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Abstract
We explore the use of distributed differentially-private computa-

tions across multiple servers, balancing the tradeoff between the

error introduced by the differentially-private mechanism and the

computational efficiency of the resulting distributed algorithm.

We introduce the linear-transformation model, where clients have
access to a trusted platform capable of applying a public matrix to

their inputs. Such computations can be securely distributed across

multiple servers using simple and efficient secure multiparty com-

putation techniques.

The linear-transformationmodel serves as an intermediatemodel

between the highly expressive central model and the minimal local
model. In the central model, clients have access to a trusted plat-

form capable of applying any function to their inputs. However,

this expressiveness comes at a cost, as it is often expensive to dis-

tribute such computations, leading to the central model typically

being implemented by a single trusted server. In contrast, the local

model assumes no trusted platform, which forces clients to add

significant noise to their data. The linear-transformation model

avoids the single point of failure for privacy present in the central

model, while also mitigating the high noise required in the local

model.

We demonstrate that linear transformations are very useful for

differential privacy, allowing for the computation of linear sketches

of input data. These sketches largely preserve utility for tasks such

as private low-rank approximation and private ridge regression,

while introducing only minimal error, critically independent of

the number of clients. Previously, such accuracy had only been

achieved in the more expressive central model.

1 Introduction
Differential Privacy (DP) [DMNS06] has become the de-facto stan-

dard for ensuring the privacy of individuals whose data is used

in data analytics. DP offers strong, provable guarantees, such as

composability and resilience to auxiliary information. In the clas-

sic central model of differential privacy, clients submit their data

to a trusted central server, which processes the data and releases

a (necessarily) noisy version of the result. Analysts can then use

this result to perform queries on the data. Informally, differential

privacy guarantees that the analyst cannot confidently determine

whether any individual contributed their data, except with some

small probability.

The central model requires trust that the server will not reveal

any individual’s data and cannot be compromised by external actors.

However, universally trusted servers may not exist in practice. In

situations where privacy is critical but trusting a single server is not

feasible, alternative approaches are available: One such approach is

to use secure multiparty computation (MPC) techniques to distrib-

ute the central server’s computations across multiple servers. Under

the assumption that a subset of these servers are honest, this setup

guarantees the same level of privacy as the central model. How-

ever, MPC techniques often introduce significant computational

overhead, especially when distributing complex or expressive com-

putations.

Another option is to avoid relying on external servers altogether.

In this case, each client must publish their data in a locally dif-

ferentially private manner, by adding noise directly to their data.

While this removes the need for a trusted server, it results in lower

utility due to the increased noise. This approach is known as the

local model of differential privacy [KLN
+
08], an example of which

is randomized response [War65].

Both the central and local models of differential privacy have

strengths and drawbacks. The central model typically yields higher

utility but requires strong trust in a single server or the costly

use of MPC. The local model, by contrast, requires no trust in

external parties but suffers from reduced utility. These tradeoffs

have motivated significant research into finding a middle ground

between these two models. One promising direction is to limit the

expressiveness of the class of functions F that can be executed in

a trusted manner. While this restriction allows for more efficient

distributed implementation, it is only useful if the DP mechanism

built around such functions can still achieve good accuracy.

A notable example of such restricted expressiveness is the class

of functions known as shuffles, where a central entity (or a dis-

tributed system) randomly permutes the messages from clients

before they reach the analysing server. This is known as the shuffle
model [BEM+17, EFM+19, CSU+19]. The shuffle model is motivated

by cryptographic protocols (e.g., mix-nets), which allow for securely

distributing the shuffle across multiple servers. The shuffle model

has been used to implement many differentially-private mecha-

nisms with reasonable utility [EFM
+
19, CSU

+
19]. Surprisingly, the

shuffle model is more expressive than initially expected: with a

trusted shuffler, any function can be securely computed in two

rounds under the assumption of an honest-majority [BHNS20].

We therefore ask the following:

Question 1.1. What is the least expressive class of functions F that
needs to be securely implemented in order to achieve computationally
efficient distributed differential privacy with utility comparable to
that of the central model?

1.1 Our Contribution
In this work, we investigate the power of the linear-transformation
model (LTM) for differentially-private mechanisms. In this model,

the clients only have access to a trusted platform for performing



arbitrary linear transformations of their inputs. Linear functions

can be distributed extremely efficiently with secure computations.

However, it is also known that the expressiveness of this class of

functions is strictly limited.

For a visualization of the architecture, we refer to Figure 1. We

demonstrate the benefits of this linear transformation model (LTM)

by showing that it can be used, in combinations with linear sketches
to construct private summaries of a dataset with noise comparable

to that of central differentially private mechanisms.

As a warm-up, we show how to use linear sketches to compute

vector statistics as described in Section 3.1. For more advanced

application, we consider problems from linear algebra such as low
rank approximation and regularized linear regression. Note that in
the LTM no noise is added centrally, and therefore clients (like in

the local model) must add some noise to their data before sending

it to the trusted platform. However, we show that thanks to the

centrally applied linear transformation, we can significantly reduce

the noise to be added (and therefore obtain better utility). Although

it is not inherent to the model, all of our mechanisms require only

a single round of communication from clients to server, akin to

streaming algorithms.

In a nutshell, we obtain utility guarantees similar to the central

model, while using significantly weaker assumptions that the cen-

tral or shuffle model. A full overview of related work is given in

Table 1.

Low Rank Approximation. We are given a data matrix A ∈ R𝑛×𝑑 .
Our goal is to compute an orthogonal projection X ∈ R𝑑×𝑟 min-

imizing the error 𝑂𝑃𝑇 = minX ∥A − AXX𝑇 ∥2
𝐹
, where ∥.∥𝐹 de-

notes the Frobenius norm of a matrix. In the LTM, we can com-

pute an X̂ differentially privately with error ∥𝐴 − 𝑋𝑋𝑇𝐴∥2
𝐹
≤

(1 + 𝑜 (1)) · (∥𝐴 − 𝑋𝑋𝑇𝐴∥2
𝐹
+ poly(𝜀−1, 𝑑, 𝑘, log 1/𝛿). Notably, this

bound is independent of 𝑛, which so far has only been achieved in

the more expressive central model.

Ridge Regression. We are given a data matrix A ∈ R𝑛×𝑑 , a target
vector b ∈ R𝑛 and regularization parameter 𝜆 > 0. Our goal is to

find x ∈ R𝑑 minimizingminx ∥Ax−b∥2+𝜆 · ∥x∥2, where ∥.∥ denotes
the Euclidean norm of a vector. Each row of the data matrix, as

well as the corresponding entry of b resides with a client. Assume

that 𝜆 ≥ poly(𝜀−1, 𝑑, log 1/𝛿) In the LTM, we can compute an x̂
differentially privately with error (1 + 𝑜 (1)) · (∥Ax − b∥2 + 𝜆 ·
∥x∥2) + poly(𝜀−1, 𝑑, log 1/𝛿). We note that this result is also, to the

best of our knowledge, the first differentially private mechanism

that yields a finite bound on the additive error even in the central

model without making assumptions on A and b.

Comparison to state-of-the-art. Table 1 provides a comparison

of the utility bounds for the problems in the local, central, shuffle

and LTM model. We obtain similar utility to mechanisms run in

the more expressive central model, while at the same time we are

able to distribute the evaluation of the mechanism and avoid the

single point of failure of the central model. When comparing with

the similar shuffle model for frequency estimation, it should be

noted that the LTM is a strictly less expressive model. Indeed, it

is possible to use the shuffle model to emulate the LTM, while the

converse is not possible (remember that the matrix is public in the

LTM, while the permutation is secret in the shuffle model). For low

rank approximation/PCA, we are not aware of any work in the

shuffle model. All of our mechanisms require only a single round

of communication between users and servers, with one messages

per user sent to each server in that round.

1.2 Related Work
There is substantial work on the shuffle model, which also aims at

facilitating differential privacy in a distributed setting. We discuss

the relationship between the LTM and the shuffle model in more

detail in Section 3. For the problems we studied here, there is an

abundance of prior work discussed as follows.

Low Rank Approximation: There are various ways in which one

could formulate the low rank approximation problem. The setting

which is most important to us is the seminal paper [DNMR14],

who achieved a worst case additive error of the order 𝑑
√
𝑘 for

outputting an orthogonal projection matrix 𝑉𝑘 in the row space of

A. This bound is also optimal. In the local model where each client

holds a row of the data matrix A, [Upa18] gave an algorithm with

an additive error of the order

√
𝑛, which matches the lower bound

by [BS15] up to lower order terms. To the best of our knowledge,

no single round shuffle protocol improving over the local bounds

is known.

Low rank approximation and its sister problem PCA, have seen

substantial attention in settings more loosely related to our work.

Much of the work on private low rank approximation [BDMN05,

CSS12, DTTZ14, HR12, HR13, HP14, BDWY16, KT] considers the

data to be fixed, often using Gaussian noise. In addition, a strong

spectral gap assumption, typically of the form that the first singular

value is substantially larger than the second, is crucial to the analy-

sis. We note that all algorithms operating with this assumption do

not yield worst case bounds.

When there is no spectral gap, we compare to the central model

exponential mechanism approach from [CSS12], implemented by [KT].

[LKO22] also provide a solution to this problem; however, it is un-

fortunately computationally intractable.

Ridge Regression. The previous work most related to ours is due

to [She19]. The author gave a mechanism that preserved the entire

spectrum of a data matrix in a private manner and also showed that

the returned regression vector x̂ is close to the optimal x assuming

that the matrix is well conditioned.

Most previous work [KST12, CWZ21, BST14, WFS15, WGX18,

WSX18, WHZ
+
23, Wan18, VTJ22, MKFI22, LKO22, ZMW17] study

private linear regression in the context of risk minimization, where

the algorithm is given i.i.d. samples from some unknown distribu-

tion and aims at computing a solution with good out of sample

performance. Even without privacy constraints risk minimization

yields an additive error that depends on 𝑛. Another line of work

studies varies loss functions, including regression in a Bayesian

setting [MASN16, FGWC16, DNMR14]. We are not aware of any

prior work on linear regression in the local model of differential

privacy.

Differential Privacy via Johnson-Lindenstrauss Transforms. The
Johnson-Lindenstrauss lemma has been previously used in differ-

ential privacy. [BBDS12] studies the DP guarantee a JL transform

itself gives in the central model, in the context of cut queries and
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directional variance queries. [KKMM13] and [Sta21a] use JL trans-

forms together with Gaussian noise in the context of differentially

private Euclidean distance approximation, to decrease the error.

This was subsequently improved in [Sta21b], using Laplace noise.

The difference to our work is that the transform is used to reduce 𝑑

instead of 𝑛, by having every client apply it locally before adding

Gaussian noise. In [Nik23] the authors make use of JL transforms

to achieve private query release, by applying it before releasing

a bundle of queries. [GKK
+
23] studies pairwise statistics in the

local model of differential privacy and uses JL transforms to reduce

client-sided dimensionality.

2 Preliminaries
Notation. Column vectors are written in bold lowercase letters

b and matrices in bold uppercase letters A. The transpose opera-

tor over vectors and matrices is b𝑇 and A𝑇
. For any vector b, we

denote by ∥b∥ =

√︃∑
𝑖 𝑏

2

𝑖
its ℓ2-norm. For any matrix A, we de-

note by ∥A∥𝐹 =
√︃∑

𝑖

∑
𝑗 A2

𝑖, 𝑗
its Frobenius norm. We denote the

inner product between vectors ⟨a, b⟩ = a𝑇 b. Two vectors a, b are

orthogonal if their inner product is 0. An orthogonal matrix A is a

real matrix where the columns have unit Euclidean norm and are

pairwise orthogonal.

Subspace Preserving Sketches. We consider subspace-preserving

sketches in this work. Of particular interest for us are algorithms

that compute a subspace approximation of 𝐴 without prior knowl-

edge of𝐴. Such algorithms are known as oblivious subspace embed-

dings. We will use a family of such embeddings known as oblivious
sparse norm-approximating projections originally due to [NN13], but
since improved upon in several subsequent works.

Definition 2.1 (OSNAP [NN13].). Let Dsketch
𝑚,𝑛,𝑠 be a distribution

over randommatrices {−1, 0, 1}𝑚×𝑛 , where 𝑠 entries of each column,

chosen uniformly and independently for each column, are set to ±1
with equal probability, and all other entries are set to 0. If 𝑠 = 1, we

write Dsketch
𝑚,𝑛 . We say that 𝑆 ∼ Dsketch

𝑚,𝑛,𝑠 is an (𝛼, 𝛽, 𝑠,𝑚) OSNAP
for a 𝑑-dimensional subspace𝑊 ∈ R𝑛 if with probability 1 − 𝛽 , for
all 𝑎 ∈𝑊 and some precision parameter 𝛼��∥𝑆𝑎∥2

2
− ∥𝑎∥2

2

�� ≤ 𝛼 · ∥𝑎∥2 .

We give bounds on available choices of (𝛼, 𝛽, 𝑠,𝑚) for subspaces
of rank 𝑘 in table 5 in the appendix.

Differential Privacy. Differential privacy [DMNS06] offers pri-

vacy guarantees to individuals contributing their data to some

randomized algorithm. We say that two datasets are neighboring

if one can be obtained from the other by the the replacement of a

single individual with another individual.

Definition 2.2 (Differential Privacy in the central model [DMNS06]).
Let 𝜀 ≥ 0 and 𝛿 ∈ [0, 1]. A randomized mechanismM : X → Y is

(𝜀, 𝛿) differentially private, if for all neighboring data sets 𝑥, 𝑥 ′ ∈ X
and all outputs 𝑆 ⊆ Y it holds that

Pr[M(𝑥) ∈ 𝑆] ≤ 𝑒𝜀 Pr[M(𝑥 ′) ∈ 𝑆] + 𝛿,

where the probabilities are over the randomness ofM.

Lemma 2.3 (The Gaussian Mechanism [DR14]). Let 𝑓 : X → R𝑘
be a function and let 𝜀 ≥ 0 and 𝛿 ∈ [0, 1]. The Gaussian mechanism
adds to each of the 𝑘 components of the output, noise sampled from
𝑁 (0, 𝜎2) with

𝜎2 ≥ 2(Δ2 𝑓 )2 ln(1.25/𝛿)
𝜀2

,

where Δ2 𝑓 = max𝑥∼𝑥 ′ ∥ 𝑓 (𝑥) − 𝑓 (𝑥 ′)∥2 denotes the ℓ2 sensitivity of
function 𝑓 . The Gaussian mechanism is (𝜀, 𝛿) differentially private.

