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Abstract. In this paper, we propose LiLAC, a novel field-agnostic, trans-
parent multilinear polynomial commitment scheme (MLPCS) designed
to address key challenges in polynomial commitment systems. For a poly-
nomial with N coefficients, LiLAC achieves O(N) prover time, O(logN)
verifier time, and O(logN) proof size, overcoming the limitations of
O(log2 N) verification time and proof size without any increase in other
costs. This is achieved through an optimized polynomial commitment
strategy and the recursive application of the tensor IOPP, making LiLAC
both theoretically optimal and practical for large-scale applications. Fur-
thermore, LiLAC offers post-quantum security, providing robust protec-
tion against future quantum computing threats.
We propose two constructions of LiLAC: a field-agnostic LiLAC and a field-
specific LiLAC. Each construction demonstrates superior performance
compared to the state-of-the-art techniques in their respective categories
of MLPCS. First, the field-agnostic LiLAC is compared against Brake-
down (CRYPTO 2023), which is based on a tensor IOP and satisfies
field-agnosticity. In experiments conducted over a 128-bit field with a
coefficient size of 230, the field-agnostic LiLAC achieves a proof size that
is 3.7× smaller and a verification speed that is 2.2× faster, while main-
taining a similar proof generation time compared to Brakedown. Fur-
thermore, the field-specific LiLAC is evaluated against WHIR (ePrint
2024/1586), which is based on an FRI. With a 128-bit field and a coeffi-
cient size of 230, the field-specific LiLAC achieves a proof generation speed
that is 2.8× faster, a proof size that is 27% smaller, and a verification
speed that is 14% faster compared to WHIR.
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1 Introduction

A Succinct Non-interactive Argument of Knowledge (SNARK) is a cryptographic
primitive that enables a prover to convince a verifier that it possesses a valid wit-
ness for an NP statement with sublinear verification costs [PHGR16, WTS+18,
GWC19, BFS20, Set20, CBBZ23], making SNARKs crucial in numerous real-
world applications where computations must be verified by resource-constrained
parties.

A common approach to constructing a SNARK combines the Polynomial In-
teractive Oracle Proof (PIOP) [BFS20] with a Polynomial Commitment Scheme
(PCS) [KZG10,PST13,ZGK+17,AHIV17,BSCR+19,ZXZS20,BFS20,Set20]. In
a polynomial IOP, the prover provides the verifier with truth tables of large poly-
nomials. A PCS allows the prover to commit to a polynomial f using a short
commitment and later prove evaluation claims like f(x) = y. By combining
these, an efficient proof system is achieved: the prover commits to the polyno-
mials using PCS, providing values and proofs of correctness to the verifier.

The concept of polynomial commitment schemes was first introduced by Kate
et al. [KZG10], who constructed a univariate polynomial commitment scheme
using bilinear groups. This foundational work led to several extensions into the
multivariate setting, allowing for the handling of more complex data structures
and computations [PST13, ZGK+18]. As a result, numerous multilinear poly-
nomial commitment schemes with efficient provers have since been developed,
including Hyrax [WTS+18], Brakedown [GLS+23], Orion [XZS22], and Base-
fold [ZCF23].

Since the efficiency of a SNARK is largely determined by the performance
of its underlying PCS, optimizing PCS has become a central research focus. Im-
portant efficiency metrics include proving time, verification time, and proof size,
with recent studies exploring trade-offs among these factors. Schemes with a
(universal) trusted setup [KZG10,ZXZS20] achieve constant proof size and veri-
fication time but sacrifice plausible post-quantum security. In contrast, transpar-
ent PCS constructions [BBB+18,WTS+18,Lee21,BSBHR18] avoid the need for
trusted setups or complex multi-party computation, though they typically re-
sult in larger proof sizes and verification times. Field-agnostic schemes [GLS+23,
ZCF23] further enhance versatility by efficiently supporting diverse field sizes,
from binary fields in hardware verification to large prime fields in cryptographic
applications.

