
SoK: The apprentice guide to automated fault injection
simulation for security evaluation

Asmita Adhikary1, Giacomo Tommaso Petrucci1, Philippe Tanguy2, Vianney Lapôtre2, and
Ileana Buhan1

1 Radboud University, Nijmegen, The Netherlands
{asmita.adhikary,giacomo.petrucci,ileana.buhan}@ru.nl

2 Université Bretagne Sud, Lorient, France
{philippe.tanguy,vianney.lapotre}@univ-ubs.fr

Abstract. Identifying and mitigating vulnerable locations to fault injections requires sig-
nificant expertise and expensive equipment. Fault injections can damage hardware, cause
software crashes, and pose safety and security hazards. Simulating fault injections offers a
safer alternative, and fault simulators have steadily developed, though they vary significantly
in functionality, target applications, fault injection methods, supported fault models, and
guarantees. We present a taxonomy categorizing fault simulators based on their target ap-
plications and development cycle stages, from source code to final product. Our taxonomy
provides insights and comparisons to highlight open problems.

Keywords: Fault injection · Fault simulators · Fault models · Sensitive region · Mutation.

1 Introduction

Fault injection [41] is the practice of forcing an application, whether hardware or software, outside
its specified functioning range, thus inducing computation errors. However, not all faults lead to a
successful attack. Combining fault injection and exploiting the fault effects caused is known as a
fault attack.

Some well-known examples of fault injection would be DRAM Rowhammer [67], CPU over-
clocking [63], etc. Fault attacks can be used to circumvent security mechanisms, such as a secure
boot mechanism, since fault injections corrupt the execution flow of an application. Hence, fault
injections/attacks must be eliminated as much as possible.

Recently, fault testing using simulators has been taking precedence. Using fault simulators could
be advantageous since they are cost-effective and require less expertise than performing fault in-
jection on a physical target. Furthermore, fault simulators can be used during design time, i.e.,
throughout the development cycle as illustrated in Figure 1, which provides the additional benefit
of protecting against fault injections right from the source code to the binary in case of software
applications, and from the hardware description to the FPGA/ASIC for hardware applications. Sys-
tematically addressing vulnerable points at each level can significantly reduce overall vulnerabilities.
Furthermore, it diminishes the need for the feedback loop to resolve faulty points.

Naturally occurring faults have simpler, fewer, and first-order fault models, and hence, systems
susceptible to such faults are mostly checked for dependability to prevent fault effects from getting
manifested and causing the system to malfunction. However, from the security perspective, faults
can be induced using complex fault models to intentionally leverage effects induced to design an



2 A. Adhikary et al.

attack ranging from privilege escalation to secret key extraction. Undoubtedly, safety-driven simula-
tors [35,30,38,36,20,14,3,9,60,44,58,42,62,13,23,71,31,8,19] would protect applications from targeted
faults, but only to a limited extent, as illustrated in [70]. In this paper, we mainly focus on fault
simulation tools catered towards the security of an application.

Fault simulators are designed to inject faults into hardware/software applications. Certain spe-
cialized fault simulators are designed for cryptographic applications [39,2,73,11,37,54,56,10,53,52,55,29],
[49,4,34,61,50,46,51,33], which induce faults to leak sensitive data, that could be used to retrieve the
secret key used for encryption via differential fault analysis (DFA) [57,32]. Using such cryptographic
fault simulators requires prior knowledge in the field of cryptography. Furthermore, while some tools
work on the algorithmic level, others work on cryptographic implementations. These tools target
only block ciphers and utilize different cryptanalytic attack techniques as the foundation of such
tools. Even though cryptographic algorithms lie at the heart of security applications, they are not
the only attackable targets and, certainly, not the weakest link. There are other aspects of such
applications which can be attacked and bypassed to cause the application to malfunction. Usually,
bypassing such security measures might be more attractive than knowing the cryptographic algo-
rithm to retrieve the key. Hence, these remain out of scope because they focus on cryptographic
techniques and properties to analyze the faults and use cryptanalytic attacks to exploit them,
which deems them too specific to be used elsewhere. The tools we explore in this paper have a more
extensive scope and fewer prerequisites. Hence, a generic fault injection simulator can evaluate
cryptographic designs, but the converse is not true.

A study on fault simulators in [1] showcases four open-source simulators working upon binaries
only and classifies tools under hardware/software categories. It provides an in-action comparison,
having run experiments. In this work, we investigate the state-of-the-art fault simulators from the
perspective of a novice prospective user and provide a global view by considering fault simulators
fit for different stages in the development cycle.

We introduce a classification for fault simulator tools based on the target application develop-
ment stage. Recognizing the right tool and its application stage is essential for conducting efficient
and comprehensive fault simulations. Our classification helps identify the appropriate fault injec-
tion tools and the specific stages at which they can be most effectively applied. We conclude with
messages to prospective users.

The reader of this paper is a software/hardware developer who needs to test a design’s resilience
to fault attacks, has little expertise with fault injection tools, and is looking for a cost-effective,
efficient, and user-friendly testing approach. However, our work is not intended to guide the target
selection for a fault attack.
Contribution. In this paper, we make the following contributions:

1. We provide a novel taxonomy for fault simulators, classifying them according to the development
stages they are used in.

2. We delve into how they are built and their functioning and showcase the key contributions of
each tool.

3. We outline fault simulation limitations, current progress, and promising research directions.
4. We give recommendation for developing fault simulators to the community, developers, and

researchers.

The paper is organized as follows. In Section 2, we present a taxonomy to classify fault simu-
lators based on their usage in the different stages of development. Section 3 and Section 4 focus
on describing fault simulators for software and hardware targets, respectively. We elaborate on the



SoK: The apprentice guide to automated fault injection simulation 3

functioning of each tool, focusing on sensitive regions and fault models used to perform mutation
and support the order of faults, the method of execution, and the ways results are stored. The sim-
ulators that consider both software programs and hardware descriptions are dealt with in Section 5.
Section 6 highlights the open problems in the area of fault injection simulation tools, followed by
conclusions in Section 7.

2 A new taxonomy for classifying fault simulation tools

We adopt a practical method to classify fault simulation tools, emphasizing the different devel-
opment stages illustrated in Figure 1. We differentiate based on whether the target application
is a software implementation (S), a hardware circuit (H), or a combination of both (C). A soft-

Fig. 1. Overview of the design steps, moving from the target application to the final product.

ware application can be categorized as target independent when it is described using a high-level
programming language (S1), as an intermediate representation (S2) when we compile the target
application, or as an assembly program (S3). The application becomes target dependent when it is
in the form of a binary file (S4) compiled for a specific target.

For a hardware implementation, the design is described in a hardware description language
(HDL) such as VHDL or Verilog (test environments and behavioural models) (H1). This step is
similar for both ASIC and FPGA design flows. The next development stage is the design synthesis,
where the RTL code is translated into a gate-level netlist, which describes the circuit in terms of
gates and connections (H2). The next step is the design implementation (or physical synthesis). For
FPGA application development, the netlist is mapped onto a particular device’s internal structure
(place & route), and we get the layout (H3). In contrast, for ASIC implementations, netlists are
transformed by the backend tools into the chip’s layout (H3). Finally, the hardware design is
implemented on the target component (H4)).

A combined target application (C) is typically a software application running on a hardware
core, where the designer has access to the core description in one of the design stages described
above.



4 A. Adhikary et al.

When studying the fault simulation tools in the literature, we found that they share similar
building blocks. In the following, we define the necessary concepts and then explain the flow in
Figure 2, which depicts the anatomy of a typical fault simulation tool. We use this figure to reference
the tools we found in the literature.

Fig. 2. Anatomy of a typical fault simulation tool.

Definition 1 (Sensitive Region). Given a target application A, the sensitive region S ∈ A is a
subset of atomic elements whose modification might lead to a security breach.

For example, consider the target application in Listing 1.1, which shows a straightforward pass-
word authentication implementation. There are several options for choosing a sensitive region. One
possibility could be the instruction on line 2, which could return a “1” if bypassed. Another pos-
sibility could be the instruction on line 13, which, if bypassed, could trigger the execution of the
instruction on Line 15 and result in an unauthorized authentication. A non-expert user could also
define the entire verify_password function as a sensitive region. The sensitive region is a set of
hardware elements when considering hardware implementations. For defining the concept of a fault
model, we extend the definition of [65] to cover software, hardware, and combined target applica-
tions.

Listing 1.1. Naive password authentication implementation.

1 int verify_password(int psw_value) {
2 if (psw_value == 1234) {
3 return 1;
4 } else {
5 return 0;
6 }
7 }
8 void main() {
9 int pass, x = 3;

10 while (x != 0) {
11 printf("\nInput the password: ");
12 scanf("%d", &pass);
13 if (verify_password(pass)) {
14 printf("Correct password");
15 x = 0;



SoK: The apprentice guide to automated fault injection simulation 5

16 } else {
17 printf("Wrong password");
18 x=x-1;
19 }
20 }
21 }

Definition 2 (Fault model). Given a target application A, a fault model is a set where each
element is a triplet (s, t, e). Here, s ∈ S represents an element of the sensitive region, and t ∈ T is a
natural parametrization of the sensitive region, so the pair (s, t) uniquely identifies the fault injection
objective. The fault effect e ∈ E, represents a transformation applied to the target application A.

Considering the example in Listing 1.1, s can be an instruction or an operand, t could be
the instruction number in the sequence of executed instructions, and e, the transformation, could
be either an instruction replacement or a bit flip (or any other transformation). For hardware
implementations, s can be a register or a logic gate, t the number of clock cycles, and e, the
transformation, could be any data, signal, or circuit behaviour modification.

Definition 3 (Mutation). Given a target application A and a fault model (S, T,E), a mutation
M{(s, t, e), A} → A′ is a surjective transformation of the target application A into a new application
A′ where (s, t, e) ∈ (S, T,E).

For example, replacing or removing the instruction on line 2 in Listing 1.1 would result in the
function verify_password returning the value 1, which signifies a positive authentication.

We observe that it is possible that two different fault instances (s, t, e) and (s′, t′, e′) could lead
to the same mutation of a given target application A. Figure 3 depicts this event using two arrows
pointing to the same outcome. When using a fault simulator, we can control the mutation function,
and when a successful attack occurs, we know the mutation that causes it. In a fault injection attack
involving hardware modifications of the final target, determining the mutation function is typically
tricky.

Fig. 3. The mutation function

We note that in S1-S4 and H1-H2, the user has complete control of the mutation effects, which
can be either data or control flow changes. However, considering H3-H4, the user partially controls
the mutation effects due to glitches and circuit timing violations.



6 A. Adhikary et al.

Definition 4 (Mutation Order). Given a target application A and a fault model (S, T,E), the
mutation order is the number of fault model instances applied simultaneously to the application A.