3 Privacy Guarantees in the LTM
We consider a model in which the trusted component can perform

any public linear transformation of the inputs. The model includes

three algorithms: (1) 𝑅 : X → Y is a randomized encoder that

takes a single user’s data and outputs a randomized message, (2)

𝑇 : Y∗ → Y∗ is the idealized trusted component that performs a

public linear transformation of its inputs, and (3) 𝐴 : Y∗ → Z is

an analysis function that takes the results messages and estimates

some function from these messages.

Note that standard definitions of differential privacy in the shuffle

model only require 𝑇 (𝑅(𝑥1), ..., 𝑅(𝑥𝑛)) to be differentially private.

This implicitly assumes that all clients are honest and do not col-

lude with the adversary, in particular they are assumed not to leak

the output of their randomizers publicly. This implies that existing

definitions of differential privacy in the shuffle model could be sat-

isfied even by (artificial) mechanisms in which a single client adds

the whole noise while the others do not randomize their messages

at all. This is clearly a very weak privacy guarantee: in a setting

in which a large number of clients participate in a differentially

private data analysis, it is unrealistic to assume that the adversary

does not control even a single client. Luckily, to the best of our

knowledge, no proposed mechanisms in the literature suffer from

these vulnerabilities, still this counterexample shows that the ex-

isting definition is not robust enough, and we therefore formalize

a notion of differential privacy where we explicitly tolerate that

a bounded number of clients might collude with the adversary.

Similar observations were also made by [TWM
+
23].

Definition 3.1 (Trusted Computation Model for Differential Pri-

vacy). A tuple of algorithms 𝑃 = (𝑅,𝑇 ,𝐴) is (𝜀, 𝛿)-differentially
private given corrupt clients 𝐶𝑐𝑜𝑟 if the output Π𝑅 (𝑥1, ..., 𝑥𝑛) =
𝑇 (𝑅(𝑥1), ..., 𝑅(𝑥𝑛)), as well as corrupted parties’ randomizer output

𝑅(𝑥𝑖 ) for all 𝑥𝑖 ∈ 𝐶𝑐𝑜𝑟 satisfy (𝜀, 𝛿)-differential privacy.

This definition requires any possible subset of honest parties

to jointly add enough randomness in 𝑅 to preserve the privacy

guarantee, thus guaranteeing privacy even against a semi-honest

adversary that is able to learn the outputs of an arbitrary subset of

clients.

Multi-Central Model of Differential Privacy. [Ste20] introduce the
multi-central model, which exactly defines this split-trust model

that instantiates the trusted computation model above. They allow a

semi-honest adversary that honestly follows the protocol to corrupt

up to all but one servers and all but one client. We also operate in

the same semi-honest setting, but define parameters 𝑡 and 𝑡 ′ for
the number of tolerated server and client corruptions.

The view View𝑅,Π,𝐴
𝐶𝑐𝑜𝑟 ,𝑆𝑐𝑜𝑟

(𝑥) of the adversary consists of all the

information available to the corrupted clients𝐶𝑐𝑜𝑟 and servers 𝑆𝑐𝑜𝑟
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Local Shuffle LTM (this work) Central

Frequency Est

𝑂̃ (
√
𝑛) [BNST20]

Θ̃(𝜀−1)[GGK+21] 𝑂̃ (𝜀−2) Θ̃(𝜀−1)
Ω(
√
𝑛) [BS15]

Low-Rank Approximation 𝑂̃ (
√
𝑛)[Upa18]

N.A. 𝑂̃ (𝑑3𝑘2𝜀−2 log 𝑑
𝛿
) Θ̃(𝑑

√
𝑘𝜀−2)[DTTZ14]

PCA Ω(
√
𝑛) [BS15]

Table 1: SOTA utility bounds for various models for frequency estimation and low rank approximation.

C1

C2

Cn

S1

Sk

A

R(x1)1
x1

x2

xn

R(x1)k

R(x2)1

R(x2)k

R(xn)1

R(xn)k

T(R(x1)1,R(x2)1,…,R(xn)1)

T(R(x1)1,R(x2)1,…,R(xn)1)

A(T(R(x1),R(x2),…,R(xn)))

Figure 1: Adversary’s View

plus the final output of the honest, uncorrupted servers. This view

excludes only internal information of the trustworthy servers and

clients. The resulting protocol is (𝜀, 𝛿)-differentially private in the

multi-central model if adversary’s view is (𝜀, 𝛿)-indistinguishable
from the output on a neighboring dataset.

Figure 1 further illustrates what is contained in the adversary’s

view. All clients randomize their input and send a single message

to each server, who locally perform a linear transformation and

release the result to some analyzer. If one server and one client are

corrupted, the adversary’s view contains all incoming and outgoing

messages from that server and that client, or the incoming and

outgoing edges from the client, server, and analyzer marked in red

in the figure.

Definition 3.2 (Instantiation of Trusted Computation Model for

Differential Privacy with MPC). Let Π be a 𝑘-party MPC protocol

that computes 𝑓 : R𝑛 → R with perfect security, tolerating 𝑡 cor-

ruptions. A tuple of algorithms 𝑃 = (𝑅,Π, 𝐴) is (𝜀, 𝛿)-differentially
private if for all coalitions 𝑆𝑐𝑜𝑟 of up to 𝑡 < 𝑘 corrupt servers and

for all coalitions 𝐶𝑐𝑜𝑟 of 𝑡
′ < 𝑛 corrupt clients and all neighboring

datasets 𝑥 and 𝑥 ′:

Pr[View𝑅,Π,𝐴
𝑆𝑐𝑜𝑟 ,𝐶𝑐𝑜𝑟

(𝑥) ∈ 𝑆] ≤ 𝑒𝜀 · Pr[View𝑅,Π,𝐴
𝑆𝑐𝑜𝑟 ,𝐶𝑐𝑜𝑟

(𝑥 ′) ∈ 𝑆] + 𝛿

where the probability is over all the randomness in the algorithms

(𝑅,Π, 𝐴).

With this definition, we can give our first result showing that dif-

ferential privacy is retained given a bounded number of corruptions.

The proof can be found in Appendix B.

Lemma 3.3. If 𝑃 = (𝑅,𝑇 ,𝐴) is (𝜀, 𝛿)-differentially private with
𝑡 ′ corrupt clients 𝐶𝑐𝑜𝑟 , and if Π is a perfectly secure 𝑘-party MPC
protocol that computes 𝑇 correctly while tolerating 𝑡 corrupt servers

𝑆𝑐𝑜𝑟 , then 𝑃 = (𝑅,Π, 𝐴) is (𝜀, 𝛿)-differentially private as long as there
are less than 𝑡 ′ corrupt clients and 𝑡 corrupt servers.

3.1 Frequency Moments
To illustrate the possibilities inherent to the LTM, we consider a

simple application by way of estimating frequency moments. For

simplicity, assume in this section that all clients are trustworthy,

i.e. 𝑡 ′ = 0, but the arguments can be straightforwardly extended

to deal with arbitrary values of 𝑡 ′. Here, each client is given a

number [−Δ,Δ] and our goal is to estimate 𝐹𝑘 =
∑𝑛
𝑖=1 |𝑥𝑖 |𝑘 . In the

local model, even if all entries are either 0 or 1, it is not possible

to estimate 𝐹1 without incurring an additive error of the order√
𝑛, that is the estimated value 𝐹1 = 𝐹1 ± 𝑂 (

√
𝑛) for any privacy

preserving local mechanism [BS15]. In contrast, simply computing

𝐹𝑘 and adding an appropriate amount of noise
1
yields an additive

error that only depends on Δ, 𝜀 and 𝛿 .

We now consider the LTM. Let x𝑘 denote the vector of client

entries with x𝑘
𝑖
= |𝑥𝑘

𝑖
|. We observe that 𝐹𝑘 = 1

𝑇 x𝑘 . Suppose every
client 𝑖 samples a Gaussian random variable 𝑔𝑖 with zero mean and

variance 𝜎2 ≥ 2Δ𝑘
ln(1.25/𝛿 )
𝑛 ·𝜀2 and adds it to |𝑥𝑘

𝑖
|. Then we have 𝐹𝑘 =

1
𝑇 (x𝑘 +𝑔) = 𝐹𝑘 +

∑𝑛
𝑖=1 𝑔𝑖 . We now observe that

∑𝑛
𝑖=1 𝑔𝑖 is Gaussian

distributed with zero mean and variance 𝑛 · 𝜎2 ≥ 2Δ𝑘
ln(1.25/𝛿 )
𝜀2

.

Thus, assuming a trusted computation of 1
𝑇𝑔, 𝐹𝑘 is a differentially

private estimate of 𝐹𝑘 with error
2Δ𝑘

ln(1.25/𝛿 )
𝜀2

.

A key property used in this example (and throughout the paper),

is that sums of Gaussian random variables are Gaussian distributed.

A similar property also holds for Cauchy random variables, or ran-

dom variables drawn from any stable distribution. Thus, differential

privacy protocols based on the Gaussian or the Cauchy mechanism

[NRS07] are natural baseline candidates for the LTM. Nevertheless,

it is also possible to add noise following a distribution where the

sum of random variables can be controlled. For example, the sum

of negative binomial random variables follows a geometric distribu-

tion, which likewise can be used in differential private mechanisms

[GKMP20]. Exploring these options in the context of the LTM is a

interesting open problem.

3.2 Privacy Preserving Mechanism for Oblivious
Sparse Johnson Lindenstrauss Transforms

We instantiate the trusted computation model for differential pri-

vacy using MPC, where the function 𝑇 performs a matrix multi-

plication and outputs a sketch of the input data. More specifically,

we define the tuple of algorithms (𝑅𝜎 ,𝑇S, 𝐴). 𝑅𝜎 (x) : R𝑑 → R𝑑𝑠

1
Using the Gaussian mechanism, 𝜎2 = 𝜌 · Δ𝑘

𝜀2
log𝛿−1 for some absolute constant 𝜌 is

sufficient, though other mechanism can yield even better bounds.
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Algorithm 1 Linear Transformation Model

1: Input: Individual input vectors x1, . . . , x𝑛 representing values

in R𝑑

2: Parameters: noise variance 𝜎2, public sketching matrix

S ∈ R𝑚×𝑛
3: Each client 𝑖 ∈ [𝑛] then locally computes 𝑅𝜎 (x𝑖 ) on their

input x𝑖 .
4: Each client secret shares the resulting value using a linear

secret sharing scheme, and sends one share to each server.

5: The servers jointly compute function 𝑇S on the resulting

matrix, which results from concatenating all 𝑛 vector secret

shares.

6: The resulting matrix product is be published and then taken as

input to any analysis function 𝐴.

7: Output: Output 𝐴(𝑇S (𝑅𝜎 (x1, . . . , x𝑛))

sets the input value to 0
𝑑
if 𝑛 < 8𝑚 ln(𝑑𝑚/𝛿) + 𝑡 ′. Otherwise, for

all 𝑖 ∈ [𝑠], sample g𝑖 ← N(0, 𝜎2)𝑑 with variance 𝜎2, and add

these sample vectors to the input vector, resulting in 𝑠 vectors

x𝑖 = x + g𝑖 . Each client then secret shares the resulting values

using a linear secret sharing scheme and sends one share to each

server. 𝑇S : R𝑛×𝑑𝑠 → R𝑚×𝑑 has as a parameter sketching matrix

S ← Dsketch
𝑚,𝑛,𝑠 and takes as input matrices A𝑖 ∈ R𝑛×𝑑 for 𝑖 ∈ [𝑠].

Notice that S satisfying Definition 2.1 can be decomposed such that

S = 1√
𝑠

∑𝑠
𝑖 S𝑖 , where S𝑖 ∈ {−1, 0, 1}𝑚×𝑛 is a matrix with only one

non-zero entry per column. 𝑇S outputs the sum of matrix products

1√
𝑠

∑
𝑖∈[𝑠 ] S𝑖A𝑖 . 𝐴 takes a matrix in R𝑚×𝑑 , as well as any public

values, and outputs some data analysis.

Algorithm 1 describes how clients and servers jointly compute

the linear transformation, allowing the transformed data to be

published and used for analysis. We now evaluate the variance

necessary to guarantee differential privacy in this model. We find

that for sufficiently large 𝑛, we can apply the stability of Gauss-

ian distributions to divide by the number (𝑛 − 𝑡 ′)/2𝑚 of honest

clients expected to contribute to any entry of a column in the re-

sulting noisy matrix product. The concentration bound, formulated

in Lemma B.1 and used to bound this number of honest clients,

contributes to the necessary value of 𝛿 . Composition theorems can

be applied on the columns of the resulting matrix product to yield

the final differential privacy guarantee. We will later see that adding

noise with this variance to data results in only a small multiplicative

error in the resulting error for regularized linear regression and

low rank approximation.

We are now ready to state our privacy guarantees in the LTM

based on the Gaussian mechanism.

Theorem 3.4. Let 𝜀 ≥ 0, 𝛿 ∈ (0, 1), 𝑡 ′ < 𝑛,𝑚 ∈ [𝑛], 𝑠 ∈ [𝑛] and

𝜎2 =
4𝑠2𝜂2 ln(1.25𝑠/(𝛿/𝑑 −𝑚 exp( −(𝑛−𝑠−𝑡

′ )
8𝑚 )))𝑚2𝑑2

𝜀2 (𝑛 − 𝑠 − 𝑡 ′)

Let S ∼ Dsketch
𝑚,𝑛,𝑠 with 𝑡 non-zero entries per column. Then as long as

input values are bounded above by 𝜂, tuple of algorithms (𝑅𝜎 ,𝑇S, 𝐴)
is (𝜀, 𝛿)-differentially private in the trusted computation model for
differential privacy with 𝑡 ′ corrupt clients 𝐶′.

The proofs can be found in Appendix B. Corollary 3.5 below

follows directly from Theorem 3.4 and Lemma 3.3.

Corollary 3.5. Let (𝑅𝜎 ,𝑇S, 𝐴) be the tuple of algorithms above. If𝑇S
is computed correctly using an MPC protocol ΠS with perfect security
tolerating 𝑡 semi-honest corruptions 𝑆𝑐𝑜𝑟 , then the tuple of algorithms
(𝑅𝜎 ,ΠS, 𝐴) is (𝜀, 𝛿)-differentially private with 𝑡 ′ corrupt clients𝐶𝑐𝑜𝑟 .