In this work, we focus on designing efficient and practical Multilinear Poly-
nomial Commitment Schemes (MLPCS). Our goals are to create transparent
MLPCS that do not require a trusted setup, to minimize proving and verifying
times as well as proof size, and to ensure compatibility with arbitrary (suffi-
ciently large) fields, i.e., to be field-agnostic. Recent literature [ZCF23] shows
that transparent, field-agnostic schemes generally achieve linear-time proving,
polylogarithmic-time verification, and polylogarithmic proof sizes. Although prov-
ing time has been significantly optimized to approach near-optimal linear com-
plexity, the barriers of polylogarithmic complexity in verification costs and com-
munication overhead remain. This emphasizes the need for a transparent MLPCS
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with smaller proofs and faster verification to support a wider range of appli-
cations. We aim to design a transparent, field-agnostic MLPCS that achieves
asymptotically logarithmic-time verification and logarithmic-sized proofs, while
maintaining linear-time proving. We utilize the hash function to provide plausi-
ble post-quantum security.

Table 1: Comparison to Existing Code-based Polynomial Commitment Schemes.
In the comparison table, N represents the size of the coefficients of a polynomial.
In this table, Prover complexity and Verifier complexity indicate the number of
field multiplications, while Proof size represents the number of field elements.
We denote ℓ as the testing parameter.

Protocol Prover complexity Proof size Verifier complexity Field-agnostic
FRI [BSBHR18] O(N logN) O(ℓ log2 N) O(ℓ log2 N) No

Brakedown [GLS+23] O(N) O(ℓ
√
N) O(ℓ

√
N) Yes

Orion [XZS22] O(N) O(ℓ log2 N) O(ℓ log2 N) No
BaseFold [ZCF23] O(N logN) O(ℓ log2 N) O(ℓ log2 N) Yes
STIR [ACFY24a] O(N logN) O(ℓ log logN · logN) O(ℓ log logN · logN + ℓ2 logN) No

WHIR [ACFY24b] O(N logN) O(ℓ log logN · logN) O(ℓ log logN · logN + logN) No
Ours O(N) O(ℓ logN) O(ℓ logN) Yes

Transparent, field-agnostic PCSs can be built using Interactive Oracle Proofs
of Proximity (IOPP) [BSCG+16,RRR16], a specialized proof system that verifies
whether a committed vector over a field F is close to a codeword in a linear
error-correcting code (ECC) C ⊆ F. There are two main types of IOPP-based
PCS constructions: FRI (Fast Reed-Solomon Interactive Proof of Proximity) for
Reed-Solomon codes and tensor code-based IOPPs.

FRI. FRI uses Reed-Solomon codes, which have a high relative distance, thereby
requiring fewer testing parameters and resulting in a smaller proof size. However,
Reed-Solomon codes rely on the Fast Fourier Transform (FFT), which imposes
a computational complexity of at least O(N logN) for the prover. Moreover,
FFT is highly dependent on the choice of the field, making Reed-Solomon codes
field-specific. BaseFold [ZCF23] extends the FRI protocol to construct an effi-
cient commitment scheme specifically for multilinear polynomials, and it veri-
fies polynomial evaluations by integrating with the classical sum-check protocol.
BaseFold achieves a prover complexity of O(N logN), while the verifier complex-
ity remains O(log2 N). Notably, unlike other FRI-based approaches, BaseFold is
field-agnostic, which significantly enhances its utility for SNARK applications by
employing foldable linear codes. STIR [ACFY24a] improves upon the structure
of FRI by introducing a folding technique to reduce the code rate at each round,
decreasing the verifier’s query complexity toO(logN+λ·log logN). Through this
approach, STIR achieves smaller proof sizes and faster verification times, while
also maintaining O(N logN) prover time. STIR enhances security and efficiency
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compared to FRI by requiring fewer queries for verification. WHIR [ACFY24b]
introduces constrained Reed–Solomon Codes to construct an efficient IOPP,
supporting both multivariate and univariate polynomials. While maintaining
the same query complexity as STIR, WHIR significantly improves verification
speed. Specifically, the verification time of STIR is O(λ log logN + λ2 logN),
whereas WHIR achieves O(λ log logN+logN), enabling faster verification. How-
ever, despite its speed advantage over STIR, WHIR still does not achieve field-
agnosticism.

