are corrupted, since otherwise
the corrupt signers can produce signatures by following the protocol. Thus, we enforce that less than t of the
signers are corrupt in all security games. The adversary can query the honest signers for signature shares via
a signing oracle, and may also adaptively choose the input to each signing round and interweave the rounds
of different signing sessions. The adversary wins if they obtain a non-trivial valid signature for the group
public key.

Existential unforgeability (TS-UF-0) considers signatures for a message m trivial if the adversary has
obtained some signature share for m via the signing oracle, or more specifically if all signing rounds of the
signing protocol for m were completed by a signing oracle, up to the last interactive round (which is defined
by the scheme). As with multi-signatures, extending this notion to strong unforgeability calls for one-more
unforgeability. The strong unforgeability game counts how many signatures shares the adversary obtains
from the signing oracle for each message, and the adversary wins if they can produce more signature than
that for some message. This corresponds to the adversary obtaining more threshold signatures than the
number they can trivially obtain using the signing oracle signature shares, had the adversary corrupted t−1
signers.

Figure 5 provides our game definition, compared with the definition of existential unforgeability. Note
that as with multi-signature, whenever an adversary wins the existential unforgeability game they also win
the strong unforgeability game, and therefore strong unforgeability implies existential unforgeability.
Other considerations. As with multi-signatures, our definition supports schemes where the message to
sign is selected after the first signing round by allowing the scheme to define which input is taken by each
signing round. Our definition also considers a message signed by the signing oracle if it completes the last
interactive signing round, as opposed to the first round as is done in some prior work ([20], for example).
Stronger security goals. It is natural to seek stronger security goals for threshold signatures for the
case where the adversary corrupts less than t − 1 signers. In particular, a forged signature may not be
considered trivial whenever the adversary obtained a signature share from a single honest signer for this
message; instead, a forgery should only be considered trivial if the adversary obtained a partial signature
from t − |CS | signers (where |CS | is the number of signers corrupted by the adversary). For existential
unforgeability, this is precisely the distinction between TS-UF-0 and the stronger TS-UF-1 in [6, 12].

Using one-more unforgeability, we can extend US-UF-1 to strong unforgeability. To do this, we require
that t− |CS | signature shares from distinct signers must be used to construct each threshold signature, and
that no partial signature can be used to construct two threshold signatures. In other words, a scheme that
satisfies this security goal would guarantee that the maximum number of signatures the adversary can obtain
for a message m is no more than the maximum number of threshold signatures the adversary could have
constructed if each threshold signature used t − |CS | signature shares obtained via the signing oracle from
distinct signers and no signature share is used twice.

One-More Unforgeability for Multi- and Threshold Signatures 11

Some constructions (for example [1, 34, 20, 3]) seek to provide security against adversaries who adaptively
choose which signers to corrupt. In the corresponding security definition, the adversary does not have to
input the set of corrupted servers in advance, but can at any point choose to corrupt a signer and obtain their
private keys and state. These definitions can easily be generalized to strong unforgeability using one-more
unforgeability.

Lastly, it is straightforward to generalize definitions that include a concrete distributed key generation
protocol ([17], for example) to strong unforgeability using one more unforgeability by changing the winning
condition.
Previous strong unforgeability definitions. In [6, 12], Bellare et al. study the strong unforgeability
of threshold signature schemes that are semi non-interactive, meaning they have a single signing round that
requires signers to know the message and signing subset, and for which a signature is uniquely defined by
the input to the last interactive signing round (called the leader request). While the class appears limited,
it contains the scheme FROST and is thus of practical interest.

They present multiple strong unforgeability definitions, the weakest of which (TS-SUF-2) considers a
forgery trivial only if there exist a leader request for which t− |CS | honest signers replied with a signature
share (where |CS | denotes the number of corrupted signers). This definition is strictly stronger than our
definition, and any scheme that satisfies TS-SUF-2 satisfies our strong unforgeability definition, as we show
in Section 6.1 (where we also present their definition in detail). In the same section, we also present a toy
scheme that satisfies our strong unforgeability definition but not TS-SUF-2, showing that the definitions are
not equivalent.

Concretely, the fact that TS-SUF-2 implies our strong unforgeability definition means that the results
in [6, 12] prove that FROST 1 [32] and FROST 2 [19] are strongly unforgeable by our definition (assuming
idealized key generation).

5 Multi-Signature Schemes

5.1 Analysis of HBMS

In [7] Bellare and Dai present HBMS (“Hash-Based Multi-Signature”), a two round multi-signature scheme,
and prove its existential unforgeability using the discrete log assumption in the random oracle model. We will
show that HBMS does not satisfy our definition of strong unforgeability by providing a concrete polynomial
time attack by an adversary who corrupts at least one signer and can participate in concurrent signing
sessions. The attack uses the algorithm of Benhamouda et al. [13] to solve the ROS problem [48], which
broke the unforgeability of many multi-signature schemes including an older variant of MuSig [36].

In the attack the adversary completes the first signing round of ℓ concurrent signing sessions for some
ℓ ≥ ⌈log2(p)⌉, where each session has the same group of signers and the same message and p is the order
of the underlying group. Then, the adversary completes the signing sessions to obtain one multi-signature
from each, and uses the output of those sessions to construct an additional signature for the same message.
Thus, the adversary obtains ℓ + 1 multi-signatures, of which ℓ are obtained legitimately and one is a forgery,
breaking strong unforgeability.

The attack is practical against a group who produces signatures together repeatedly, and it can be carried
out by a single malicious signer regardless of the number of signers in the group. We emphasize, however,
that it does not compromise the existential unforgeability of HBMS nor violate existing security proofs.

We point out that HBMS is strongly unforgeable against adversaries that don’t exploit the fact that it
is an interactive multi-signature scheme (i.e. if we assume an atomic execution of the signing protocol and
no corrupt signers). In other words, HBMS produces strongly unforgeable plain signatures in a distributed
way, without being strongly unforgeable itself. In Appendix B we formally define this weaker security notion
(which we call non-interactive strong unforgeability), and we prove that it is satisfied by HBMS in Appendix
B.1.
The HBMS scheme. We describe the scheme informally. A formal description of the scheme is given in
Figure 9 of [7].

HBMS involves three hash functions: H0 with codomain G and H1, H2 with codomain Zp, where G is a
multiplicative group of order p with a generator g provided by the scheme parameters. For key generation,

12 Sela Navot, Stefano Tessaro

Games Gsuf-ts
n,t [TS] , Geuf-ts

n,t [TS]

Init(CS):
1 Require CS ⊆ {1, . . . , n} and |CS | < t: // corrupt set
2 HS ← {1, . . . , n} \ CS // honest parties
3 Q← Empty Dictionary // tracks legit signatures
4 ((vki, ski)n

i=1, ṽk)←$ TS.Kg(n, t) // generates keys and initializes state
5 Return ṽk, (vki)n

i=1, (skj)j∈CS

SignOj(k, s, some subset of {m, S, out}):
6 // An oracle for each j ∈ {1, . . . , TS.nr}
7 If k ̸∈ HS : return ⊥
8 σ←$ k.TS.Signj(input to SignOj)
9 If σ = ⊥: return ⊥

10 If j = TS.lir : // on last interactive signing round
11 If Q[sts.m] uninitialized: Q[sts.m]← 1
12 Else: Q[sts.m]← Q[sts.m] + 1
13 Return σ

Fin(m, (σj)ℓ
j=1):

14 If σi = σj for some i ̸= j: return false
15 For j = 1, . . . , ℓ do:
16 If not TS.Verify(ṽk, m, σj):
17 Return false
18 If Q[m] initialized and Q[m] ≥ ℓ:
19 If Q[m] initialized:
20 Return false
21 Return true

Fig. 5. Game used to define the existential and strong unforgeability of a threshold-signature scheme TS with a
threshold t out of n. The definition for strong unforgeability, Gsuf-ts, contains all but the dashed box. The definition
for existential unforgeability, Geuf-ts, contains all but the solid box.

each signer i of the n signers samples a secret key xi uniformly at random from Zp and a public key Xi ← gxi .
The aggregate key is X̃ ←

∏n
i=1 X

H2(i,X1,...,Xn)
i .

To sign a message m with a group of signers (Xi)n
i=1, the scheme involves two interactive sign-

ing rounds. In the first round, given the message and signing group as input, each signer i calculates
h ← H0(X1, . . . , Xn, m) ∈ G, samples ri and si uniformly at random from Zp, and computes a commit-
ment Mi ← hsigri which is sent to every other signer. In the second round, each signer receives a list of
commitments (M1, . . . , Mn) from all the signers and computes T ←

∏n
i=1 Mi. Each signer then computes the

challenge c← H1(T, X̃, m) and the reply zi ← ri + xi · c ·H2(i, X1, . . . , Xn), and sends (si, zi) to every other
signer. Finally, every signer can now compute the final signature (T, s, z) where s←

∑n
i=1 si, z ←

∑n
i=1 zi,

and T ←
∏n

i=1 Mi.
To verify a signature (T, s, z) with respect to public keys (X1, . . . , Xn) and a message m, the verifier

computes h ← H0(X1, . . . , Xn, m) and X̃ ←
∏n

i=1 X
H2(i,X1,...,Xn)
i , and returns true if and only if the

equation
gzhs = T · X̃H1(T,X̃,m)

holds. Note that during verification the entire vector of public keys is needed for computing h, and hence
HBMS does not support key aggregation. Perfect correctness is easy to verify, and [7] proves the existential
unforgeability of HBMS.
The attack. We will present an attack in the two signers setting where one signer is corrupt, which is
sufficient to break our definition of strong unforgeability. It is easy to generalize it to a setting with more
signers, as long as at least one signer is corrupt.

One-More Unforgeability for Multi- and Threshold Signatures 13

Let S1 be a corrupt signer controlled by the adversary and S2 an honest signer (with whom the adversary
can communicate via a signing oracle). Let m be a message of the adversary’s choice and pick ℓ ≥ ⌈log2(p)⌉.
Each signer Si ∈ {S1, S2} proceeds with the key generation honestly by picking xi←$ Zp and Xi ← gxi and
computing X̃ ← X

H2(1,X1,X2)
1 X

H2(2,X1,X2)
2 .

Now, for each j ∈ {1, . . . , ℓ}, the adversary opens a signing session with signing group (X1, X2) and
message m, and receive a nonce Nj = hsj grj from the honest signer S2, where h← H0(X1, X2, m). For each
j ∈ {1, . . . , ℓ} and b ∈ {0, 1}, the adversary samples rb

j and sb
j uniformly at random from Zp and computes

N
b

j ← hsb
j grb

j and T
b

j ← Nj · N
b

j as well as cb
j ← H1(T b

j , X̃, m). The adversary must also ensure that all of
the T

bj

j are distinct and that c0
j ̸= c1

j for each j by regenerating the nonces if needed.
Now, define the group homomorphisms ρ+ : (Zp)ℓ → Zp and ρ× : Gℓ → G given by

ρ+(g1, . . . , gℓ) =
ℓ∑

j=1

2j−1gj

c1
j − c0

j

and

ρ×(g1, . . . , gℓ) =
ℓ∏

j=1
g

2j−1
c1

j
−c0

j

j .

Let Tℓ+1 ← ρ×(N1, . . . , Nℓ) and calculate cℓ+1 ← H1(Tℓ+1, X̃, m). Let d ← cℓ+1 − ρ+(c0
1, . . . , c0

ℓ) and write
it in binary as d =

∑ℓ
j=1 2j−1bj for some b1, . . . , bℓ ∈ {0, 1}, which is possible since ℓ ≥ ⌈log2(p)⌉.

Next, continue to the second round of each signing session j by sending N
bj

j to the honest signer and
obtaining the returned signature shares sj and zj . The adversary can now obtain ℓ legitimate signatures for
the message m by computing

σj ← (T bj

j , sj + s
bj

j , zj + r
bj

j + x1 · c
bj

j ·H2(1, X1, X2))
for each j ∈ {1, . . . , ℓ}, as well as a forgery

σℓ+1 ← (Tℓ+1, ρ+(s1, . . . , sℓ), ρ+(z1, . . . , zℓ) + cℓ+1 · x1 ·H2(1, X1, X2)).
We will prove below that all ℓ+1 signatures (σ1, . . . , σℓ, σℓ+1) are valid for the message m and signing group
(X1, X2), and that they are all distinct with high probability. This implies that the adversary obtained ℓ + 1
valid signatures after only completing ℓ signing oracle signing sessions, breaking the strong unforgeability of
HBMS.
Validity of σ1, . . . , σℓ. Since all of the T

bj

j are distinct, all of the σj are distinct for j ∈ {1, . . . , ℓ}. Also
note that each of those signatures was obtained legitimately with both signers following the protocol, and
hence by the perfect correctness of HBMS they are valid.
Validity of σℓ+1. The signature σℓ+1 = (Tℓ+1, ρ+(s1, . . . , sℓ), ρ+(z1, . . . , zℓ) + cℓ+1 · x1 ·H2(1, X1, X2)) is
the forged signature, and is the only one that is not trivial to obtain.

For the distinctiveness of σℓ+1, note that the collection {T b1
1 , . . . , T

bℓ

ℓ } is selected uniformly at random
from all subsets of G of cardinality ℓ, independently of (N1, . . . , Nℓ). Hence, the probability that is contains
Tℓ+1 = ρ×(N1, . . . , Nℓ) is ℓ

|G| ≈
log2(p)

p , which is very small. Hence, with large probability, Tℓ+1 ̸= T
bj

j and
therefore σℓ+1 ̸= σj for all j ∈ {1, . . . , ℓ}.

We will now verify that σℓ+1 is valid. To check its validity, we must verify that
gρ+(z1,...,zℓ)+cℓ+1·x1·H2(1,X1,X2) · hρ+(s1,...,sℓ) = Tℓ+1 · X̃cℓ+1

where h← H0(X1, X2, m). Starting from the right-hand side, we have that
Tℓ+1 · X̃cℓ+1 = ρ×(N1, . . . , Nℓ) · (XH2(1,X1,X2)

1 X
H2(2,X1,X2)
2)cℓ+1 =

= gρ+(r1,...,rℓ) · hρ+(s1,...,sℓ) · g(x1·H2(1,X1,X2)+x2·H2(2,X1,X2))cℓ+1 .

Applying Lemma 3, which states that cℓ+1 = ρ+(cb1
1 , . . . , cbℓ

ℓ), we can simplify the equation to

= hρ+(s1,...,sℓ)gx1·H2(1,X1,X2)cℓ+1+ρ+(r1,...,rℓ)+x2·H2(2,X1,X2)·ρ+(c
b1
1 ,...,c

bℓ
ℓ

)

and therefore, since ρ+ is homomorphic and zj = rj + x2 ·H2(2, X1, X2) · cbj

j for each j,
= hρ+(s1,...,sℓ)gx1·H2(1,X1,X2)cℓ+1+ρ+(z1,...,zℓ)

which is what we wanted to prove. Hence, σℓ+1 is a valid signature.

14 Sela Navot, Stefano Tessaro

Lemma 3. By the construction above, cℓ+1 = ρ+(cb1
1 , . . . , cbℓ

ℓ).

This lemma is at the heart of the attack, and the construction allowing this lemma to hold is precisely
the algorithm of [13] to solve the ROS problem.

Proof (Lemma 3). By definition
∑ℓ

j=1 2j−1bj = cℓ−1 − ρ+(c0
1, . . . , c0

ℓ). Hence, to prove the lemma, it is
sufficient to show that

ρ+(cb1
1 , . . . , cbℓ

ℓ)− ρ+(c0
1, . . . , c0

ℓ) =
ℓ∑

j=1
2j−1bj .

Starting from the left-hand side, we have that

ρ+(cb1
1 , . . . , cbℓ

ℓ)− ρ+(c0
1, . . . , c0

ℓ) =
ℓ∑

j=1

2j−1(cbj

j − c0
j)

c1
j − c0

j

.

For each j, we have that 2j−1(c
bj
j

−c0
j)

c1
j −c0

j
is equal to 0 whenever bj is 0 and is equal to 2j−1 whenever bj is 1.

Consequently, 2j−1(c
bj
j

−c0
j)

c1
j −c0

j
= 2j−1bj . Thus,

ρ+(cb1
1 , . . . , cbℓ

ℓ)− ρ+(c0
1, . . . , c0

ℓ) =
ℓ∑

j=1
2j−1bj

which is what we wanted to prove.