3.3 Cryptographic Assumptions and Relations
to the Shuffle Model

Crucially, the execution of the linear transformation can be easily

and securely distributed using simple cryptographic techniques for

secure multiparty computation (MPC) such as linear secret-sharing
(LSS). The guarantee offered by MPC is that no adversary corrupt-

ing all but one of the servers can learn more than the output of the

computation performed. [DKM
+
06] is the first work to consider

the combination of differential privacy and MPC; their focus is

distributed noise generation, which requires interaction between

servers. [CY23] provide lower bounds for non-interactive multi-

server mechanisms. [DKN
+
23] provide an interactive MPC protocol

to compute selection for distributed trust models of differential pri-

vacy. The linear transforms can be non-interactively computed

locally by servers and are also known to all participating parties,

that is, once initiated, the output of the protocol is fully determinis-

tic. This allows to implement the LTM with a set of central servers

under the minimal assumption that at least one honest server will

not collude with all the others, without any requirement to fully

trust any particular server. Using only simple LSS has several im-

portant consequences for both the efficiency and the security of

the overall system: each client only needs to send a single message

to each server, and servers do not need to communicate with each

other, but only send a single message to the data analyst. Thus, the

total workload is essentially that of the central model times the

number of servers used. Finally, as LSS can be instantiated with

information-theoretic security, the security of our system does not

depend on any unproven mathematical assumption and immedi-

ately offers security even against powerful quantum adversaries.

We describe the type of secret sharing scheme that can be used to

securely compute linear transformations using MPC in Appendix E.

Secure aggregation and the shuffle model are two instantiations

of intermediate trust models for differential privacy. Secure aggrega-

tion [GX17, BIK
+
17, MPBB19, AG21, TWM

+
23] is a special case of

the LTM, where the linear transformation applied is a sum, which is

useful in federated learning. The shuffle model [BEM
+
17, EFM

+
19,

CSU
+
19] is motivated in practice by the existence of cryptographic

protocols (e.g., mixnets) which allow to securely distribute a shuf-

fle among a set of servers. However, implementing shuffles using

cryptography is significantly more cumbersome than implementing

linear transformations. In particular mixnets require: 1. servers to

talk to each other over a chain, thus increasing the latency of the

system (while in the LTM all servers can perform the computation

in parallel and without talking to each other); 2. the use of com-

putationally intensive public-key cryptography (while LSS only

requires performing linear operations); 3. to use computational

assumptions, (while LSS provides unconditional security). Finally,
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shuffles/mixnets are inherently randomized algorithms, while lin-

ear transformations are deterministic functions and as such are

simpler to implement securely.
2

4 Numerical Linear Algebra in LTM
In this section we give the utility guarantees of our mechanism. We

start with giving generic distortion bounds relating the spectrum

of the noisy, but private matrix to the the spectrum of the original

non-private matrix. Parameterizations of this mechanism depend

on the underlying class of subspace embeddings. In this utility anal-

ysis, we limit outselves to OSNAPs with𝑚 and 𝑠 chosen according

to [Coh16]; other trade-offs are possible and can be found in Ap-

pendix A. Applications to specific problems such as regression and

low rank approximation are given towards the end of the section.

Here we present the formal utility statements for ridge regression

and low rank approximation. All bounds have a dependency on 𝜎2𝑛.

This term is in poly(𝑑𝜀−1 log(1/𝛿)) by our parametrization of the

Gaussian mechanism. All proofs can be found in the Appendix C.

We will use the following spectral bounds for both linear re-

gression as well as low rank approximation. We believe that there

may be further applications and that the bounds themselves are

therefore of independent interest.

Lemma 4.1. Let 𝑆 ∈ 1√
𝑠
· {−1, 0, 1}𝑚×𝑛 be an (𝛼, 𝛽,𝑚, 𝑠) OSNAP

with 𝑆 = 1√
𝑠

∑
𝑖∈[𝑠 ] 𝑆𝑖 , where 𝑆𝑖 ∈ {−1, 0, 1}𝑛×𝑚 has exactly one

non-zero entry per row. Let 𝐺 =
∑
𝑖∈[𝑠 ] 𝑆𝑖𝐺𝑖 where every matrix

𝐺𝑖 ∈ R𝑛×𝑑 has independent Gaussian entriesN(0, 𝜎2). Further, let𝑉
be a set of 𝑑-dimensional vectors lying in a 𝑘-dimensional subspace.
Then with probability at least 1 − 𝛽 for some absolute constant 𝜂

sup

x∈𝑉

1

𝑠
∥Gx∥2

2
≤ 𝜂 · 2 𝑛

𝑚
𝜎2 · ∥x∥2 · (

√︁
(𝑘 + log 1/𝛽) ·𝑚 + (𝑘 + log 1/𝛽)) .

and
1

𝑠
∥G∥2𝐹 ≤ 𝜂 · 2𝑛𝜎2 · 𝑑 · log 1/𝛽

We first begin with our utility results for low rank approximation.

Theorem 4.2. Let 𝜀 ≥ 0, 𝛿 ∈ (0, 1), 𝑡 ′ < 𝑛 and 𝜎 be chosen as
described in Theorem 3.4. Let S ∼ Dsketch

𝑚,𝑛 . Define 𝐴𝑘 that per-
forms rank 𝑘 approximation for data A. Without noise, this error is
XOPT = argminX rank 𝑘,∈R𝑛×𝑑 ∥A−AXX𝑇 ∥2

𝐹
, and after sketchingwith

Gaussian noise of variance 𝜎2 is X′ = argminX rank 𝑘,∈R𝑛×𝑑 ∥(A +
G)− (A+G)XX𝑇 ∥2

𝐹
. An instantiation of the LTM (𝑅𝜎 ,ΠS, 𝐴𝑘 ), which

tolerates 𝑡 ′ corrupted clients, computes linear regression parameters
for any 𝛼S > 0, as well as any 𝛼 > 0 and sufficiently large constant 𝜂
with probability 1 − 𝛽 with additive and multiplicative errors:

(1 +𝑂 (𝛼S))∥A − AXOPTX𝑇
OPT∥

2

𝐹 + 𝑂̃
(
𝑘2𝑑3

𝛼7S
log

3 (1/𝛽)𝜀−2 log(1/𝛿)
)

Proof. We will use the following inequality. The applications

to vector and matrix norms are straightforward corollaries.

2
The linear transformations we use are random, but this randomness is not private, so

we don’t need to trust the servers not to leak it. Instead, linear transformations are

sampled before secure computation.

Lemma 4.3 (Generalized Triangle Inequality [BBC
+
19]). For any

two real numbers 𝑎, 𝑏 and any 𝛼 > 0

|𝑎2 − 𝑏2 | ≤ 𝛼 · 𝑎2 +
(
1 + 1

𝛼

)
· (𝑎 − 𝑏)2 .

Let X′ be the matrix returned by the mechanism. We have

∥A − AX′X′𝑇 ∥2𝐹 ≤ (1 + 𝛼S)
1

𝑠







 ∑︁
𝑖∈[𝑠 ]

S𝑖A − S𝑖AX′X′𝑇








2

𝐹

≤ (1 + 𝛼S) (1 + 𝛼)
1

𝑠







 ∑︁
𝑖∈[𝑠 ]

S𝑖 (A + G𝑖 ) − S𝑖 (A + G𝑖 )X′X′𝑇







2

𝐹

+ (1 + 𝛼S) (1 + 1/𝛼)
1

𝑠







 ∑︁
𝑖∈[𝑠 ]

S𝑖G𝑖 − S𝑖G𝑖X′X′𝑇








2

𝐹

where the first inequality follows from the subspace embedding

property and the second inequality follows from Lemma 4.3. By opti-

mality ofX′ for the low rank approximation problem on

∑
𝑖∈[𝑠 ] S𝑖 (A+

G𝑖 ), we then have

∥A − AX′X′𝑇 ∥2𝐹

≤ (1 + 𝛼S) (1 + 𝛼)
1

𝑠







 ∑︁
𝑖∈[𝑠 ]

S𝑖 (A + G𝑖 ) − S𝑖 (A + G𝑖 )XOPTX𝑇
OPT








2

𝐹

+ (1 + 𝛼S) (1 + 1/𝛼)
1

𝑠







 ∑︁
𝑖∈[𝑠 ]

S𝑖G𝑖 − S𝑖G𝑖X′X′𝑇








2

𝐹

≤ (1 + 𝛼) (1 + 𝛼S)
(
(1 + 𝛼) (1 + 𝛼S)




A − AXOPTX𝑇
OPT




2
𝐹

+ (1 + 1/𝛼) 1
𝑠







 ∑︁
𝑖∈[𝑠 ]

S𝑖G𝑖 − S𝑖G𝑖XOPTX𝑇
OPT








2

𝐹

)

+ (1 + 𝛼S) (1 + 1/𝛼)
1

𝑠







 ∑︁
𝑖∈[𝑠 ]

S𝑖G𝑖 − S𝑖G𝑖X′X′𝑇








2

𝐹

where the inequality follows from Lemma 4.3 and the subspace

embedding property. Now notice that I−XOPTX𝑇
OPT

and I−X′X′𝑇

are orthogonal projections, multiplying by which cannot increase

the Frobenius norm of a matrix. Therefore, for X = X′ or X = XOPT:

1

𝑠







 ∑︁
𝑖∈[𝑠 ]

S𝑖G𝑖 − S𝑖G𝑖XX𝑇








2

𝐹

=
1

𝑠







 ∑︁
𝑖∈[𝑠 ]

S𝑖G𝑖 (I − XX𝑇 )








2

𝐹

≤ 1

𝑠







 ∑︁
𝑖∈[𝑠 ]

S𝑖G𝑖








2

𝐹

Then:

∥A − AX′X′𝑇 ∥2𝐹 ≤ (1 + 𝛼)
2 (1 + 𝛼S)2∥A − AXOPTX𝑇

OPT
∥2𝐹

+ (1 + 𝛼S) (1 + 1/𝛼) (2 + 𝛼)
1

𝑠







 ∑︁
𝑖∈[𝑠 ]

S𝑖G𝑖








2

𝐹
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Using Lemma 4.1, we have
1

𝑠



∑
𝑖∈[𝑠 ] S𝑖G𝑖



2
𝐹
≤ 2𝑛 · 𝜎2 · 𝑑 log(1/𝛽).

To simplify the error, observe that for the sketching matrix by

[Coh16] (see Table 5), we can set 𝑠 =
log𝑘
𝛼S

and𝑚 =
𝑘 log𝑘

𝛼2

S
log(1/𝛽).

Setting 𝛼 = 𝛼𝑆 and the bound on the variance from Theorem

3.4 and plugging this in above, we can simplify the additive and

multiplicative errors.

∥A − AX′X′𝑇 ∥2𝐹
≤ (1 + 𝛼)2 (1 + 𝛼S)2∥A − AXOPTX𝑇

OPT
∥2𝐹

+ 𝜂 (1 + 𝛼S) (𝛼 + 𝛼−1)𝜎2 · 𝑛 · 𝑑 · log
1

˜𝛽

≤ (1 +𝑂 (𝛼S))∥A − AXOPTX𝑇
OPT
∥2𝐹

+ 𝑂̃
(
𝑘2𝑑3

𝛼7S
log

3 (1/𝛽)𝜀−2 log(1/𝛿)
)

□

Theorem 4.4. Let 𝜀 ≥ 0, 𝛿 ∈ (0, 1), 𝑡 ′ < 𝑛 and 𝜎 be chosen as de-
scribed in Theorem 3.4. Let S ∼ Dsketch

𝑚,𝑛 . Define𝐴𝜆 that performs lin-
ear regression on the sketched noisy inputs, outputting argminx∥Ax−
b∥2 +𝜆∥x∥2, where the error is measured by minx∥Ax− b∥2 +𝜆∥x∥2.
An instantiation of the LTM (𝑅𝜎 ,ΠS, 𝐴𝜆), which tolerates 𝑡 ′ corrupted
clients, computes linear regression parameters for any 𝛼S > 0 with
probability 1 − 𝛽 with additive and multiplicative errors:(
1 + 𝑂̃

(
𝛼𝑆 +

𝑑3𝛼−5
𝑆

log
5 ·𝜀−2 log 1

𝛿

𝛽𝜆
+
𝑑6𝛼−10

𝑆
log

10 ·𝜀−4 log2 1

𝛿

𝛽𝜆2

))
· (∥AxOPT − b∥2 + 𝜆∥xOPT∥2)

+ 𝑂̃ ©­«
𝑑3𝛼−5

𝑆
log

5 1

𝛽
· 𝜀−2 log 1

𝛿

𝜆
+
𝑑6𝛼−10

𝑆
log

10 1

𝛽
· 𝜀−4 log2 1

𝛿

𝜆2
ª®¬

Note that we can obtain a constant multiplicative error as long

as the regularization factor 𝜆 depends on a sufficiently large poly-

nomial in 𝑑 , while being independent of 𝑛. Generally such a re-

lationship still has good generalization properties when training

a regression model. If 𝜆 is not sufficiently large, any underlying

sketching matrix will set 𝛼S to be a large constant, i.e. 1/3, that still

guarantees validity of the sketch.

5 Experimental Evaluation
In contrast to the central model, utility in the local model decreases

with the number of clients 𝑛. For ridge regression and low-rank

approximation, our theoretical results shows that this performance

decrease can be avoided in the LTM with the Gaussian mechanism.

It is natural to ask for which parametrizations of the Gaussian mech-

anism the performance remains acceptable. Therefore, we evaluate

empirically how the error of ridge regression and low-rank approx-

imation develops as 𝑛 grows using synthetic benchmarks. The first

part of the experiments demonstrates that, as the number of clients

increases, the asymptotic error in the LTM is between the error in

the central and local models. The second part of the experiments

describes the minimal computational overhead introduced by the

use of MPC for distributing the execution of the LTM.

5.1 Utility
In this section we will first evaluate the utility of our model for

low-rank approximation and then do the same for ridge regression.

5.1.1 Low-Rank Approximation. Wehere investigate the errorwhen

performing low-rank approximation. We evaluate the error for syn-

thetic datasets as well as four real-world datasets.