Tensor IOPP. Approaches based on tensor code-based IOPP reduce the prov-
ing time to O(N) by using linear-time encodable code. However, compared to
FRI-based approaches, this approach generally leads to higher verification costs,
even if they exhibit the same time complexity. This is because linear-time en-
codable codes pose a lower relative distance, requiring more testing parameters
for proximity and consistency checks. Bootle et al. [BCG20] proposed a new
type of IOP using tensor codes, achieving linear prover time and quasi-linear
verifier time. This allows for efficient proofs for R1CS problems with millions of
constraints, designed to work in various fields. This approach significantly im-
proved the efficiency of polynomial verification and demonstrated the potential
for linear-time proof generation. Brakedown [GLS+23] is based on the polyno-
mial commitment scheme proposed in [BCG20]. Brakedown’s key contribution is
achieving field-agnosticism while offering a linear prover time, using linear-time
encodable codes. Its proof size and verifier time to test the proximity and con-
sistency of the code remain O(

√
N). Orion [XZS22] improves the verifier cost

and proof size to O(log2 N), keeping the linear-time prover through the use of
proof recursion, which encodes the verifier computation into a general-purpose
SNARK circuit which is not field-agnostic.

1.1 Our Contributions

Optimized Multilinear Polynomial Commitment Scheme. We introduce
a novel, field-agnostic, and transparent MLPCS that combines tensor IOPP with
the sum-check protocol, referred to as LiLAC. Our approach achieves O(N) prov-
ing time, O(logN) verification time, and O(logN) proof size. To the best of our
knowledge, LiLAC is the first scheme to achieve both logarithmic verification time
and proof size, improving upon prior polylogarithmic bounds, for a field-agnostic
and transparent MLPCS with linear-time proving.

Recursive Reduction with Improved Efficiency. We propose a recursive
reduction framework that transforms large polynomial evaluations into smaller,
manageable ones, enabling efficient final verification. By merging proximity and
consistency tests into a single operation during the reduction steps, our approach
minimizes computational overhead and enhances the verification process. The
minimized proof size and verification time of O(logN) increases practicality in
resource-constrained environments.



6 K. Lee et al.

Flexible Code and PCS Selection. LiLAC supports flexible selection of error-
correcting codes and polynomial commitment schemes for final verification, al-
lowing performance optimization based on application needs. For example, com-
bining Spielman codes with Brakedown or BaseFold PCS provides linear proving
time and field-agnosticism, while Reed-Solomon codes with FRI-based PCS offer
smaller verification times and proof sizes. This adaptability ensures LiLAC can
tailor its code and PCS choices to achieve optimal performance across diverse
use cases.

Concrete Performance Improvements. Section 4 presents experimental re-
sults for LiLAC, including the field-agnostic variants LiLAC(Brakedown) and
LiLAC(Basefold), which use Brakedown and Basefold respectively, and the field-
specific variant LiLAC(Shockwave), which utilizes Shockwave.

In a 128-bit field with 128-bit security, LiLAC(Brakedown) achieves proof
generation times comparable to Brakedown for input sizes of 230 while reduc-
ing proof sizes by 3.7× and doubling the verification speed. Under the same
conditions, LiLAC(Basefold) offers the smallest proof size among existing field-
agnostic MLPCSs at 30MB and the fastest verification time at 0.19 seconds,
while maintaining proving times similar to other MLPCSs.

Furthermore, in a 128-bit field with 100-bit security, comparisons against
the field-specific MLPCSs Orion and WHIR show that, for input sizes of 230,
LiLAC(Shockwave) achieves proving times that are 2.8× faster than WHIR and
5× faster than Orion. LiLAC(Shockwave) also delivers proof sizes that are 27%
smaller and verification speeds that are 14% faster than WHIR. Compared to
Orion, LiLAC(Shockwave) achieves proof sizes that are 52× smaller and verifica-
tion speeds that are 87× faster.

The comprehensive comparisons in Table 3 and Table 4 demonstrate LiLAC’s
balanced improvements in proving time, proof size, and verification speed across
various input sizes. In particular, our scheme is significantly more efficient for
large input sizes, highlighting its critical role in efficiently handling large datasets
and high-degree polynomials.