5.2 Analysis of MuSig

In this section we prove the strong unforgeability of the multi-signature scheme MuSig which consists of
three interactive signing rounds and supports key aggregation, presented in [37].

We emphasize that only the 3-round version of MuSig is strongly unforgeable, whereas the prior two-round
version [36] is insecure [24, 13].
The scheme. We now describe the scheme informally. A formal description of the scheme using our syntax
for multi-signatures can be found in Figure 6.

The scheme involves a group G of prime order p with a generator g and the hash functions Hcom, Hsign,
and Hagg with codomain Zp that are used for commitments, signing, and key aggregation respectively. In key
generation, each signing party generates a private key sk←$ Zp and a public key vk ← gsk . The aggregate
public key for a group of n signers with public keys vk1, . . . , vkn is computed by

ṽk ←
n∏

i=1
vk

Hagg(i,vk1,...,vkn)
i .

In the first signing rounds, each signer k chooses rk←$ Zp, computes Rk ← grk , and sends a commitment
tk ← Hcom(Rk) to all the other signers. In the second round, each signer k receives the commitments
t1, . . . , tn from all other signers, and sends Rk to all other signers. In the third round, the signer receives
nonces R1, . . . , Rn from all the signers and verifies the commitments by checking that ti = Hcom(Ri) for
each i. Then, they compute R←

∏n
i=1 Ri, the aggregate public key ṽk as described above, and a challenge

c← Hsign(ṽk, R, m). Then, they output a signature share zk ← rk + skk · c ·Hagg(k, vk1, . . . , vkn). Now, any
of the signer can output the multi-signature (R, z) where z ←

∑n
i=1 zi.

A signature (R, z) is valid with respect to an aggregated verification key ṽk and a message m if and only
if

gz = R · ṽkHsign(ṽk,R,m)
.

MuSig satisfies perfect correctness, and the verification of a MuSig multi-signature with respect to an aggre-
gated key ṽk is identical to the verification of a standard Schnorr signature.
Which signing rounds are message dependent. The signers in MuSig do not use the message in the
first two signing rounds. Thus, it is natural to ask whether it is possible to pre-execute the first two signing
rounds before the message to sign arrives. If so, the scheme would involve a single interactive signing round
when the message arrives, resulting in an almost non-interactive signature scheme (this property is claimed

One-More Unforgeability for Multi- and Threshold Signatures 15

Scheme MuSigG,g,Hagg,Hcom,Hsign :

MuSig.nr = 4
MuSig.lir = 3

KeyGen():
1 x←$ Zp; X ← gx

2 st.sk ← x; st.vk ← X
3 Return (sk = x, vk = X)

KeyAgg(vk1, . . . , vkn):
4 Return

∏n

i=1 vk
Hagg(i,vk1,...,vkn)
i

AggVer(m, σ, ṽk):
5 (R, z)← σ

6 Return [gz = R · ṽkHsign(ṽk,R,m)]

Sign1():
7 st.j ← st.j + 1; j ← stj

8 stj .r←$ Zp; stj .R← gstj .r

9 stj .t← Hcom(stj .R)
10 stj .rnd← 1
11 Return stj .t

Sign2(j, (ti, vki)n
i=1, m):

12 If stj .rnd ̸= 1, vkk ̸= st.vk, or stj .t ̸= tk:
13 Return ⊥
14 stj .m← m; stj .n← n; stj .k ← k
15 For i from 1 to n:
16 stj .ti ← ti; stj .vki ← vki

17 st.rnd← 2
18 Return stj .R

Sign3(j, R1, . . . , Rn):
19 If stj .rnd ̸= 2 or Rstj .k ̸= stj .R:
20 Return ⊥
21 If ∃i such that stj .ti ̸= Hcom(Ri):
22 Return ⊥
23 ṽk ← KeyAgg(stj .vk1, . . . , stj .vkn)
24 R←

∏n

i=1 Ri

25 c← Hsign(R, ṽk, stj .m)
26 a← Hagg(stj .k, stj .vk1, . . . , stj .vkn)
27 z ← stj .r + x · c · a
28 stj .rnd← 3
29 Return (R, z)

Sign4(R, z1, . . . , zn):
30 Return (R,

∑n

i=1 zi)

Fig. 6. A description of the MuSig scheme over a group G of order p and generator g. The fourth round is often
omitted since it can be performed by any observer of the protocol.

by MuSig2 [42], for example). The original MuSig paper [37] does not provide an explicit answer to this
question.

The answer, however, is no. Such a shortcut leads to the scheme no longer being existentially unforgeable
[40, 39]. For security, the signers must associate each signing execution with a message and a signing group
when executing the second signing round (the “reveal” round of the nonce shares). Our security proof only
applies in this setting.

Prior security proofs for MuSig. The existential unforgeability of MuSig is proved in [37, 14, 7]. These
proofs, however, use a security definition that considers a forgery trivial whenever the adversary opened a
signing oracle signing session with the corresponding message and group of signers, regardless of whether the
signing session was completed. Consequently, these proofs do not rule out adversaries who complete the first
two signing rounds for some message and then forge a signature without completing the third signing round.
This is problematic since the third signing round is where signers verify the commitments sent in previous
rounds, and it is the only round where the signers use their private keys.

We fill this gap by providing a security proof of strong unforgeability, and consequently existential un-
forgeability, using a definition that considers a forgery trivial only if the honest signer has completed all
interactive rounds of a signing session with the corresponding message and public keys. This stronger defini-
tion comes at the cost of a looser reduction than the reduction in [7] by a factor of approximately qs, where
qs denotes the maximum number of signing sessions opened by the adversary.

Our result, chain reductions, and the XIDL. In [7], Bellare and Dai construct a chain of reductions
from the discrete log problem to their definition of the existential unforgeability of MuSig. One of the links
in the chain is the Random Target Identification Logarithm (XIDL) game in Figure 7, and they show that
it is hard whenever the discrete log assumption (Figure 7) holds, as written in Lemma 4.2

2 They also achieve tighter security bounds using the algebraic group model [25], but this is orthogonal to this paper.

16 Sela Navot, Stefano Tessaro

Game Gmdl
G,g

Init():
1 x←$ Zp; X ← gx

2 Return X

Fin(x′):
3 Return [x = x′]

Game Gmxidl
G,g,q1,q2

Init():
1 x←$ Zp; X ← gx

2 j ← 0; i← 0
3 Return X

NewTarget(S): // at most q1 queries.
4 j = j + 1; Sj ← S
5 ej ←$ Zp; Tj ← Sj ·Xej

6 Return ej

Challenge(jsel, R): // at most q2 queries
7 i← i + 1; Ri ← R
8 Yi ← Tjsel ; ci←$ Zp

9 Return ci

Fin(I, z):
10 Return [gz = RI · Y cI

I]

Fig. 7. The Discrete Log (DL) and the Random Target Identification Logarithm (XIDL) games in a group G with a
generator g of prime order p.

In Lemma 5, we prove that MuSig is strongly unforgeable in the random oracle model if winning the
XIDL is hard. The combination of these lemmas proves the strong unforgeability of MuSig in the ROM
under the discrete log assumption.

Lemma 4 (DL → XIDL; a combination of Theorems 3.2 and 3.4 of [7]). Let G be a group of order
p with generator g. Let q1, q2 be positive integers. Let Axidl be an adversary against Gmxidl

G,g,q1,q2
. Then, an

adversary Adl can be constructed so that

Advxidl
G,g,q1,q2

(Axidl) ≤
√

q2(
√

q1 ·Advdl
G,g(Adl) + q1

p
) + q2

p
and the running time of Adl is approximately four times the running time of Axidl.

We omit the proofs of Lemma 4 since it is non-trivial and can be found in the referenced paper.

Lemma 5 (XIDL → SUF of MuSig in the ROM). Let G be a group of prime order p. Let g be a
generator of G. Let MS = MuSig[G, g] be the associated multi-signature scheme, with its hash functions
modeled as random oracles. Let Ams be an adversary for the game Gsuf-ms[MS] and assume the execution
of Ams has at most q0, q1, q2, qs distinct queries to Hcom, Hagg, Hsign, and SignO1, the number of signing
parties in queries to signing oracle queries and Fin is at most n, and the number of signatures it outputs is
at most ℓ. Let q = q0(q0 + n · qs) + (qs + q1 + 1)2 + q2(qs + q1 + 1) + qs(q2 + qs) + n · qs(q0 + n · qs). Then,
there exists an adversary Axidl for the game Gmxidl

G,g,q1+qs+1,q2+ℓ such that

Advsuf−ms
MS (Ams) ≤ (1 + qs)Advxidl

G,g,qs+q1+1,q2+ℓ(Axidl) + q

p
and the running time of Axidl is similar to that of Ams.

We now describe the proof idea for Lemma 5, and include a formal proof in Appendix C.

Proof Idea for Lemma 5. We describe informally how to win the XIDL game with high probability given
an adversary that breaks the strong unforgeability of MuSig in the ROM.
Session parameters and signature types. Each execution of the third signing round of the signing
oracle uses a specific aggregate public key ṽk, aggregate nonce R, and message m. We refer this tuple
(R, ṽk, m) as the session parameter of this signing session.

Now consider an adversary Ams in the random oracle model. If they wish to complete a signing session
with the signing oracle, then for each corrupt signer they must provide a commitment ti as input to the second

One-More Unforgeability for Multi- and Threshold Signatures 17

signing round and then an Ri for the third signing round satisfying Hcom(Ri) = ti. To have a non-negligible
probability of completing the signing session, they must have called the random oracle Hcom with input Ri

before providing the input to the second signing round. Thus, whenever the adversary calls SignO2 with
input (m, X1, . . . , Xn, t1, . . . , tn), the reduction can recover all of the Ri and compute the session parameters.

Now suppose Ams breaks the strong unforgeability of MuSig. At the end of the game it outputs ℓ valid
signatures (Rj , zj)ℓ

j=1, where the Rj ’s are all distinct, for some message m and a group of keys X1, . . . , Xn

with aggregated key ṽk. Each of these signatures must fall into one of the following cases:

Case 1: (Rj , ṽk, m) was the session parameters for some signing oracle signing session that executed the
third signing round.

Case 2: (Rj , ṽk, m) was the session parameters for some signing oracle signing session that executed the
second signing round, but not the third.

Case 3: (Rj , ṽk, m) was not the session parameters for any signing oracle signing session.

Since Ams wins the strong unforgeability game, at most ℓ− 1 signing oracle sessions with message m and
keys X1, . . . , Xn completed the third signing round. Hence, at most ℓ− 1 signatures fall into Case 1 and at
least one signature falls into Case 2 or 3. We refer to such signatures as “forgeries.”
Using a forgery to win XIDL. Let X denote the output of the XIDL Init procedure, which the reduc-
tion sets to be the public key of the honest signer.

Now, suppose (R, z) is a valid multi-signature for a message m and a group of public keys vk1, . . . , vkn

with vkk = X. If the key aggregation exponent Hagg(k, vk1, . . . , vkn) is an XIDL target3 and c = H(R, ṽk, m)
is a challenge obtained from the XIDL’s Challenge oracle with input R, then (R, z) wins the XIDL game.
Thus, we program the random oracle so that responses to Hagg(k, vk1, . . . , vkn) queries are indeed XIDL
targets and c is an XIDL challenge corresponding to that target. It remains to show how to simulate the
signing oracle so that we can program the random oracle in such a way.
How to simulate the signing oracle. In order to construct a reduction, we must simulate the signing
oracle without knowing the secret key of the honest signer. We use the standard technique of simulating the
Schnorr signing oracle without knowledge of the public key.

1st round: The reduction simply outputs a random commitment tk←$ Zp.
2nd round: The reduction picks a uniformly random signature share and challenge zk, c←$ Zp, chooses a

nonce-share Rk ← gzk X−c·Hagg(k,vk1,...,vkn), and sets Hcom(Rk) ← tk so the commitment from the first
round holds. As explained before, the reduction can now recover the session parameters (R, X̃, m) even
though R is not yet known to the adversary. Therefore, it programs the random oracle Hsign(R, ṽk, m)←
c, and outputs the nonce share Rk.

3rd round: The reduction outputs the partial signature zk that it generated when simulating the second
signing round. It is a valid signature share by construction.

Guessing which session parameters are for forgery. When simulating the signing oracle for a ses-
sion with parameters (R, ṽk, m), we program the random oracle challenge Hsign(R, ṽk, m) ← c for a c that
we selected before determining R. Therefore, the reduction cannot use that challenge to win the XIDL game.
This is why it needs a forgery.

Suppose the forgery is (R, z) and that is valid for a message m and an aggregated key X̃. If the forgery
falls into Case 3 (the cases are defined at the beginning of the proof idea) we can use it to win the XIDL
game, since its session parameters (R, X̃, m) were not used by the signing oracle and thus the corresponding
challenge is an XIDL challenge. However, if the forgery falls into Case 2, then the reduction programmed
Hsign(R, ṽk, m)← c when simulating SignO2 and thus we cannot use it directly to win the XIDL game.4

To win the XIDL game using this type of forgery, the reduction generates an integer ρ uniformly at random
from {1, . . . , qs, qs + 1} where qs refers to the maximum number of signing sessions that can be opened by
3 The above procedure works for the case where there exist a unique k such that vkk = X. If more than one such k

exists, then we can program the random oracle so that
∑

{k:Xk=X} H(k, vki, . . . , vkn) is an XIDL target and the
hash function values appear uniformly random. See the formal proof for more details.

4 Previous MuSig security proofs do not consider signatures of Case 2 as forgeries, since they consider a forgery
trivial whenever the adversary initiated a signing session with the signing oracle for the corresponding message.

18 Sela Navot, Stefano Tessaro

Game Gmaomdl
G,g

Init():
1 c← 0; q ← 0
Challenge():
2 c← c + 1
3 xc←$ Zp; Xc ← gxc

4 Return Xc

Dlog(α, β1, . . . , βc):
5 // Outputs the DLog of X = gα

∏c

i=1 Xβi
i given its algebraic rep-

resentation in terms of the challenges
6 q ← q + 1
7 Return α +

∑c

i=1 βixi

Fin(y1, . . . , yc):
8 If q ≥ c or ∃i ∈ {1, . . . , n} such that yi ̸= xi:
9 Return false

10 Return true

Fig. 8. The Algebraic One More Discrete Log (AOMDL) game in a group G with a generator g of prime order p.

the adversary. Then, it simulates all signing sessions of index different from ρ as described above. For the
ρth session, however, it runs the first two signing rounds of the signing session honestly by picking the nonce
share Rk first, then generating the commitment and programming the signing oracle tk ← Hcom(Rk)←$ Zp.
Once the session parameters (R, ṽk, m) are known at the initiation of the second round we can program the
random oracle Hsign(R, ṽk, m) ← c where c is an XIDL challenge. Note that the reduction cannot simulate
the third signing round of the ρth signing session and will have to abort if the adversary asks for it. It will,
however, be able to win the XIDL game if the adversary outputs a forgery that falls into Case 2 with the
session parameters of the ρth signing session.

Thus, if the adversary outputs a forgery that falls into Case 2, and we chose ρ so it corresponds to
the session with the same parameters as the forgery, then we win the XIDL game. Hence, if the adversary
produces a forgery that falls into Case 2 then we win the XIDL game with probability of at least 1

qs+1 . If the
adversary outputs a forgery that falls into Case 3, then we win if we were able to simulate all signing oracle
queries, which is guaranteed if we chose ρ = qs + 1 and thus we win with a probability of at least 1

qs+1 . Since
every successful adversary against the strong unforgeability of MuSig must provide a forgery that falls into
Case 2 or 3, this means that if an adversary breaks the strong unforgeability of MuSig then the reduction
wins the XIDL game with probability of approximately 1

qs+1 .
We include a formal proof in Appendix C.

5.3 Analysis of MuSig2

We prove the strong unforgeability of the multi-signature scheme MuSig2 [42] under the Algebraic One More
Discrete Log assumption of [42] which we present in Figure 8 (a weaker falsifiable variant of the One More
Discrete Log assumption [8]).

MuSig2 requires only two interactive signing rounds, of which one can be pre-processed before the message
to sign and the set of signers have been determined. It also supports key aggregation and produces ordinary
Schnorr signatures with respect to the aggregated signing key.