For example, a mutation of order 2, will apply two fault instances (s1, t, e) and (s2, t, e) to
produce mutation A′.

Definition 5 (Execution). Given a target application A and stimuli (input) I, the execution
function, E(A(I)) = O can produce a functionally correct output O.

Different strategies can be used to execute a mutated application: execute the whole application
for every mutation or use saved states to reuse part of the execution. In definition 5, the only
requirement we set for the execution is to produce a correct output O for the target application
when input I is given.

Definition 6 (Record). Given a mutated target application A′ and stimuli (input) I, the record
function will document the output of the E(A′(I)) as one of three cases: 1) no fault E(A′(I)) =
E(A(I)); 2) abort E(A′(I)) = {}; 3) fault E(A′(I)) ̸= E(A(I)).

Definition 7 (Fault simulation campaign). Given a target application A and a fault model
(S, T,E), a fault simulation campaign will generate, execute, and record output for all mutations of
the target application.

The input to the fault simulation tool depicted in Figure 2 is a target application A. According to
a predefined fault model, the fault simulation tool will mutate the target application A and produce
a mutated target application denoted by A′. The target application is executed, for a stimuli (input
data) I. The result of the execution records the effects produced by the mutation.

The next section outlines the design and application of the fault simulators we encountered in
the literature. Next to the core components defined above, we also document the following:

– Use Cases: Specifies the applications, platforms, or environments where the tool has been
demonstrated to work as described in the paper.

– Dependencies: Lists the dependencies required for the tool to function, including libraries,
frameworks, or other software components.

– Open source: Indicates whether the tool is open source (Yes/No). If yes, we provide a link to
the repository.

3 Fault simulation for software targets

Understandably, no tools accept high-level source code as input. When high-level code is executed, it
gets translated into machine code. This process breaks down each high-level instruction into multiple
lower-level instructions. Therefore, performing fault attacks on high-level instructions would affect
all the corresponding lower-level instructions.

3.1 Tools for software targets (S2)

Lazart [45] aims to evaluate the robustness of code against multiple, volatile faults targeting the
modification of the execution flow. The target application is represented in LLVM intermediate
form. Lazart takes, as input, the program Control Flow Graph (CFG) and the sensitive region



SoK: The apprentice guide to automated fault injection simulation 7

of the target (determined manually). To generate mutations, Lazart implements a block colouring
algorithm and uses mutation operators (optional or mandatory transformation) to create mutation
patterns. As part of the fault model, the transformation is test inversion, which involves flipping
the outcome of a conditional test. Given the sensitive region of the target application, the block
colouring algorithm will identify and label sensitive blocks. These are labelled to be reached -
corresponding to instructions which lead to gaining of privileges, or not to be reached - corresponding
to countermeasures. Mutations are generated by modifying the LLVM bytecodes.

With the attack objective defined and the coloured graph, the tool will try all mutations and
record the combinations that lead to success (or the lack of successful attacks). For the execution of
mutants, Lazart uses KLEE [12], the symbolic test generator. Lazart is tested with a PIN verification
algorithm and a cryptographic detector for SSH packets.
Takeaway: Graph colouring is a clever method for selecting sensitive regions. The combination of
graph colouring with a symbolic execution tool generation such as KLEE can determine the absence
or existence of attacks for a given set of inputs.

3.2 Tools for software targets (S3)

Formal Verif [39], presents a countermeasure scheme to protect embedded programs from instruc-
tion skip fault attacks. This scheme is specifically tailored for the ARM Thumb-2 instruction set,
providing fault-tolerant replacement sequences for nearly all instructions. The proposed counter-
measure creates these sequences by duplicating or transforming instructions to ensure that even
if a fault occurs, the correct execution path can be maintained. Examples include idempotent in-
struction sequences (instructions that have the same effect when executed once or multiple times),
separable instruction sequences (instructions which can be rewritten as a sequence of idempotent
instructions), and specific instruction sequences (instructions which cannot be replaced by idem-
potent instructions) which are duplicated to enforce robust execution of a program. In terms of
execution, instead of proving that a complete program is fault-tolerant, the model will only focus
on the replacement sequences, checking the code’s functional equivalence and resilience to fault
attacks.

The presented case studies focus on the results of implementing the countermeasure scheme.
The paper presents data on the overhead costs and effectiveness of the scheme for two different
AES implementations and a SHA implementation. It concludes that while there is a performance
cost, the security benefits justify the trade-off. The discussion acknowledges that while the proposed
scheme significantly enhances fault tolerance, it does not offer protection against all fault attacks.
The approach is effective against single instruction skips but may not cover more sophisticated
multi-fault scenarios. The authors also suggest that the overhead can be managed by focusing on
the most critical parts of the code.
Takeaway: The authors of FormalVerif accept that all programs are vulnerable to fault attacks,
propose to forego testing and add countermeasures for the instructions in the sensitive region.

3.3 Tools for software targets (S4)

FIES [27,28] is a framework originally developed for safety applications and extended to address
security. The framework is based on the QEMU3 emulator. The mutation function is applied inside

3 https://www.qemu.org/

https://www.qemu.org/


8 A. Adhikary et al.

the emulator before the QEMU binary translation operation. Indeed, the application is profiled to
have memory/register usage. Then, a fault library is built according to fault scenarios and fault
models. Finally, this library is applied to the target application to provide a mutated application,
which will be executed by QEMU. The tool supports different fault models (stuck-at-x, bit flip,
given value) and sensitive regions such as the CPU, the memory, and the registers. The framework
has been tested for access control applications, control flow errors, and memory-related attacks.
Takeaway: The tool allows developers to benefit from the different targets (COTS processors)
supported by QEMU. It uses an extensible markup language (XML) to describe the fault model
and the parameters for the sensitive regions, which improves the automation of the fault simulation
campaign.

FiSim, based on the Unicorn emulator4 and the Capstone disassembler5 is an open-source6 deter-
ministic fault attack simulator supporting ARM32/ARM64 architectures. It enforces two transient
fault models, namely a NOP instruction model and a single-bit flip instruction model to execute
the injection first-order faults to the sensitive region, i.e., the entire binary. FiSim is preconfigured
with an use-case comprising of an implementation of a secure bootloader. Before mutating the
implementation to run the fault simulation campaign, it compiles to generate an ARM binary and
proceeds to perform a golden run (without injecting faults). Subsequently, to perform mutation, it
injects faults exhaustively throughout the binary and compares its execution trace with that of the
golden run. For a bootloader, the two traces would differ due to the difference in their signatures,
which prompts FiSim to decide whether the authentication can be deemed successful. If the binary
is vulnerable, leading to successful authentication and loading of the next boot stage, then it can be
concluded that the glitch bypassed the authentication. FiSim compares the result of the mutated
binary with the golden run to report whether an injected fault has been successful. It records a list
of assembly instructions where the faults have been successfully injected and redirects it back to
locations in the high-level program.
Takeaway: FiSim could be useful to developers if one intends to check for fault resilience in
ARM32/64 implementations, following the program structure of a secure bootloader while being
reasonably small in size and cares about first-order faults. Since its mutation function analyzes first-
order fault simulation for every instruction with both the fault models serially and exhaustively, its
runtime accelerates at an alarming rate for larger real-world applications. Due to the input to the
simulator being hard-coded, it poses difficulty loading other implementations.

ARMORY [26], built upon M-ulator7 and requiring the Meson build system8 and the ARM GCC
toolchain [15], is an open-source9 instruction-accurate fault emulator for ARMv6-M, ARMv7-M,
and ARMv7-EM instruction set architectures. Using M-ulator has its advantages since it can han-
dle faulty assembly instructions and has been shown to outperform the Unicorn emulator [26].
ARMORY can inject faults of twenty-four fault models encompassing instruction-level (permanent,
transient) and register-level (permanent, transient, active until overwrite) faults. ARMORY, akin
to FiSim, explores the fault space (i.e., all possible faults) exhaustively, however, it diverges from

4 https://www.unicorn-engine.org/
5 https://www.capstone-engine.org/
6 https://github.com/Riscure/FiSim
7 https://github.com/emsec/arm-fault-simulator/tree/master/subprojects/m-ulator
8 https://mesonbuild.com/
9 https://github.com/emsec/arm-fault-simulator

https://www.unicorn-engine.org/
https://www.capstone-engine.org/
https://github.com/Riscure/FiSim
https://github.com/emsec/arm-fault-simulator/tree/master/subprojects/m-ulator
https://mesonbuild.com/
https://github.com/emsec/arm-fault-simulator


SoK: The apprentice guide to automated fault injection simulation 9

FiSim, by providing support for parallel execution of the fault emulation by utilizing all the avail-
able CPU cores. ARMORY takes as input an M-ulator instance consisting of a high-level ARM-M
code along with start and halt symbols to mark the sensitive region, a set of fault models to be
injected, an exploitability model, and halting points, i.e., a set of addresses at which exploitability
is evaluated.

ARMORY starts its execution with a golden run to keep track of the exploitable locations in
order as well as the emulation time required. ARMORY comes embedded with DFA (differential
fault attack) on AES and a secure bootloader as case studies. For the fault simulation campaign,
M-ulator is run until the first injection point to save its state followed by which a fault model
is applied. Via the golden run, M-ulator retrieves the sequence of executed instructions and the
registers used, providing all the injection points. Once encountered, ARMORY adds faulty locations
to a list of exploitable locations and starts injecting faults to mutate the saved binary version
backed up in M-ulator, thus saving emulation time. If not found exploitable, the next fault model
is applied to the backed-up state stored in M-ulator. When applying a fault model, a halting point
is reached, ARMORY verifies against the exploitability model to determine whether the fault has
been successful to be added to the list.

It furnishes a detailed view with the number of faults (injected/successful), the fault model,
the elapsed time, position, and timestamp, along with the number of threads used and the faulted
instruction in the assembly code depicting the affected instruction, register, bit or byte.
Takeaway: ARMORY supports multivariate fault simulation. The comprehensive report in a log
file also helps in future referencing. ARMORY illustrates that checking for resilience against faults
on high-level implementation might not guarantee the same implementation being secure against
faults in low-level representations. It also emphasizes that a countermeasure against a fault of a
certain model could increase its vulnerability against other fault models. Due to its exhaustive na-
ture of injecting faults, it has a complexity of O(nm), and for multivariate faults, O(nm.m!), where
n is the number of injection points and m is the number of fault models.