1.2 Technical Overview

We first explore the method of constructing a multilinear polynomial commit-
ment scheme (MLPCS) using tensor IOPP (Interactive Oracle Proof of Proxim-
ity). The core idea of tensor IOPP is to represent a multilinear polynomial with
N coefficients as a matrix, then apply a linear error correction code to each row
(or column) to create a matrix containing codewords. This process is referred
to as encoding. On the other hand, we can multiply the matrix representing N
coefficients by an appropriate vector to create a vector expressed as a linear com-
bination, known as folding. As shown in Figure 1, we apply the fold and encode
operations in reverse on the encoded matrix and folded vector, respectively. Since
both fold and encode are commutative linear operations, the results from both
sides should be identical, yielding fold(encode(C)) = encode(fold(C)), where C
represents the matrix of N coefficients.
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Fig. 1: Proximity and consistency tests in tensor IOPP

For each element in the vectors derived from the left and right sides, tensor
IOPP guarantees, with high probability, that the two vectors are identical if a
sufficient number of random point elements match through proximity testing
of the codeword. To ensure that the column vectors are part of encode(C),
we first commit to encode(C) by constructing a Merkle tree from its column
vectors. We then combine these Merkle trees into another Merkle tree along
the row direction, using the resulting Merkle root as the commitment value for
encode(C). In existing tensor IOPP approaches, vector equality is verified either
directly by the verifier [BCG20,GLS+23] or through the use of SNARKs [XZS22].

In our approach, we use a sum-check protocol to verify random position
values in the equation fold(encode(C)) = encode(fold(C)). The fold operation
on the codeword matrix from encode(C) is represented by multiplying it with a
vector, while encoding the vector fold(C) involves applying the encode matrix.
Denoting the codeword matrix as E, the encode matrix as G, the vector fold(C)
as y, and the vector for fold(E) as r, we have:∑

i

G̃(j, i)ỹ(i) =
∑
i

Ẽ(j, i)r̃(i),

for all rows (or columns) where X̃(j, i) represents a multilinear polynomial to
represent X.

When sum-check is applied to verify arbitrary multilinear polynomial eval-
uations, the problem reduces to checking the polynomial evaluation at random
values. However, applying this directly to the above equations would require eval-
uating the polynomials G̃ and Ẽ, which contain more than N elements, negating
any efficiency gains from using the sum-check protocol.

We observe that tensor IOPP requires verification of only a limited number of
random positions, defined by the security parameter λ as a testing parameter ℓ4.
To address this, we construct reduced matrices G′ and E′ that contain elements
for only the selected positions in G and E and perform sum-check on this re-
4 Here, ℓ is the testing parameter for tensor IOPP; in Brakedown [GLS+23], it is

referred to as the number of column openings, and in Orion [XZS22], it is called the
opening.
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duced form. To facilitate this, our proposed scheme first constructs Merkle trees
for both G and E to create commitments. Specifically, as shown in Figure 2,
we extract Merkle tree intermediate nodes representing the ℓ selected rows (or
columns) from the committed G and E matrices, creating a new commitment
for the next round of recursion.

CM(G) CM(E)

CM(yz) CM(yw)

CM(f ′)

Fig. 2: Committing process for the next commitment

The newly constructed G′ and E′ matrices are reduced to ℓ
√
N in size com-

pared to the original G and E. This reduction is possible because if C, the
matrix representing a polynomial with N coefficients, is square, each row and
column has

√
N elements. Selecting ℓ such rows (or columns) forms the reduced

matrices G′ and E′.
By combining all MLPCSs for G′, E′, y, and r into a single MLPCS, we

evaluate this combined MLPCS to confirm the evaluations of G′, E′, y, and
r match correctly. This process invokes our MLPCS once more to evaluate the
newly created MLPCS, which now has 2ℓ

√
N+2

√
N coefficients. More precisely,

the number of coefficients N ′ for the next round can be expressed as follows:

N ′ = ψ(2ℓ
√
N + 2

√
N),

where ψ(x) is the smallest power of 2 that is not less than x, represented as 22k

for some integer k. This ensures that
√
N ′ for the next round N ′ has a power-

of-2 form. This process repeats recursively until the coefficient count cannot be
reduced further, at which point we use an existing MLPCS to complete the proof.