Setup. Our mechanism in the LTM adds Gaussian noise sampled

from N(0, 𝜎2) to every entry in input data matrix A. The variance

𝜎2 depends on privacy parameters 𝜀 and 𝛿 and is chosen propor-

tional to 𝑛−𝑝 for 𝑝 ∈ [0, 1]. This enables us to interpolate between

the local model (𝑝 = 0) and the LTM (𝑝 = 1). As a baseline for the

central model, we implemented MOD-SULQ [CSS12], an approach

where A𝑇 A is perturbed by adding Gaussian noise. For low-rank ap-

proximation the additive error plays a significant role (see Theorem

4.2), so we measure the error in terms of the excess risk

𝜓 =
∥A − AX′X′𝑇 ∥2

𝐹
− ∥A − AXOPTX𝑇

OPT
∥2
𝐹

𝑛
,

where XOPT denotes the optimal solution and X′ denotes the so-
lution after adding noise to the training data. We vary the privacy

parameter 𝜀 ∈ {0.01, 0.03, 0.05, 0.1} and 𝑘 based on the dataset at

hand. For each dataset we measure 𝜓 for the central model and

the Gaussian mechanism with 𝑝 ∈ {1, 0.9, 0.8, 0.7, 0.6, 0.5, 0}, by
reporting the average𝜓 over 20 runs of the algorithms per dataset.

Software and Hardware. All mechanisms are implemented in

Python 3.6.9, making use of numpy. Experiments were executed on

an Ubuntu 18.04 LTS machine, with an Intel Core i7-10510U CPU

clocked at 1.8GHz and 16GB of RAM.

Datasets. We evaluate our mechanism on synthetic and real

datasets, enabling us to vary the number of sampled points 𝑛 and

interpolating between datasets of different sizes.

The synthetic datasets have a large spectral gap from the 𝑘th to

the (𝑘 + 1)th singular value with random bases, which emphasizes

the performance difference between the various private mecha-

nisms. This is achieved by first producing a matrix A′ where every
entry is sampled fromN(0, 1) and then changing its singular values
such that there are exactly 𝑘 big ones and the rest are small. More

specifically, we set A = U′ΣV′, where U′Σ′V′ is the SVD of A and

Σ is a diagonal matrix with the first 𝑘 values set to

√︁
𝑛/𝑘 and the

rest set to 1/𝑛.
The parameters of the four real-world datasets from the UC

Irvine Machine Learning Repository are given in Table 2. For more

thorough descriptions on the datasets, see Appendix D.4.

Results and Interpretation. Figure 2 shows our results for two

privacy regimes (𝜀 ∈ {0.01, 0.05}) with synthetic data and Table 2

shows the error with real-world datasets. In all chosen parameter

settings for synthetic data, we observe that as 𝑛 grows, the error in

the LTM asymptotically approaches the error in the central model,

both on real and synthetic datasets (see Figure 2 and Table 2). Table

2 shows that notably, on real-world datasets, our approach performs

significantly better than the Gaussian mechanism in the local model

and is closer to the central MOD-SULQ [CSS12] mechanism. For

more combinations of parameters, see Appendix D.3.

7



0 200000 400000 600000
n

0.00

0.25

0.50

0.75

er
ro

r

0 200000 400000 600000
n

0.00

0.25

0.50

0.75

er
ro

r

central

p = 1 (LTM)

p = 0.9

p = 0.8

p = 0.7

p = 0.6

p = 0.5

p = 0 (local)

Figure 2: Plots depicting the asymptotic behavior of error𝜓 for 𝜀 ∈ {0.01, 0.05} (left, right), with 𝑑 = 50 and 𝑘 = 5. The grey line
depicts the error of the local mechanism and the orange one depicts our approach. The other lines resemble different values of
𝑝. The standard deviations are depicted by the vertical black lines.

Table 2: Experimental evaluation of error𝜓 on real-world datasets, including standard deviations. Here we are in the setting
where 𝜀 = 0.03.

Dataset 𝑛 𝑑 𝑘 Local (𝜓 ) Our (𝜓 ) Central (𝜓 )
Power [HB12] 2049280 6 3 17.03 ± 9.506 (4.507 ± 1.977) × 10−8 (1.066 ± 0.107) × 10−10
Elevation [Kau13] 434874 2 1 0.162 ± 0.198 (5.894 ± 7.537) × 10−8 (8.027 ± 9.154) × 10−12
Ethylene [Fon15] 4178504 18 5 0.268 ± 0.045 (6.810 ± 1.037) × 10−8 (4.022 ± 6.175) × 10−10
Songs [BM11] 515345 89 15 43.51 ± 2.543 (7.853 ± 0.490) × 10−5 (1.895 ± 0.147) × 10−10

5.1.2 Ridge Regression. We now also investigate the error for the

ridge regression problem due to its wide spectrum of possible error

bounds from Theorem 4.4, depending on problem parameters, as

well as due to its singular dependency on a multiplicative error.

Therefore, we use approximation factor as an error measure:

𝜙 =
∥Ax′ − b∥2

2
+ 𝜆∥x′∥2

2

∥AxOPT − b∥2
2
+ 𝜆∥xOPT∥2

2

where xOPT denotes the optimal solution and x′ denotes the solu-
tion after adding noise to the training data.

As we did for low-rank approximation, we evaluate the error

for synthetic datasets, as well as for four real-world datasets. It is

not possible to interpolate between two different datasets in order

to gain insights into asymptotic behavior. For synthetic datasets,

varying the number of sampled points 𝑛 allows us to interpolate

between datasets of different sizes. Real-world datasets are useful

to gauge the relative performance of our mechanisms, and to bench-

mark our synthetic datasets against the behavior of the mechanisms

in practice.

We utilize the same software, hardware and real-world datasets

as for low-rank approximation.

Setup. As a baseline for the central model, we implemented the

so-called Sufficient Statistics Perturbation (SSP) algorithm [VS09].

Operating between SSP and a locally private algorithm, our LTM

model approach adds Gaussian noise sampled from N(0, 𝜎2) to
every entry of A and b. Our choice of 𝜎2 is proportionate to varying
powers of 𝑛−𝑝 , ranging from 𝑝 = 1 (the LTM model) to 𝑝 = 0 (the

local model).

We generate synthetic data by first sampling every entry in A
fromN(0, 1), then sampling xOPT such that all entries are sampled

from N(0, 𝜇2), and finally setting b = AxOPT. We vary parame-

ters 𝑑 ∈ {3, 10, 50}, 𝜀 ∈ {0.01, 0.03, 0.05, 0.1}, 𝜆 ∈ {1, 10, 100}, and
𝜇2 ∈ {1, 𝑛, 𝑛2}. For all combinations of those parameters, we gener-

ated 17 synthetic datasets of sizes {1000𝑖 ·1.5 |𝑖 = 0, . . . , 16}. For each
of those we then measure 𝜙 for the SSP mechanism and the Gauss-

ian mechanism with 𝑝 ∈ {1, 0.9, 0.8, 0.7, 0.6, 0.5, 0}, by running the

algorithms 30 times per dataset and reporting the average 𝜙 .

In addition to using synthetic data-sets, we again also evalu-

ated our mechanism for ridge regression on the same 4 real-world

datasets as for low-rank approximation (see Table 2). For more

thorough descriptions on those datasets, see Appendix D.4.

Results and Interpretation. Figure 3 provides our experimental

results based on synthetic data, and Table 3 shows the error result-

ing from real-world datasets. As expected, our approach performs

asymptotically better than the Gaussian mechanism in the local

model, but worse than SSP in the central model. We also found

that as 𝑛 increases, the error of our approach asymptotically ap-

proaches the error in the central model. For 𝑝 = 0.9, 0.8, 0.7, 0.6, the
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Figure 3: Plots depicting the asymptotic behavior of error
𝜙 for 𝜀 ∈ {0.01, 0.03, 0.05, 0.1} (top left, top right, bottom left,
bottom right), with 𝑑 = 10, 𝜆 = 10 and 𝜇2 = 𝑛. The grey line
depicts the error of the local mechanism, the blue line does it
in the centralmodel and the orange one depicts our approach.
The other lines resemble different values of 𝑝. In most cases
the standard deviations are so small, that it is not possible to
see those.

error eventually decreases for a sufficiently large 𝑛 for the privacy

regimes we considered (𝜀 ∈ {0.01, 0.03, 0.05, 0.1}).
For 𝑝 = 0.5 though we saw a significant jump towards the local

model in terms of asymptotic behaviour. In all the settings we

considered, 𝑝 = 0.5 showed an asymptotic increase of the error. We

tested on synthetic datasets of up to 𝑛 = 40 million, and the error

also increases in this regime.

Table 3 shows the results of applying the local, our mechanism

and SSP on real-world data. They include standard deviations,

though for many of the results those are so small that they ap-

pear as 0 in the table. We found, that our mechanism performs

significantly better than the Gaussian mechanism for local privacy.

See Appendix D.2 for error plots when considering more param-

eter combinations.

Table 3: Experimental evaluation of error 𝜙 on real-world
datasets, including standard deviations. Here we are in the
setting where 𝜀 = 0.03 and 𝜆 = 10.

Dataset Local Our Central

Power 2.364 ± 0.007 1.055 ± 0.000 1.001 ± 0.001
Elevation 1.939 ± 0.008 1.000 ± 0.000 1.000 ± 0.000
Ethylene 3.125 ± 0.002 1.000 ± 0.000 1.000 ± 0.000
Songs 20.64 ± 0.016 1.000 ± 0.000 1.000 ± 0.000

5.2 Running Time
The only overhead of the LTM over the local model is the execution

of the linear transform in MPC, and comes from distributing A
among the servers and then performing the matrix multiplication

SA in MPC, where S ∈ R𝑚×𝑛 is chosen according to [Coh16] with

sparsity 𝑠 .

We implemented our mechanism in a popular and easy to use

MPC framework, the MP-SPDZ framework [Kel20], and run it on

AWS t3.large instances. Our implementation makes use of addi-

tive secret sharing over the ring of integers modulo 2
64
, result-

ing in no communication between servers, and semi-honest secu-

rity against an adversary that corrupts all but one servers. We fix

the dimensionality 𝑑 = 10 and 𝑚 = 50, and vary the number of

clients 𝑛 ∈ {100000, 250000, 500000, 750000, 1000000}, the sparsity
𝑠 ∈ {1, 10, 20, 30, 40, 50} of the sketch (which dictates how many

linear transformations we need to apply) and the number of servers

𝑆 ∈ {2, 3}. The data matrix A is generated at random such that all

entries are smaller than 2
32

and the sketch S is generated accord-

ing to our mechanism. Every parameter setting is then evaluated

by running the protocol 10 times and averaging over the running

times.

Table 4 provides running times per server and the total com-

munication load for 𝑠 = 1 using 2 servers. Notably, even with one

million clients, the computation on each server lasts less than 2 sec-

onds. This shows that securely distributing in the LTM using MPC

techniques is a practically relevant approach which does not hinder

the computational efficiency of the overall differentially-private

data-analysis system. For running times with 𝑆 = 3 servers and a

varying sparsity 𝑠 , see Appendix D.1.

Table 4: Computation cost 𝑇MPC and communication cost
𝐶MPC of the LTM using MPC for varying number of clients
𝑛. Here𝑚 = 100, 𝑑 = 10, 𝑠 = 1 and we are working with 𝑆 = 2

servers.

𝑛 𝑇MPC (sec) 𝐶MPC (MB)

100000 0.177 ± 0.028 16.016

250000 0.453 ± 0.036 40.016

500000 0.824 ± 0.101 80.016

750000 1.240 ± 0.157 120.016

1000000 1.683 ± 0.130 160.016

6 Conclusion
We propose the LTM as an MPC-inspired model that interpolates

between local and central models for differential privacy. We high-

light the power of this model by studying ridge regression and

low rank approximation. Key applications of this model are sketch-

ing algorithms. An interesting question may be to see if sketching

algorithms in general and more specific Johnson Lindenstrauss

transforms can be used to obtain private mechanisms in this model.

Such results will likely be powerful for designing private algorithms

for a variety of data analysis problems.

9



Acknowledgments
The research described in this paper has received funding from: the

European Research Council (ERC) under the European Unions’s

Horizon 2020 research and innovation programme under grant

agreement No 803096 (SPEC); the Danish Independent Research

Council under Grant-IDDFF-2064-00016B (YOSO); DFF-3103-00077B

(CryptoDigi) and the Danish Independent Research Council under

Grant-ID 1051-001068 (ACBD).

References
[Ach03] Dimitris Achlioptas. Database-friendly random projections: Johnson-

lindenstrauss with binary coins. J. Comput. Syst. Sci., 66(4):671–687, 2003.
[AG21] Apple and Google. Exposure Notification Privacy-preserving Analytics

(ENPA). White paper, 2021.

[AHK06] Sanjeev Arora, Elad Hazan, and Satyen Kale. A fast random sampling

algorithm for sparsifying matrices. In Josep Díaz, Klaus Jansen, José

D. P. Rolim, and Uri Zwick, editors, Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques, 9th International
Workshop on Approximation Algorithms for Combinatorial Optimization
Problems, APPROX 2006 and 10th InternationalWorkshop on Randomization
and Computation, RANDOM 2006, Barcelona, Spain, August 28-30 2006,
Proceedings, volume 4110 of Lecture Notes in Computer Science, pages
272–279. Springer, 2006.

[BBC
+
19] Luca Becchetti, Marc Bury, Vincent Cohen-Addad, Fabrizio Grandoni,

and Chris Schwiegelshohn. Oblivious dimension reduction for k-means:

beyond subspaces and the johnson-lindenstrauss lemma. In Proceedings of
the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC,
2019.

[BBDS12] Jeremiah Blocki, Avrim Blum, AnupamDatta, and Or Sheffet. The johnson-

lindenstrauss transform itself preserves differential privacy. In 53rd An-
nual IEEE Symposium on Foundations of Computer Science, FOCS 2012, New
Brunswick, NJ, USA, October 20-23, 2012, pages 410–419. IEEE Computer

Society, 2012.

[BDMN05] Avrim Blum, Cynthia Dwork, Frank McSherry, and Kobbi Nissim. Prac-

tical privacy: the sulq framework. In Proceedings of the Twenty-Fourth
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Sys-
tems, PODS ’05, page 128–138, New York, NY, USA, 2005. Association for

Computing Machinery.