ARCHIE [24], an open-source10 fault simulator, dependent on QEMU to support numerous archi-
tectures, approaches simulating fault injections from a different angle as compared to other tools in
this section. Unlike the other tools, which explore the fault space, ARCHIE requires the developer
to provide it with the fault configuration, which defines the sensitive region. It verifies if an injected
fault results in a different output than the expected output. It takes a compiled binary as well as a
QEMU configuration and a user-defined fault configuration, which essentially could support higher
orders of mutation. Essentially, ARCHIE harbours the capability to support all the architectures
supported by QEMU. While the QEMU configuration defines the binary’s location and the DuT’s
architecture, the fault configuration describes the fault campaign. It supports four fault models,
both permanent and transient ones, with user-defined parameters for individual test cases. It func-
tions via a controller script that takes the QEMU configuration, the fault configuration, and the
compiled binary to launch multiple worker tasks, each executed in parallel to run the fault simu-
lation campaign. Each of these parallel processes starts a QEMU instance and provides the fault
configuration and the location of the binary to ensure that each worker task handles a single fault
model from the fault configuration to perform the mutation. After completing the simulation, these
worker tasks are collected, processed, and forwarded to the logger, which saves it in an HDF5 file.
As use-cases, ARCHIE runs fault simulations on TinyAES and a secure bootloader implementation.
Takeaway: ARCHIE needs the user to provide the fault locations instead of exploring the fault
10 https://github.com/Fraunhofer-AISEC/archie

https://github.com/Fraunhofer-AISEC/archie


10 A. Adhikary et al.

space itself. However, it provides a detailed output on the console, which could be handy for de-
bugging if needed. Though it facilitates parallel execution, its high memory usage [1] could be
concerning.

SAMVA [21], a static analysis-based framework, built upon the angr framework11, assesses ARM
binaries’ resilience to multi-fault attacks. SAMVA attempts to tackle the problem of fault space
exploration. Instead of executing fault campaigns, SAMVA establishes a way to accelerate determin-
ing fault locations by discovering attack paths, which would alleviate the fault space exploration
problem. It focuses on identifying attack paths in a binary that could be affected by the multi-
ple instruction-skip fault model of varying widths, implying multivariate mutation order. It also
quantifies the vulnerability of a binary based on the minimum number of faults to deem them
exploitable.

SAMVA takes an ARM binary, the exploit specifications, defining the possible number of faults,
and the attacker’s goals, describing targeted basic blocks, that must be executed, thus acting as the
sensitive region, and forbidden basic blocks, that must not be executed, as its inputs to obtain a set
of N attack paths satisfying the user-specified fault injection constraints. These attack paths take
the form of a list of basic blocks, including the faults to inject, depicting the fault’s location and
width.

SAMVA initiates the fault simulation campaign by generating control-flow graphs (CFGs) of
the binary, followed by extending and annotating the CFGs to illustrate the effects of possible
faults induced to form an extended CFG (ECFG). To execute faults on the targetted basic blocks,
SAMVA delves into the ECFGs to generate attack paths that comply with the attacker’s goals.
Once the ECFGs depict the attack paths, SAMVA builds an execution trace for each candidate
path and determines whether a fault configuration can be induced for an execution trace per the
exploit specifications by applying mutation. Finally, it uses a backtracking algorithm to explore all
the possible fault configurations to single out a valid configuration for the candidate paths. It also
performs fault trimming by reducing the widths to prevent skipping critical instructions. SAMVA
has been shown to work upon eight PIN verification programs from the FISSC [16] suite.
Takeaway: SAMVA explores attack paths instead of executing exhaustive fault campaigns, which
can be a significant step towards solving the fault space exploration problem. SAMVA supports the
(multiple) instruction-skip fault model with varying widths. It takes a unique approach by gener-
ating attack paths while remaining customizable by letting users define the exploit specifications
and the attacker’s goals.

CELTIC (CEsti-LeTi Integrated Circuit) [17,69], a simulation-based fault injection tool, structured
around a micro-architectural simulator, takes the target binary code, the execution trace, the set of
fault models, the attack order and an oracle as inputs. The oracle is a boolean condition to classify
attacks as successful. CELTIC has been shown to work on ARM Cortex-M4 32-bit micro-controller,
the results of which were verified using laser fault injection (LFI).

To perform the fault simulation campaign, CELTIC generates target-specific fault models (TSFMs)
from ISA-level fault models, which determines the mutation order and also deals with combined
fault attacks. The TSFMs are inferred by parallelly simulating fault injections and running charac-
terizations via a grid search on the target. Not all TSFMs are applied. However, only those whose
probability of occurrence is above an arbitrary threshold are considered. The lower the threshold,
the more exhaustive the fault analysis, but the longer it takes to simulate, the greater the possibility
11 https://angr.io/

https://angr.io/


SoK: The apprentice guide to automated fault injection simulation 11

of generating more false positives. TSFMs attempt to solve the combinatorial explosion problem of
multi-fault and combined-fault attacks.

CELTIC first executes a golden run of the sensitive region, i.e., executes the reference trace
without injecting any fault. To perform a mutation, for each saved state of the execution trace
and each fault model, it generates all possible faults and injects each of those faults to produce
a faulty execution trace and reports it if it could be deemed as successful as per the oracle or
else continues with the fault injection process. The injection delays of the successful attacks are
converted to microseconds via a linear relationship, and an error margin is added to configure
the equipment for successful fault attacks. CELTIC demonstrates its capabilities on an use-case
consisting of VerifyPIN on an embedded device. It supports parallel execution for characterization
and fault injection simulation.
Takeaway: CELTIC takes a unique approach to address the fault space exploration problem by
executing fault characterization and fault injection simulations parallelly to distinguish fault-prone
points. However, the effectiveness of TSFMs could be hindered because it could be challenging
to generate them. The fault injection simulation, being entirely dependent upon the TSFMs, the
accuracy of fault injections would be as good as the TSFMs. The conversion from simulation
settings to configuration for the hardware setup may not reflect practical setups and may not result
in successful fault exploitation. Since CELTIC does not operate exhaustively, it would likely run
to its completion in most scenarios and only consider TSFMs instead of all fault models, thus
advancing towards recognizing the likeliness of different fault models.

4 Fault simulation for hardware targets

4.1 Tools for hardware targets (H1)

FISSA12 (Fault Injection Simulation for Security Assessment) [43] is an open-source tool to analyze
the sensitivity of the circuit to fault injections. It consists of three modules: TCL generator, Fault
Injection Simulator, and Analyzer. The TCL generator relies on a configuration file and a target
file defining the considered fault model(s) to generate a set of parameterized TCL scripts. These
scripts drive the fault injection simulation campaign and apply mutations to the target hardware
elements when required during the simulation process. The Fault Injection Simulator performs the
fault injection simulation campaign based on input files from the TCL generator for a circuit design
described through HDL and memory initialization files. For that purpose, it relies on QuestaSim
HDL simulator13. Finally, the Analyser module records the outcomes of the simulations to generates
a set of report files allowing the designers to examine fault injection effects on their designs.

FISSA can inject faults into hardware registers with a maximum mutation order of two. To
configure the fault model, FISSA provides a list of fault effects such as set to 0/1, single and multi-
ple bit-flips. The sensitive region is defined through a list of target hardware registers. Finally, an
injection window parameter identifying time intervals into which fault injections are performed com-
pletes the fault model configuration. The FISSA user is responsible for providing JSON-formatted
input files that include these parameters.
Takeaways: FISSA can be used in the first development stage of hardware designs. Since it relies
on a well-known HDL simulator, it is easy for a hardware designer to handle. However, the user
must manually define the list of target registers and the sensitive region. Furthermore, even though
12 https://github.com/WilliamPsc/FISSA/tree/main
13 https://eda.sw.siemens.com/en-US/ic/questa/simulation/advanced-simulator/

https://github.com/WilliamPsc/FISSA/tree/main
https://eda.sw.siemens.com/en-US/ic/questa/simulation/advanced-simulator/


12 A. Adhikary et al.

the tool automates the generation of fault injection results from statistics and identifying sensitive
registers, the user must provide the tool with information to classify the execution outcomes (i.e.,
faults).

4.2 Tools for hardware targets (H2)

SoFI [68] is an automated framework that takes as input a gate-level design with a set of security
properties and a set of attributes describing the faults considered for the fault injection campaign.
These attributes are time, location, type, and duration. This set of attributes is used to derive the
fault model considered during the campaign.

The security properties are used to guide the vulnerability assessment: if a fault does not violate
any security property of the design, its effect is assumed to be limited. To simulate the effect of
a fault on a circuit, it uses a logical model of the faults’ physical impact. By using this model, it
simulates the faults’ propagation into a digital circuit.

After receiving these inputs, the framework generates a fault model by considering the set of
security properties and the specified fault attributes. This framework assumes the attacker can
inject a fault at any specific clock cycle. Regarding the sensitive region, faults are injected at the
sub-circuits fan-in cells that check a security property. If the framework is used to consider a global
fault, then it only considers the output of sequential cells in modelling fault locations to reduce
the workload’s complexity. The mutation order allows to consider up to two concurrent sensitive
regions. After generating the fault list, SoFI uses the Z01X simulator14 to simulate the fault’s effects
on the circuit under analysis. Then, this framework has an optional fault feasibility analysis step.

For faults that aim to violate the setup time of flip-flops, SoFI checks the gate-level simulation
traces to see if the value at the flip-flop’s input at the time of fault injection is different than the
previous clock cycle. If there is a setup time violation, the flip flop will latch the value of the previous
clock cycle. So, this kind of fault injection will effectively cause a bit flip only if there is a state
transition in the flip-flop’s input.
Takeaways: SoFI uses a set of security properties to guide the fault injection campaign: only faults
that can break a security property are considered relevant. SoFI cannot evaluate whether a fault
is feasible based on local fault injection techniques. It operates on a circuit’s gate-level design, and
evaluating such fault requires layout information about the design. However, SoFI’s results can
still inform later design stages to prevent such vulnerabilities. To avoid false negatives, a powerful
attacker is considered, but this comes at the cost of generating false positives.

SYNFI15 [40] is a formal fault verification framework operating on synthesized netlists. It tests
the effects of faults on the input-output relationship of circuits by taking as inputs the circuit’s
gate-level netlist, the standard cell library used for synthesis, and a fault specification.

The fault specification is split into two sections: a description of the sub-circuit to be evaluated
and a fault model. The sub-circuit is determined by specifying its input and output nodes, values
for the input nodes, and expected output values (what the circuit should produce under normal
functioning). The fault model is described by specifying the mutation order and the nodes where
to inject the faults, which constitute the sensitive region, as well as a fault mapping describing the
fault’s effect on the gate: the gate will behave as the gate or boolean expression specified in the
mapping.
14 https://www.synopsys.com/verification/simulation/vc-z01x.html
15 https://github.com/lowRISC/synfi

https://www.synopsys.com/verification/simulation/vc-z01x.html
https://github.com/lowRISC/synfi


SoK: The apprentice guide to automated fault injection simulation 13

First, SYNFI translates the netlist into a directed multi-graph and the standard cell library
into a format that the rest of SYNFI supports. Then, it extracts from the directed multi-graph,
the target graph representing the sub-circuit to analyze. Successively, a new process for each fault
mapping and location is started. Each process uses two target graphs: a non-faulty and a faulty one.
The non-faulty target graph represents the original sub-circuit, whereas the faulty one models one
or more faults by substituting the boolean expressions of the involved gates as specified in the fault
mapping. These two copies are combined into a differential graph by adding an input and an output
layer. The differential graph is used to see if a fault was effective, i.e., if it changed the output of
the faulty graph compared to the non-faulty one, without triggering an error signal. To check for
this, the differential graph is handed out to an SAT solver that evaluates the fault’s effectiveness.
In the end, SYNFI provides a report summarizing the fault analysis results.
Takeaways: SYNFI is a versatile tool that lets the user specify any possible type of fault in a gate-
level circuit design. It supports parallel execution. SYNFI guarantees no false negatives as long as
the fault specification reflects the intended threat model. Its main shortcoming is an absence of
evaluation of a fault’s feasibility: it is left entirely to the user to specify in the fault mapping logical
expressions corresponding to faults that can be injected in practice.