In each round, we need to evaluate the coefficient matrix Ci with respect
to the evaluation value vector z. When independently performing MLPCS for
each round, the prover applies encoding to the given coefficient matrix Ci, and
the verifier, after receiving the commitment cmEi

of Ei(= encode(Ci)), checks
whether Ei has been properly encoded. To do this, the verifier selects a random
vector w and performs both the proximity test to verify Ei and the consistency
test to ensure correctness with respect to the given vector z. If the value z is
randomly selected after Ei has been committed, the proximity test and consis-
tency test can be combined into a single test [DP24]. Therefore, in the proposed
scheme, we first perform the commitment for encode(fold(Ci+1)) for the next
round before determining z in the sum-check process. This order allows us to
apply an optimization that merges z and w into a single vector.
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For a polynomial with Ni coefficients, the prover needs O(Ni)5 to compute
fold and O(Ni) to compute encode (assuming the encode function is linear time).
The prover sends Merkle roots for the ℓ positions received from the verifier by
extracting them from G and E. Additionally, membership proofs (withO(logNi)
hash values) are included to verify that each Merkle root belongs to G or E. In
the sum-check phase, the prover and verifier perform logNi interactions, with
the verifier receiving O(logNi) values from the prover. Thus, the total proving
time for the prover is O(Ni), while the total verifying time for the verifier is
O(logNi), with a proof size of O(logNi).

With each recursive MLPCS reduction, the coefficient count decreases to√
Ni, and Ni =

√
Ni−1 = N

1
2i . Therefore, the total proving time is:

∞∑
i=0
O(N

1
2i ) = O(N),

and the verifying time and proof size are both:

∞∑
i=0
O(logN

1
2i ) = O(logN).

Note that the overhead from the final MLPCS evaluation is constant, as it in-
volves a polynomial with a fixed number of coefficients.

1.3 Outline

The rest of this paper is organized as follows: Section 2 introduces cryptographic
backgrounds. Section 3 presents our LiLAC, a field-agnostic and transparent
MLPCS with a linear time prover and a logarithmic verifier. We also imple-
ment LiLAC and offer its experimental results and comparison with other PCS
in Section 4. Section 5 concludes the paper.

2 Preliminaries

Let [N ] denote the set of integers {1, . . . , N}. Given a set S, we use the notation
a←$ S to indicate that an element a is sampled uniformly at random from S. We
denote by λ the security parameter. Let F[x1, . . . , xn] represent the polynomial
ring over the field F, where F is a field of prime order p. Vectors and matrices
are represented in bold font. For a vector v ∈ Fn, the components are denoted
by v1, . . . , vn. Similarly, for a matrix M ∈ Fm×n, the (i, j)-th element of M is
denoted by M[i, j]. The notation M[i, :] refers to the i-th row of M, while M[:, j]
denotes the j-th column of M, where i ∈ [m] and j ∈ [n].

5 We analyze the complexity while ignoring the constant ℓ in the testing parameter.
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2.1 Multilinear Extension

Suppose f : {0, 1}d → F is a function that maps d-bit elements into an element
of F. A polynomial extension of f is a low-degree d-variate polynomial f̃(·) such
that f̃(x) = f(x) for all x ∈ {0, 1}d.

A multilinear extension (or MLE) is a low-degree polynomial extension where
the extension is a multilinear polynomial. Given a function F : {0, 1}d → F, the
multilinear extension of F (·) is the unique multilinear polynomial F̃ : Fd → F.
It can be computed as follows.

F̃ (x) =
∑

e∈{0,1}d

F (e) ·
d∏
i=1

(xi · ei + (1− xi) · (1− ei))

=
∑

e∈{0,1}m

F (e) · ẽq(x, e)

where ẽq(x, e) is the MLE of the following function:

eq(x, e) =
{

1 if x = e
0 otherwise

2.2 Polynomial Commitment Schemes

A Polynomial Commitment Scheme (PCS) is a tuple of four PPT protocols
(Setup,Commit,Open,Eval) defined as follows:

– pp ← Setup(1λ, d): Setup takes as input the security parameter λ and the
number of variables in a multilinear polynomial d and outputs the public
parameters pp.

– C ← Commit(pp, f): Commit takes as input pp and a multilinear polynomial
f ∈ F[X0, . . . , Xd−1] and outputs a commitment C.

– 1/0← Open(pp, f, C): Open takes as input pp, f , and C, and outputs 1 if C
is a commitment to f and 0 otherwise.

– 1/0← Eval(pp, C, z, σ, d, f): Eval is an interactive protocol between a proba-
bilistic prover P and a verifier V. The public inputs are pp, C, a evaluation
point z ∈ Fd and a value σ ∈ F. P attempts to convince V that f(z) = σ,
and V outputs 1 if it is convinced and 0 otherwise.