Our strong unforgeability proof of MuSig2 is nearly identical to its original existential unforgeability
proof [42], and we strive to use similar structure and notation when presenting the proof as well as reuse as
much of it as possible. The similarity of our proof to the existential unforgeability proof serves as evidence
that our definition of strong unforgeability is straightforward to use.
The scheme. We will describe the scheme informally. A formal description using our syntax is found in
Figure 9.

The scheme uses a group G of prime order p with a generator g and three hash functions Hagg, Hnonce,
and Hsign with codomain Zp. Key generation and aggregation is the same as in MuSig,5 where each signer
generates the keys sk←$ Zp and vk ← gsk and the aggregate verification key for a group of n signers is
ṽk ←

∏n
i=1 vk

Hagg(i,X1,...,Xn)
i .

5 We slightly deviate from the original MuSig2 scheme by writing ṽk ←
∏n

i=1 vk
Hagg(i,vk1,...,vkn)
i , as opposed to

ṽk ←
∏n

i=1 vk
Hagg(vki,vk1,...,vkn)
i . This follows the convention of [7], which views the public keys of the signing

group as a list as opposed to a multi-set in the security definitions.

One-More Unforgeability for Multi- and Threshold Signatures 19

Scheme MuSig2G,g,Hagg,Hnonce,Hsign :

MuSig2.nr = 3
MuSig2.lir = 2

KeyGen():
1 x←$ Zp; X ← gx

2 st.sk ← x; st.vk ← X
3 Return (sk = x, vk = X)

KeyAgg(vk1, . . . , vkn):
4 Return

∏n

i=1 vk
Hagg(i,vk1,...,vkn)
i

Sign1():
5 st.j ← st.j + 1 // num of signing sessions
6 j ← st.j, stj .rnd← 1
7 For i ∈ {1, . . . , 4}:
8 stj .ri←$ Zp; Ri ← gstj .ri

9 Return (R1, . . . , R4)

Sign2(j, k, m, (vki, Ri,1, . . . , Ri,4)n
i=1):

10 If stj .rnd ̸= 1 or vkk ̸= st.vk:
11 Return ⊥
12 stj .rnd← 2
13 ṽk ← KeyAgg(vk1, . . . , vkn)
14 For ℓ = 1, . . . , 4:
15 Rℓ ←

∏n

i=1 Ri,ℓ

16 b← Hnonce(ṽk, R1, . . . , R4, m)
17 R←

∏4
ℓ=1 R

(bℓ−1)
ℓ

18 c← Hsign(R, ṽk, m)
19 z ←

∑4
ℓ=1 stj .rℓ · bℓ−1 + c · skk ·Hagg(k, vk1, . . . , vkn)

20 Return (R, z)

Sign3(R, z1, . . . , zn):
21 Return (R,

∑n

i=1 zi)

AggVer(m, σ, ṽk):
22 (R, z)← σ

23 Return [gz = R · ṽkHsign(ṽk,R,m)]

Fig. 9. A description of MuSig2 over a group G of order p with generator g. The third round is often omitted since
it can be performed by any observer of the protocol.

In the first signing round each signer k generates four6 random values rk,1, . . . , rk,4←$ Zp and
sends Rk,ℓ ← grk,ℓ for each ℓ ∈ {1, . . . , 4} to all other signers. In the second round, on input
((vki, Ri,1, . . . , Ri,4)n

i=1, m), each signer k computes Rℓ ←
∏n

i=1 Ri,ℓ for ℓ ∈ {1, . . . , 4}, the aggregate
verification key ṽk, and b ← Hnonce(ṽk, R1, . . . , R4, m). Then each signer computes the aggregate nonce
R ←

∏4
ℓ=1 R

(bℓ−1)
ℓ , the challenge c ← Hsign(ṽk, R, m), and their partial signature zk ←

∑4
ℓ=1 rk,ℓ · bℓ−1 +

c · skk · Hagg(k, vk1, . . . , vkn) which they send to all other signers. The final multi-signature is given by
(R,

∑n
i=1 zi), which can be computed by any of the signers.

A multi-signature (R, z) can be verified with respect to a message m and an aggregate verification key ṽk

by checking that gz = R · ṽkHsign(ṽk,R,m), which is identical to the verification of a standard Schnorr signature.
MuSig2 satisfies perfect correctness.
Aggregator node. In the setting with an aggregator node, the communication cost of MuSig2 can be
reduced by having the aggregator compute the Rj ’s instead of the signers. More specifically, after the first
signing round the aggregator receives (Ri,1, . . . , Ri,4)n

i=1 and computes Rℓ ←
∏n

i=1 Ri,ℓ for ℓ ∈ {1, . . . , 4}.
The Rℓ’s can now be used as the input to the second signing round of each signer, as opposed to all of the
Ri,ℓ’s.

This shortcut does not affect the existential and strong unforgeability of MuSig2, since an adversary can
compute the Rℓ’s given the Ri,ℓ’s, and because given a uniformly random Rℓ an adversary can simulate a
selection of R1,ℓ, . . . , Rn,ℓ that appear uniformly random and have product Rℓ. Therefore, without loss of
generality, we do not consider this shortcut in our proof.
Strong unforgeability. The strong unforgeability of MuSig2 is given in the following lemma, which we
prove in Appendix D.

Lemma 6 (AOMDL → SUF of MuSig2 in the ROM). Let G be a group with prime order p and
generator g. Let MS = MuSig2[G, g], where its hash functions are modeled as random oracles. Let Ams be
an adversary against Gsuf-ms[MS] making at most qs queries to the signing oracle SignO1 and qh queries to

6 There is a simpler variant of MuSig2 that uses only two nonces [42] that we do not consider in this paper. Its
security proof relies on the algebraic group model.

20 Sela Navot, Stefano Tessaro

each random oracle. Let q = 4qh + 3qs + 2. Then, there exists an algorithm D such that

Advsuf−ms
MS (Ams) ≤

(
2q3(Advaomdl

G,g (D) + 32q2 + 12
p

)
)1/4

and D runs in approximately 4 times the runtime of Ams.

Proof idea: double forking technique. The proof of the strong unforgeability of MuSig2 is nearly
identical to the existential unforgeability proof of [42].

In the existential unforgeability proof, an adversary Ams that breaks the existential unforgeability of
MuSig2 in the ROM on input public key vk is used to win the AOMDL game in the following manner:
supposeAms outputs a forged signature (R, s) on a message m and public keys (vk1, . . . , vkn) where vkk = vk
after making qs signing oracle queries. First, they construct an adversary B that simulates Gsuf-ms[MuSig2]
for Ams by taking 4qs + 1 AOMDL challenges but only making qs queries to the Dlog oracle. Then, they
construct an adversary C that “rewinds” B by executing it again using the same randomness initially, but with
a different value for Hsign(R, ṽk, m), where ṽk is the aggregate public key corresponding to (vk1, . . . , vkn).
According to the Generalized Forking Lemma [9], the second execution of B produces a forgery using the
same parameters (R, ṽk, m) with non-negligible probability, allowing the reduction to extract the discrete
log of ṽk. Note that C runs B twice, and therefore it makes at most 2qs queries to the Dlog oracle.

Now, to extract the discrete log of vk the reduction constructs an adversary D that rewinds C by executing
it again using the same randomness initially, but with a different value of Hagg(k, vk1, . . . , vkn). If C succeeds
both times with the same list of public keys vk1, . . . , vkn, which happens with non-negligible probability,
then we can use the discrete logs of the aggregated public key to extract the discrete log of vk. Note that
D runs C twice, and hence makes at most 4qs queries to the Dlog oracle. However, the reduction algorithm
is set so that learning the discrete log of vk, which is the first OMDL challenge, allows the reduction to
learn the discrete log of all 4s + 1 discrete log challenges (the other challenges are used for the nonces in B’s
simulation of SignO2), hence winning the AOMDL game.

We refer readers to [42] for a thorough explanation of the proof technique.
What we do. In Lemma 10 of Appendix D, we construct a modified adversary B, which uses an adversary
Ams that breaks the strong unforgeability of MuSig2 (as opposed to the existential unforgeability in [42]).
Our B takes the same input and has the same output as the algorithm B in the proof of [42] and uses its
input in the exact same way. Thus, once our Lemma 10 is established, we can plug in our B to Lemma 3
and Theorem 1 of [42], and obtain a proof of the strong unforgeability of MuSig2 as stated in Lemma 6.

5.4 Analysis of mBCJ

In [4], Bagherzandi et al. present BCJ, a two-round multi-signature scheme. Approximately a decade later,
Drijvers et al. found an error in the security proof of BCJ and a sub-exponential attack against its exis-
tential unforgeability when concurrent signing sessions are permitted [24], using Wagner’s algorithm for the
generalized birthday problem [50]. This attack can be improved to polynomial time using the algorithm of
Benhamouda et al. to solve the ROS problem [13]. As an alternative to the insecure BCJ, Drijvers et al.
present mBCJ, a modification to the scheme that prevents the mentioned attacks [24].

The modified scheme mBCJ is nearly identical to BCJ, except that some of the scheme parameters (the
“commitment parameters”) are computed as the hash of the message being signed, as opposed to public pa-
rameters that are the same for every signing session. Thus, a forged mBCJ signature on an unsigned message
has to be valid for the corresponding commitment parameters, which are different from the parameters used
by the signing oracle for signing different messages. The information gained from the signing oracle is now
useless for forging a signature for an unsigned message, and the BCJ attack no longer works. Signing oracle
queries for the same message, however, use the same commitment parameters and can assist the adversary in
forging an additional signature for the same message. In this section, we use this observation to modify the
attack against BCJ to break the one-more unforgeability of mBCJ. Similarly, since the commitment param-
eters are dependent on the message being signed but not on the signing group, we show that the adversary
can forge a signature for a message that was signed by the signing oracle, and is valid with a signing set of
the adversary’s choice.

Similarly to HBMS, mBCJ is strongly unforgeable against adversaries that ignore the fact that it is an
interactive multi-signature scheme (we define this notion formally in Appendix B, and prove it for mBCJ in

One-More Unforgeability for Multi- and Threshold Signatures 21

Appendix B.2). In other words, mBCJ produces strongly unforgeable plain signatures in a distributed way,
without being strongly unforgeable itself.

Security proof of mBCJ, and our results. The existential unforgeability of mBCJ is proved under
the discrete log assumption [24], but using a weaker security definition than ours. First, the scheme is pre-
sented in the key-verification model [5], where signers attach a secret-key proof-of-possession to their public
key, to be checked when verifying a signature. Consequently, to win in the corresponding security definition,
the adversary must attach valid proofs-of-possession to the public keys used in the forgery. Secondly, in the
definition used to prove mBCJ secure, to win the adversary must forge a signature for a message that the
honest signer did not sign, regardless of the signing sets used for signing oracle queries and for the forgery.
In particular, if the honest signer signed a message m with signing set S, forging a signature for m with
a different signing set S′ that contains the honest signer is not considered a win for the adversary. This is
different from many definitions in literature (notably that of Bellare and Neven [9], and ours), which consider
a multi-signature as a signature on the pair (m, S), where S is the signing set generating the signature.

In this section we first show that even in the setting where mBCJ is proven secure it does not satisfy one-
more unforgeability. More specifically, an adversary can query the signing oracle ℓ times for some message
m, and obtain ℓ + 1 signatures for the same message, and the attack is polynomial time. Next, we show that
a modification of this attack allows the adversary to not only forge an additional signature for m, but it is
possible for that signature to be valid for a group of signers of the adversary’s choice, which may be different
from the group of signers used in signing oracle queries.

We point out that neither of these attacks contradict the mBCJ security proof of [24], as their security
definition does not consider such attacks a win for the adversary.

Tree-based communication model. To improve efficiency and reduce the communication complexity of
mBCJ, it is described with a tree-based communication model. The signer are arranged in a directed tree
with a root, who initiates each signing round and obtains the final signature. At each round, each signer
receives the input from their parent and passes it to their children. When the input reaches a leaf node, they
complete the signing round and pass their output to their parent, who combines their children’s output with
their own output and passes it up the tree towards the root.

In mBCJ, the tree structure allows the outputs of both signing rounds to be aggregated as they percolate
up the tree, and in the second round the signers only learn the aggregation of the first signing round outputs
as opposed to the output of all the signers. While we present the scheme without this optimization (for the
sake of consistency with the other schemes in this paper), our attacks work in that setting as well.

Description of mBCJ. The mBCJ scheme is parameterized by a group G of prime order p with a generator
g1, and hash functions H0, H1 with codomain Zp and H2 with codomain G3.

For key generation, each signer picks x←$ Zp and computes X ← gx. Then, they compute a proof-of-
possession π = (c, z) by choosing r←$ Zp, computing c ← H1(X, gr

1), and z ← r + c · x. The output is
(sk = x, vk = (X, π)).

In the first signing round, on input message m, each signer i computes the commitment parameters
(g2, h1, h2) ← H2(m). Then, they choose (ri, αi,1, αi,2)←$ Z3

p and compute ti,1 ← g
αi,1
1 h

αi,2
1 and ti,2 ←

g
αi,1
2 h

αi,2
2 gri

1 , outputting (ti,1, ti,2). For the second signing round, on input (tj,1, tj,2, Xj)n
j=1, each signer i

computes the aggregate public key X ←
∏

j Xj , the aggregate nonces t1 ←
∏

j tj,1 and t2 ←
∏

j tj,2, and
the challenge c ← H0(t1, t2, X, m). Finally, they output (αi,1, αi,2, si), where si = ri + c · xi. The final
multi-signature is (t1, t2, s, α1, α2), where s←

∑
j sj , α1 ←

∑
j αj,1, and α2 ←

∑
j αj,2.

To verify a signature (t1, t2, s, α1, α2) with respect to a message m and keys vk1 = (X1, π1), . . . , vkn =
(Xn, πn), the verifier first verifies all the proofs-of-possession by parsing each πi as (ci, zi) and checking
that ci = H1(Xi, gzi

1 X−ci
i), outputting false if any of the checks fails. Then, they compute the commitment

parameters (g2, h1, h2) ← H2(m), the aggregate key X ←
∏

j Xj , and the challenge c ← H0(t1, t2, X, m).
The verification returns true if and only if t1 = gα1

1 hα2
1 and t2 = gα1

2 hα2
2 gs

1 ·X
−c.

22 Sela Navot, Stefano Tessaro

One-more unforgeability attack.7 We present the attack in the two-signer setting where one signer is
corrupt. It is easy to generalize it to a setting with more signers, as long as at least one is corrupt. This
attack also applies in the tree-based communication model when the root is corrupt.

Let S1 be a corrupt signer controlled by the adversary, and let S2 be an honest signer with whom
the adversary can communicate via a signing oracle. Let m be a message of the adversary’s choice, let
(g2, h1, h2) ← H2(m), and pick ℓ ≥ ⌈log(p)⌉. Each signer Si ∈ {S1, S2} proceeds with key generation
honestly by picking xi←$ Zp, computing Xi ← gxi , and computing a proof-of-possession π as described in
the scheme description.