4.3 Tools for hardware targets (H3)

SimpliFI framework [22] relies on post-layout netlist simulations to study the impact of fault
injection techniques such as clock glitches. Indeed, timing-based faults (e.g. setup time violation) can
be studied using a post-layout netlist since it provides device-specific signal propagation delays. It is
worth noting that the proposed approach specifically targets the evaluation of embedded processors
executing sensitive software. To capture the impact of faults, SimpliFI proposes to record, during
the simulation, hardware-level signals to correlate faulty software-level outcomes with corrupted
hardware elements. At the end of each fault simulation, software-level outcomes are determined by
collecting the processor state, which includes general registers, program counter, and final processor
hardware state.

To automate a fault injection campaign, the user provides a fault configuration file, defining
the sensitive region as a list of target instructions and the set of mutations to be applied to the
clock signals. For that purpose, a custom and flexible file format is specified. Together with the
compiled program, it generates a script driving a hardware simulation tool in charge of executing
the programmed netlist for each test case. SimpliFI analyzes the impact of faults at hardware
and software levels by leveraging the hardware state information recorded during simulations. It
computes the hamming distance between the outputs of the current fault simulation and the outputs
obtained from a reference simulation. This allows the identification of corrupted registers for a given
injection event and enables the user to link it to the software-level outcome determined by analyzing
the final processor state.
Takeaways: The SimpliFI framework is dedicated to the evaluation of embedded processors. It
focuses on fault injection simulation due to timing violations. The user manually defines the sensitive
region through a set of memory addresses indicating the tool to which instructions must be targeted.
It is worth noting that the user does not control the mutation order or provide a complete fault
model as defined by definition 2 since the tool relies on timed simulation to evaluate the impact of
clock glitching. However, the user must provide the parameters determining the clock glitch shape
and location.



14 A. Adhikary et al.

4.4 Tools for hardware targets (H4)

Chiffre16 [18] is a framework to instrument a hardware design with fault injection capabilities.
A Chisel17 library provides hardware fault injector examples and allows the designer to annotate
the circuit description to identify a sensitive region (i.e. registers or wires). Chiffre relies on both
Chisel and FIRRTL18 (Flexible Intermediate Representation for RTL) compilers to generate in-
strumented hardware descriptions in Verilog and target circuit emulation on FPGA. Notably, it
provides dedicated FIRRTL passes to extend a circuit with run-time programmable fault injectors
responsible for applying mutations to annotated circuit elements. Fault injectors are configured
through a scan chain bit-stream generated parallel to the circuit design. Supported fault models
are implemented into fault injectors. Chiffre supports the following fault effects: pseudorandom bit
flips, stuck-at-zero/one in words, and bit-flips at a specific time location. It is worth noting that the
last one is the most relevant for a security analysis since time location is configurable. The mutation
order is theoretically unlimited. However, in practice, it is limited by the maximum number of fault
injectors that can be implemented on the target FPGA.
Takeaways: Chiffre automates circuit extension with hardware fault injectors to perform fault
injection emulation on FPGA. The user must manually define the circuit’s sensitive regions where
injectors must be implemented. The choice of the fault model and the outcomes analysis is also the
user’s responsibility.

5 Hybrid and combined tools

µarchiFI19 [65] provides a solution for the formal analysis of mixed hardware/software systems
under fault injection. The proposed approach allows the analysis of the impact of faults, modelled
at the microarchitectural level, on the software outcomes. µarchiFI is based on Yosys synthesis
suite20 and a third-party model checker. µarchiFI extends Yosys to generate the system’s formal
model from the RTL implementation of the hardware, an input binary program, and the attacker
model. The circuit (i.e. processor design) is modelled as a transition system as described in [5] and
the software program is encoded in the initial state of a memory modelled simultaneously with the
processor. Then, a model checker is used to analyze the system’s robustness under fault injection.

In µarchiFI, faults are injected through the mutation of the original transition system. The
considered fault model is configured by selecting a fault effect among the following: set, reset, simple,
and multiple-bit flips. The sensitive region is defined as a list of hardware registers. Furthermore,
the mutation order is restricted through a user-defined parameter. It limits the number of faulty
transitions an attacker can introduce. The attacker goal is a reachability property defined on the
transition system. It represents a vulnerability that the attacker wants to reach. Finally, bounded
verification techniques determine if a sequence of states allowing an attacker to reach its goal exists
considering a limited number of faulty transitions. If such a sequence exists, the tool outputs a
VCD (Value Change Dump) file that reports where the fault is injected and when the attacker’s
goal is reached. Human expertise is necessary to analyze the propagation faults and their software
outcomes.
16 https://github.com/IBM/chiffre
17 https://www.chisel-lang.org/
18 https://github.com/chipsalliance/firrtl
19 https://zenodo.org/records/7958412
20 https://github.com/YosysHQ/yosys

https://github.com/IBM/chiffre
https://www.chisel-lang.org/
https://github.com/chipsalliance/firrtl
https://zenodo.org/records/7958412
https://github.com/YosysHQ/yosys


SoK: The apprentice guide to automated fault injection simulation 15

Takeaways: µarchiFI provides an elegant solution for pre-silicon evaluation against FIA (fault in-
jection attacks). It allows us to formally analyze and study the propagation of faults (thanks to
VCD file generation) in the microarchitecture and their consequences on the system behaviour.
However, the user has to determine the attacker’s goal manually. Furthermore, the user needs to
find a trade-off between the size of the hardware design, the size of the analyzed program, and the
complexity of the fault model.

EFS [48] proposes to evaluate the robustness of smart card source codes by combining software
instrumentation and on-target execution. The proposed approach relies on the high-priority process
property of programmable interrupts to mutate the manipulated data and the control flow. The
sensitive region is defined as a target function extended with unique ID tags and extra code to
configure a timer that triggers a programmable interruption after a specific delay, which defines the
fault injection time. The interruption code is personalized to apply a set of fault effects associated
with the target fault model. Faults are injected by modifying general and special registers, such as
the program counter and stack pointer, or tampering with the interrupted process memory. This
allows the user to determine the mutation order freely and to implement numerous fault effects
such as simple or multiple instructions skip and data/code modifications at bit, byte, or word level.
Furthermore, a parameter simulates transient and permanent fault effects (i.e., the fault injection
occurs at each target function call).
Takeaways: EFS is dedicated to the application domain of smart cards. The main advantage of
the approach is to consider the final hardware target for fault simulation. However, fault injections
are limited to hardware elements accessible from the software stack. Thus, the impact of faults on
hidden microarchitectural structures is not considered. Furthermore, since the approach relies on
hardware timers, such a resource must be available to apply the proposed approach. The user must
manually define the sensitive region to be evaluated and modify the operating system to manage
the fault injection-related interrupts.

Fault-Resistant Partitioning21 [66] presents a combined approach where, after a first evaluation
of the hardware design, fault injection vulnerabilities are then considered to evaluate the resilience
of a specific software executable. The authors’ main contribution lies in how they verify the hard-
ware design: they introduce the concept of k -fault-resistant partitioning, which formally proves the
security of the given circuit. This framework’s fault model considers a list of logic gates that can be
faulted with transient faults where a bit can be set to 0/1 or be flipped. It supports an unlimited
mutation order. The hardware verification step can be done at the RTL or netlist level. They define
a circuit as k -secure if, when injecting up to k -faults, it is impossible to make the circuit misbehave
without it being detected.

First, the circuit design is converted to a cycle-and-bit-accurate model. Then, it derives a fault
model F from the input fault model and the produced circuit model. The circuit’s k -security
property is analyzed using an inductive approach. This is done by checking an invariant that implies
the k -security property. This invariant holds under two conditions: circuit outputs are correct under
any k -fault injections that do not raise an alert, the sequential circuit elements can be partitioned
such that any k -fault injections are either detected or confined in partitions.

Verifying the k -fault-resistant partitioning starts by iteratively building a partitioning that en-
sures fault confinement or detection. Once a suitable partitioning is built, it iteratively verifies that
this partitioning also ensures the output’s integrity. If this verification fails, the faults that lead
21 https://github.com/CEA-LIST/Fault-Resistant-Partitioning



16 A. Adhikary et al.

to the outputs’ corruption are added to a set F ′, denoted as a set of exploitable faults, and the
partitions whose corruption alters the outputs’ integrity are added to the set P ′, denoted as a set
of exploitable partitions. The verification eventually succeeds and outputs the sets F ′ and P ′. This
hardware verification step is independent of the executed software, so it can be executed only once
and then used to verify multiple pieces of software. If no exploitable faults are identified, there’s no
need to perform the software verification step.

Next, it analyzes program executions to verify if an attacker can reach its goal. This phase only
considers the faults that the previous step could not prove are detected by hardware countermea-
sures. This software and hardware co-verification takes the hardware design, a binary program, the
mutation order, the attacker goal, and the sets F ′ and P ′ as input. The system modelling process
combines all these elements into a unified model mapping the software execution onto the hardware,
whose behaviour gets modified by the faults in F ′ and P ′. The potential fault locations derived
from the two sets are used to select the best-suited abstraction level during the modelling step. The
verification step tells whether the system is robust against the considered attacker and produces
counterexamples in the form of VCD files if any vulnerability is found.
Takeaway: The notions of k -security and k -fault-resistant partitioning lead to formal proof of the
resilience of a CPU design against faults. Additionally, this tool can verify if the faults not detected
by hardware countermeasures can result in faults for a specific software executed by that CPU. So,
this tool lets a design team analyze trade-offs between hardening a design at the hardware, software,
or a mix of the two. Thus, it is a tool that can paint a complete picture of a device’s security against
faults and can be used in different design stages. The main limitation is that the existence of a k -
resistant partitioning is a sufficient but not a necessary condition for the k -security of a circuit.
Building a k -secure partitioning relies on a heuristic. So, while successfully constructing a k -secure
partitioning proves k -security, failure to obtain such partitioning does not imply the existence of
vulnerabilities.