A PCS (Setup,Commit,Open,Eval) must additionally satisfy binding, com-
pleteness, and knowledge-soundness.

Definition 1 (Binding). For any PPT adversary A, and d ≥ 1 the following
probability is negligible in λ:

Pr

Open(pp, C, f0, o0) = 1
∧ Open(pp, C, f1, o1) = 1
∧ f0 ̸= f1

∣∣∣∣∣∣ pp← Setup(1λ, N),
(C, f0, f1, o0, o1)← A(pp, d)


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Definition 2 (Completeness). For any multilinear polynomial f the following
probability is 1

Pr

Eval(pp, C, z, σ; f) = 1
∧ f(z) = σ

∣∣∣∣∣∣
pp← Setup(1λ, N)
C ← Commit(pp, f)
1← Open(pp, C, f, o)


Definition 3 (Knowledge-Soundness). Eval is an argument of knowledge for
the following relation given pp← Setup(λ, d):

R =
{

(C,v, σ; f)
∣∣ f ∈ F[X0, . . . , Xd−1] ∧ v ∈ Fd ∧ σ ∈ F ∧ f(v) = σ

}
2.3 Merkle Tree

A Merkle tree is a data structure that allows for committing to ℓ = 2dep messages
with a single hash value h, such that revealing any single message bit requires
dep + 1 hash values.

Definition 4 (Merkle Tree). A Merkle tree is represented by a binary tree of
depth dep, where ℓ message elements m1,m2, · · · ,mℓ are assigned to the leaves
of the tree. The values assigned to the internal nodes are computed by hashing
the values of their two child nodes. To reveal mi, one must provide mi together
with the values on the path from mi to the root. The algorithms are as follows:

– h← Merkle.CM(m1, · · · ,mℓ): Computes the root hash h of the Merkle tree.
– (mi, πi) ← Merkle.Open(m, i): Given the messages and an index i, outputs

the message mi and the proof πi.
– 1/0← Merkle.Verify(πi,mi, h): Given the proof πi, the message mi, and the

root Hash h, outputs 1 if the proof is valid and 0 otherwise.

2.4 Linear Code

Definition 5 (Linear Code [XZS22]). A [n, k, d] linear code C is a collection
of functions c : [n] → F that form an F-linear subspace in Fn where n is the
codeword length, k is the message length, and d is the minimum distance of the
code. The rate ρ of the code is defined as the ratio of the message length to the
codeword length, ρ = k

n , and the relative distance δ is defined as d
n , representing

the minimum fractional distance between distinct codewords.

There exist maps that can expand or reduce the size of a given tensor using
linear combinations.

Definition 6 (Fold). The folding of a function f : [n1]× [n2]×· · ·× [nt]→ F by
a linear combination α : [n1]→ F is the function Fold(f ;α) : [n2]×· · ·× [nt]→ F
defined as follows:

Fold(f ;α) :=
n1∑
i=1

α(i) · f(i, ·, · · · , ·).



12 K. Lee et al.

Messages from Fk are encoded via an injective linear function Enc : Fk → C.
Specifically, a message m ∈ Fk is transformed to Gm, where G ∈ Fn×k is the
generator matrix of the code. This can be generalized as follows:

Definition 7 (Encode). Let G : [n] × [k] → F be the generator matrix of a
linear code C in Fn. Let f : [k]× [n1]×· · ·× [nt]→ F be a function. The encoding
of f is the function Enc(f) : [n]× [n1]× · · · × [nt]→ F defined as follows:

Enc(f)(j, ·, · · · , ·) :=
k∑
i=1

f(i, ·, · · · , ·)G(i, j).

Definition 8. Let f : [k]t → F be a message function with inputs indexed by
(i1, i2, · · · , it). The C⊗t-encoding of f is the function Enc1··· ,t(f) : [n]t → F,
indexed by (j1, j2, · · · , jt), defined as follows:

Enc1··· ,t(f)(j1, · · · , jt)

:=
k∑

i1=1
· · ·

k∑
it=1

f(i1, · · · , it)G(i1, j1) · · ·G(it, jt).