The adversary begins ℓ signing session for the message m, obtaining t2,1,j and t2,2,j from the S2 signing
oracle for each session j. Now, the adversary chooses (α1,1,j , α1,2,j)←$ Z2

p for each session j, as well as two

options (r0
1,j , r1

1,j)←$ Z2
p. Compute the nonce shares t1,1,j ← g

α1,1,j

1 h
α1,2,j

1 and tb
1,2,j = g

α1,1,j

2 h
α1,2,j

2 g
rb

1,j

1 for
b ∈ {0, 1}, and the consequent aggregate nonces t1,j = t1,1,jt2,1,j and t

b
2,j = tb

1,2,jt2,2,j for b ∈ {0, 1}. For
each session j ∈ {1, . . . , ℓ} and b ∈ {0, 1} compute the challenge cb

j ← H0(t1,j , t
b
2,j , X1X2, m). Now, define

the group homomorphisms ρ+ : (Zp)ℓ → Zp and ρ× : Gℓ → G given by

ρ+(y1, . . . , yℓ) =
ℓ∑

j=1

2j−1yj

c1
j − c0

j

and

ρ×(y1, . . . , yℓ) =
ℓ∏

j=1
y

2j−1
c1

j
−c0

j

j ,

and define t1,ℓ+1 ← ρ×(t2,1,1, . . . , t2,1,ℓ) and t2,ℓ+1 ← ρ×(t2,2,1, . . . , t2,2,ℓ). Let cℓ+1 ←
H0(t1,ℓ+1, t2,ℓ+1, X1X2, m), let d ← cℓ+1 − ρ+(c0

1, . . . , c0
ℓ), and write it in binary as d =

∑ℓ
j=1 2j−1bjfor

some b1, . . . , bℓ ∈ {0, 1}, which is possible since ℓ ≥ ⌈log2(p)⌉.
Next, continue to the second round of each signing session j with the group of signers (S1, S2) by sending

(t1,1,j , t
bj

1,2,j) to the S2 signing oracle, and obtain a response (s2,j , α2,1,j , α2,2,j). First, the adversary completes
each of the j sessions by following the protocol to generate a legitimate multi-signature

σj ← (t1,j , t
bj

2,j , s2,j + r
bj

1,j + c
bj

j · x1, α1,1,j + α2,1,j , α1,2,j + α2,2,j).
Additionally, the adversary forges a signature

σℓ+1 = (t1,ℓ+1, t2,ℓ+1, sℓ+1, α1,ℓ+1, α2,ℓ+1)
where the t’s are as defined above, sℓ+1 ← ρ+(s2,1, . . . , s2,ℓ) + x1 · cℓ+1, and αk,ℓ+1 ← ρ+(α2,k,1, . . . , α2,k,ℓ)
for k ∈ {1, 2}.

Note that σ1, . . . , σℓ where obtained legitimately with both signers following the protocol, and hence
by the perfect correctness of mBCJ they are valid. We will prove below that σℓ+1 is also valid for the
message m and signing group (S1, S2). This implies that the adversary obtained ℓ + 1 signatures after only
completing ℓ signing oracle signing sessions, breaking the one-more unforgeability of mBCJ. Also note that
the adversary has a proofs-of-possession of the secret key associated with X1, and thus this attack works in
the key-verification model.

Validity of σℓ+1. To verify the validity of σℓ+1 we must check that t1,ℓ+1 = g
α1,ℓ+1
1 h

α2,ℓ+1
1 and t2,ℓ+1 =

g
α1,ℓ+1
2 h

α2,ℓ+1
2 g

sℓ+1
1 · (X1X2)−cℓ+1 . Starting from the left hand side of the first equation, we have that

t1,ℓ+1 = ρ×(t2,1,1, . . . , t2,1,ℓ) = ρ×(gα2,1,1
1 h

α2,2,1
1 , . . . , g

α2,1,ℓ

1 h
α2,2,ℓ

1)

= g
ρ+(α2,1,1,...,α2,1,ℓ)
1 h

ρ+(α2,2,1,...,α2,2,ℓ)
1 = g

α1,ℓ+1
1 h

α2,ℓ+1
1 ,

which is what we wanted to show.
For the second equation, starting from the right hand side, we have that

g
α1,ℓ+1
2 h

α2,ℓ+1
2 g

sℓ+1
1 · (X1X2)−cℓ+1 =

7 In this attack there are two signers, each with a share of two nonces per signing session, participating in ℓ sessions.
This requires three-dimensional indexing, and we use subscripts i, j, k to denote signer i, nonce number j, in session
k. An overline is used for aggregated nonces, keys, or signature shares, with the corresponding number and session
in subscript. A superscript is used for a potential selection by the adversary.

One-More Unforgeability for Multi- and Threshold Signatures 23

= g
ρ+(α2,1,1,...,α2,1,ℓ)
2 h

ρ+(α2,2,1,...,α2,2,ℓ)
2 g

ρ+(s2,1,...,s2,ℓ)+x1·cℓ+1
1 (X1X2)−cℓ+1

= ρ×(t2,2,1, . . . , t2,2,ℓ)Xcℓ+1
1 X

ρ+(c
b1
1 ,...,c

bℓ
ℓ

)
2 (X1X2)−cℓ+1

= t2,ℓ+1 ·X
ρ+(c

b1
1 ,...,c

bℓ
ℓ

)−cℓ+1
2 .

However, by a proof identical to the proof of Lemma 3 (with slightly different notation), cℓ+1 =
ρ+(cb1

1 , . . . , cbℓ

ℓ). Consequently, the exponent of X2 cancels out, leaving us with t2,ℓ+1, which completes
the proof.
Forgery that is valid for an arbitrary signing group. Again, consider an adversary who has sign-
ing oracle access to an honest signer. We will show that after only calling the signing oracle for the message
m and signing set S, the adversary can find a valid signature for m that is valid for a different set of signers
S′ that contains the honest signer.

A trivial way to achieve this is to find two groups of signers S and S′ with the same aggregated public
key. In this case, any signature that is valid for m and S is also valid for m and S′. As a concrete example,
consider the setting from before where there is an honest signer S2 with public key X2 (and a secret key
proof-of-possession), and a signer S1 with public key X1 = gx1

1 controlled by the adversary. Using the signing
oracle, the adversary can obtain a signature σ that is valid for m and the signing group (S1, S2). Now, the
adversary can choose x3, x4 ∈ Zp satisfying x3 +x4 = x1, and since X1X2 = X1gx3

1 gx4
1 , the multi-signature σ

is valid for the group of signers with public keys (X2, gx3
1 , gx4

1). Furthermore, the adversary knows the secret
keys associated with gx3

1 and gx4
1 , so they can provide proofs-of-possession for those keys and the attack

works in the key-verification model.
This simple attack is enough to show that mBCJ does not satisfy our definition of existential unforge-

ability. It does not, however, allow the adversary to forge signatures that are valid for aggregate public keys
that were not used in signing oracle queries. We present a simple modification of the one-more unforgeability
attack that allows the adversary to do that.

As before, consider a corrupted signer S1 with public key X1 = gx1
1 , an honest signer S2 with public key

X2, and additionally consider a signer Sevil with public key Xevil = gxevil
1 with their private key known to

the adversary. The adversary wishes to forge a signature for the message m with signing set (Sevil, S2) after
only making signing oracle queries with the signing set (S1, S2). To do that, the adversary carries out our
one-more unforgeability attack against mBCJ with the following modifications.

– It sets the forgery challenge cℓ+1 ← H0(t1,ℓ+1, t2,ℓ+1, XevilX2, m), where Xevil replaces the X1 in the
original attack.

– In the forged signature σℓ+1, it sets s← ρ+(s2,1, . . . , s2,ℓ) + xevil · cℓ+1, where xevil replaces the x1 in the
original attack.

By following the steps to verify the validity of σℓ+1 in the original attack, we can see that σℓ+1 is valid for
the message m and the signing set (Sevil, S2). Note that this set may have a different aggregate public key
than those used in all signing oracle queries. Furthermore, the adversary knows the secret key xevil and can
generate a proof of possession, so the attack works in the key verification model.

6 Threshold Signatures Schemes

6.1 Comparison to Previous SUF-TS Definition, and FROST

In [6, 12], Bellare et al. provide a hierarchy or unforgeability definitions for a limited class of threshold
signature schemes. As part of this hierarchy, they define strong unforgeability for schemes that satisfy the
following properties:

Semi non-interactive: The scheme has at most one pre-processing signing round, which takes no input
and outputs a pre-processing token pp. Additionally, the scheme has a single signing round that takes
the message, the set of participating signers, as well as the pre-processing tokens of all participants as
input. The input to the message dependent signing round is called a leader request, denoted lr , with
fields lr .m, lr .S, and (lr .ppi)i∈S .

Strong-verification: The scheme has an additional strong verification algorithm SVerify, which verifies a
signature with respect to a public key and a leader request. It is required that for each leader request

24 Sela Navot, Stefano Tessaro

lr and aggregated public key ṽk there exist at most one signature σ such that SVerify(ṽk, lr , σ) = true.
Correctness requires that SVerify(ṽk, lr , σ) = true whenever all (of the t or more) signers in S honestly
computed σ with lr as the input to the message dependent signing round.

While this class of schemes appears limited, it contains FROST, and is therefore of practical interest.
The hierarchy of strong unforgeability definitions in [6, 12] begins at TS-SUF-2, the weakest of their

definitions, that both the FROST 1 [32] and FROST 2 [6, 19] variants satisfy under the one-more discrete
log assumption [8] in the random oracle model (Theorem 5.3 and 5.1 of [12]). This definition considers an
adversary who corrupts c out of n signers, where c < t. A secure scheme guarantees that if an adversary
obtains a valid signature σ on a message m, then there exist a leader request lr with the same message
that was signed by at least t− c honest signers and SVerify(ṽk, lr , σ) = true. Figure 10 shows this definition
using our syntax, and compares it to our strong unforgeability definition when restricted to the same class
of schemes.
TS-SUF-2 implies our definition. We claim that a TS-SUF-2 secure scheme is also one-more unforge-
able according to our definition by showing that any adversary that wins Gsuf-ts can be modified to win
Gts-suf-2-crypto22 with the same probability and no significant increase in runtime. Note that this implies the
one-more unforgeability of FROST 1 and FROST 2 under the OMDL assumption in the ROM.

Suppose there exists an adversaryA that wins Gsuf-ts
n,t [TS] with probability p. To construct an adversaryA′

that plays Gts-suf-2-crypto22
n,t [TS] we can simply execute A (since the two games have access to the same oracles,

with the same behavior) and maintain a set L of the leader requests that A inputs to SignO2 (and receives
a non-⊥ response). If A wins Gsuf-ts

n,t [TS], it must come up with valid distinct signatures (σj)ℓ
j=1 for some

message m such that ℓ ≥ |{lr ∈ L : lr .m = m}|. Hence, there exist some σj for which SVerify(ṽk, lr , σj) = false
for all lr ∈ {lr ′ ∈ L : lr ′.m = m}, and thus A′ can use σj to win Gts-suf-2-crypto22

n,t [TS]. Note that A′ has
roughly the same runtime as A, and it wins Gts-suf-2-crypto22

n,t [TS] with probability p.
Our definition does not imply TS-SUF-2. We note that TS-SUF-2 is strictly stronger than our one-
more unforgeability definition. To show that, we present a toy scheme TS′ that is one-more unforgeable but
does not satisfy TS-SUF-2 (in fact, it does not satisfy the weaker TS-UF-2 in the security hierarchy of Bellare
et al.).

Consider a semi non-interactive threshold signature scheme TS that is TS-SUF-2 secure (set
TS =FROST 1, for example). Now, modify it in the following way to obtain TS′:

Key generation: The key generation of TS′ is identical to that of TS.
First signing round (pre-processing round): The pre-processing round of TS′ is the same as that of

TS, except for an extra bit that is appended to the output and is set to 0.
Second signing round: The second signing round of TS′ is the same as that of TS, and the extra bit at

the end of the pre-processing tokens is ignored.
Verification: The signature verification of TS′ is identical to that of TS.

First, note that TS is one-more unforgeable (OMUF) using our definition, since TS-SUF-2 implies OMUF.
Consequently, TS′ is OMUF, since an adversary A that breaks the OMUF of TS′ can easily be converted
into an adversary A′ against the OMUF of TS with the same success probability.8

Now, we claim that TS′ is not TS-SUF-2 (in fact, it is not even TS-UF-2). The reason for that is that
the adversary can obtain signature shares from honest signers using different leader requests (by flipping the
unused bit of the pre-processing tokens), but those shares combine to a valid threshold signature (since the
flipped last bit is ignored during signing).

For a concrete attack, consider a group of two honest signers S1 and S2 with a signing threshold of
two (n = t = 2). The adversary calls the signing oracle for the first signing round to obtain pre-processing
tokens from each signer, pp1 and pp2. Now, the adversary calls the second round signing oracle for S1 with
the message m, signing set {S1, S2}, and pre-processing tokens (pp1, pp2) to obtain a signature share σ1.
8 A′ would simulate the first signing round to A by calling the TS signing oracle and appending 0 to the output,

and the second signing round by calling the TS signing oracle after removing the unnecessary bits from the pre-
processing tokens. If A wins the OMUF game against TS′, then its output is used by A′ to win the OMUF game
against TS.

One-More Unforgeability for Multi- and Threshold Signatures 25

Game Gts-suf-2-crypto22
n,t [TS] Gsuf-ts

n,t [TS]

Init(CS):
1 Require CS ⊆ {1, . . . , n} and |CS | < t: // corrupt parties
2 HS ← {1, . . . , n} \ CS // honest parties
3 Q← Empty Dictionary // tracks who signed each lr
4 Q← Empty Dictionary // num of signers for each m
5 ((vki, ski)n

i=1, ṽk)←$ TS.Kg(n, t) // generate keys and initialize state
6 Return ṽk, (vki)n

i=1, (skj)j∈CS

SignO1(k):
7 If k ̸∈ HS : return ⊥
8 pp←$ k.TS.Sign1()
9 Return pp

SignO2(k, s, m, S, (ppi)i∈S):
10 If k ̸∈ HS : return ⊥
11 lr = (m, S, (ppi)i∈S); σ←$ k.TS.Sign2(s, lr)
12 If σ = ⊥: return ⊥
13 If Q[lr] initialized: Q[lr]← Q[lr] ∪ {k}; Else: Q[lr]← {k}
14 If Q[m] initialized: Q[m]← Q[m] + 1; Else: Q[m]← 1
15 Return σ

Fin(m, σ) :
16 // Gts-suf-2-crypto22 game only
17 If not TS.Verify(ṽk, m, σ): return false
18 For each lr ∈ Q:
19 If lr has message m and |Q[lr]| ≥ t− |CS | and SVerify(ṽk, lr , σ):
20 Return false
21 Return true

Fin(m, (σj)ℓ
j=1) :

22 // Gsuf-ms game only
23 If σi = σj for some i ̸= j: return false
24 For j = 1, . . . , ℓ do:
25 If not TS.Verify(ṽk, m, σj): return false
26 If Q[m] initialized and Q[m] ≥ ℓ: return false
27 Return true

Fig. 10. Game Gts-suf-2-crypto22 used to define TS-SUF-2 for a threshold signature scheme TS in [6, 12] (adjusted
to our syntax), compared to our strong unforgeability definition Gsuf-ts restricted to schemes where TS-SUF-2 is
defined.

Similarly, the adversary calls the second round signing oracle for S2 with the same message and signing set,
and same pre-processing tokens but with the last bit of pp1 flipped to obtain σ2. Since the last bit of the
pre-processing tokens is ignored during signing, σ1 and σ2 combine to a valid threshold signature for the
message m. However, since each signer signed a different leader request, no leader request with the message
m was signed by two signers and hence this attack breaks TS-SUF-2 (and TS-UF-2).

6.2 Analysis of ROAST

In FROST-like threshold signature schemes [26, 32, 17, 20, 49] signing a message involves selecting a signing
subset (of sufficient size), after which it is required that each signing set member participates in a signing
session honestly, else signature generation fails. This leads to a lack of robustness, losing one of the main
advantages of threshold signatures over multi-signatures.

26 Sela Navot, Stefano Tessaro

ROAST [46] is a simple wrapper algorithm that adds robustness to such a scheme Σ by executions the
Σ signing protocol multiple times with different signing sets until one is successful. The only requirements
on the underlying scheme are the following:

Identifiable aborts: Signers that do not participate honestly in a Σ signing sessions can be detected with
overwhelming probability.

Semi non-interactive: Σ has one signing round that requires knowing the signing set, potentially in ad-
dition to a “pre-processing” signing round that can be executed before the signing set is selected.

The canonical schemes that satisfy these properties are FROST 1 [26] and FROST 3 [46]. ROAST also uses
an aggregator who facilitates communication between the signers and is trusted for robustness, but not for
unforgeability.

We argue that the robustness of ROAST comes at the cost of strong unforgeability. ROAST does not
satisfy any notion of strong or one-more unforgeability, even if Σ is strongly unforgeable. This is in spite
of the fact that ROAST does not fit our syntax and security definition for threshold signatures. It remains
an important open problem to define strong unforgeability for a class of schemes that contains ROAST and
construct a strongly unforgeable alternative.
The scheme. We describe the scheme informally, and a formal description can be found in Figure 4 of [46].

Suppose Σ is a non-robust and semi non-interactive threshold signature scheme that supports identifiable
aborts. Let S denote a signing group of size n with a signing threshold t. The key generation and verification
in ROAST are the same as those of Σ.