6 Discussion of the current state of the art

The landscape of fault injection testing has evolved significantly, shifting from traditional physical
fault injection methods to modern simulator-based approaches. This transition brings numerous
benefits, including greater accessibility for non-experts and enhanced cost-effectiveness. Fault simu-
lators make fault injection testing feasible for a broader range of developers. Our findings highlight
the significant progress in this domain and underscore unresolved challenges.

Achievements. As we see throughout the paper, different fault simulators adopt diverse approaches
toward making an application fault-resilient. Some fault simulators incorporate formal verification;
for instance, FIES [28] reports the presence or absence of possible fault attacks for a selected portion
of an implementation, thus serving as a guarantee for the security of an application. On the other
hand, fault simulators based upon experimental evaluation tend to cover a larger code base, which
may lack in providing a guarantee but attempt to inject comparatively more faults. Fault injection
simulators also cover the ARM architecture reasonably well. Tools like FiSim [47] make it conve-
nient for the user by providing an environment that takes the target implementation in a high-level
language and cross-compiles it to make it ready for fault simulation. Others like ARMORY [26]
support numerous fault models and take an innovative approach to reduce emulation time by saving
states during fault simulation. ARMORY, SAMVA [21], and CELTIC [69] allow a user to specify
an exploitability model. For experienced users, ARCHIE [24] offers the flexibility to use various



SoK: The apprentice guide to automated fault injection simulation 17

architectures and targets user-defined locations for fault simulation, while for targeting hardware
designs, FISSA lets the user define the sensitive region and target registers thus offering more con-
trol on the setup. SAMVA and CELTIC take on the problem of fault space exploration using two
contrasting techniques. While SAMVA focuses on identifying attack paths based on user-defined
exploit specifications and the attacker’s goals, CELTIC performs fault injection on real hardware
targets to obtain target-specific fault models (TSFMs). Introducing TSFMs could help identify the
most likely fault models. The various fault simulators aimed at hardware designs, like SoFI and
SYNFI, help make informed choices for the later stages. Tools like SimpliFI do not require the user
to define the mutation order or the fault model since it relies on timing-based faults, thus exploring
fault space in another way.

The state-space problem refers to processing the possible mutations generated by fault instances
up to the given mutation order. The number of combinations may lead to a state-space explosion
that quickly renders the problem of fault injection intractable. In our view, the complexity of the
state space depends on three parameters:

1. Selection of the sensitive region determines the target locations where faults are injected.
The goal is to reduce the size of the sensitive region to reduce the state space. This delicate task
requires experience with fault injection attacks. The two (extreme) options are manual selection
and automated selection. Automated selection is attractive to novice audiences. However, man-
ual or hybrid selection of the sensitive region has advantages. For instance, FiSim supports the
automatic selection of the sensitive region by considering the entire implementation, which can
be helpful, though it increases runtime. ARMORY [26] hybrid selection gives more control to
the user and ensures that libraries or external/referred code-bases are not the targets for faults
injection. ARCHIE [24] manual selection is appealing when specific instructions are targeted.
While automatic selection appeals the most during the early stages of the development cycle,
hybrid and manual selection could be beneficial during the later design stages. Tools for hard-
ware targets like FISSA [43], SimpliFI [22], Chiffre [18], SYNFI [40] and EFS [48] use manual
selection because for hardware circuits that help to restrict the sensitive region.

2. The choice of fault model is a pain point for many fault injection vulnerability assessment
tools. We see two approaches. The first is target informed, where the hardware platform de-
termines the tested fault effects. The second is to consider a library of known fault models.
It is expected that the more precision the fault requires, the less likely it will manifest itself.
This is strictly connected with the chosen threat model. Most works either do not perform
a feasibility evaluation step or err on caution by considering a potent attacker in the threat
model. CELTIC [69] approaches this problem of determining the feasibility of fault models by
generating target-specific fault models (TSFMs). These TSFMs are obtained by simultaneously
executing fault injections and fault characterizations using grid search on the target. Then, de-
pending on a threshold, selected TSFMs are considered further in the experiments. This makes
the success of the fault simulations entirely dependent on the generated TSFMs and would only
be as reliable. Delving into fault characterization for targets could be beneficial in learning how
probable a fault model is for that target and reducing the state space.
For instance, one of the fault models supported by most of the fault simulators, i.e., the single-bit
flip fault model, fails to capture effects caused due to voltage glitching (VCC), electromagnetic
fault injections (EMFI), body bias injection (BBI) [25] or laser fault injection (LFI). To repre-
sent such fault effects, fault models must capture multiple bit flips, timing violations, spatial
correlation and differentiation between transient and permanent faults. The other most fre-



18 A. Adhikary et al.

quently used fault model, instruction skip falls short when it comes to representing corruption
of the program counter (PC), stack pointer (SP) and link register (LR) [7,6,59,64].

3. The mutation order exponentially affects the number of fault instances. Specific simulators
let the user consider an unlimited mutation order, like SYNFI [40], but the analysis is restricted
to a sub-circuit of the original design. Another possibility is to employ formal methods to
explore the search space efficiently. An example of this is Fault-Resistant Partitioning [66],
which iteratively builds partitioning by gradually expanding an initial partition. Each time
the partition is extended, the proposed tool applies an algorithm to prove an invariant that
implies the resistance of the current partitioning up to a given number of faults. This iterative
construction bounds the complexity of obtaining a secure partitioning, as one does not have
to exhaustively check each possible partitioning to find the biggest one that still satisfies the
invariant. Other frameworks put an upper limit on the mutation order or concurrent fault
locations to ensure that the state space does not become too big to search. An example of
this approach is SOFI [68]. Instead of exploring the fault space by executing fault campaigns,
simulators like SAMVA [21] generate attack paths which significantly decrease the search space,
depending on the user-defined exploit specifications and attacker’s goals. Another approach to
tackle it would be to characterize faults instead of injecting all possible fault combinations.
CELTIC [69] does precisely so and attempts to explore the fault space by learning possible
successful fault configurations using fault characterization. An exciting research direction is to
consider further how to reduce the fault space exploration problem effectively.

User Guarantees. Some tools apply formal methods to the problem of determining a circuit’s/software’s
vulnerability to fault injection. This approach gives the strongest guarantees about the accuracy
of the tool’s analysis. The most common guarantee is the absence of false negatives, as tools that
only ensure the elimination of false positives would be inadequate for security applications. Unfor-
tunately, this guarantee usually implies the presence of false positives. However, designers prefer to
err on the side of caution, protecting against attacks that may not be feasible in practice rather
than risking the possibility of missing an exploitable vulnerability. The best would be the absence of
false positives and negatives, but this is not easy without a prototype to test. Part of the reason is
that design stages S1 to S4 and H1 and H2 lack information about the hardware’s physical layout.
However, the layout is crucial in some fault models. In the case of laser fault injection, a single laser
spot typically causes faults in multiple locations close to each other. But at the same time, the usual
assumption is of an attacker with only one laser available [68], as laser setups are expensive. Suppose
a vulnerability requires injecting faults into multiple locations. In that case, it may be feasible only
if those locations are close to the final design’s layout. With today’s computational resources, we
believe it would be possible to give formal guarantees about the absence of false negatives and false
positives only by reducing the scope of the problem.

In the pre-silicon design phase, there are too many unknowns regarding the physical realization
of a circuit. The situation can be different for software tools, assuming the developer knows which
device will be used to run the code. To this aim, an area of research could be finding a set of
reasonable assumptions about the physical aspects of a hardware design that make it easier to
provide formal guarantees without hindering the validity of the analysis results in practice.

Other tools only give empirical guarantees about their results. To guarantee the absence of false
negatives, the typical approach considers a worst-case attacker with capabilities that are hard to
achieve in practice. However, this approach also implies the likelihood of false positives.

SoFI [68] considers an overly powerful attacker, thus guaranteeing the absence of false negatives
in their evaluation at the expense of false positives. Other tools, like SYNFI [40], do not pick a threat



SoK: The apprentice guide to automated fault injection simulation 19

model, but rely on the user to specify it. Whether that results in false positives (or false negatives)
depends on whether the used threat model accurately models the reality. In other words, such tools
can formally guarantee that an application is not subject to fault injection attacks, assuming the
user provided a suitable description of the attacker’s capabilities. This is a compromise between
the guarantees given and the difficulty of delivering such guarantees: by having the user help in
defining their threat model, the tool can provide formal guarantees using formal methods. As a
bonus, such an approach results in tools that can be used to consider different threat models. In
theory, a user could produce a threat model that formally guarantees the absence of false negatives
and false positives. However, such a threat model would need to be formally proven by the user,
making this an unrealistic approach to the problem. A more realistic approach would be to use a
threat model derived from prior experiments to determine an attacker’s capabilities.

Reachability versus Exploitability. Reachability is the condition that determines whether an
injected fault is effective, whereas exploitability is the condition that determines whether an at-
tack is possible. Tools focused on reachability could be used as fault injection simulators, whereas
those focused on exploitability could be deemed fault attack simulators. This is because success-
fully injecting one or multiple faults does not necessarily break the security property of the target
application. This can happen for multiple reasons, including unused values and masked faults. In
the case of unused values, the fault injection attack successfully modifies a value in memory, but
the application does not use that value, resulting in an ineffective fault. In the case of masked fault,
the successful injection of multiple faults results in a state where the faults cancel the effects of
each other, leading to an outcome equivalent to the normal functioning of the application. Hence,
successful faults based on reachability signify that the faults manifested, but only exploitability
can guarantee that the effects caused by the faults can be used to weaken the application. AR-
MORY [26], SAMVA [21], and CELTIC [69] takes exploitability conditions. Exploring more into
simulators that would differentiate between effective/ineffective faults and reachability/exploitabil-
ity would give more clarity into fault manifestation.

Performance versus Accuracy. In [72], it is shown that there is a trade-off between performance
and accuracy. Targeting higher abstraction layers would result in better performance, while lower
abstraction levels would be more focused on achieving accuracy.

7 Conclusion

This paper presents the state of the art of pre- and post-silicon fault simulators and provides a
novel taxonomy to classify them. We conclude by listing the main takeaways for the community of
users who evaluate the resistance of their design against fault injection attacks, the developers who
build tools in this domain, and the wide research community working in this field.

Takeaway for the Community. As security professionals, we are taught that security must be
built-in and not added as an afterthought. Fault injection simulators let a designer test the secu-
rity of an application early on in different design stages. This reduces the cost of building secure
applications, as performing security evaluations of the design becomes possible. Different design
stages carry different information about the result. Therefore, we would suggest targeting multiple
design stages to combine the advantages of these two possible approaches. When developing an
integrated solution, i.e., hardware and software, using a combined tool gives a complete picture



20 A. Adhikary et al.

of the product’s security as a whole. This also lets designers evaluate trade-offs regarding which
countermeasures to implement in hardware and which in software. Having more open source tools
would be helpful. As illustrated in Table 1, for software tools, there is a preference for ARM archi-
tectures, whereas for hardware tools, there is an inclination towards RISC-V architectures. While
hardware tools preferring RISC-V over ARM due to RISC-V’s open-source nature is understand-
able, having more software tools for RISC-V would help in verifying fault-resistance for RISC-V, too.