[BDWY16] Maria-Florina Balcan, Simon Shaolei Du, Yining Wang, and Adams Wei

Yu. An improved gap-dependency analysis of the noisy power method. In

Vitaly Feldman, Alexander Rakhlin, and Ohad Shamir, editors, 29th Annual
Conference on Learning Theory, volume 49 of Proceedings of Machine
Learning Research, pages 284–309, Columbia University, New York, New

York, USA, 23–26 Jun 2016. PMLR.

[BEM
+
17] Andrea Bittau, Úlfar Erlingsson, Petros Maniatis, Ilya Mironov, Ananth

Raghunathan, David Lie, Mitch Rudominer, Ushasree Kode, Julien Tinnes,

and Bernhard Seefeld. Prochlo: Strong Privacy for Analytics in the Crowd.

In Proceedings of the 26th Symposium on Operating Systems Principles,
SOSP, 2017.

[BHNS20] Amos Beimel, Iftach Haitner, Kobbi Nissim, and Uri Stemmer. On the

round complexity of the shuffle model. In Theory of Cryptography: 18th
International Conference, TCC 2020, Durham, NC, USA, November 16–19,
2020, Proceedings, Part II, page 683–712, Berlin, Heidelberg, 2020. Springer-
Verlag.

[BIK
+
17] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone,

H. Brendan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and

Karn Seth. Practical secure aggregation for privacy-preserving machine

learning. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, CCS, 2017.

[BM11] T. Bertin-Mahieux. YearPredictionMSD. UCI Machine Learning Reposi-

tory, 2011. DOI: https://doi.org/10.24432/C50K61.

[BNST20] Raef Bassily, Kobbi Nissim, Uri Stemmer, and Abhradeep Thakurta. Prac-

tical locally private heavy hitters. J. Mach. Learn. Res., 21:16:1–16:42,
2020.

[BS15] Raef Bassily and Adam D. Smith. Local, private, efficient protocols for

succinct histograms. In Rocco A. Servedio and Ronitt Rubinfeld, editors,

Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of
Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015, pages 127–135.
ACM, 2015.

[BST14] Raef Bassily, Adam D. Smith, and Abhradeep Thakurta. Private empirical

risk minimization: Efficient algorithms and tight error bounds. In 55th
IEEE Annual Symposium on Foundations of Computer Science, FOCS, 2014.

[CDN15] Ronald Cramer, Ivan Bjerre Damgård, and Jesper Buus Nielsen. Secure
Multiparty Computation and Secret Sharing. Cambridge University Press,

2015.

[Coh16] Michael B. Cohen. Nearly tight oblivious subspace embeddings by trace

inequalities. In Robert Krauthgamer, editor, Proceedings of the Twenty-
Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016,
Arlington, VA, USA, January 10-12, 2016, pages 278–287. SIAM, 2016.

[CSS12] Kamalika Chaudhuri, Anand D. Sarwate, and Kaushik Sinha. Near-optimal

differentially private principal components. In Peter L. Bartlett, Fernando

C. N. Pereira, Christopher J. C. Burges, Léon Bottou, and Kilian Q. Wein-

berger, editors, Advances in Neural Information Processing Systems 25:
26th Annual Conference on Neural Information Processing Systems 2012.
Proceedings of a meeting held December 3-6, 2012, Lake Tahoe, Nevada,
United States, pages 998–1006, 2012.

[CSU
+
19] Albert Cheu, Adam Smith, Jonathan Ullman, David Zeber, and Maxim

Zhilyaev. Distributed differential privacy via shuffling. In Advances in
Cryptology – EUROCRYPT. 2019.

[CW13] Kenneth L. Clarkson and David P. Woodruff. Low rank approximation and

regression in input sparsity time. In Dan Boneh, Tim Roughgarden, and

Joan Feigenbaum, editors, Symposium on Theory of Computing Conference,
STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 81–90. ACM, 2013.

[CWZ21] T. Tony Cai, YichenWang, and Linjun Zhang. The cost of privacy: Optimal

rates of convergence for parameter estimation with differential privacy.

The Annals of Statistics, 49(5):2825 – 2850, 2021.

[CY23] Albert Cheu and Chao Yan. Necessary Conditions in Multi-Server Dif-

ferential Privacy. In 14th Innovations in Theoretical Computer Science
Conference (ITCS), 2023.

[DKM
+
06] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov,

and Moni Naor. Our data, ourselves: Privacy via distributed noise genera-

tion. In Advances in Cryptology - EUROCRYPT, 2006.
[DKN

+
23] Ivan Damgård, Hannah Keller, Boel Nelson, Claudio Orlandi, and Rasmus

Pagh. Differentially private selection from secure distributed computing.

In The Web Conference, WWW, 2023.

[DMNS06] Cynthia Dwork, FrankMcSherry, Kobbi Nissim, andAdam Smith. Calibrat-

ing noise to sensitivity in private data analysis. In Theory of Cryptography,
2006.

[DNMR14] Christos Dimitrakakis, Blaine Nelson, Aikaterini Mitrokotsa, and Ben-

jamin I. P. Rubinstein. Robust and private bayesian inference. In Algorith-
mic Learning Theory, pages 291–305, Cham, 2014. Springer International

Publishing.

[DR14] Cynthia Dwork and Aaron Roth. The Algorithmic Foundations of Differ-

ential Privacy. Foundations and Trends in Theoretical Computer Science,
2014.

[DTTZ14] Cynthia Dwork, Kunal Talwar, Abhradeep Thakurta, and Li Zhang. Ana-

lyze gauss: optimal bounds for privacy-preserving principal component

analysis. In David B. Shmoys, editor, Symposium on Theory of Computing,
STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages 11–20. ACM,

2014.

[EFM
+
19] Úlfar Erlingsson, Vitaly Feldman, Ilya Mironov, Ananth Raghunathan,

Kunal Talwar, and Abhradeep Thakurta. Amplification by Shuffling: From

Local to Central Differential Privacy via Anonymity. In Proceedings of the
2019 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2019.

[FGWC16] James Foulds, Joseph Geumlek, Max Welling, and Kamalika Chaudhuri.

On the theory and practice of privacy-preserving bayesian data analysis.

In Proceedings of the Thirty-Second Conference on Uncertainty in Artificial
Intelligence, UAI’16, page 192–201, Arlington, Virginia, USA, 2016. AUAI
Press.

[Fon15] Jordi Fonollosa. Gas sensor array under dynamic gas mixtures. UCI Ma-

chine Learning Repository, 2015. DOI: https://doi.org/10.24432/C5WP4C.

[GGK
+
21] Badih Ghazi, Noah Golowich, Ravi Kumar, Rasmus Pagh, and Ameya

Velingker. On the power of multiple anonymous messages: Frequency

estimation and selection in the shuffle model of differential privacy. In

Anne Canteaut and François-Xavier Standaert, editors, Advances in Cryp-
tology - EUROCRYPT 2021 - 40th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, Oc-
tober 17-21, 2021, Proceedings, Part III, volume 12698 of Lecture Notes in
Computer Science, pages 463–488. Springer, 2021.

[GKK
+
23] Badih Ghazi, Pritish Kamath, Ravi Kumar, Pasin Manurangsi, and Adam

Sealfon. On computing pairwise statistics with local differential privacy. In

Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt,

and Sergey Levine, editors, Advances in Neural Information Processing
Systems 36: Annual Conference on Neural Information Processing Systems
2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023, 2023.

[GKMP20] Badih Ghazi, Ravi Kumar, Pasin Manurangsi, and Rasmus Pagh. Private

counting from anonymous messages: Near-optimal accuracy with van-

ishing communication overhead. In Proceedings of the 37th International
Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event,
volume 119 of Proceedings of Machine Learning Research, pages 3505–3514.
PMLR, 2020.

10



[GX17] Slawomir Goryczka and Li Xiong. A Comprehensive Comparison of

Multiparty Secure Additions with Differential Privacy. IEEE Transactions
on Dependable and Secure Computing, 2017.

[HB12] Georges Hebrail and Alice Berard. Individual household electric

power consumption. UCI Machine Learning Repository, 2012. DOI:

https://doi.org/10.24432/C58K54.

[HKL
+
23] Mikael Møller Høgsgaard, Lior Kamma, Kasper Green Larsen, Jelani Nel-

son, and Chris Schwiegelshohn. Sparse dimensionality reduction revisited.

CoRR, abs/2302.06165, 2023.
[HP14] Moritz Hardt and Eric Price. The noisy power method: A meta algorithm

with applications. In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence,

and K.Q. Weinberger, editors, Advances in Neural Information Processing
Systems, volume 27. Curran Associates, Inc., 2014.

[HR12] Moritz Hardt andAaron Roth. Beating randomized response on incoherent

matrices. In Proceedings of the Forty-Fourth Annual ACM Symposium on
Theory of Computing, STOC ’12, page 1255–1268, New York, NY, USA,

2012. Association for Computing Machinery.

[HR13] Moritz Hardt and Aaron Roth. Beyond worst-case analysis in private

singular vector computation. In Proceedings of the Forty-Fifth Annual
ACM Symposium on Theory of Computing, STOC ’13, page 331–340, New

York, NY, USA, 2013. Association for Computing Machinery.

[Kau13] Manohar Kaul. 3D Road Network (North Jutland, Denmark). UCI Machine

Learning Repository, 2013. DOI: https://doi.org/10.24432/C5GP51.

[Kel20] Marcel Keller. MP-SPDZ: A versatile framework for multi-party compu-

tation. In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna,

editors, CCS ’20: 2020 ACM SIGSAC Conference on Computer and Communi-
cations Security, Virtual Event, USA, November 9-13, 2020, pages 1575–1590.
ACM, 2020.

[KKMM13] Krishnaram Kenthapadi, Aleksandra Korolova, Ilya Mironov, and Nina

Mishra. Privacy via the johnson-lindenstrauss transform. J. Priv. Confi-
dentiality, 5(1), 2013.

[KLN
+
08] Shiva Prasad Kasiviswanathan, Homin K. Lee, Kobbi Nissim, Sofya

Raskhodnikova, and Adam Smith. What can we learn privately? In

49th Annual IEEE Symposium on Foundations of Computer Science, FOCS,
2008.

[KN12] Daniel M. Kane and Jelani Nelson. Sparser johnson-lindenstrauss trans-

forms. In Yuval Rabani, editor, Proceedings of the Twenty-Third Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan,
January 17-19, 2012, pages 1195–1206. SIAM, 2012.

[KST12] Daniel Kifer, Adam D. Smith, and Abhradeep Thakurta. Private convex

optimization for empirical risk minimization with applications to high-

dimensional regression. In The 25th Annual Conference on Learning Theory,
COLT, 2012.

[KT] Michael Kapralov and Kunal Talwar. On differentially private low rank
approximation, pages 1395–1414.

[LBKW14] Yingyu Liang, Maria-Florina Balcan, Vandana Kanchanapally, and David P.

Woodruff. Improved distributed principal component analysis. In Zoubin

Ghahramani, MaxWelling, Corinna Cortes, Neil D. Lawrence, and Kilian Q.

Weinberger, editors, Advances in Neural Information Processing Systems
27: Annual Conference on Neural Information Processing Systems 2014,
December 8-13 2014, Montreal, Quebec, Canada, pages 3113–3121, 2014.

[LKO22] Xiyang Liu, Weihao Kong, and Seewong Oh. Differential privacy and

robust statistics in high dimensions. In Conference on Learning Theory,
2022.

[LM00] Beatrice Laurent and Pascal Massart. Adaptive estimation of a quadratic

functional by model selection. Annals of statistics, pages 1302–1338, 2000.
[MASN16] Kentaro Minami, HItomi Arai, Issei Sato, and Hiroshi Nakagawa. Differ-

ential privacy without sensitivity. In D. Lee, M. Sugiyama, U. Luxburg,

I. Guyon, and R. Garnett, editors, Advances in Neural Information Process-
ing Systems, volume 29. Curran Associates, Inc., 2016.

[MKFI22] Jason Milionis, Alkis Kalavasis, Dimitris Fotakis, and Stratis Ioannidis.

Differentially private regression with unbounded covariates. In Gustau

Camps-Valls, Francisco J. R. Ruiz, and Isabel Valera, editors, Proceedings
of The 25th International Conference on Artificial Intelligence and Statistics,
volume 151 of Proceedings of Machine Learning Research, pages 3242–3273.
PMLR, 28–30 Mar 2022.

[MM13] Xiangrui Meng andMichaelW.Mahoney. Low-distortion subspace embed-

dings in input-sparsity time and applications to robust linear regression.

In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, Sympo-
sium on Theory of Computing Conference, STOC’13, Palo Alto, CA, USA,
June 1-4, 2013, pages 91–100. ACM, 2013.

[MPBB19] Vaikkunth Mugunthan, Antigoni Polychroniadou, David Byrd, and

Tucker Hybinette Balch. Smpai: Secure multi-party computation for

federated learning. In Proceedings of the NeurIPS 2019 Workshop on Robust
AI in Financial Services, 2019.

[Nik23] Aleksandar Nikolov. Private query release via the johnson-lindenstrauss

transform. In Nikhil Bansal and Viswanath Nagarajan, editors, Proceedings

of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023,
Florence, Italy, January 22-25, 2023, pages 4982–5002. SIAM, 2023.

[NN13] Jelani Nelson and Huy L Nguyên. Osnap: Faster numerical linear alge-

bra algorithms via sparser subspace embeddings. In 54th Annual IEEE
Symposium on Foundations of Computer Science, FOCS, 2013.

[NRS07] Kobbi Nissim, Sofya Raskhodnikova, and Adam D. Smith. Smooth sen-

sitivity and sampling in private data analysis. In David S. Johnson and

Uriel Feige, editors, Proceedings of the 39th Annual ACM Symposium on
Theory of Computing, San Diego, California, USA, June 11-13, 2007, pages
75–84. ACM, 2007.

[Pis99] Gilles Pisier. The volume of convex bodies and Banach space geometry.
Cambridge Tracts in Mathematics. 94, 1999.

[Sar06] Tamás Sarlós. Improved approximation algorithms for large matrices via

random projections. In 47th Annual IEEE Symposium on Foundations of
Computer Science (FOCS 2006), 21-24 October 2006, Berkeley, California,
USA, Proceedings, pages 143–152. IEEE Computer Society, 2006.

[She19] Or Sheffet. Old techniques in differentially private linear regression.

In Aurélien Garivier and Satyen Kale, editors, Proceedings of the 30th
International Conference on Algorithmic Learning Theory, volume 98 of

Proceedings of Machine Learning Research, pages 789–827. PMLR, 22–24

Mar 2019.