To sign a message m, the aggregator maintains a set R of available signers, initially adding signers to R
whenever they complete the pre-processing round. Whenever |R| ≥ t, the aggregator picks a subset T ⊆ R
with |T | = t, initiates a Σ signing session with the message m for the signers of T , and removes them from
R. Whenever a signer completes a signing session and another pre-processing round honestly, it is added
back to R. The protocol terminates when one of the signing session produces a valid Σ signature.

This protocol is guaranteed to produce a valid signature whenever t of the signers are honest and re-
sponsive. Furthermore, since Σ supports identifiable aborts each signer can sabotage at most one Σ signing
session, and thus ROAST terminates within a number of sessions that is at most the number of corrupt
signers.
Incompatibility with our unforgeability definitions. ROAST is inherently incompatible with our
unforgeability definitions. To begin, the number of interactive signing rounds is not determined until the
protocol terminates, and our syntax does not support such schemes. This issue can be circumnavigated with
some syntactical overhead by allowing schemes to adaptively choose the number of signing rounds. More
importantly, however, the signers cannot tell whether a signing round is the last interactive signing round.
Thus, even in an honest execution, they cannot determine at which signing round the aggregator should be
able to construct a threshold signature. In the context of our security definition, the unforgeability game
cannot tell at which signing oracle query to increase the count of signatures obtained legitimately.
Breaking strong unforgeability. While it remains an open problem to formally define strong unforge-
ability for ROAST-like schemes, we show that ROAST does not satisfy any notion of strong unforgeability.

Consider, for instance, a group of 100 signers with a signing threshold of 67 and a corrupt aggregator
that wishes to obtain many signatures for some message m. Even if all signers are honest, the aggregator can
ask each signer to participate in multiple Σ signing sessions with various signing sets and obtain as many as(100

67
)
≈ 3× 1026 signatures for m. This is despite the fact that each signer participated in a single ROAST

session.

7 Acknowledgements

We thank the anonymous Asiacrypt 2024 reviewers for their insightful feedback, and for suggesting that
mBCJ is not strongly unforgeable. This research was supported in part by NSF grants CNS-2026774, CNS-
2154174, a JP Morgan Faculty Award, a CISCO Faculty Award, and a gift from Microsoft.

One-More Unforgeability for Multi- and Threshold Signatures 27

References

1. J. F. Almansa, I. Damg̊ard, and J. B. Nielsen. Simplified threshold RSA with adaptive and proactive security. In
S. Vaudenay, editor, Advances in Cryptology – EUROCRYPT 2006, volume 4004 of Lecture Notes in Computer
Science, pages 593–611, St. Petersburg, Russia, May 28 – June 1, 2006. Springer, Heidelberg, Germany. 11

2. M. Andrychowicz, S. Dziembowski, D. Malinowski, and L. Mazurek. On the malleability of bitcoin transactions.
In M. Brenner, N. Christin, B. Johnson, and K. Rohloff, editors, Financial Cryptography and Data Security,
pages 1–18, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg. 3

3. R. Bacho, J. Loss, S. Tessaro, B. Wagner, and C. Zhu. Twinkle: Threshold signatures from ddh with full adaptive
security. In M. Joye and G. Leander, editors, Advances in Cryptology – EUROCRYPT 2024, pages 429–459,
Cham, 2024. Springer Nature Switzerland. 11

4. A. Bagherzandi, J. H. Cheon, and S. Jarecki. Multisignatures secure under the discrete logarithm assumption and
a generalized forking lemma. In P. Ning, P. F. Syverson, and S. Jha, editors, ACM CCS 2008: 15th Conference
on Computer and Communications Security, pages 449–458, Alexandria, Virginia, USA, Oct. 27–31, 2008. ACM
Press. 20

5. A. Bagherzandi and S. Jarecki. Multisignatures using proofs of secret key possession, as secure as the diffie-hellman
problem. In R. Ostrovsky, R. De Prisco, and I. Visconti, editors, Security and Cryptography for Networks, pages
218–235, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg. 21

6. M. Bellare, E. C. Crites, C. Komlo, M. Maller, S. Tessaro, and C. Zhu. Better than advertised security for non-
interactive threshold signatures. In Y. Dodis and T. Shrimpton, editors, Advances in Cryptology – CRYPTO 2022,
Part IV, volume 13510 of Lecture Notes in Computer Science, pages 517–550, Santa Barbara, CA, USA, Aug. 15–
18, 2022. Springer, Heidelberg, Germany. 3, 4, 6, 10, 11, 23, 24, 25

7. M. Bellare and W. Dai. Chain reductions for multi-signatures and the HBMS scheme. In M. Tibouchi and
H. Wang, editors, Advances in Cryptology – ASIACRYPT 2021, Part IV, volume 13093 of Lecture Notes in
Computer Science, pages 650–678, Singapore, Dec. 6–10, 2021. Springer, Heidelberg, Germany. 3, 4, 6, 9, 11, 12,
15, 16, 18, 32, 33

8. M. Bellare, C. Namprempre, D. Pointcheval, and M. Semanko. The one-more-RSA-inversion problems and the
security of Chaum’s blind signature scheme. Journal of Cryptology, 16(3):185–215, June 2003. 18, 24

9. M. Bellare and G. Neven. Multi-signatures in the plain public-key model and a general forking lemma. In
A. Juels, R. N. Wright, and S. De Capitani di Vimercati, editors, ACM CCS 2006: 13th Conference on Computer
and Communications Security, pages 390–399, Alexandria, Virginia, USA, Oct. 30 – Nov. 3, 2006. ACM Press.
3, 5, 9, 20, 21

10. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient protocols. In D. E.
Denning, R. Pyle, R. Ganesan, R. S. Sandhu, and V. Ashby, editors, ACM CCS 93: 1st Conference on Computer
and Communications Security, pages 62–73, Fairfax, Virginia, USA, Nov. 3–5, 1993. ACM Press. 5

11. M. Bellare and P. Rogaway. The security of triple encryption and a framework for code-based game-playing
proofs. In S. Vaudenay, editor, Advances in Cryptology – EUROCRYPT 2006, volume 4004 of Lecture Notes in
Computer Science, pages 409–426, St. Petersburg, Russia, May 28 – June 1, 2006. Springer, Heidelberg, Germany.
4

12. M. Bellare, S. Tessaro, and C. Zhu. Stronger security for non-interactive threshold signatures: BLS and FROST.
Cryptology ePrint Archive, Report 2022/833, 2022. https://eprint.iacr.org/2022/833. 3, 4, 6, 10, 11, 23, 24, 25

13. F. Benhamouda, T. Lepoint, J. Loss, M. Orrù, and M. Raykova. On the (in)security of ROS. In A. Canteaut and
F.-X. Standaert, editors, Advances in Cryptology – EUROCRYPT 2021, Part I, volume 12696 of Lecture Notes
in Computer Science, pages 33–53, Zagreb, Croatia, Oct. 17–21, 2021. Springer, Heidelberg, Germany. 4, 11, 14,
20

14. D. Boneh, M. Drijvers, and G. Neven. Compact multi-signatures for smaller blockchains. In T. Peyrin and
S. Galbraith, editors, Advances in Cryptology – ASIACRYPT 2018, Part II, volume 11273 of Lecture Notes
in Computer Science, pages 435–464, Brisbane, Queensland, Australia, Dec. 2–6, 2018. Springer, Heidelberg,
Germany. 3, 9, 15

15. L. T. A. N. Brandão and M. Davidson. Notes on threshold EdDSA/Schnorr signatures. Technical Report NIST
IR 8214B ipd, National Institute of Standards and Technology, Gaithersburg, MD, 2022. https://doi.org/10.
6028/NIST.IR.8214B.ipd. 3

16. R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In 42nd Annual
Symposium on Foundations of Computer Science, pages 136–145, Las Vegas, NV, USA, Oct. 14–17, 2001. IEEE
Computer Society Press. 4

17. H. Chu, P. Gerhart, T. Ruffing, and D. Schröder. Practical Schnorr threshold signatures without the algebraic
group model. In Crypto 2023, Aug. 19–24, 2023. 11, 25

18. D. Connolly, C. Komlo, I. Goldberg, and C. A. Wood. Two-Round Threshold Schnorr Signatures with FROST.
Internet-Draft draft-irtf-cfrg-frost-10, Internet Engineering Task Force, Sept. 2022. Work in Progress. 3

https://eprint.iacr.org/2022/833
https://doi.org/10.6028/NIST.IR.8214B.ipd
https://doi.org/10.6028/NIST.IR.8214B.ipd

28 Sela Navot, Stefano Tessaro

19. E. Crites, C. Komlo, and M. Maller. How to prove Schnorr assuming Schnorr: Security of multi- and threshold
signatures. Cryptology ePrint Archive, Paper 2021/1375, 2021. 4, 11, 24

20. E. Crites, C. Komlo, and M. Maller. Fully adaptive Schnorr threshold signatures. In Advances in Cryptology –
CRYPTO 2023, Aug. 2023. 3, 10, 11, 25

21. C. Decker and R. Wattenhofer. Bitcoin transaction malleability and mtgox. In M. Kuty lowski and J. Vaidya,
editors, Computer Security - ESORICS 2014, pages 313–326, Cham, 2014. Springer International Publishing. 3

22. Y. Desmedt. Society and group oriented cryptography: A new concept. In C. Pomerance, editor, Advances in
Cryptology – CRYPTO’87, volume 293 of Lecture Notes in Computer Science, pages 120–127, Santa Barbara,
CA, USA, Aug. 16–20, 1988. Springer, Heidelberg, Germany. 3

23. Y. Desmedt and Y. Frankel. Threshold cryptosystems. In G. Brassard, editor, Advances in Cryptology –
CRYPTO’89, volume 435 of Lecture Notes in Computer Science, pages 307–315, Santa Barbara, CA, USA,
Aug. 20–24, 1990. Springer, Heidelberg, Germany. 3

24. M. Drijvers, K. Edalatnejad, B. Ford, E. Kiltz, J. Loss, G. Neven, and I. Stepanovs. On the security of two-round
multi-signatures. In 2019 IEEE Symposium on Security and Privacy, pages 1084–1101, San Francisco, CA, USA,
May 19–23, 2019. IEEE Computer Society Press. 4, 14, 20, 21

25. G. Fuchsbauer, E. Kiltz, and J. Loss. The algebraic group model and its applications. In H. Shacham and
A. Boldyreva, editors, Advances in Cryptology – CRYPTO 2018, Part II, volume 10992 of Lecture Notes in
Computer Science, pages 33–62, Santa Barbara, CA, USA, Aug. 19–23, 2018. Springer, Heidelberg, Germany. 15,
32

26. R. Gennaro and S. Goldfeder. Fast multiparty threshold ECDSA with fast trustless setup. In D. Lie, M. Mannan,
M. Backes, and X. Wang, editors, ACM CCS 2018: 25th Conference on Computer and Communications Security,
pages 1179–1194, Toronto, ON, Canada, Oct. 15–19, 2018. ACM Press. 25, 26

27. R. Gennaro, S. Goldfeder, and A. Narayanan. Threshold-optimal DSA/ECDSA signatures and an application
to bitcoin wallet security. In M. Manulis, A.-R. Sadeghi, and S. Schneider, editors, ACNS 16: 14th International
Conference on Applied Cryptography and Network Security, volume 9696 of Lecture Notes in Computer Science,
pages 156–174, Guildford, UK, June 19–22, 2016. Springer, Heidelberg, Germany. 3

28. R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Secure applications of Pedersen’s distributed key generation
protocol. In M. Joye, editor, Topics in Cryptology – CT-RSA 2003, volume 2612 of Lecture Notes in Computer
Science, pages 373–390, San Francisco, CA, USA, Apr. 13–17, 2003. Springer, Heidelberg, Germany. 5

29. K. Itakura, K; Nakamura. A public-key cryptosystem suitable for digital multisignatures. NEC research &
development, 1983. 3

30. E. Kiltz, D. Masny, and J. Pan. Optimal security proofs for signatures from identification schemes. In M. Robshaw
and J. Katz, editors, Advances in Cryptology – CRYPTO 2016, Part II, volume 9815 of Lecture Notes in Computer
Science, pages 33–61, Santa Barbara, CA, USA, Aug. 14–18, 2016. Springer, Heidelberg, Germany. 32

31. C. Komlo and I. Goldberg. Frost: flexible round-optimized Schnorr threshold signatures. In International Con-
ference on Selected Areas in Cryptography, pages 34–65. Springer, 2020. 3

32. C. Komlo and I. Goldberg. FROST: Flexible round-optimized Schnorr threshold signatures. In O. Dunkelman,
M. J. J. Jr., and C. O’Flynn, editors, SAC 2020: 27th Annual International Workshop on Selected Areas in
Cryptography, volume 12804 of Lecture Notes in Computer Science, pages 34–65, Halifax, NS, Canada (Virtual
Event), Oct. 21-23, 2020. Springer, Heidelberg, Germany. 4, 11, 24, 25

33. J. Lau and P. Wuille. Dealing with signature encoding malleability. Bitcoin Improvement Proposal 146, 2016.
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki. 3

34. B. Libert, M. Joye, and M. Yung. Born and raised distributively: Fully distributed non-interactive adaptively-
secure threshold signatures with short shares. In Theoretical Computer Science, 2016. 11

35. Y. Lindell. Simple three-round multiparty Schnorr signing with full simulatability. IACR Communications in
Cryptology, 1(1), 2024. 4

36. G. Maxwell, A. Poelstra, Y. Seurin, and P. Wuille. Simple Schnorr multi-signatures with applications to bitcoin
(deprecated version). Cryptology ePrint Archive, Report 2018/068, version 1, 2018. https://eprint.iacr.org/
archive/2018/068/20180118:124757. 11, 14

37. G. Maxwell, A. Poelstra, Y. Seurin, and P. Wuille. Simple Schnorr multi-signatures with applications to bitcoin.
In Design, Code, and Cryptography, pages 2139–2164, September 2019. 3, 4, 5, 9, 14, 15

38. National Institute of Standards and Technology. Multi-Party Threshold Cryptography, 2018–Present. https:
//csrc.nist.gov/Projects/threshold-cryptography. 3

39. S. Navot. Insecurity of musig and bn multi-signatures with delayed message selection. Cryptology ePrint Archive,
Report 2024/437, 2024. https://eprint.iacr.org/2024/437. 15

40. J. Nick. Insecure shortcuts in musig, 2019. https://medium.com/blockstream/
insecure-shortcuts-in-musig-2ad0d38a97da. 15

41. J. Nick, T. Ruffing, and E. Jin. Musig2 for bip340-compatible multi-signatures. Bitcoin Improvement Proposal
327, 2022. https://github.com/bitcoin/bips/blob/master/bip-0327.mediawiki. 3

https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://eprint.iacr.org/archive/2018/068/20180118:124757
https://eprint.iacr.org/archive/2018/068/20180118:124757
https://csrc.nist.gov/Projects/threshold-cryptography
https://csrc.nist.gov/Projects/threshold-cryptography
https://eprint.iacr.org/2024/437
https://medium.com/blockstream/insecure-shortcuts-in-musig-2ad0d38a97da
https://medium.com/blockstream/insecure-shortcuts-in-musig-2ad0d38a97da
https://github.com/bitcoin/bips/blob/master/bip-0327.mediawiki

One-More Unforgeability for Multi- and Threshold Signatures 29

42. J. Nick, T. Ruffing, and Y. Seurin. MuSig2: Simple two-round Schnorr multi-signatures. In T. Malkin and
C. Peikert, editors, Advances in Cryptology – CRYPTO 2021, Part I, volume 12825 of Lecture Notes in Computer
Science, pages 189–221, Virtual Event, Aug. 16–20, 2021. Springer, Heidelberg, Germany. 3, 4, 5, 9, 15, 18, 19,
20, 41

43. D. Pointcheval and J. Stern. Provably secure blind signature schemes. In K. Kim and T. Matsumoto, editors,
Advances in Cryptology – ASIACRYPT’96, volume 1163 of Lecture Notes in Computer Science, pages 252–265,
Kyongju, Korea, Nov. 3–7, 1996. Springer, Heidelberg, Germany. 4

44. D. Pointcheval and J. Stern. Security arguments for digital signatures and blind signatures. In Journal of
Cryptology. Journal of Cryptology, May 1998. 3

45. D. Pointcheval and J. Stern. Security arguments for digital signatures and blind signatures. Journal of Cryptology,
13(3):361–396, June 2000. 4

46. T. Ruffing, V. Ronge, E. Jin, J. Schneider-Bensch, and D. Schröder. ROAST: Robust asynchronous Schnorr
threshold signatures. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’22, page 2551–2564, New York, NY, USA, 2022. Association for Computing Machinery. 4, 26

47. C.-P. Schnorr. Efficient identification and signatures for smart cards. In G. Brassard, editor, Advances in
Cryptology – CRYPTO’89, volume 435 of Lecture Notes in Computer Science, pages 239–252, Santa Barbara,
CA, USA, Aug. 20–24, 1990. Springer, Heidelberg, Germany. 3

48. C. P. Schnorr. Security of blind discrete log signatures against interactive attacks. In S. Qing, T. Okamoto,
and J. Zhou, editors, Information and Communications Security, pages 1–12, Berlin, Heidelberg, 2001. Springer
Berlin Heidelberg. 4, 11

49. S. Tessaro and C. Zhu. Threshold and multi-signature schemes from linear hash functions. In Advances in
Cryptology – EUROCRYPT 2023, Lyon, France, Apr. 23–27, 2023. 9, 25

50. D. Wagner. A generalized birthday problem. In M. Yung, editor, Advances in Cryptology – CRYPTO 2002,
volume 2442 of Lecture Notes in Computer Science, pages 288–303, Santa Barbara, CA, USA, Aug. 18–22, 2002.
Springer, Heidelberg, Germany. 20

51. P. Wuille. Dealing with malleability. Bitcoin Improvement Proposal 62, 2014. https://github.com/bitcoin/bips/
blob/master/bip-0062.mediawiki. 3

52. P. Wuille, J. Nick, and T. Ruffing. Schnorr signatures for secp256k1. Bitcoin Improvement Proposal 340, 2020.
https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki. 3

https://github.com/bitcoin/bips/blob/master/bip-0062.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0062.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki

30 Sela Navot, Stefano Tessaro

A Toy Strongly Unforgeable Multi-Signature Scheme

We first construct a toy multi-signature scheme that is strongly unforgeable. In the toy scheme, the size of
the signatures is proportional to the number of signers, defying the point of using a multi-signature scheme
in the first place. It is only included to help illustrate the difference of strong unforgeability from existential
unforgeability.