Takeaway for Developers. Many tools available in the public domain are proof of concepts made
for research purposes. We should not underestimate the effort required to transform such artifacts
into mature products. The developers’ community could provide a practical contribution to the field
by refining such PoCs to become usable without too much friction. Additionally, we suggest using
the taxonomy presented in section 2 when presenting new tools to the user community. Employing
a common terminology to classify fault injection simulators would help users in comparing them
and selecting the ones that best suit their needs. Another aspect that would help in comparing
different tools would be establishing common benchmarks to evaluate them on so that results can
be used in a direct comparison.

There is a benchmark available for software tools and another for hardware tools: https://lazart.
gricad-pages.univ-grenoble-alpes.fr/fissc/, and https://opencores.org/projects. We note that these
two benchmarks have different quality levels: while the collection of software test cases presents, for
each application, a simple implementation that is then gradually hardened against physical attacks
by adding a diverse set of countermeasures, the collection of hardware designs is just a list of IPs.
To make this more suitable for the testing of fault injection simulators, the community of hardware
designers could provide different versions of the same design, starting with a naive implementation
and then gradually adding countermeasures. Having the same design with and without counter-
measures is necessary to properly test a tool’s accuracy in identifying faults.

Takeaway for Researchers. Fault injection is a field relevant to the security industry, with ample
research opportunities. We identify the following three research directions: (1) automated selection
of the sensitive region, (2) faults’ feasibility, and (3) state space explosion. Automatically selecting
the sensitive region (1) has the practical advantage of sparing the user a tedious manual analysis,
which might be error-prone. Feasibility of faults (2) is a research problem that needs more attention.
It is of practical importance, but it poses significant challenges. First, the information needed to
evaluate faults’ feasibility could depend on the fault technique: e.g., laser fault injection strongly
depends upon a circuit’s layout, while inducing instruction skips by glitching the power supply has
no dependence on the layout. Evaluating the feasibility of faults requires at least some information
about the hardware, so it could not be doable for software tools. Nevertheless, progress in this area
would significantly advance the field of pre-silicon fault injection.

State space explosion (3) occurs when a framework attempts an exhaustive search over all
the possible fault combinations. This approach is not feasible in the case of large circuit designs,
voluminous software projects, or when considering higher mutation orders. However, leaving out
some fault combinations could lead to false negatives. This problem could be tackled by developing
sound heuristics that enable tools to reduce the search space without missing potential faults.

It could be interesting to compare the false positives rate among tools that give formal guarantees
on the absence of false negatives and then compare these results with the same question for tools
providing empirical guarantees on the absence of false negatives. This would be a cost metric for

https://lazart.gricad-pages.univ-grenoble-alpes.fr/fissc/
https://lazart.gricad-pages.univ-grenoble-alpes.fr/fissc/
https://opencores.org/projects


SoK: The apprentice guide to automated fault injection simulation 21

providing such a guarantee, and could be an important factor to consider when a user is choosing
which tool to use.

The field of fault injection needs more FOSS22 tools to foster progress and innovation. When
developing a proof of concept application, making the source code available under a permissive
license is necessary. To promote real-world application of the presented ideas, care should be taken
in providing adequate documentation that guides the user in setting up and using the PoC. This
would help the developers’ community make mature products out of PoCs.

References

1. Adhikary, A., Buhan, I.: Sok: Assisted fault simulation - existing challenges and opportunities offered by
AI. In: Zhou, J., Batina, L., Li, Z., Lin, J., Losiouk, E., Majumdar, S., Mashima, D., Meng, W., Picek,
S., Rahman, M.A., Shao, J., Shimaoka, M., Soremekun, E.O., Su, C., Teh, J.S., Udovenko, A., Wang,
C., Zhang, L.Y., Zhauniarovich, Y. (eds.) Applied Cryptography and Network Security Workshops -
ACNS 2023 Satellite Workshops, ADSC, AIBlock, AIHWS, AIoTS, CIMSS, Cloud S&P, SCI, SecMT,
SiMLA, Kyoto, Japan, June 19-22, 2023, Proceedings. Lecture Notes in Computer Science, vol. 13907,
pp. 178–195. Springer, Kyoto, Japan (2023)

2. Agosta, G., Barenghi, A., Pelosi, G., Scandale, M.: Differential fault analysis for block ciphers: an
automated conservative analysis. In: Poet, R., Rajarajan, M. (eds.) Proceedings of the 7th International
Conference on Security of Information and Networks, Glasgow, Scotland, UK, September 9-11, 2014.
p. 137. ACM, Glasgow, Scotland, UK (2014)

3. Aidemark, J., Vinter, J., Folkesson, P., Karlsson, J.: GOOFI: generic object-oriented fault injection
tool. In: 2003 International Conference on Dependable Systems and Networks (DSN 2003), 22-25 June
2003, San Francisco, CA, USA, Proceedings. p. 668. IEEE Computer Society, San Francisco, CA, USA
(2003)

4. Arribas, V., Wegener, F., Moradi, A., Nikova, S.: Cryptographic fault diagnosis using verfi. In: 2020
IEEE International Symposium on Hardware Oriented Security and Trust, HOST 2020, San Jose, CA,
USA, December 7-11, 2020. pp. 229–240. IEEE, San Jose, CA, USA (2020)

5. Baier, C., Katoen, J.: Principles of model checking. MIT Press, Cambridge, MA, USA (2008)
6. Balasch, J., Gierlichs, B., Verbauwhede, I.: An in-depth and black-box characterization of the effects

of clock glitches on 8-bit mcus. In: Breveglieri, L., Guilley, S., Koren, I., Naccache, D., Takahashi, J.
(eds.) 2011 Workshop on Fault Diagnosis and Tolerance in Cryptography, FDTC 2011, Tokyo, Japan,
September 29, 2011. pp. 105–114. IEEE Computer Society (2011)

7. Barenghi, A., Breveglieri, L., Koren, I., Naccache, D.: Fault injection attacks on cryptographic devices:
Theory, practice, and countermeasures. Proc. IEEE 100(11), 3056–3076 (2012)

8. Becker, M., Baldin, D., Kuznik, C., Joy, M.M., Xie, T., Müller, W.: XEMU: an efficient QEMU based
binary mutation testing framework for embedded software. In: Jerraya, A., Carloni, L.P., Maraninchi,
F., Regehr, J. (eds.) Proceedings of the 12th International Conference on Embedded Software, EMSOFT
2012, part of the Eighth Embedded Systems Week, ESWeek 2012, Tampere, Finland, October 7-12,
2012. pp. 33–42. ACM, Tampere, Finland (2012)

9. Bosio, A., Natale, G.D.: LIFTING: A flexible open-source fault simulator. In: 17th IEEE Asian Test
Symposium, ATS 2008, Sapporo, Japan, November 24-27, 2008. pp. 35–40. IEEE Computer Society,
Sapporo, Japan (2008)

10. Breier, J., Hou, X., Liu, Y.: Fault attacks made easy: Differential fault analysis automation on assembly
code. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018(2), 96–122 (2018)

11. Burchard, J., Gay, M., Ekossono, A.M., Horácek, J., Becker, B., Schubert, T., Kreuzer, M., Polian,
I.: Autofault: Towards automatic construction of algebraic fault attacks. In: 2017 Workshop on Fault

22 Free and Open Source Software. Here "free" is the notorious "free as in freedom".



22 A. Adhikary et al.

Diagnosis and Tolerance in Cryptography, FDTC 2017, Taipei, Taiwan, September 25, 2017. pp. 65–72.
IEEE Computer Society, Taipei, Taiwan (2017)

12. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: unassisted and automatic generation of high-coverage tests
for complex systems programs. In: Draves, R., van Renesse, R. (eds.) 8th USENIX Symposium on Op-
erating Systems Design and Implementation, OSDI 2008, December 8-10, 2008, San Diego, California,
USA, Proceedings. pp. 209–224. USENIX Association, San Diego, CA, USA (2008)

13. Chen, Z., Narayanan, N., Fang, B., Li, G., Pattabiraman, K., DeBardeleben, N.: Tensorfi: A flexible
fault injection framework for tensorflow applications. In: Vieira, M., Madeira, H., Antunes, N., Zheng, Z.
(eds.) 31st IEEE International Symposium on Software Reliability Engineering, ISSRE 2020, Coimbra,
Portugal, October 12-15, 2020. pp. 426–435. IEEE, Coimbra, Portugal (2020)

14. Civera, P., Macchiarulo, L., Rebaudengo, M., Reorda, M.S., Violante, M.: Exploiting FPGA for accel-
erating fault injection experiments. In: 7th IEEE International On-Line Testing Workshop (IOLTW
2001), 9-11 July 2001, Taormina, Italy. pp. 9–13. IEEE Computer Society, Taormina, Italy (2001)

15. Developer, A.: Gnu toolchain for arm (2024), https://developer.arm.com/Tools%20and%20Software/
GNU%20Toolchain, accessed: 2024-06-29

16. Dureuil, L., Petiot, G., Potet, M., Le, T., Crohen, A., de Choudens, P.: FISSC: A fault injection and
simulation secure collection. In: Skavhaug, A., Guiochet, J., Bitsch, F. (eds.) Computer Safety, Reliabil-
ity, and Security - 35th International Conference, SAFECOMP 2016, Trondheim, Norway, September
21-23, 2016, Proceedings. Lecture Notes in Computer Science, vol. 9922, pp. 3–11. Springer, Trondheim,
Norway (2016)

17. Dureuil, L., Potet, M., de Choudens, P., Dumas, C., Clédière, J.: From code review to fault injection
attacks: Filling the gap using fault model inference. In: Homma, N., Medwed, M. (eds.) Smart Card
Research and Advanced Applications - 14th International Conference, CARDIS 2015, Bochum, Ger-
many, November 4-6, 2015. Revised Selected Papers. Lecture Notes in Computer Science, vol. 9514, pp.
107–124. Springer, Bochum, Germany (2015)

18. Eldridge, S., Buyuktosunoglu, A., Bose, P.: Chiffre: A configurable hardware fault injection framework
for risc-v systems (2018)

19. Ferraretto, D., Pravadelli, G.: Efficient fault injection in QEMU. In: 16th Latin-American Test Sym-
posium, LATS 2015, Puerto Vallarta, Mexico, March 25-27, 2015. pp. 1–6. IEEE Computer Society,
Puerto Vallarta, Mexico (2015)