[Sta21a] Nina Mesing Stausholm. Improved differentially private euclidean dis-

tance approximation. In Leonid Libkin, Reinhard Pichler, and Paolo

Guagliardo, editors, PODS’21: Proceedings of the 40th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems, Virtual Event,
China, June 20-25, 2021, pages 42–56. ACM, 2021.

[Sta21b] Nina Mesing Stausholm. Improved differentially private euclidean dis-

tance approximation. In Leonid Libkin, Reinhard Pichler, and Paolo

Guagliardo, editors, PODS’21: Proceedings of the 40th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems, Virtual Event,
China, June 20-25, 2021, pages 42–56. ACM, 2021.

[Ste20] Thomas Steinke. Multi-central differential privacy, 2020.

[TWM
+
23] Kunal Talwar, Shan Wang, Audra McMillan, Vojta Jina, Vitaly Feldman,

Bailey Basile, Aine Cahill, Yi Sheng Chan, Mike Chatzidakis, Junye Chen,

Oliver Chick, Mona Chitnis, Suman Ganta, Yusuf Goren, Filip Granqvist,

Kristine Guo, Frederic Jacobs, Omid Javidbakht, Albert Liu, Richard Low,

Dan Mascenik, Steve Myers, David Park, Wonhee Park, Gianni Parsa,

Tommy Pauly, Christian Priebe, Rehan Rishi, Guy Rothblum, Michael

Scaria, Linmao Song, Congzheng Song, Karl Tarbe, Sebastian Vogt, Luke

Winstrom, and Shundong Zhou. Samplable anonymous aggregation for

private federated data analysis, 2023.

[Upa18] Jalaj Upadhyay. The price of privacy for low-rank factorization. In

Advances in Neural Information Processing Systems, 2018.
[VS09] Duy Vu and Aleksandra B. Slavkovic. Differential privacy for clinical trial

data: Preliminary evaluations. In ICDMWorkshops 2009, IEEE International
Conference on Data Mining, 2009.

[VTJ22] Prateek Varshney, Abhradeep Thakurta, and Prateek Jain. (nearly) optimal

private linear regression for sub-gaussian data via adaptive clipping. In

Po-Ling Loh and Maxim Raginsky, editors, Proceedings of Thirty Fifth
Conference on Learning Theory, volume 178 of Proceedings of Machine
Learning Research, pages 1126–1166. PMLR, 02–05 Jul 2022.

[Wan18] Yu-XiangWang. Revisiting differentially private linear regression: optimal

and adaptive prediction& estimation in unbounded domain. In Proceedings
of the Thirty-Fourth Conference on Uncertainty in Artificial Intelligence,
UAI, 2018.

[War65] Stanley L. Warner. Randomized Response: A Survey Technique for Elimi-

nating Evasive Answer Bias. Journal of the American Statistical Association,
1965.

[WFS15] Yu-Xiang Wang, Stephen E. Fienberg, and Alexander J. Smola. Privacy

for free: Posterior sampling and stochastic gradient monte carlo. In

Proceedings of the 32nd International Conference on Machine Learning,
ICML, 2015.

[WGX18] Di Wang, Marco Gaboardi, and Jinhui Xu. Empirical risk minimization in

non-interactive local differential privacy revisited. In Advances in Neural
Information Processing Systems, 2018.

[WHZ
+
23] Di Wang, Lijie Hu, Huanyu Zhang, Marco Gaboardi, and Jinhui Xu. Gen-

eralized linear models in non-interactive local differential privacy with

public data. Journal of Machine Learning Research, 24(132):1–57, 2023.
[WSX18] Di Wang, Adam D. Smith, and Jinhui Xu. Noninteractive locally private

learning of linear models via polynomial approximations. In International
Conference on Algorithmic Learning Theory, 2018.

[ZMW17] Kai Zheng,WenlongMou, and LiweiWang. Collect at once, use effectively:

making non-interactive locally private learning possible. In Proceedings
of the 34th International Conference on Machine Learning, ICML, 2017.

11



A Sparse Oblivious Subspace Embeddings
Oblivious subspace embeddings (OSEs) [Sar06], allow for faster

approximation algorithms for problems in linear algebra. Achlioptas

[Ach03] provided the first Johnson-Lindenstrauss transform with

some amount of sparsity. The first embedding with asymptotically

smaller number of non-zeros than dense Johnson-Lindenstrauss

transforms was probably due to [KN12], who also applied them in

the context of subspace embeddings. In a remarkable result, the

super-sparse version with only 1 non-zero entries per column, was

first analyzed in [CW13] and improved independently in [MM13,

NN13], by increasing the target dimension𝑚. In [NN13], the sparse

Johnson-Lindenstrauss transform [KN12] was studied with a wider

range of parameters. Subsequent works [Coh16, HKL
+
23] further

analyze and improve the relationship between𝑚 and 𝑠 , emphasizing

different parameters. Table 5 provides the exact interplay between

𝑚 and 𝑠 in those works. [LBKW14] proposes an approach to boost

the success probability 𝛽 of an OSE, which gives an alternative to

increasing the target dimension.

When dealing with rank 𝑘 approximation, we will condition on

(1−𝛼𝑆 )∥A−AXX𝑇 ∥2𝐹 ≤ ∥S(A−AXX𝑇 )∥2𝐹 ≤ (1+𝛼𝑆 )∥A−AXX𝑇 ∥2𝐹
for all rank 𝑘 orthogonal matrices X. When dealing with regression,

we will condition on

(1 − 𝛼𝑆 )∥Ax′ − b∥2 ≤ ∥S(Ax − b)∥2 ≤ (1 + 𝛼𝑆 )∥Ax′ − b∥2

for all x ∈ R𝑑 . For the parameters given here, this is true with

the probability given in table 5 (assuming 𝑘 = 𝑑 in the case of

regression). For the case of regression in particular, it is sometimes

beneficial to select 𝛼𝑆 as large as possible. A sufficiently largest

value of𝛼𝑆 such that S still provide a subspace embedding guarantee

is 1/3. Throughout this paper, we will sometimes bound 𝛼𝑆 by 1.

We further will give our utility proofs using the sparsity/target

dimension bounds from [Coh16]. Other tradeoffs are possible, but

they have worse bounds for most ranges of parameters. The results

in [MM13, NN13, HKL
+
23] give different trade-offs depending on

which set of parameters are considered the most dominant. No-

tably, the 𝑠 = 1 sketches of [MM13, NN13] result in an additive

error of 𝑂̃

(
𝑘4𝑑3

𝛼4

𝑆
𝛽2
𝜀−2 log 1

𝛿

)
for low rank approximation and a term

𝑂̃

(
𝑑7𝜀−2 log 1

𝛿

𝛼5

𝑆
𝛽2𝜆

+ 𝑑14𝜀−4 log2 1

𝛿

𝛼6

𝑆
𝛽4𝜆2

)
in both the multiplicative and addi-

tive error. The utility guarantees using the bounds from [HKL
+
23]

change only by logarithmic factors compared to those in Theorems

4.2 and 4.4.

B Privacy Proofs
Proof Sketch of Lemma 3.3. This proof can be seen as analo-

gous to the security proof of Theorem 4 in [TWM
+
23]. Recall that

each server learns nothing more from a perfectly secure multi-party

computation protocol other than what is implied by their own in-

put and the output of the function being evaluated. Then there is a

simulator Sim𝑅,Π,𝐴
𝑆𝑐𝑜𝑟 ,𝑆𝑐𝑜𝑟=𝑐

(𝑥) whose output is (𝜀, 𝛿) indistinguishable
from the adversary’s view View𝑅,Π,𝐴

𝑆𝑐𝑜𝑟 ,𝐶𝑐𝑜𝑟
(𝑥). Note that the secret

shares that are part of the view of the corrupted servers in the

protocol Π are independent of the input values of the corrupted

clients, and all can be easily simulated by random sampling.

A bit more formally, let 𝑥 be an input dataset, where 𝑥𝑖 is the

input value contributed by client 𝑖 and 𝑥𝑖 is the vector of input

shares for server 𝑖 that serves as input to Π. There is a mapping

from 𝑥 ∈ X𝑛 to 𝑥 ∈ ˜X𝑘 . Then for any two datasets 𝑥 , 𝑥 ′ that differ
in one entry 𝑥𝑖 with 𝑖 ∉ 𝐶𝑐𝑜𝑟 :

Pr[View𝑅,Π,𝐴
𝑆𝑐𝑜𝑟 ,𝐶𝑐𝑜𝑟

(𝑥) ∈ 𝑆]

≤ Pr[Sim𝑅,Π,𝐴
𝑆𝑐𝑜𝑟 ,𝐶𝑐𝑜𝑟

(𝑓 (𝑅(𝑥1), . . . , 𝑅(𝑥𝑛), {𝑥𝑖 }𝑖∈𝐶𝑐𝑜𝑟
) ∈ 𝑆]

≤ 𝑒𝜀 Pr[Sim𝑅,Π,𝐴
𝑆𝑐𝑜𝑟 ,𝐶𝑐𝑜𝑟

(𝑓 (𝑅(𝑥 ′
1
), . . . , 𝑅(𝑥 ′𝑛), {𝑥 ′𝑖 }𝑖∈𝐶𝑐𝑜𝑟

) ∈ 𝑆] + 𝛿

= 𝑒𝜀 Pr[View𝑅,Π,𝐴
𝑆𝑐𝑜𝑟 ,𝐶𝑐𝑜𝑟

(𝑥 ′) ∈ 𝑆] + 𝛿
□

Lemma B.1. Let 𝛾 ∈ (0, 1), and let S ∼ Dsketch
𝑚,𝑛 . Then the proba-

bility that S has at least (1 − 𝛾) 𝑛𝑚 and at most (1 + 𝛾) 𝑛𝑚 non-zero
entries in every row is bounded by;

Pr

(
∃𝑖 ∈ [𝑚] :

���𝑋𝑖 − 𝑛

𝑚

��� > 𝛾 · 𝑛
𝑚

)
< 2𝑚 exp

(
−𝛾

2𝑛

2𝑚

)
,

where 𝑋𝑖 denotes the number of non-zero entries in row 𝑖 .

Proof. We only give a proof of the lower bound, as a proof of the

upper bound is completely analogous. Let 𝑋𝑖 𝑗 denote the indicator

random variable that is 1 if S𝑖 𝑗 is non-zero and 0 otherwise. Note

that each entry of S can be thought of as an independent Bernoulli

random variable 𝑋𝑖 𝑗 , and the number of non-zero entries in a row

is the sum of 𝑛 of these random variables. Fixing a row 𝑘 ∈ [𝑚], we
can use a Chernoff bound for sums of Bernoulli random variables to

get a concentration bound around the expected number of non-zero

entries 𝑋𝑘 =
∑𝑛

𝑗=1 𝑋𝑘 𝑗 in row 𝑘 . In order to do this, we first need

the expected value of 𝑋𝑘 ;

E[𝑋𝑘 ] =
𝑛∑︁
𝑗=1

Pr(𝑋𝑘 𝑗 = 1) = 𝑛

𝑚
.

Thus a Chernoff bound gives us that

Pr

(
𝑋𝑘 < (1 − 𝛾) 𝑛

𝑚

)
< exp

(
−𝛾

2𝑛

2𝑚

)
.

Applying a union bound over all rows of S then gives us exactly

what we were to prove;

Pr

(
∃𝑖 ∈ [𝑚] : 𝑋𝑖 < (1 − 𝛾)

𝑛

𝑚

)
≤

𝑚∑︁
𝑘=1

Pr

(
𝑋𝑘 < (1 − 𝛾) 𝑛

𝑚

)
< 𝑚 exp

(
−𝛾

2𝑛

2𝑚

)
.

□

To prove Theorem 3.4, we first prove a simpler version of the

theorem below.

Theorem B.2. Let 𝜀 ≥ 0, 𝛿 ∈ (0, 1),𝑚 ∈ [𝑛], 𝑡 ′ < 𝑛 and

𝜎2 =
4𝜂2 ln(1.25/(𝛿/𝑑 −𝑚 exp(−(𝑛 − 𝑡 ′)/8𝑚)))𝑚2𝑑2

𝜀2 (𝑛 − 𝑡 ′)
Let S ∼ Dsketch

𝑚,𝑛 with one non-zero entry per column. Then as long as
input values are bounded above by 𝜂, tuple of algorithms (𝑅𝜎 ,𝑇S, 𝐴)
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Table 5: Trade-off between the target dimension 𝑚 and sparsity 𝑠 of sparse OSEs that are generated such that they have 𝑠

non-zeros entries per column. Here 𝛼 denotes the accuracy of the OSE and 𝛽 denotes its fail probability. Variable 𝑘 is the
parameter to 𝑘-rank approximation, which can be replaced by dimension 𝑑 for linear regression.

Paper Target Dimension𝑚 Sparsity 𝑠 With Probability
[CW13, MM13, NN13] 𝑂 ( 𝑘2

𝛼2𝛽
) 1 1 − 𝛽

[Coh16] 𝑂 ( 𝑘 log(𝑘/𝛽 )
𝛼2

) 𝑂 ( log(𝑘/𝛽 )𝛼 ) 1 − 𝛽
[HKL

+
23] 𝑂 ( 𝑘

𝛼2
) 𝑂 ( 1𝛼 · (

𝑘
log(1/𝛼 ) + 𝑘

2/3
log

1/3 (𝑘))) 1 − 2−𝑘2/3

is (𝜀, 𝛿)-differentially private in the trusted computation model for
differential privacy with 𝑡 ′ corrupt clients 𝐶′.

Proof of Theorem B.2. Let 𝜀, 𝛿 ,𝑅𝜎 and𝑇S be given as described

in the theorem.We then need to prove thatmechanismM : R𝑛×𝑑 →
R𝑚×𝑑 defined byM(A) = 𝑇S (𝑅𝜎 (a1), . . . , 𝑅𝜎 (a𝑛)) is (𝜀, 𝛿) differ-
entially private. If 𝛿/𝑑 = 𝛿 ≤ 𝑚 exp(−(𝑛 − 𝑡 ′)/8𝑚), then the 𝑅𝜎

outputs 0
𝑑
, which is entirely independent of the input and is there-

fore (𝜀, 𝛿) differentially private.