Suppose Σ is a deterministic (single signer) digital signature scheme such that each message m and public
key vk have a unique valid signature. We define a multi-signature scheme Toy[Σ] with a single interactive
signing round as follows:

Key generation: Each party runs (vk, sk)←$ Σ.Kg, saves the result, and outputs vk.
Signing: On input (k, m, (vki)n

i=1), each party verifies that vkk = vk (and aborts otherwise). Then, it runs
σk ← Σ.Sign(sk, vk1∥ . . . ∥vkn∥m), where ∥ denotes string concatenation. The final multi-signature is a
list of all partial signatures (σ1, . . . , σn).

Verification: On input σ = (σ1, . . . , σn), m, and vk1, . . . , vkn, the verification algorithm returns true if and
only if Σ.Verify(vki, vk1∥ . . . ∥vkn∥m, σi) = true for all i ∈ {1, . . . , n}.

It is easy to verify that Toy[Σ] satisfies perfect correctness, and we claim that Toy[Σ] is strongly unforge-
able. First, note that for every list of public keys and a message, there exists exactly one valid multi-signature.
Hence, for the adversary to win the Gsuf-ms game or the Geuf-ms game, the input to the verification ora-
cle must only contain one signature. However, when the input to the verification algorithm only contains
one signature, the winning condition for existential and strong unforgeability is the same. Hence, Toy[Σ] is
existentially unforgeable if and only if it is strongly unforgeable.

To break the existential unforgeability of Toy[Σ] the adversary is given access to a signing oracle to
obtain Σ signatures from the honest signer, and to win the adversary must come up with a signature σ
for some string of the form (vk1∥ . . . ∥vkn∥m) for which it did not receive a Σ signature from the signing
oracle. Consequently, if the adversary is successful it must have also broken the existential unforgeability of
Σ. This shows that Toy[Σ] is as existentially unforgeable (and consequently as strongly unforgeable) as Σ
is existentially unforgeable.

Note that it is necessary that Σ satisfies the deterministic property described above, or at least the weaker
property that it is computationally infeasible to find two valid signatures for the same message and public key
(even with access to the secret key). Otherwise, the adversary can trivially break the strong unforgeability of
Toy[Σ] by producing two different valid Σ signatures as partial signatures for some corrupt signer. In this case,
however, Toy[Σ] remains existentially unforgeable, showing a separation between existential unforgeability
and strong unforgeability of multi-signatures.

B SUF of Underlying Plain Signature Schemes

In this section we prove that HBMS and mBCJ are strongly unforgeable against adversaries that don’t
exploit the fact that those protocols are interactive multi-signature schemes, or essentially treats them as
a plain single signer digital signature scheme, where the signer is the group as a whole. Note that both
HBMS and mBCJ are not strongly unforgeable against adversaries that corrupts some of the signers and
exploits the interactive nature of the schemes. Hence, this section highlights the danger of integrating a
multi-signature scheme (without verifying that it is strongly unforgeable) in a platform that is used for
normal strongly unforgeable signature schemes, even if the multi-signatures are indistinguishable from the
standard signatures.
Defining security of the underlying scheme. To define this security notion, which we call “non-
interactive strong unforgeability,” we provide a game that an adversary plays against a multi-signature
scheme, where the adversary is given a signing group and may query a signing oracle to obtain multi-
signatures of that group for messages of the adversary’s choice. The adversary wins if they can come up
with a valid multi-signature for that group that was not obtained from the signing oracle. For the scheme to
satisfy this security definition, it is required that efficient adversaries have a negligible winning probability
for all n. See Figure 11 for a formal definition.

One-More Unforgeability for Multi- and Threshold Signatures 31

Games Gni-suf-ms
n [MS]

Init():
1 For i = 1, . . . , n:
2 (vki, ski)←$ MS.Kg()
3 Q ← ∅ // message-signature pairs obtained legit-

imately
4 Return (vki)n

i=1

SignO(m):
5 σ ← ExecMS((vki)n

i=1), (ski)n
i=1, m)

6 Q← Q ∪ {(m, σ)}
7 Return σ

Fin(m, σ):
8 If MS.Verify((vki)n

i=1, m, σ):
9 If (m, σ) ̸∈ Q:

10 Return true
11 Return false

Fig. 11. Game used to define the “non-interactive strong unforgeability” of a multi-signature scheme MS.

B.1 Underlying Scheme of HBMS

We use the XIDL game (Figure 7) to prove that HBMS satisfies the non-interactive strong unforgeability
definition. Since XIDL is hard in groups where the discrete log problem is hard (Lemma 4), this proves the
non-interactive strong unforgeability of HBMS under the discrete log assumption.

Lemma 7 (XIDL → NISUF of HBMS in the ROM). Let G be a group of prime order p with generator
g. Let MS = HBMS[G, g] be the associated multi-signature scheme, where its hash functions are modeled as
random oracles. Let Ams be an adversary against Gni-suf-ms

n [MS] that makes at most q0, q1, qs queries to H0,
H1, and SignO respectively. Then, we can construct an adversary Axidl against Gmxidl

G,g,1,q1+1 such that

Advni-suf-ms
MS (Ams) ≤ (q0 + qs + 1)Advxidl

G,g,1,q1+1(Axidl) + qs(q1 + qs)
p

and the runtime of Axidl is approximately the runtime of Ams.

Proof idea for Lemma 7. Suppose an adversary Ams break the non-interactive strong unforgeability of
HBMS (i.e. wins the game in Figure 12). Then, given an aggregate public key X̃, they must provide a
signature (s, z, T) for some message m such that hsgz = TX̃H1(T,X̃,m), where h = H0(m, X1, . . . , Xn). If
X̃ is an XIDL target and H1(T, X̃, m) is an XIDL challenge, then the element z + s · DLOGg(h) wins
the XIDL game, where the reduction can know DLOGg(h) since it programmed the random oracle H0.
To simulate the signing oracle, we follow the standard procedure for simulating Schnorr signatures by first
picking c, z′←$ Zp, then letting T = gz′

X̃−c, and then programming the random oracle H1(T, X̃, m) ← c.
Then, we can pick a random s←$ Zp, and the triple (s, T, z′−sDLOGg(h)) is a valid HBMS signature (where
h = H0(m, X1, . . . , Xn)). Note that we cannot use an XIDL challenge for signing, since we have to pick it
before deciding on the corresponding T . Thus, to win the XIDL game we need a signature on an (m, T) pair
not used by the signing oracle, hence the need for a forgery.

If the forged signature indeed has a different (m, T) pair from any signing oracle response, then we can
use it to win the XIDL; we call such a forgery a Type 1. However, it could be the case that the adversary
obtained an HBMS signature (s, z, T) on the same (m, T) pair as some signing oracle response, (s∗, z∗, T),
which we call a Type 2 forgery. However, this means that z + sDLOGg(h) = z∗ + s∗DLOGg(h) for s ̸= s∗,
allowing the adversary to extract the discrete log of h.

To use this fact, we guess whether the adversary will output a Type 1 or Type 2 forgery. If we guess
Type 1, we can win the XIDL game as described. If we guess type 2, we can set the XIDL input X to be one
of the random oracles responses to H0(m, X1, . . . , Xn) instead, and simulate the signing oracle by executing
HBMS honestly with keys that the reduction generated. If we guessed the right query, which happens with
probability inversely proportional to the maximum number of H0 values for which the random oracle was
programmed, the adversary learns the discrete log of X, and can trivially win the XIDL game.

Now, we make this idea more precise in a formal proof.

Proof (Lemma 7). In Figure 12 we construct an adversary Axidl which plays the XIDL game by executing
Ams and simulating perfectly the oracles that it has access to (as long as bad is not set to true). Without
loss of generality, we assume that all random oracle queries of Ams are well-formed, since otherwise we can
simply simulate their responses uniformly at random. We will now analyze its success probability.

32 Sela Navot, Stefano Tessaro

Game Gni-suf-ms
n [HBMSG,g,H0,H1,H2]

Init():
1 For i = 1, . . . , n:
2 xi←$ Zp; Xi ← gx

3 X̃ ←
∏n

i=1 X
H2(i,X1,...,Xn)
i

4 x̃←
∑n

i=1 xi ·H2(i, X1, . . . , Xn)
5 Q← ∅
6 Return (X1, . . . , Xn)

SignO(m):
7 h← H0(X1, . . . , Xn, m)
8 s, r←$ Zp

9 T ← hsgr

10 c← H1(T, X̃, m)
11 z ← r + c · x̃
12 Q← Q ∪ {(m, (s, T, z))}
13 Return (s, T, z)

Fin(m, σ):
14 If (m, σ) ∈ Q: Return false
15 Parse σ as (s, T, z)
16 h← H0(X1, . . . , Xn, m)
17 Return [gzhs = T · X̃H1(T,X̃,m)]

ANewTarget,Challenge
xidl (X):

1 // randomly selects whether to execute Bxidl or Cdl,
presented in Figure 13

2 I←$ {0, 1, . . . , q0 + qs}
3 If I = 0:
4 Return BNewTarget,Challenge

xidl (X)
5 Else:
6 x← Cdl(X, I)
7 If x = ⊥ or gx ̸= X: Return ⊥
8 e← NewTarget(1G)
9 c← Challenge(1, 1G)

10 Return (1, x · c · e)

Fig. 12. Left: the non-interactive strong unforgeability of HBMS over a group G with a generator g of order p.
Right: the reduction algorithm used to prove Lemma 7, where the referenced subroutines are in Figure 13.

Now, suppose Ams wins Gni-suf-ms
n [MS] by returning some forgery (m, σ) where σ = (s, z, T). Let h =

H0(m, X1, . . . , Xn) and c = H1(T, X̃, m), and note that hsgz = TX̃c. Now consider the following cases:

Case 1 There was no signing oracle query that returned a signature (s′, T ′, z′) on m with T = T ′. In this
case, if ρ = 0, then the forgery allows Bxidl to win the XIDL game, as long as bad was not set to true. For
each signing oracle query, since T is uniformly random independently of the previous execution of the
algorithm, we have that bad is set to true with probability of at most q1+qs

p , and thus across all signing
oracle queries the probability that bad← true is bounded above by qs(q1+qs)

p . If bad was not set to true
in the execution of Ams and we have a forgery of the type corresponding to this case, then C[T] would
be initialized in the execution of Ams and thus bad would not be set in line 16.

Case 2 There was a signing oracle query that returned a signature (s′, T ′, z′) on m with T = T ′. In this
case, there was a call to H̃0(m, X1, . . . , Xn) by the signing oracle (or the adversary). Suppose this call
was the ℓ’s value programmed by H̃0. Then, if we guessed ρ = ℓ, then Cdl correctly finds the discrete log
of X, allowing Axidl to win the XIDL.

Thus, in both possible cases, we have that

Pr[Gmxidl
G,g(Axidl)] ≥

1
q0 + qs + 1

(
Pr[Gni-suf-ms

n [ms](Ams)]−
qs(q1 + qs)

p

)
,

which is what we wanted to prove.

B.2 Underlying Scheme of mBCJ

To prove the non-interactive strong unforgeability of mBCJ, we once again use the chain reductions of Bellare
and Dai [7]. This time we use the Identification Discrete Logarithm game (IDL) [30, 7], presented in Figure
14, as the underlying assumption in our proof, which Bellare and Dai show is hard to win whenever the
discrete log problem is hard.9 In Lemma 8 we repeat their result regarding the difficulty of IDL under the
9 They also achieve tighter security bounds using the algebraic group model [25], but this is orthogonal to this paper.

One-More Unforgeability for Multi- and Threshold Signatures 33

DL assumption, and in Lemma 9 we prove the non-interactive strong unforgeability of mBCJ in the random
oracle model assuming that IDL is hard. The combination of these lemmas is a proof of the non-interactive
strong unforgeability of mBCJ in the ROM under the DL assumption.

Lemma 8 (DL → IDL; Theorem 3.2 of [7]). Let G be a group of prime order p with a generator g,
and let q be a positive integer. Let Aidl be an adversary against Gmidl

G,g,q. Then, an adversary Adl can be
constructed so that

Advidl
G,g,q(Aidl) ≤

√
q ·Advdl

G,g(Adl) + q

p
.

Furthermore, the running time of Adl is approximately twice the running time of Axidl.

We omit the proofs of Lemma 8 since it is non trivial and can be found in the referenced paper.

Lemma 9 (IDL → NISUF of mBCJ in the ROM). Let G be a group of prime order p with a generator
g1. Let MS = mBCJ[G, g1] be the associated multi-signature scheme with its hash functions modeled as
random oracles. Let Ams be an adversary against Gni-suf-ms

n [MS] that makes at most q0, q1, q2, qs queries to
H0, H1, H2, and the signing oracle respectively. Then, we construct an adversary Aidl against Gmidl

G,g1,q0+1
such that

Advni-suf-ms
MS (Ams) ≤ Advidl

G,g1,q0+1(Aidl) + n(n− 1) + (q0 + qs + 1)(q0 + qs)
p2 + q2 + qs + 1

p
.

Furthermore, the runtime of Aidl is approximately that of Ams.

Proof idea for Lemma 9. Suppose an adversary Ams can break the non-interactive strong unforgeability
of mBCJ (i.e. wins the game in Figure 14 in the ROM). We will use Ams to construct an adversary Aidl that
wins the IDL game (Figure 14) when parameterized by the group used for mBCJ and the generator g1.