20. Fuchs, E.: An evaluation of the error detection mechanisms in MARS using software-implemented fault
injection. In: Hlawiczka, A., Silva, J.G., Simoncini, L. (eds.) Dependable Computing - EDCC-2, Second
European Dependable Computing Conference, Taormina, Italy, October 2-4, 1996, Proceedings. Lecture
Notes in Computer Science, vol. 1150, pp. 73–90. Springer, Taormina, Italy (1996)

21. Gicquel, A., Hardy, D., Heydemann, K., Rohou, E.: SAMVA: static analysis for multi-fault attack
paths determination. In: Kavun, E.B., Pehl, M. (eds.) Constructive Side-Channel Analysis and Secure
Design - 14th International Workshop, COSADE 2023, Munich, Germany, April 3-4, 2023, Proceedings.
Lecture Notes in Computer Science, vol. 13979, pp. 3–22. Springer, Munich, Germany (2023)

22. Grycel, J.T., Schaumont, P.: Simplifi: Hardware simulation of embedded software fault attacks. Cryp-
togr. 5(2), 15 (2021)

23. Hari, S.K.S., Tsai, T., Stephenson, M., Keckler, S.W., Emer, J.S.: SASSIFI: an architecture-level fault
injection tool for GPU application resilience evaluation. In: 2017 IEEE International Symposium on
Performance Analysis of Systems and Software, ISPASS 2017, Santa Rosa, CA, USA, April 24-25, 2017.
pp. 249–258. IEEE Computer Society, Santa Rosa, CA, USA (2017)

24. Hauschild, F., Garb, K., Auer, L., Selmke, B., Obermaier, J.: ARCHIE: A qemu-based framework for
architecture-independent evaluation of faults. In: 18th Workshop on Fault Detection and Tolerance in
Cryptography, FDTC 2021, Milan, Italy, September 17, 2021. pp. 20–30. IEEE, Milan, Italy (2021)

25. Hayashi, Y., Hasegawa, R., Wadatsumi, T., Monta, K., Miki, T., Nagata, M.: Fault injection attacks ex-
ploiting high voltage pulsing over si-substrate backside of ic chips. https://fdtc.deib.polimi.it/FDTC24/
slides/FDTC2024-talk-1.2.pdf (2024), presented at FDTC 2024, September 4, 2024, Halifax, Canada

https://developer.arm.com/Tools%20and%20Software/GNU%20Toolchain
https://developer.arm.com/Tools%20and%20Software/GNU%20Toolchain
https://fdtc.deib.polimi.it/FDTC24/slides/FDTC2024-talk-1.2.pdf
https://fdtc.deib.polimi.it/FDTC24/slides/FDTC2024-talk-1.2.pdf


SoK: The apprentice guide to automated fault injection simulation 23

26. Hoffmann, M., Schellenberg, F., Paar, C.: ARMORY: fully automated and exhaustive fault simulation
on ARM-M binaries. IEEE Trans. Inf. Forensics Secur. 16, 1058–1073 (2021)

27. Höller, A., Krieg, A., Rauter, T., Iber, J., Kreiner, C.: Qemu-based fault injection for a system-level
analysis of software countermeasures against fault attacks. In: 2015 Euromicro Conference on Digi-
tal System Design, DSD 2015, Madeira, Portugal, August 26-28, 2015. pp. 530–533. IEEE Computer
Society, Madeira, Portugal (2015)

28. Höller, A., Schonfelder, G., Kajtazovic, N., Rauter, T., Kreiner, C.: FIES: A fault injection framework
for the evaluation of self-tests for cots-based safety-critical systems. In: 15th International Microproces-
sor Test and Verification Workshop, MTV 2014, Austin, TX, USA, December 15-16, 2014. pp. 105–110.
IEEE Computer Society, Austin, TX, USA (2014)

29. Hou, X., Breier, J., Zhang, F., Liu, Y.: Fully automated differential fault analysis on software imple-
mentations of block ciphers. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019(3), 1–29 (2019)

30. Jenn, E., Arlat, J., Rimén, M., Ohlsson, J., Karlsson, J.: Fault injection into VHDL models: The
MEFISTO tool. In: Digest of Papers: FTCS/24, The Twenty-Fourth Annual International Symposium
on Fault-Tolerant Computing, Austin, Texas, USA, June 15-17, 1994. pp. 66–75. IEEE Computer
Society, Austin, Texas, USA (1994)

31. Jeong, E., Lee, N., Kim, J., Kang, D., Ha, S.: FIFA: A kernel-level fault injection framework for arm-
based embedded linux system. In: 2017 IEEE International Conference on Software Testing, Verification
and Validation, ICST 2017, Tokyo, Japan, March 13-17, 2017. pp. 23–34. IEEE Computer Society,
Tokyo, Japan (2017)

32. Joye, M., Tunstall, M. (eds.): Fault Analysis in Cryptography. Information Security and Cryptography,
Springer, Berlin, Heidelberg (2012)

33. K., K., Rebeiro, C.: Faultmeter: Quantitative fault attack assessment of block cipher software. IACR
Trans. Cryptogr. Hardw. Embed. Syst. 2023(2), 212–240 (2023)

34. K., K., Roy, I., Rebeiro, C., Hazra, A., Bhunia, S.: FEDS: comprehensive fault attack exploitability
detection for software implementations of block ciphers. IACR Trans. Cryptogr. Hardw. Embed. Syst.
2020(2), 272–299 (2020)

35. Kanawati, G.A., Kanawati, N.A., Abraham, J.A.: FERRARI: A tool for the validation of system de-
pendability properties. In: Digest of Papers: FTCS-22, The Twenty-Second Annual International Sym-
posium on Fault-Tolerant Computing, Boston, Massachusetts, USA, July 8-10, 1992. pp. 336–344. IEEE
Computer Society, Boston, Massachusetts, USA (1992)

36. Karlsson, J., Lidén, P., Dahlgren, P., Johansson, R., Gunneflo, U.: Using heavy-ion radiation to validate
fault-handling mechanisms. IEEE Micro 14(1), 8–23 (1994)

37. Khanna, P., Rebeiro, C., Hazra, A.: XFC: A framework for exploitable fault characterization in block
ciphers. In: Proceedings of the 54th Annual Design Automation Conference, DAC 2017, Austin, TX,
USA, June 18-22, 2017. pp. 8:1–8:6. ACM, Austin, TX, USA (2017)

38. Madeira, H., Rela, M.Z., Moreira, F., Silva, J.G.: RIFLE: A general purpose pin-level fault injector.
In: Echtle, K., Hammer, D.K., Powell, D. (eds.) Dependable Computing - EDCC-1, First European
Dependable Computing Conference, Berlin, Germany, October 4-6, 1994, Proceedings. Lecture Notes
in Computer Science, vol. 852, pp. 199–216. Springer, Berlin, Germany (1994)

39. Moro, N., Heydemann, K., Encrenaz, E., Robisson, B.: Formal verification of a software countermeasure
against instruction skip attacks. J. Cryptogr. Eng. 4(3), 145–156 (2014)

40. Nasahl, P., Osorio, M., Vogel, P., Schaffner, M., Trippel, T., Rizzo, D., Mangard, S.: SYNFI: pre-silicon
fault analysis of an open-source secure element. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2022(4),
56–87 (2022)

41. O’Flynn, C., van Woudenberg, J.: The Hardware Hacking Handbook: Breaking Embedded Security
with Hardware Attacks. No Starch Press, San Francisco, CA (Nov 2021)

42. Parasyris, K., Tziantzoulis, G., Antonopoulos, C.D., Bellas, N.: Gemfi: A fault injection tool for study-
ing the behavior of applications on unreliable substrates. In: 44th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, DSN 2014, Atlanta, GA, USA, June 23-26, 2014.
pp. 622–629. IEEE Computer Society, Atlanta, GA, USA (2014)



24 A. Adhikary et al.

43. Pensec, W., Lapôtre, V., Gogniat, G.: Scripting the unpredictable: Automate fault injection in caba
simulation for vulnerability assessment. In: Euromicro Conference on Digital System Design (DSD
2024). Paris (August 2024)

44. Porpodas, V.: ZOFI: zero-overhead fault injection tool for fast transient fault coverage analysis. CoRR
abs/1906.09390, n/a (2019)

45. Potet, M., Mounier, L., Puys, M., Dureuil, L.: Lazart: A symbolic approach for evaluation the robustness
of secured codes against control flow injections. In: Seventh IEEE International Conference on Software
Testing, Verification and Validation, ICST 2014, March 31 2014-April 4, 2014, Cleveland, Ohio, USA.
pp. 213–222. IEEE Computer Society, Cleveland, Ohio, USA (2014)

46. Richter-Brockmann, J., Shahmirzadi, A.R., Sasdrich, P., Moradi, A., Güneysu, T.: FIVER - robust
verification of countermeasures against fault injections. IACR Trans. Cryptogr. Hardw. Embed. Syst.
2021(4), 447–473 (2021)

47. Riscure: Fisim: An open-source deterministic fault attack simulator prototype (2024), https://github.
com/Riscure/FiSim, accessed: 2024-06-29

48. Rivière, L., Bringer, J., Le, T., Chabanne, H.: A novel simulation approach for fault injection resistance
evaluation on smart cards. In: Eighth IEEE International Conference on Software Testing, Verification
and Validation, ICST 2015 Workshops, Graz, Austria, April 13-17, 2015. pp. 1–8. IEEE Computer
Society, Graz, Austria (2015)

49. Roy, I., Rebeiro, C., Hazra, A., Bhunia, S.: SAFARI: automatic synthesis of fault-attack resistant block
cipher implementations. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 39(4), 752–765 (2020)

50. Roy, I., Rebeiro, C., Hazra, A., Bhunia, S.: Faultdroid: An algorithmic approach for fault-induced
information leakage analysis. ACM Trans. Design Autom. Electr. Syst. 26(1), 2:1–2:27 (2021)

51. Saha, S., Alam, M., Bag, A., Mukhopadhyay, D., Dasgupta, P.: Learn from your faults: Leakage assess-
ment in fault attacks using deep learning. J. Cryptol. 36(3), 19 (2023)

52. Saha, S., Jap, D., Patranabis, S., Mukhopadhyay, D., Bhasin, S., Dasgupta, P.: Automatic character-
ization of exploitable faults: A machine learning approach. IEEE Trans. Inf. Forensics Secur. 14(4),
954–968 (2019)

53. Saha, S., Kumar, S.N., Patranabis, S., Mukhopadhyay, D., Dasgupta, P.: ALAFA: automatic leakage
assessment for fault attack countermeasures. In: Proceedings of the 56th Annual Design Automation
Conference 2019, DAC 2019, Las Vegas, NV, USA, June 02-06, 2019. p. 136. ACM, Las Vegas, NV,
USA (2019)