Otherwise,M(A) = 𝑇S (𝑅𝜎 (a1), . . . , 𝑅𝜎 (a𝑛)) = S(A + G) where
a𝑖 denotes row 𝑖 of A ∈ R𝑛×𝑑 and G ← N(0, 𝜎2)𝑛×𝑑 , is (𝜀, 𝛿)
differentially private.

Consider first 𝑑 = 1 and let mechanism M1 : R𝑛 → R𝑚 be

defined asM1 (a) = S(a + g) for a ∈ R𝑛 , with g← N(0, 𝜎2)𝑛 .
This is because S is sampled such that it has only one non-zero

entry per column; thus, the columns of S are orthogonal. This means

that the entries of (S(a + g)) 𝑗 and (S(a + g)) 𝑗 ′ for 𝑗 ≠ 𝑗 ′, have
disjoint support. Therefore, the privacy guarantee can be analyzed

independently for each entry of S(a + g). Then the overall privacy

guarantee forM1 is the guarantee of S𝑖 (a + g), where 𝑖 is the index
of the row in S with the fewest non-zero entries (i.e. the one where

the least noise is added from g).
Notice that the ℓ2-sensitivity of algorithm𝑇S isΔ2𝑇S = maxA,A′ ∥SA−

SA′∥2 = 2𝜂
√
𝑚, where A,A′ ∈ R𝑛×𝑑 differ in a single row, and ev-

ery entry of A,A′ is bounded above by 𝜂.

If 𝛿/𝑑 = 𝛿 > 𝑚 exp(−(𝑛 − 𝑡 ′)/8𝑚), we sample the individual

entries of g from N(0, 𝜎2) with

𝜎2 =
1

𝑛 − 𝑡 ′ ·
4𝑚𝜂2 ln(1.25/(𝛿 −𝑚 exp(−(𝑛 − 𝑡 ′)/8𝑚)))𝑚

𝜀2
.

Denote by 𝐸 the event that the support of S(𝑎 + 𝑔) 𝑗 has at least
𝑛−𝑡 ′
2𝑚 uncorrupted clients, whose set of indices we denote 𝑁 . Setting

𝛾 = 1/2, Lemma B.1 gives that 𝐸 occurs with probability at least

1 − 𝑚 exp(−𝑛−𝑡 ′
8𝑚 ). In event 𝐸, due to the stability of Gaussians,

we can formulate S(a + g) 𝑗 = (Sa) 𝑗 + (Sg) 𝑗 . Due to symmetry of

Gaussians around the origin, (Sg) 𝑗 is Gaussian distributed with

mean zero and variance:

𝜎̃2 ≥ 𝑛 − 𝑡 ′
2𝑚

𝜎2

=
𝑛 − 𝑡 ′
2𝑚

· 4𝑚𝜂2 ln(1.25/(𝛿 −𝑚 exp(−(𝑛 − 𝑡 ′)/8𝑚)))𝑚
𝜀2 (𝑛 − 𝑡 ′)

=
2𝑚𝜂2 ln(1.25/(𝛿 −𝑚 exp(−(𝑛 − 𝑡 ′)/8𝑚)))

𝜀2
.

Then in event 𝐸,M1 is (𝜀, 𝛿−𝑚 exp(−(𝑛−𝑡 ′)/8𝑚))) differentially
private using the Gaussian mechanism (Lemma 2.3). Since event 𝐸

does not occur with probability at most𝑚 exp(−(𝑛 − 𝑡 ′)/8𝑚),M1

is (𝜀, 𝛿 −𝑚 exp(−(𝑛 − 𝑡 ′)/8𝑚))) differentially private except with

probability𝑚 exp(−(𝑛 − 𝑡 ′)/8𝑚). ThenM1 is (𝜀, 𝛿)-differentially
private.

We now generalize to arbitrary choices of 𝑑 . Note that now

S𝑖 (A+G) is a d-dimensional vector. Sequential Composition (Lemma

C.1) then gives thatM is (𝜀, 𝛿) differentially private, if we sample

G’s entries from N(0, 𝜎2) with

𝜎2 =
4𝜂2 ln(1.25/(𝛿/𝑑 −𝑚 exp(−(𝑛 − 𝑡 ′)/8𝑚)))𝑚2𝑑2

𝜀2 (𝑛 − 𝑡 ′)
□

Proof of Theorem 3.4. Let 𝜀, 𝛿 , 𝑅𝜎 and𝑇S be given as described

in the theorem.We then need to prove thatmechanismM : R𝑛×𝑑 →
R𝑚×𝑑 defined byM(A) = 𝑇S (𝑅𝜎 (a1), . . . , 𝑅𝜎 (a𝑛)) is (𝜀, 𝛿) differ-
entially private. If 𝛿/𝑑 = 𝛿 ≤ 𝑚 exp(−(𝑛 − 𝑡 ′)/8𝑚), then the 𝑅𝜎

outputs 0
𝑑
, which is entirely independent of the input and is there-

fore (𝜀, 𝛿) differentially private.

Otherwise,M(A) = 𝑇S (𝑅𝜎 (a1), . . . , 𝑅𝜎 (a𝑛)) = 1√
𝑠

∑
𝑖∈[𝑠 ] S𝑖 (A+

G𝑖 ) where a𝑖 denotes row 𝑖 of A ∈ R𝑛×𝑑 and G𝑖 ← N(0, 𝜎2)𝑛×𝑑 .
Here, S has been decomposed such that S = 1√

𝑠

∑𝑠
𝑖 S𝑖 , where S𝑖 ∈

{−1, 0, 1}𝑚×𝑛 is a matrix with only one non-zero entry per column.

We argue (𝜀/𝑠, 𝛿/𝑠)-DP based on Theorem B.2. Note that the

non-zero entry per column in each S𝑖 is not sampled uniformly at

random from all possible rows; rather, for S𝑖 is sampled uniformly

at random from the remaining 𝑛 − 𝑖 rows (removing the one that

was already chosen to be non-zero, sampling without replacement).

Therefore, we replace 𝑛 with 𝑛 − 𝑠3 when applying Theorem B.2.

By sequential composition, releasing S𝑖 (A + G𝑖 ) for all 𝑖 ∈ [𝑠]
satisfies (𝜀, 𝛿)-DP, and thus by post-processing, the scaled sum of

these is also (𝜀, 𝛿)-DP.
□

C Utility Proofs
We will use sequential composition of differentially private mecha-

nisms.

Lemma C.1 (Sequential Composition [DMNS06]). LetM𝑖 : X →
Y𝑖 be an (𝜀𝑖 , 𝛿𝑖 )-differentially private mechanism for 𝑖 ∈ [𝑘]. Then
mechanismM : X →∏𝑘

𝑖=1Y𝑖 defined asM(𝑥) = (M1 (𝑥), . . . ,M𝑘 (𝑥)),
is (∑𝑘

𝑖=1 𝜀𝑖 ,
∑𝑘
𝑖=1 𝛿𝑖 )-differentially private.

Lemma C.2. Let G ∈ R𝑛×𝑑 such that all entries in G are indepen-
dently sampled from a normal distribution with mean 0 and variance
at most 𝜎2. Further, let 𝑉 be a set of 𝑑-dimensional vectors lying in a

3
Since 𝑛 ≫𝑚 > 𝑠 , subtracting 𝑠 will not have a large effect.
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𝑘-dimensional subspace. Then with probability at least 1− 𝛽 for some
absolute constant 𝜂

sup

x∈𝑉
∥Gx∥2

2
≤ 𝑛 · 𝜎2 · ∥x∥2 + 𝜂 · 𝜎2 · ∥x∥2

· (
√︁
(𝑘 + log 1/𝛽) · 𝑛 + (𝑘 + log 1/𝛽)) .

Moreover, with probability at least 1 − 𝛽

∥G∥2𝐹 ≤ 𝜂 · 𝜎2 · 𝑛 · 𝑑 · log 1/𝛽.

Proof. Denote byG𝑖 the 𝑖th row ofG. We start by observing that

G𝑇
𝑖

x is Gaussian distributed with mean 0 and variance 𝜎2 · ∥x∥2.
Thus, we focus our attention on controlling

∥Gx∥2
𝜎2 · ∥x∥2 , that is, we

assume that x is a unit vector and that the entries of G are standard

normal Gaussian random variables. The overall claim then follows

by rescaling. Consider an 𝜀-net 𝑁𝜀 of𝑉 , that is, for every x ∈ 𝑉 with

unit norm there exists a vector x′ ∈ 𝑁𝛾 with ∥x − x′∥ ≤ 𝜀. Such

nets exist with |𝑁𝛾 | ≤ exp(𝜂 ·𝑘 log 1/𝛾) for some absolute constant

𝜂, see [Pis99]. Suppose 𝛾 = 1/4. Using concentration bounds for

sums of Gaussians (see for example Lemma 1 of [LM00]), we then

have for any ∥𝑥 ′∥ with probability 1 − 𝛽

P
[
∃x′ ∈ 𝑁𝛾 : ∥Gx′∥2 − E[∥Gx′∥2]

≥ 2(
√︃
(log𝑁𝛾 + log 1/𝛽) · 𝑛 + (log𝑁𝛾 + log 1/𝛽))

]
≤|𝑁𝛾 | · exp(−(𝜂 · 𝑘 + log 1/𝛽)) ≤ 𝛽.

for some absolute constant 𝜂.

We now extend this argument to all vectors, using an argument

from [AHK06] (Lemma 4 of that reference). Let U be an orthogonal

basis of 𝑉 . Then our goal is to control ∥Gx∥2 = x𝑇 U𝑇 G𝑇 GU𝑥 .
Define the matrix B := U𝑇 G𝑇 GU − 𝑛 · I, where I is the identity
matrix. Note that E[U𝑇 G𝑇 GU] = 𝑛 · I and that ∥Bx∥ is the deviation
of ∥Gx∥ around its expectation. Let ∥𝐵∥𝑜𝑝 := supx∈𝑉 ∥𝐵𝑥 ∥.

∥B∥𝑜𝑝 = ⟨Bx, x⟩ = ⟨Bx′, x′⟩ + ⟨B(x′ + x), x′ − x⟩

≤2(
√︃
(log𝑁𝛾 + log 1/𝛽) · 𝑛 + (log𝑁𝛾 + log 1/𝛽))

+ ∥B∥𝑜𝑝 · ∥x′ + x∥∥x′ − x∥

≤2(
√︃
(log𝑁𝛾 + log 1/𝛽) · 𝑛 + (log𝑁𝛾 + log 1/𝛽))

+ 2𝛾 · ∥B∥𝑜𝑝

≤2(
√︃
(log𝑁𝛾 + log 1/𝛽) · 𝑛 + (log𝑁𝛾 + log 1/𝛽))

+ 1/2 · ∥B∥𝑜𝑝

Rearranging implies that ∥B∥𝑜𝑝 ≤ 4(
√︁
(log𝑁𝛾 + log 1/𝛽) · 𝑛+(log𝑁𝛾+

log 1/𝛽)). The first claim now follows by rescaling 𝜂.

For the second claim, we observe that ∥G∥2
𝐹
has a Gaussian distri-

bution with mean 0 and variance 𝑛 · 𝑑 · 𝜎2. The same concentration

inequality we applied above also implies that the probability that

∥G∥𝐹 exceeds 2

√︁
𝜎2 · 𝑛 · 𝑑 · log 1/𝛽 is at most 1 − 𝛽 . □

Proof of Lemma 4.1. We first argue thatG is Gaussian distributed.

Each𝐺𝑖 has independent Gaussian entries and multiplying a Gauss-

ian with a random Rademacher does not change the distribution.

Therefore, the entries of 𝑆𝑖𝐺𝑖 are likewise Gaussian distributed, with

mean 0 and variance at most (1 + 𝛾) 𝑛𝑚𝜎2 ≤ 2
𝑛
𝑚𝜎2 due to Lemma

B.1. Concluding, the variance of the entries of G =
∑
𝑖∈[𝑠 ] 𝑆𝑖𝐺𝑖 is

therefore at most 2𝑠 𝑛
𝑚𝜎2. Applying Lemma C.2, we then have with

probability 1 − 𝛽

sup

x∈𝑉
∥Gx∥2

2
≤ 2

𝑛

𝑚
𝜎2 · ∥x∥2

+ 𝜂 · 2𝑠 𝑛
𝑚
𝜎2 · ∥x∥2 · (

√︁
(𝑘 + log 1/𝛽) ·𝑚 + (𝑘 + log 1/𝛽)) .

and

∥G∥2𝐹 ≤ 𝜂 · 2𝑠𝑛𝜎2 · 𝑑 · log 1/𝛽

as desired □

Proof of Theorem 4.4. Let 𝜀, 𝛿 , 𝑅𝜎 and 𝑇S be given as in the

theorem. We consider the output 𝐴𝑟𝑒𝑔 (𝑇S (𝑅𝜎 (a1), . . . , 𝑅𝜎 (a𝑛))).
If 𝑛 ≤ 8𝑚 ln(𝑑𝑚/𝛿) +𝑡 ′, then the 𝑅𝜎 outputs 0

𝑑
, then the optimal

x′ = 0
𝑑
, leading to error ∥Ax′ − b∥2

2
+ 𝜆∥x′∥2

2
= ∥b∥2 ≤ 𝜂′𝑛 ≤

𝜂′𝑚 ln(𝑑𝑚/𝛿) + 𝑡 ′.
Otherwise,M(A) = 𝑇S (𝑅𝜎 (a1), . . . , 𝑅𝜎 (a𝑛)) = 1√

𝑠

∑
𝑖∈[𝑠 ] S𝑖 (A+

G𝑖 ) where a𝑖 denotes row 𝑖 of A ∈ R𝑛×𝑑 and G← N(0, 𝜎2)𝑛×𝑑 , is
(𝜀, 𝛿) differentially private.

To streamline the presentation, we give the analysis without

corrupted clients. Adding corrupted clients merely changes the

analysis along the same lines as Theorem 4.2.