On input X, Aidl sets up n random looking mBCJ public keys so that their aggregate public key is X.
More specifically, it chooses Xi←$ G for i ∈ {1, . . . , n− 1} and sets Xn ← X ·

∏n−1
i=1 X−1

i . Now, it generates
a secret key proof-of-possession for each Xi by choosing ci, zi←$ Zp, Ri ← gzi

1 X−c
i , and programming the

random oracle H1(Xi, Ri)← ci. It now executes Ams with those public keys and proofs of possessions as its
input, simulating its oracles as we describe below.
Aidl simulates random oracle queries for H0(t1, t2, X, m) by querying the IDL Challenge oracle with

input t2, and returning the obtained challenge. It simulates H1 random oracle queries by choosing an out-
put uniformly at random. For H2(m) signing oracle queries, Aidl also replies with uniformly random output
(g2,m, h1,m, h2,m), but it generates them in such a way that it knows the discrete log of g2,m and h2,m with re-
spect to g1 and the discrete log of h1,m with respect to X. More specifically, it chooses ω1,m, ω2,m, ω3,m←$ Zp

and sets h1,m ← Xω1,m , g2,m ← g
ω2,m

1 and h2,m ← g
ω3,m

1 , and stores the ω values. As we explain below,
knowing those discrete logs allows Aidl to use an mBCJ forgery to win the IDL game.

We simulate the signing oracle in a similar manner to how we simulated the proofs-of-possessions. On
input m, we first generate the commitment parameters (h1,m, g2,m, h2,m) that correspond to m. Next, we
choose α1, α2, s, c←$ Zp, set t1 ← gα1

1 hα2
1,m, and set t2 ← gα1

2,mhα2
2,mgs

1 ·X−c. Lastly we program the random
oracle H0(t1, t2, X, m)← c, and output (t1, t2, s, α1, α2). It is easy to verify that the outputted signature is
valid with respect to m and the aggregate public key X, and that its distribution is identical to that of an
honestly generated signature.

We are left to explain how to win the IDL game given a successful mBCJ forgery. Suppose Ams outputs
a successful forgery σ = (t1, t2, s, α1, α2) for the message m and the aggregate public public key X. This
means that

t1 = gα1
1 hα2

1,m,

and
t2 = gα1

2,mhα2
2,mgs

1 ·X−H0(t1,t2,X,m).

Without loss of generality, assume that the random oracle value for H0(t1, t2, X, m) has already been set. If
it was set by a random oracle query, then H0(t1, t2, X, m) is an IDL challenge that was generated on input t2.
Thus, if we let z ← ω2,mα1 + ω3,mα2 + s, by the validity equation of t2 it holds that gz

1 = t2 ·XH0(t1,t2,X,m),
which allows the adversary to win the IDL game. Otherwise, the random oracle value for H0(t1, t2, X, m)
was set by the signing oracle, which means that the signing oracle returned another valid signature σ′ =

34 Sela Navot, Stefano Tessaro

(t1, t2, s′, α′
1, α′

2) for the message m. Thus, since gα1
1 hα2

1,m = g
α′

1
1 h

α′
2

1,m (by the validity equation of t1), we know
that

α1 + xω1,mα2 = α′
1 + xω1,mα′

2.

It is easy to verify that α2 ̸= α′
2 are distinct since σ and σ′ are distinct,10 which means that the centered

equation above allows Aidl to extract x using simple field operations. Once it extract x (the discrete log of
X), Aidl can trivially win the IDL game. We now express this idea in a more formal way.

Proof (Lemma 9). In Figure 15, we construct an adversary Aidl which plays the IDL game (parameterized
with the group G and the generator g1) by executing Ams and simulating the oracles that it has access to.
Without loss of generality, we assume that all random oracle queries of Ams are well-formed, since otherwise
we can simply simulate their responses uniformly at random. We will now analyze its success probability.

First, note that if bad is not set to true, then Aidl simulates perfectly the oracles that Ams has access to.
The only places that bad can be set to true are the following:

– When Aidl generates proofs-of-possession for the secret key, if there is a collision (Xi, Ri) = (Xj , Rj) for
some i ̸= j. Since the choices of Xi and Ri are uniformly random in G2 (when not conditioned the value
of X), the probability of collision is bounded above by n(n−1)

p2 .
– In SignO, if we need to program the random oracle for H0 for an input for which it has already been

programmed. This can only happen if we choose t1 and t2 for which a random oracle value has been set.
Since the maximum number of H0 random oracle values set throughout the protocol is q0 + qs + 1, the
probability of this happening is bounded above by (q0+qs+1)(q0+qs)

p2 .
– In H̃2, if we choose ω1 = 0. Since ω1 is chosen uniformly at random for each H̃2 execution, and H̃2 is

executed at most q2 + qs + 1 times, the probability of this happening is bounded above by q2+qs+1
p .

Hence, the probability that bad is set to true is bounded above by n(n−1)+(q0+qs+1)(q0+qs)
p2 + q2+qs+1

p .
We are left to prove that if Ams wins, then Aidl wins too. If Ams wins it outputs (m, (t1, t2, s, α1, α2))

satisfying
t1 = gα1

1 hα2
1

and
t2 = gα1

2 hα2
2 gs

1 ·X−H0[t1,t2,X,m],

where (g2, g1, h2) = H2[m]. If H0[t1, t2, X, m] was first initialized on a H̃2 query, then it initialized
Hq

0 [t1, t2, X, m]. In this case H0[t1, t2, X, m] was the IDL challenge query number Hq
0 [t1, t2, X, m], and there-

fore returning (Hq
0 [t1, t2, X, m], s + α1ω2 + α2ω3) wins the IDL game.

If H0[t1, t2, X, m] was not initialized on a H̃2 query, then it was initialized on a S̃ignO query. In this case,
Σ[t1, t2, m] has been set with (α′

1, α′
2, s′) such (t1, t2, s′, α′

1, α′
2) is a valid signature for the message m and

aggregate key X. However, if Ams wins, the signature it outputted must be different then (t1, t2, s′, α′
1, α′

2)
and consequently α2 ̸= α′

2. Furthermore, since ω1 ̸= 0 (otherwise we would have set bad← true in H̃2), Aidl
successfully extract x, the discrete log of X, using which it trivially wins the IDL game.

We have shown that the probability that bad is set to true is bounded above by n(n−1)+(q0+qs+1)(q0+qs)
p2 +

q2+qs+1
p , and that if bad is not set to true and Ams wins then Aidl wins. Furthermore, Aidl makes at most

q0 + 1 queries to Challenge. Hence,

Pr[Gmidl
G,g1,q+1(Aidl)] ≥ Pr[Gni-suf-ms

n [ms](Ams)−
n(n− 1) + (q0 + qs + 1)(q0 + qs)

p2 − q2 + qs + 1
p

,

which is what we wanted to prove.

C Proof of Lemma 5

Proof (Lemma 5). Let G be a group of prime order p with a generator g and let MS = MuSig[G, g] be
the associated multi-signature scheme with its hash functions modeled as random oracles. Let Ams be an
adversary for the game Gsuf-ms[MS] and assume the execution of Ams makes at most q0, q1, q2, qs queries to
10 If α2 = α′

2, then by the validity equation of t1 we know that α1 = α′
1, and therefore by the validity equation of t2

we know that s = s′ and thus σ = σ′.

One-More Unforgeability for Multi- and Threshold Signatures 35

Hcom, Hagg, Hsign, and SignO1, respectively. Figure 16 constructs an adversary Axidl against the XIDL game
that simulates the Gsuf-ms[MS] for Ams, and if Ams was successful it uses its output to win the XIDL game
with high probability.
Analysis of Axidl: As we explained in the proof idea portion, in order to win the reduction must “guess
right” when selecting ρ, which happens with probability of at least 1

qs+1 , independently of the execution of
Ams. Now, suppose the reduction picked the right value of ρ.

First, note that unless bad is set to true, the simulation is perfect. Furthermore, if Ams wins, then it must
be the case that they provided signatures (Rj , zz)ℓ

j=1 for a message m and public key X̃ such that ℓ is more
than the number of signing oracle sessions with the message m and aggregated key X̃ that programmed
the Hsign challenge. Hence, one of the challenges Hsign(Rj , X̃, m) must be an XIDL challenge, and thus the
reduction wins the XIDL game with the corresponding zj .

Thus, the reduction may only fail if bad is set to true. To upper bound the probability that bad is set to
true, we enumerate all the possible cases where it may happen and bound their probability conditioned on
the fact that the reduction guessed ρ correctly:

– In the simulation of Hcom, if the adversary finds a hash collision. At most q0 + n · qs values are added to
the Hcom dictionary over the execution of Axidl and the reduction simulates Hcom q0 times. Hence, the
probability of a collision is no more than q0(q0+n·qs)

p .
– In the simulation of Hagg, if the adversary finds a collision of aggregated keys or queries Hsign with an

aggregated key before constructing it. An aggregated key is determined at most once for each SignO
query, at most once for each Hagg query, and at most once after the execution of Ams when using the
forgery to win the XIDL. Thus, the probability of finding a key collision is bounded above by (qs+q1+1)2

p .
Similarly, since Hsign can be initialized with an aggregated key that is not yet computed by the reduction
only on calls to Hsign, we have that the probability that Hsign with an aggregated key before it is added
to the key set is bounded above by q2(qs+q1+1)

p .
– If in the simulation of SignO2 the value Hsign[R, ṽk, m] is already defined (for the R chosen uniformly

at random at this execution). The probability of this happening at each execution of S̃ignO2 is at most
q2+qs

p , since the Hsign dictionary contains at most qs + q2 elements at each point in the execution, and
thus the probability of this happening during the reduction is no more than qs(q2+qs)

p .
– In the simulation of SignO2, the value Hcom[Rk] or Hcom[Rk] is already defined (for the Rk chosen

uniformly at random at this execution). The probability of this happening at each execution of S̃ignO
is at most n · q0+n·qs

p since at most q0 + n · qs values are added to the Hcom dictionary over the execution
of Axidl, and thus the probability of this happening during the reduction is at most n·qs(q0+n·qs)

p .
– Lastly, note that if it guesses ρ correctly, then the reduction never has to set bad to true when simulating

SignO3. This is because if we guessed ρ = qs + 1, then we can simulate all signing oracle queries and
bad would never be set at this point. Otherwise, to guess ρ correctly means that Ams outputs a forgery
that falls into case 2 with session parameters corresponding to the ρth signing session, and therefore the
third round of the ρth signing session is never executed.

Hence, the probability that bad is set to true if the reduction guessed ρ correctly is at most
q0(q0 + n · qs) + (qs + q1 + 1)2 + q2(qs + q1 + 1) + qs(q2 + qs) + n · qs(q0 + n · qs)

p
.

Thus, if q is as defined in the lemma statement, we obtain that

Advxidl
G,g,q1,q2

(Axidl) ≥
Advsuf−ms

MS (Ams)− q/p

qs + 1 .

Rearranging the equation leads to the statement we wished to prove.

36 Sela Navot, Stefano Tessaro

BNewTarget,Challenge
xidl (X):

1 bad← false // Abort whenever bad← true
2 H0, H1, H2, Hdl

0 , C ← empty dictionaries
3 q ← 0 // tracks H̃1 queries
4 X1 ← X
5 For i = 2, . . . , n:
6 xi←$ Zp; Xi ← gx

7 For i = 2, . . . , n− 1
8 αi←$ Zp

9 H2[i, X1, . . . , Xn]← αi

10 H2[1, X1, . . . , Xn]← NewTarget(
∏n

i=2 Xαi
i)

11 X̃ ←
∏n

i=1 X
H2(i,X1,...,Xn)
i

12 (m, (s, z, T))← AS̃ignO,H̃0,H̃1,H̃2
ms (X1, . . . , Xn)

13 H̃0(m, X1, . . . , Xn) // ensure initialization
14 H̃2(T, X̃, m) // ensure initialization
15 k ← Hdl

0 [m, X1, . . . , Xn]
16 If C[T] uninitialized: bad← true
17 Return (C[T], z + s · k)

S̃ignO(m):
18 z′, c, s←$ Zp

19 T ← gz′
X−c

20 If H1[T, X̃, m] initialized: bad← true
21 H1[T, X̃, m]← c
22 h← H̃0(X1, . . . , Xn, m)
23 k ← Hdl

0 [X1, . . . , Xn, m]
24 z ← z′ − k · s
25 Return (s, z, T)

H̃0(X ′
1, . . . , X ′

n, m):
26 If H0[X ′

1, . . . , X ′
n, m] uninitialized:

27 k←$ Zp

28 H0[X ′
1, . . . , X ′

n, m]← gk

29 Hdl
0 [X ′

1, . . . , X ′
n, m]← k

30 Return H0[X ′
1, . . . , X ′

n, m]

H̃1(T, X ′, m):
31 If H1[T, X ′, m] uninitialized:
32 If X ′ = X̃:
33 c← Challenge(1, T)
34 q ← q + 1
35 C[T]← q
36 H1[T, X ′, m]← c
37 Else: H1[T, X ′, m]←$ Zp

38 Return H1[T, X ′, m]

H̃2(i, X ′
1, . . . , X ′

n):
39 If H2[i, X ′

1, . . . , X ′
n] uninitialized:

40 H2[i, X ′
1, . . . , X ′

n]←$ Zp

41 Return H2[i, X ′
1, . . . , X ′

n]

Cdl(X, I):
1 H0, H1, H2, Q← empty dictionaries
2 q ← 0 // tracks H̃1 queries
3 ℓ← 0 // tracks signatures
4 For i = 1, . . . , n:
5 xi←$ Zp; Xi ← gx

6 X̃ ←
∏n

i=1 X
H̃2(i,X1,...,Xn)
i

7 x̃←
∑n

i=1 xi · H̃2(i, X1, . . . , Xn)
8 (m, (s, z, T))← AS̃ignO,H̃0,H̃1,H̃2

ms (X1, . . . , Xn)
9 h← H̃0(X1, . . . , Xn, m)

10 If h = X:
11 For i ∈ {1, . . . , |Q|}:
12 (s′, z′, T ′)← Q[i]
13 If hsgz = hs′

gz′
and (s, z) ̸= (s′, z′):

14 Return (z − z′)(s′ − s)−1

15 Return ⊥

S̃ignO(m):

16 h← H̃0(X1, . . . , Xn, m)
17 s, r←$ Zp; T ← hsgr; c← H̃1(T, X̃, m)
18 z ← r + c · x̃
19 i← i + 1
20 Q[i]← (s, T, z)
21 Return (s, T, z)

H̃0(X ′
1, . . . , X ′

n, m):
22 If H0[X ′

1, . . . , X ′
n, m] uninitialized:

23 q ← q + 1
24 If q = I: H0[X ′

1, . . . , X ′
n, m]← X

25 Else: H0[X ′
1, . . . , X ′

n, m]←$ G
26 Return H0[X ′

1, . . . , X ′
n, m]

H̃1(T, X ′, m):
27 If H1[T, X ′, m] uninitialized:
28 H1[T, X ′, m]←$ Zp

29 Return H1[T, X ′, m]

H̃2(i, X ′
1, . . . , X ′

n):
30 If H2[i, X ′

1, . . . , X ′
n] uninitialized:

31 H2[i, X ′
1, . . . , X ′

n]←$ Zp

32 Return H2[i, X ′
1, . . . , X ′

n]

Fig. 13. Algorithms Bxidl and Cdl, subroutines used by Axidl of Figure 12 in the proof of Lemma 7.

One-More Unforgeability for Multi- and Threshold Signatures 37

Game Gmidl
G,g,q

Init():
1 x←$ Zp; X ← gx; i← 0
2 Return X

Challenge(R): // at most q queries
3 i← i + 1; Ri ← R
4 ci←$ Zp

5 Return ci

Fin(I, z):
6 Return [gz = RI ·XcI]

Game Gni-suf-ms
n [mBCJG,g1,H0,H1,H2]

Init():
1 For i = 1, . . . , n:
2 xi←$ Zp; Xi ← gx

3 ri←$ Zp; ci ← H1(X, gri
1); zi ← ri + ci · xi

4 πi ← (ci, zi)
5 X ←

∏n

i=1 Xi; x←
∑n

i=1 xi

6 Q← ∅
7 Return ((X1, π1), . . . , (Xn, πn))

SignO(m):
8 (g2, h1, h2)← H2(m)
9 r, α1, α2←$ Zp

10 t1 ← gα1
1 hα2

1 ; t2 = gα1
2 hα2

2 gr
1

11 c← H0(t1, t2, X, m); s← r + xc
12 σ ← (t1, t2, s, α1, α2)
13 Q← Q ∪ {(m, σ)}
14 Return σ

Fin(m, σ):
15 If (m, σ) ∈ Q: Return false
16 Parse σ as (t1, t2, s, α1, α2)
17 (g2, h1, h2)← H2(m); c← H0(t1, t2, X, m)
18 Return [t1 = gα1

1 hα2
1 and t2 = gα1

2 hα2
2 gs

1 ·X
−c]

Fig. 14. Left: the Identification Discrete Logarithm (IDL) game in a group G with a generator g of prime order p.
Right: the non-interactive strong unforgeability game of mBCJ over a group G with a generator g1 of order p.