54. Saha, S., Kumar, U., Mukhopadhyay, D., Dasgupta, P.: An automated framework for exploitable fault
identification in block ciphers - A data mining approach. In: Kühne, U., Danger, J., Guilley, S. (eds.)
PROOFS 2017, 6th International Workshop on Security Proofs for Embedded Systems, Taipei, Taiwan,
September 29th, 2017. EPiC Series in Computing, vol. 49, pp. 50–67. EasyChair, Taipei, Taiwan (2017)

55. Saha, S., Kumar, U., Mukhopadhyay, D., Dasgupta, P.: An automated framework for exploitable fault
identification in block ciphers. J. Cryptogr. Eng. 9(3), 203–219 (2019)

56. Saha, S., Mukhopadhyay, D., Dasgupta, P.: Expfault: An automated framework for exploitable fault
characterization in block ciphers. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018(2), 242–276 (2018)

57. Sakiyama, K., Li, Y., Iwamoto, M., Ohta, K.: Information-theoretic approach to optimal differential
fault analysis. IEEE Trans. Inf. Forensics Secur. 7(1), 109–120 (2012)

58. Schirmeier, H., Hoffmann, M., Dietrich, C., Lenz, M., Lohmann, D., Spinczyk, O.: Fail*: An open and
versatile fault-injection framework for the assessment of software-implemented hardware fault tolerance.
In: 11th European Dependable Computing Conference, EDCC 2015, Paris, France, September 7-11,
2015. pp. 245–255. IEEE Computer Society, Paris, France (2015)

59. Selmke, B., Heyszl, J., Sigl, G.: Attack on a DFA protected AES by simultaneous laser fault injections.
In: 2016 Workshop on Fault Diagnosis and Tolerance in Cryptography, FDTC 2016, Santa Barbara,
CA, USA, August 16, 2016. pp. 36–46. IEEE Computer Society (2016)

60. Simevski, A., Kraemer, R., Krstic, M.: Automated integration of fault injection into the ASIC design
flow. In: 2013 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnol-
ogy Systems, DFTS 2013, New York City, NY, USA, October 2-4, 2013. pp. 255–260. IEEE Computer
Society, New York City, NY, USA (2013)

https://github.com/Riscure/FiSim
https://github.com/Riscure/FiSim


SoK: The apprentice guide to automated fault injection simulation 25

61. Srivastava, M., SLPSK, P., Roy, I., Rebeiro, C., Hazra, A., Bhunia, S.: SOLOMON: an automated
framework for detecting fault attack vulnerabilities in hardware. In: 2020 Design, Automation & Test
in Europe Conference & Exhibition, DATE 2020, Grenoble, France, March 9-13, 2020. pp. 310–313.
IEEE, Grenoble, France (2020)

62. Svenningsson, R., Vinter, J., Eriksson, H., Törngren, M.: MODIFI: A model-implemented fault injection
tool. In: Schoitsch, E. (ed.) Computer Safety, Reliability, and Security, 29th International Conference,
SAFECOMP 2010, Vienna, Austria, September 14-17, 2010. Proceedings. Lecture Notes in Computer
Science, vol. 6351, pp. 210–222. Springer, Vienna, Austria (2010)

63. Tang, A., Sethumadhavan, S., Stolfo, S.J.: CLKSCREW: exposing the perils of security-oblivious energy
management. In: Kirda, E., Ristenpart, T. (eds.) 26th USENIX Security Symposium, USENIX Security
2017, Vancouver, BC, Canada, August 16-18, 2017. pp. 1057–1074. USENIX Association, Vancouver,
BC, Canada (2017)

64. Timmers, N., Spruyt, A., Witteman, M.: Controlling PC on ARM using fault injection. In: 2016
Workshop on Fault Diagnosis and Tolerance in Cryptography, FDTC 2016, Santa Barbara, CA, USA,
August 16, 2016. pp. 25–35. IEEE Computer Society (2016). https://doi.org/10.1109/FDTC.2016.18,
https://doi.org/10.1109/FDTC.2016.18

65. Tollec, S., Asavoae, M., Couroussé, D., Heydemann, K., Jan, M.: µarchifi: Formal modeling and verifica-
tion strategies for microarchitectural fault injections. In: Nadel, A., Rozier, K.Y. (eds.) Formal Methods
in Computer-Aided Design, FMCAD 2023, Ames, IA, USA, October 24-27, 2023. pp. 101–109. IEEE,
Ames, IA, USA (2023)

66. Tollec, S., Hadzic, V., Nasahl, P., Asavoae, M., Bloem, R., Couroussé, D., Heydemann, K., Jan, M.,
Mangard, S.: Fault-resistant partitioning of secure cpus for system co-verification against faults. IACR
Cryptol. ePrint Arch. n/a(n/a), 247 (2024)

67. van der Veen, V., Fratantonio, Y., Lindorfer, M., Gruss, D., Maurice, C., Vigna, G., Bos, H., Razavi,
K., Giuffrida, C.: Drammer: Deterministic rowhammer attacks on mobile platforms. In: Weippl, E.R.,
Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, Vienna, Austria, October 24-28, 2016. pp.
1675–1689. ACM, Vienna, Austria (2016)

68. Wang, H., Li, H., Rahman, F., Tehranipoor, M.M., Farahmandi, F.: Sofi: Security property-driven
vulnerability assessments of ics against fault-injection attacks. IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst. 41(3), 452–465 (2022)

69. Werner, V., Maingault, L., Potet, M.: An end-to-end approach for multi-fault attack vulnerability
assessment. In: 17th Workshop on Fault Detection and Tolerance in Cryptography, FDTC 2020, Milan,
Italy, September 13, 2020. pp. 10–17. IEEE, Milan, Italy (2020)

70. Wiersma, N., Pareja, R.: Safety != security: On the resilience of ASIL-D certified microcontrollers
against fault injection attacks. In: 2017 Workshop on Fault Diagnosis and Tolerance in Cryptography,
FDTC 2017, Taipei, Taiwan, September 25, 2017. pp. 9–16. IEEE Computer Society, Taipei, Taiwan
(2017)

71. Winter, S., Piper, T., Schwahn, O., Natella, R., Suri, N., Cotroneo, D.: GRINDER: on reusability
of fault injection tools. In: Zhu, H., Hao, D., Mariani, L., Subramanyan, R. (eds.) 10th IEEE/ACM
International Workshop on Automation of Software Test, AST 2015, Florence, Italy, May 23-24, 2015.
pp. 75–79. IEEE Computer Society, Florence, Italy (2015)

72. van Woudenberg, J., Velegalati, R., Breunesse, C.B., Vermoen, D.: Improving cpu fault injection
simulations: Insights from rtl to instruction-level models. https://fdtc.deib.polimi.it/FDTC24/slides/
FDTC2024-talk-1.3.pdf (2024), accessed: September 30, 2024

73. Zhang, F., Guo, S., Zhao, X., Wang, T., Yang, J., Standaert, F., Gu, D.: A framework for the analysis
and evaluation of algebraic fault attacks on lightweight block ciphers. IEEE Trans. Inf. Forensics Secur.
11(5), 1039–1054 (2016)

https://doi.org/10.1109/FDTC.2016.18
https://doi.org/10.1109/FDTC.2016.18
https://doi.org/10.1109/FDTC.2016.18
https://fdtc.deib.polimi.it/FDTC24/slides/FDTC2024-talk-1.3.pdf
https://fdtc.deib.polimi.it/FDTC24/slides/FDTC2024-talk-1.3.pdf


26 A. Adhikary et al.

A Fault Injection Simulators Cheatsheet

Table 1: We use the following conventions: A-Automatic, H-
Hybrid, M-Manual; -formally proven absence of false negatives,

-formally proven absence of false negatives and positives; &-no
guarantees, /- empirical guarantee of false negatives absence. V-
empirical guarantee of both false negatives and false positives ab-
sence; * this property is not explicitly stated but inferred from
context.

Fault model Use cases

Tool Step Region Fault effect Mutation
order

Guarantees Architecture Tested on Code

Lazart S2 M Test inversion Unlimited V Any Verify
function

No

Formal Verif S3 M Instruction
skip/
replacement

1 ARM M3 AES, AES
(MiBench),
SHA0
(MiBench)

No

FIES S4 H Bit-flip,
Stuck-at,
Given value

Unlimited & All QEMU
targets

Access
control
application
and control
flow errors;
memory-
related faults

Yes

FiSim S4 A Transient
instruction
skip, bit-flip

1 & ARM32,
ARM64

Secure boot
implementa-
tion

Yes

ARMORY S4 H Permanent/
transient/
until
overwrite
instruction/
register skip,
byte-set,
byte-clear,
bit-flip, clear,
fill, bit-set,
bit-clear

Unlimited & ARMv6-M,
ARMv7-M,
ARMv7-EM

DFA on AES,
secure
bootloader

Yes

ARCHIE S4 M Permanent/
transient
set-0/set1,
toggle

Unlimited & ARM,
RISC-V

TinyAES,
secure
bootloader

Yes

SAMVA S4 M Instruction-
skip

Unlimited & ARM PIN Verify No

https://github.com/ahoeller/fies
https://github.com/Riscure/FiSim
https://github.com/emsec/arm-fault-simulator
https://github.com/Fraunhofer-AISEC/archie


SoK: The apprentice guide to automated fault injection simulation 27

CELTIC S4 H TSFMs Unlimited & ARM M4 VerifyPIN,
GetChallenge

No

FISSA H1 M Single/
multiple
bit-flips,
set/reset

1 or 2 & N/A DIFT on
D-RISCY

Yes

SoFI H2 A Bit-flip,
stuck-at

1 or 2* / N/A OpenCores
benchmark

No

SYNFI H2 M Bit-flip,
stuck-at

Unlimited N/A OpenTitan,
Ibex (part of
OpenTitan)

Yes

SimpliFI H3 M Clock glitch 1 glitch but
multiple
effects

& N/A RISC-V
instructions,
AES

No

Chiffre H4 M Pseudo-
random
bit-flip,
multiple
bit-flips,
stuck-at

Unlimited & N/A Rocket Chip’s
CSR registers

Yes

µarchiFI C A Single/
multiple
bit-flips,
set/reset

Limited by
number of
transitions

* Any VerifyPIN,
Key schedule
AES; Both on
RISC-V

Yes

EFS C M Modify
CPU/mem-
ory state
(PC,
registers,
stack)

Unlimited & N/A (smart
cards)

VerifyPIN,
AES

No

Fault-
Resistant
Partitioning

C H Bit-flip,
stuck-at

Unlimited* Any* OpenTitan,
Ibex (part of
OpenTitan),
VerifyPIN,
tiny AES

Yes

https://github.com/WilliamPsc/FISSA/tree/main
https://github.com/lowRISC/synfi
https://github.com/IBM/chiffre
https://zenodo.org/records/7958412
https://github.com/CEA-LIST/Fault-Resistant-Partitioning

	SoK: The apprentice guide to automated fault injection simulation for security evaluation