We first the control the terms ∥∑𝑖∈[𝑠 ] S𝑖 (G𝑖x′ − g𝑖 )∥2 and
∥∑𝑖∈[𝑠 ] S𝑖 (G𝑖xOPT − g𝑖 )∥2. Using Lemma 4.1 with an added coor-

dinate of −1 to both x′ and xOPT, we get

1

𝑠
∥

∑︁
𝑖∈[𝑠 ]

S𝑖 (G𝑖x − g𝑖 )∥2 ≤ 𝜂 · 𝜎2𝑛𝑑 log 1

𝛽
(∥x∥2 + 1) (1)

for either x = xOPT or x = x′ and for a sufficiently large constant

𝜂. Then we have

∥Ax′ − b∥2 + 𝜆∥𝑥 ′∥2 ≤ (1 + 𝛼𝑆 )∥S(Ax′ − b)∥2 + 𝜆∥𝑥 ′∥2

=(1 + 𝛼𝑆 )
1

𝑠
∥

∑︁
𝑖∈[𝑠 ]

S𝑖 (Ax′ − b)∥2 + 𝜆∥𝑥 ′∥2

=(1 + 𝛼𝑆 )
1

𝑠
∥

∑︁
𝑖∈[𝑠 ]

S𝑖 ((A + G𝑖 − G𝑖 )x′ − b + g𝑖 − g𝑖 )∥2 + 𝜆∥𝑥 ′∥2

≤(1 + 𝛼𝑆 )
1

𝑠

(
(1 + 𝛼𝑆 )∥

∑︁
𝑖∈[𝑠 ]

S𝑖 ((A + G𝑖 )x′ − (b + g𝑖 ))∥2

+
(
1 + 1

𝛼𝑆

)
∥

∑︁
𝑖∈[𝑠 ]

S𝑖 (G𝑖x′ − g𝑖 )∥2
)
+ 𝜆∥x′∥2

≤(1 + 𝛼𝑆 )2 ·
©­«1𝑠 ∥

∑︁
𝑖∈[𝑠 ]

𝑆𝑖 ((A + G𝑖 )x′ − (b + g𝑖 )∥2 + 𝜆 · ∥x′∥2ª®¬
+ 2 ·

(
1 + 1

𝛼𝑆

)
𝜂𝜎2𝑛𝑑 log

1

𝛽
(∥x′∥2 + 1) (2)

where the second to last inequality follows by applying Lemma 4.3

and the final inequality follows from Equation 1. By optimality of

x′ for the instance 1

𝑠 ∥
∑
𝑖∈[𝑠 ] S𝑖 (Ax′ + G𝑖 − (b + g𝑖 ))∥2 + 𝜆∥𝑥 ′∥2,
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we then have

1

𝑠
∥

∑︁
𝑖∈[𝑠 ]

𝑆𝑖 ((A + G𝑖 )x′ − (b + g𝑖 )∥2 + 𝜆 · ∥x′∥

≤ 1

𝑠
∥

∑︁
𝑖∈[𝑠 ]

𝑆𝑖 ((A + G𝑖 )xOPT − (b + g𝑖 )∥2 + 𝜆 · ∥xOPT∥2

which likewise implies

∥x′∥ ≤ 1

𝜆
·©­«1𝑠 ∥

∑︁
𝑖∈[𝑠 ]

𝑆𝑖 ((A + G𝑖 )xOPT − (b + g𝑖 ))∥2 + 𝜆 · ∥xOPT∥2
ª®¬ .

Insertion both bounds back into Equation 2, we obtain

∥Ax′ − b∥2 + 𝜆∥𝑥 ′∥2

≤ (1 + 𝛼𝑆 )2
©­«1𝑠 ∥

∑︁
𝑖∈[𝑠 ]

S𝑖 ((A + G𝑖 )xOPT − (b + g𝑖 ))∥2 + 𝜆∥xOPT∥2
ª®¬

+ 2
(
1 + 1

𝛼𝑆

)
𝜂𝜎2𝑛𝑑 log

1

𝛽
+ 2

(
1 + 1

𝛼𝑆

) 𝜂𝜎2𝑛𝑑 log 1

𝛽

𝜆
(3)

· ©­«1𝑠 ∥
∑︁
𝑖∈[𝑠 ]

𝑆𝑖 ((A + G𝑖 )xOPT − (b + g𝑖 ))∥2 + 𝜆 · ∥xOPT∥2
ª®¬ (4)

We now turn our attention to ∥∑𝑖∈[𝑠 ] S𝑖 ((A+G𝑖 )xOPT−(b+g𝑖 ))∥2.
Using Lemma 4.3 and Equation 1, we have

1

𝑠
∥

∑︁
𝑖∈[𝑠 ]

S𝑖 ((A + G𝑖 )xOPT − (b + g𝑖 ))∥2 + 𝜆 · ∥xOPT∥2

≤(1 + 𝛼𝑆 )
1

𝑠
∥

∑︁
𝑖∈[𝑠 ]

S𝑖 (AxOPT − b)∥2

+
(
1 + 1

𝛼𝑆

)
1

𝑠
∥

∑︁
𝑖∈[𝑠 ]

S𝑖 (G𝑖xOPT − g𝑖 )∥2 + 𝜆 · ∥xOPT∥2

≤(1 + 𝛼𝑆 )2∥AxOPT − b∥2 +
(
1 + 1

𝛼𝑆

)
𝜂𝜎2𝑛𝑑 log

1

𝛽
(∥xOPT∥2 + 1)

+ 𝜆∥xOPT∥2

≤(1 + 𝛼𝑆 )2
(
∥AxOPT − b∥2 + 𝜆∥xOPT∥2

)
+

(
1 + 1

𝛼𝑆

) 𝜂𝜎2𝑛𝑑 log 1

𝛽

𝜆
(𝜆∥xOPT∥2 + 𝜆)

≤ ©­«(1 + 𝛼𝑆 )2 +
(
1 + 1

𝛼𝑆

) 𝜂𝜎2𝑛𝑑 log 1

𝛽

𝜆

ª®¬
(
∥AxOPT − b∥2 + 𝜆 · ∥xOPT∥2

)
+

(
1 + 1

𝛼𝑆

)
𝜂𝜎2𝑛𝑑 log

1

𝛽

Inserting this into Equation 4 and collecting all the terms, we

obtain

∥Ax′ − b∥2 + 𝜆∥𝑥 ′∥2

≤ ©­«(1 + 𝛼𝑆 )4 + 32

𝛼𝑆

©­«
𝜂𝜎2𝑛𝑑 log 1

𝛽

𝜆
+ 2

𝛼𝑆

©­«
𝜂𝜎2𝑛𝑑 log 1

𝛽

𝜆

ª®¬
2ª®¬ª®¬ (5)(

∥AxOPT − b∥2 + 𝜆∥xOPT∥2
)

+ 32

𝛼𝑆

©­«
𝜂𝜎2𝑛𝑑 log 1

𝛽

𝜆
+ 2

𝛼𝑆

©­«
𝜂𝜎2𝑛𝑑 log 1

𝛽

𝜆

ª®¬
2ª®¬

By our choice of 𝜎2 from Theorem 3.4 and using the sketching

matrix of [Coh16] (see Table 5), we have 𝜎2 ·𝑛 ∈ 𝑂 (𝑑2 log4 𝑑 ·𝛼−4
𝑆
·

log
4 1

𝛽
𝜀−2 · log 1

𝛿
). Thus, we have

∥Ax′ − b∥2 + 𝜆∥𝑥 ′∥2

≤(∥AxOPT − b∥2 + 𝜆∥xOPT∥2) ·
(
1 + 15𝛼𝑆

+ 𝑂̃ ©­«
𝑑3𝛼−5

𝑆
log

5 1

𝛽
· 𝜀−2 log 1

𝛿

𝜆
+
𝑑6𝛼−10

𝑆
log

10 1

𝛽
· 𝜀−4 log2 1

𝛿

𝜆2
ª®¬
)

+ 𝑂̃ ©­«
𝑑3𝛼−5

𝑆
log

5 1

𝛽
· 𝜀−2 log 1

𝛿

𝜆
+
𝑑6𝛼−10

𝑆
log

10 1

𝛽
· 𝜀−4 log2 1

𝛿

𝜆2
ª®¬
□

As a final remark, if 𝜆 is sufficiently large, one should choose

𝛼𝑆 to be as small as possible, minimizing the tradeoff between 𝛼𝑆

and

𝛼−5
𝑆

𝜆
. If 𝜆 is not sufficiently large, one should choose 𝛼𝑆 = 1/3

such that S is an oblivious subspace embedding, but the target

dimension does not have a prohibitively large dependency on the

sketch distortion.

D Experimental Evaluation
In this section we provide the results of more combinations of

parameters for our utility and running time experiments. We also

provide more in depth descriptions of the real-world datasets we

used.

D.1 Running Time of LTM
Table 6 provides running times per server and the total commu-

nication load in our model for 𝑠 = 1 using 3 servers, and Table 7

shows those when varying 𝑠 .

D.2 Ridge Regression
On Figure 4, we provide plots for the same setting of parame-

ters as on Figure 3 (𝑑 = 10 and 𝜇2 = 𝑛). Though, we also vary

𝜆 ∈ {1, 10, 100} here. The experiments show that varying 𝜆 does

not change the asymptotic behavior of any of the mechanisms we

investigated, in the sense that a variance proportional to 𝑛−0.6 or
lower eventually had decreasing error, while a variance propor-

tional to 𝑛0.5 produced increasing errors. The increase of 𝜆 does

however produce a significantly lower error in all settings (note the
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Table 6: Computation cost 𝑇MPC and communication cost
𝐶MPC of the LTM using MPC for varying number of clients
𝑛. Here𝑚 = 100, 𝑑 = 10, 𝑠 = 1 and we are working with 𝑆 = 3

servers.

𝑛 𝑇MPC (sec) 𝐶MPC (MB)

100000 0.172 ± 0.019 24.024

250000 0.457 ± 0.058 60.024

500000 0.861 ± 0.102 120.024

750000 1.219 ± 0.128 180.024

1000000 1.641 ± 0.165 240.024

Table 7: Computation cost 𝑇MPC and communication cost
𝐶MPC of the LTM using MPC for varying sparsity 𝑠. Here
𝑚 = 100, 𝑑 = 10, 𝑛 = 500000 and we are working with 𝑆 = 3

servers.

𝑠 𝑇MPC (sec) 𝐶MPC (MB)

1 0.851 ± 0.099 80.016

10 6.863 ± 0.388 800.016

20 13.002 ± 0.445 1600.016

30 20.356 ± 1.171 2400.016

40 28.023 ± 0.660 3200.016

50 33.708 ± 1.384 4000.016

𝑦-axes on the figure). Our theoretical results likewise predict this

behaviour, as while the error bounds of Theorem 4.4 improve with

increasing 𝜆, they do not affect the dependency on 𝑛. Thus, we view

the experiments as a confirmation that the theoretical bounds, while

potentially improvable, express the correct asymptotic relationship

between parameters and approximation bounds.

D.3 Low-Rank Approximation
Figure 5 provides the error for low-rank approximation, where both

𝜀 and 𝑘 are varied.

D.4 Real-World Datasets
In addition to synthetic datasets, we also evaluated our mechanism

for ridge regression on 4 datasets from the UC Irvine Machine

Learning Repository. The following table provides their number of

entries 𝑛 and dimensionality 𝑑 . A more thorough description of the

datasets is found below the table.

Dataset 𝑛 𝑑

Power [HB12] 2049280 6

Elevation [Kau13] 434874 2

Ethylene [Fon15] 4178504 18

Songs [BM11] 515345 89

• The first dataset consists of electric power consumption mea-

surements in one household [HB12] and the feature we try

to predict is sub_metering_3. We ignore the date and time

features and the data points that had missing values. This

leaves us with 6 features (plus the one we are predicting)

and 2049280 data points.

• The Elevation dataset [Kau13] consists of 434874 open street

map elevation measurements from North Jutland, Denmark.

We predict the elevation from the longitude and latitude

features.

• The Ethylene dataset [Fon15] contains recordings of sensors

exposed to a mixture of gas. We trained on the part where

the sensors were exposed to a mixtures of Ethylene and CO

in air. The feature we are predicting is the last one TGS2620,
which leaves us with 𝑑 = 18 and 𝑛 = 4178504.

• The Songs dataset [BM11], consists of 89 audio features that

are meant to predict the release year of a song.

E Distributed Computation of Linear Sketches
The linear transformation we consider is motivated by efficient

secure distributed cryptographic tools from secure multi-party

computation; in particular, we can use linear secret-sharing. We

require this secret sharing scheme to be information-theoretically

secure. We use an additive secret sharing scheme, such that clients

𝐶1, . . . ,𝐶𝑛 generate 𝑘 shares of their noisy inputs 𝑥1, . . . , 𝑥𝑛 , where

𝑘 is the number of servers that compute the linear transformation.

We use [𝑥𝑖 ] to denote a secret sharing of some client 𝐶𝑖 ’s noisy

input 𝑥𝑖 for some 𝑖 ∈ [𝑛]. For some field F of size 𝑝 and some

prime number 𝑝 , [𝑥𝑖 ] consists of shares 𝑥𝑖
1
, . . . , 𝑥𝑖

𝑘
∈ F such that∑𝑘

𝑗=1 𝑥
𝑖
𝑗
= 𝑥𝑖 . To split a secret into 𝑘 shares, a client can sample

𝑘−1 random field elements 𝑥𝑖
1
, . . . , 𝑥𝑖

𝑘−1 and compute the last secret

share as 𝑥𝑖 − ∑𝑘−1
𝑗=1 𝑥𝑖

𝑗
. Therefore, it also seems intuitive that an

adversary that sees all but one of the shares knows nothing about

the input. For every 𝑗 ∈ [𝑘], server 𝑆 𝑗 receives {𝑥𝑖𝑗 }𝑖∈𝑛 from the

respective parties. We define these shares such that the security

of our distributed protocol does not rely on any computational

assumption.

Since the linear transformation is public, servers can apply the

transformation locally to their secret shares without any need to

communicate with each other. Each server then reveals their shares

of the resulting linear transformation, such that the linear sketch

can be revealed in the clear. For more details on MPC based on

secret sharing, see e.g., [CDN15].
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Figure 4: Plots depicting the error 𝜙 as 𝑛 increases, for 𝜀 ∈ {0.01, 0.03, 0.05, 0.1} (top to bottom) and 𝜆 ∈ {1, 10, 100} (left to right).
The middle row depicts the same choice of parameters as Figure 3.
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Figure 5: Plots depicting the asymptotic behavior of error 𝜓 for 𝜀 ∈ {0.01, 0.05} (top, bottom) and 𝑘 ∈ {5, 10} (left, right), with
𝑑 = 50. The grey line depicts the error of the local mechanism and the orange one depicts our approach. The other lines resemble
different values of 𝑝. The standard deviations are depicted by the vertical black lines.
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