38 Sela Navot, Stefano Tessaro

AChallenge
idl (X):

1 bad← false // Abort whenever bad← true
2 H0, H1, H2, Hq

0 , Hdl
2 , Σ ← empty dictionaries

3 q ← 0 // tracks H̃0 queries
4 For i = 1, . . . , n− 1:
5 Xi←$ G
6 Xn ← X ·

∏n−1
i=1 X−1

i

7 For i = 1, . . . , n // create proofs of possessions
8 ci, zi←$ Zp; Ri ← gzi

1 X−1
i

9 If H1(Xi, Ri) initialized: bad← true
10 H1[Xi, Ri]← ci

11 πi ← (ci, zi)
12 (m, (t1, t2, s, α1, α2))← AS̃ignO,H̃0,H̃1,H̃2

ms ((X1, π1), . . . , (Xn, πn))
13 c← H̃0(t1, t2, X, m); (g2, h1, h2)← H̃2(m)
14 (ω1, ω2, ω3)← Hdl

2 [m]
15 If Hq

0 [t1, t2, X, m] initialized:
16 I ← Hq

0 [t1, t2, X, m]
17 Return (I, s + α1ω2 + α2ω3)
18 Else:
19 (α′

1, α′
2, s′)← Σ[t1, t2, m]

20 x← (α1 − α′
1)(α′

2 − α2)−1ω−1
1

21 r←$ Zp; R← gr
1 ; c′ ← Challenge(R)

22 Return (q + 1, r + x · c′)

S̃ignO(m):

23 (h1, g2, h2)← H̃2(m)
24 α1, α2, c, s←$ Zp

25 t1 ← gα1
1 hα2

1 ; t2 ← gα1
2 hα2

2 gs
1X−c

26 If H0[t1, t2, X, m] initialized: bad← true
27 H0[t1, t2, X, m]← c
28 Σ[t1, t2, m]← (α1, α2, s)
29 Return (t1, t2, s, α1, α2)

H̃0(t1, t2, X ′, m):
30 If H0[t1, t2, X ′, m] uninitialized:
31 If X ′ = X:
32 q ← q +1; Hq

0 [t1, t2, X, m]← q
33 c← Challenge(t2)
34 H0[t1, t2, X ′, m]← c
35 Else:
36 H0[t1, t2, X ′, m]←$ Zp

37 Return H0[t1, t2, X ′, m]

H̃1(X ′, R):
38 If H1[X ′, R] uninitialized:
39 H1[X ′, R]←$ Zp

40 Return H1[X ′, R]

H̃2(m):
41 If H2[m] uninitialized:
42 ω1, ω2, ω3←$ Zp

43 If ω1 = 0: bad← true
44 h1 ← Xω1 ; g2 ← gω2

1 ; h2 ← gω3
1

45 H2[m]← (g2, h1, h2)
46 Hdl

2 [m]← (ω1, ω2, ω3)
47 Return H2[m]

Fig. 15. Algorithms Aidl, the reduction used in the proof of Lemma 9.

One-More Unforgeability for Multi- and Threshold Signatures 39

ANewTarget,Challenge
xidl (X):

1 bad← false // abort whenever bad← true
2 Hagg, Hsign, Hcom ← empty dictionary
3 K ← ∅ // tracks aggregated keys used
4 ctrs, ctrt, ctrc← 0 // tracks signing oracle queries,

XIDL targets, XIDL challenges
5 TcomTtar, Tchal ← empty dictionary // tracks Hcom

queries, XIDL targets, XIDL challenges
6 st← empty list
7 ρ←$ {1, . . . , qs + 1} // guess SignO2 query for

Case 2 forgery
8 Sim← {(S̃ignOi)3

i=1, H̃agg, H̃sign, H̃com}
9 (m, (Xi)n

i=1, (Rj , zj)ℓ
j=1)← ASim

ms (X)

10 X̃ ←
∏n

i=1 X
H̃agg(i,X1,...,Xn)
i

11 For j = 1, . . . , ℓ:
12 H̃sign(Rj , X̃, m) // ensure initialization
13 If Tchal[Rj , X̃, m] initialized:
14 Return (Tchal[Rj , X̃, m], zj)
15 Return ⊥

S̃ignO1():
16 t←$ Zp

17 ctrs← ctrs + 1, stctrs.t← t
18 Return t

S̃ignO2(j, k, (vki, ti)n
i=1, m):

19 ṽk ←
∏n

i=1 vk
H̃agg(i,vk1,...,vkn)
i

20 If j = ρ:
21 Rk←$ G
22 Else:
23 z, c←$ Zp; stj .z ← z
24 Rk ← gzX−c

25 For i ∈ {1, . . . , n} \ {k}:
26 If Tcom[ti] initialized: Ri ← Tcom(ti)
27 Else:
28 Ri←$ Zp

29 If Hcom[Ri] initialized: bad← true
30 Hcom[Ri]← ti; Tcom[ti]← Ri

31 R←
∏n

i=1 Ri; stj .R← R
32 stj .ṽk ← ṽk
33 If Hsign[R, ṽk, m] initialized: bad← true
34 Hsign[R, ṽk, m]← c
35 If Hcom[Rk] initialized: bad← true
36 Hcom[Rk]← stj .t
37 Return Rk

S̃ignO3(j, R1, . . . , Rn):
38 If j = ρ: bad← true
39 Return stj .z

H̃agg(k, X1, . . . , Xn):
40 If Hagg[k, X1, . . . , Xn] uninitialized:
41 For i = 1, . . . , n:
42 If Xi ̸= X: Hagg[i, X1, . . . , Xn]←$ Zp

43 S ←
∏

{i : Xi ̸=X} X
Hagg[i,X1,...,Xn]
i

44 e← NewTarget(S)
45 J ← {j : Xj = X}; jmax ← max(J)
46 For i ∈ J \ {jmax} :
47 ei←$ Zp; Hagg[i, X1, . . . , Xn]← ei

48 Hagg[jmax, X1, . . . , Xn]← e−
∑

i∈J\{jmax} ei

49 X̃ ←
∏n

i=1 X
Hagg[i,X1,...,Xn]
i

50 If ∃(R, m) such that Hsign[R, X̃, m] is initialized:
51 bad← true
52 If X̃ ∈ K:
53 bad← true
54 K ← K ∪ {X̃}
55 ctrt← ctrt + 1; Ttar[X̃]← ctrt
56 Return Hagg[k, X1, . . . , Xn]

H̃com(R):
57 If Hcom[R] uninitialized:
58 Hcom[R]←$ Zp;
59 If Tcom[Hcom[R]] initialized: bad← true
60 Tcom[Hcom[R]]← R
61 Return Hcom[R]

H̃sign(R, X̃, m):

62 If Hsign[R, X̃, m] uninitialized:
63 If Ttar[X̃] uninitialized:
64 Hsign[R, X̃, m]←$ Zp

65 Else:
66 c← Challenge(Ttar[X̃], R)
67 ctrc← ctrc + 1
68 Tchal[R, X̃, m]← ctrc
69 Return Hsign[R, X̃, m]

Fig. 16. The reduction algorithm used in the proof of Lemma 5.

40 Sela Navot, Stefano Tessaro

D Statement and Proof of Lemma 10

Lemma 10 (underlying algorithm for the rewinding based reduction). Let G be a group of prime
order p with generator g. Let MS = MuSig2[G, g] be the associated multi-signature scheme, where its hash
functions are modeled as random oracles. Let Ams be an adversary against Gsuf-ms[MS] that makes at most
qs queries to SignO1, qh queries to each hash function, and uses a random tape of length ρA. Let q =
4qh + 3qs + 2. If X, U1, . . . , U4qs

are AOMDL challenges and h1, . . . , hq←$ Zp, then with probability

acc(B) ≥ Advsuf−ms
MS (Ams)−

4q2

p
the adversary B defined in Figure 17 makes at most qs queries to the AOMDL discrete log oracle and outputs
a tuple (isign, iagg, X1, . . . , Xn, R, z, a1, . . . , an) where isign, iagg ∈ {1, . . . , q}, isign < iagg, X ∈ {X1, . . . , Xn},
a1, . . . , an ∈ Zp,

∑
{i : Xi=X} ai = hiagg , and

gz = R

n∏
i=1

X
aihisign
i .

Furthermore, the runtime of B is approximately that of Ams.

Proof (Lemma 10). We will first prove that all the requirement hold whenever Ams and B succeed, and then
analyze its success probability.

First, note that B makes a single Dlog query whenever Ams makes a query to the second round of the
signing oracle SignO2, and does not query Dlog at any other time. Hence, it makes at most qs queries to
Dlog, as desired.

Now, we will ensure that ctrh does not exceed q. On each query Ams makes to Hagg and Hsign, ctrh
is incremented by 1, and it is incremented by at most two on each Hsign query, resulting in at most 4 · qh

incrementations from handling the adversary’s random oracle queries. Additionally, for each SignO2 query
the adversary makes B computes the aggregated key (incrementing the counter once) and b (which makes
H̃nonce increment the counter twice), resulting in at most 3 · qs incrementations to handle signing oracle
queries. Lastly, to use a forgery B computes the aggregated key, which may increment ctrh by one. Thus,
ctrh does not exceed 4qh + 3qs + 1, as desired.

If Ams succeeds, then it outputs more signatures than the number of signatures for the corresponding
message m and public keys X1, . . . , Xn produced by the signing oracle. In particular, for some j, the signing
oracle did not return a signature for (m, X1, . . . , Xn) with Rj as the R value. If bad is not set to true, then
the adversary did not find a collision of aggregated keys for different lists of public keys, and therefore the
signing oracle did not return a signature for (m, X̃) with Rj as the R value, and thus B returns an output
based on the forgery σj and not ⊥.

For the other requirements, note that if Ams succeeds then it outputs a list of public keys containing X,
and hence X ∈ {X1, . . . , Xn}. Furthermore, by construction iagg is the index such that

hiagg =
∑

{i : Xi=X}

Hagg(i, X1, . . . , Xn) =
∑

{i : Xi=X}

ai

as desired, and by construction hisign = Hsign(Rj , X̃, m). Since each of the signatures that Ams outputs is
valid for the message m, it holds that

gsj = R

n∏
i=1

X
aihisign
i .

Lastly, note that if iagg > isign then Hsign[Rj , X̃, m] was set before Hagg[k, X1, . . . , Xn] was initialized for any
k, and therefore bad is set to true when Hsign[Rj , X̃, m] is initialized, meaning that B does not succeed. Thus,
if B succeeds then iagg < isign.

Now, we will lower bound success probability of B. As we have shown, if AMS succeeds and bad is not set
to true, then B succeeds. Note that bad is set to false in two cases: when a new aggregated key has already
been used in an Hsign query and when two aggregated keys collide. Each of those bad events can only happen
when we initialize a new Hagg value, which happens at most once in calls to Hagg, SignO2, and on the
output of Ams. Each time, the probability that those events happen are bounded above by |Hsign|/p ≤ q/p
and |K|/p ≤ q/p, resulting in a total probability bounded above by 2q2/p.

One-More Unforgeability for Multi- and Threshold Signatures 41

BDlog(X∗, U1, . . . , U4qs , h1, . . . , hq):
1 bad← false // abort whenever bad← true
2 Hagg, Hsign, Hnonce ← empty dictionary
3 ctrh← 0 // counter for random oracle queries
4 ctrs← 0 // counter for signing oracle queries
5 Q← ∅ // tracks signing oracle responses
6 K ← ∅ // tracks aggregated keys used
7 Tagg, Tsign ← empty dictionary // tracks indices in

h for random oracle replies
8 ρA←$ {0, 1}RA // random tape for A
9 Sim← {S̃ignO1, S̃ignO2, H̃agg, H̃sign, H̃nonce}

10 (m, (Xi)n
i=1, (Rj , zj)ℓ

j=1)← ASim
ms (X; ρA)

11 X̃ ←
∏n

i=1 X
H̃agg(i,X1,...,Xn)
i

12 If ∃j ∈ {1, . . . , ℓ} such that (Rj , X̃, m) ̸∈ Q:
13 H̃sign(Rj , X̃, m) // ensure initialization
14 isign ← Tsign[Rj , X̃, m]
15 iagg ← Tagg[X1, . . . , Xn]
16 For i = 1, . . . , n:
17 ai ← H̃agg(i, X1, . . . , Xn)
18 Return (isign, iagg, X1, . . . , Xn, Rj , zj , a1, . . . , an)
19 Return ⊥

S̃ignO1():
20 ctrs← ctrs + 1
21 ĵ ← 4(ctrs− 1)
22 Return Uĵ+1, Uĵ+2, Uĵ+3, Uĵ+4

S̃ignO2(j, k, m, (vki, Ri,1, . . . , Ri,4)n
i=1):

23 j′ ← 4(ctrs− 1)
24 (Rk,1, . . . , Rk,4)← Uĵ+1, . . . , Uĵ+4

25 X̃ ←
∏n

i=1 vk
H̃agg
i (i, vk1, . . . , vkn)

26 For ℓ = 1, . . . , 4:
27 Rℓ ←

∏n

i=1 Ri,ℓ

28 b← H̃nonce(ṽk, m, R1, . . . , R4)
29 R←

∏4
ℓ=1 R

(bℓ−1)
ℓ

30 Q← Q ∪ {(R, ṽk, m)}
31 c← H̃sign(ṽk, R, m)
32 // query dlog oracle for the partial signature:
33 α← 0; β1 ← c · H̃agg(k, vk1, . . . , vkn)
34 For i = 2, . . . , 4qs + 1:
35 βi ← 0
36 (βj′+2,...,j′+5)← (b0, . . . , b3)
37 z ← Dlog(α, β1, . . . , β4qs)
38 Return (R, z)

H̃agg(k, X1, . . . , Xn):
39 If Hagg[k, X1, . . . , Xn] uninitialized:
40 If X ∈ {X1, . . . , Xn}:
41 ctrh← ctrh + 1
42 v ← max{i : Xi = X}
43 s← 0
44 For i = 1, . . . , v − 1:
45 If Xi = X:
46 Hagg[i, X1, . . . , Xn]←$ Zp

47 s← s + Hagg[i, X1, . . . , Xn]
48 Hagg[v, X1, . . . , Xn]← hctrh − s
49 Tagg[X1, . . . , Xn]← ctrh
50 For i = 1, . . . , n:
51 If Xi ̸= X: Hagg[i, X1, . . . , Xn]←$ Zp

52 X̃ ←
∏n

i=1 X
Hagg[i,X1,...,Xn]
i

53 If ∃(R, m) such that Hsign[R, X̃, m] is initialized:
54 bad← true
55 If X̃ ∈ K:
56 bad← true
57 K ← K ∪ {X̃}
58 Return Hagg[k, X1, . . . , Xn]

H̃nonce(X̃, R1, . . . , R4, m):

59 If Hnonce[X̃, R1, . . . , R4, m] uninitialized:
60 ctrh← ctrh + 1
61 Hnonce[X̃, R1, . . . , R4, m]← hctrh
62 b← Hnonce[X̃, R1, . . . , R4, m]
63 R←

∏4
ℓ=1 R

(bℓ−1)
ℓ

64 H̃sign(R, X̃, m) // ensure initialization
65 Return Hnonce[X̃, R1, . . . , R4, m]

H̃sign(R, X̃, m):

66 If Hsign[R, X̃, m] uninitialized:
67 ctrh← ctrh + 1
68 Hsign[R, X̃, m]← hctrh
69 Tsign[R, X̃, m]← ctrh
70 Return Hsign[R, X̃, m]

Fig. 17. The algorithm from Lemma 10, which is used to prove the strong unforgeability of MuSig2. It is very similar
to Figure 7 of [42].

Hence, B succeeds with probability of at least Pr[Gsuf-ms
MS (Ams)] − 2q2/p, which implies the probability

bound in the lemma. We use the bound in the lemma as opposed to the tighter bound we obtained for
compatibility with the proof of [42].