Proposition 1 (Lemma 7.8 [BCG20]) Consider the following functions:

fr−1 : [ℓ]× [k]t−r+1 → F,

cr−1 : [ℓ]× [n]t−r+1 → F,

fr : [k]t−r+1 → F,

cr : [k]× [n]t−r → F,

q : [ℓ]→ F

satisfying the following conditions:

cr−1 = Encr,··· ,t(fr−1), fr = Foldr−1(fr−1; q),
cr = Encr+1,··· ,t(fr).

Then, it holds that Foldr−1(cr−1; q) = Encr(cr). In other words, the following
diagram commutes:

Fℓk
t−r+1

Fℓn
t−r+1

Fk
t−r+1

Fkn
t−r

Fn
t−r+1

Encr,··· ,t

Foldr−1 Foldr−1

Encr+1,··· ,t Encr

2.5 Sum-check Protocol

The sum-check protocol [LFKN92] allows a verifier to offload the computation
of the following sum to an untrusted prover:∑

xn∈{0,1}

· · ·
∑

x2∈{0,1}

∑
x1∈{0,1}

f(x1, x2, . . . , xn),
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where f is an n-variate polynomial over a finite field F. For the sake of brevity
and clarity in this paper, we will denote the above sum more concisely as:∑

x∈{0,1}n

f(x), where x = (x1, x2, . . . , xn).

3 Multilinear Polynomial Commitment Schemes with a
Logarithmic Verifier

In this section, we present LiLAC, a field-agnostic and transparent multilin-
ear polynomial commitment scheme with a linear prover and logarithmic veri-
fier. Our MLPCS, LiLAC, recursively applies the reduction process denoted as
LiLAC-Reduce to simplify the multilinear polynomial and finally applies MLPCS
at the end.

Let C be a
√
N×
√
N -matrix. Let fC

N be a multilinear polynomial in F[x1, . . . , xlogN ]
with coefficients matrix C. Given a vector z ∈ FlogN and a scalar σ ∈ F and
commitment to fC

N , the prover must demonstrate to the verifier that σ = fC
N (z).

We utilize a Merkle tree (see Section 2.3), which has a hierarchical structure,
and denote this commitment as Merkle.CM, and Table 2 provides an overview of
the notation and variables used in our proposed algorithm.

Table 2: Notations and variables
N The size of the coefficients such that N = 2r = k2

C The coefficients represented as a matrix in FN

Ni The i-th size of the coefficients such that Ni = k2
i

Ci The i-th coefficient matrix in FNi

Ci

The [ni, ki, di]-linear (and systematic) code,
where ni is ρ−1ki = 2ki,

with relative distance δ = di
ni

Gi

The i-th encoding matrix
[

I
Pi

]
in Fni×ki

where I is the identity matrix of size ki × ki

and Pi is a (ki × ki)-matrix
Enci The i-th encoding function
Fold The folding map

ψ(x) It returns the smallest value v,
where v ≥ x, and

√
v is a power-of-2 form

ℓ The testing parameter for proximity and consistency checks

Our LiLAC consists of four components: Setup, Commit, Open and Eval (see
Figure 3). In Setup, the number of rounds rn for LiLAC-Reduce is set, and the en-
coding matrices are generated and committed, outputting the public parameter
pp. In Commit, the prover generates the commitment for the coefficient matrix
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C. In Open, the verifier validates the opening of the commitment. In Eval, the
prover claims the evaluation of f at z as σ.

The prover encodes the coefficient matrix C, computes the commitment for
a submatrix D, and sends it to the verifier. Initially, we assume that all en-
codings utilize systematic codes, which are error-correcting codes that preserve
the original data unchanged while appending extra bits for error detection or
correction. For the proximity test, the verifier provides a random vector w to
the prover. Using the parameters (pp, cmC, cmD, z,w, σ), the prover and verifier
invoke LiLAC-Reduce. The primary goal of LiLAC-Reduce is to reduce the size
N and the coefficient matrix C (corresponding to the multilinear polynomial
fC
N ) to N ′ = ψ(2(ℓ+ 1)

√
N). This process generates a smaller coefficient matrix

C′ ∈ F
√
N ′×

√
N ′ , resulting in a simplified multilinear polynomial fC′

N ′ .
By evaluating the polynomial at the reduced size N ′ rather than the original

size N , the protocol significantly reduces both computational cost and proof size.
The reduction process, which assumes systematic codes, is described in Section
3.2. After completing all reduction steps recursively, the construction of LiLAC is
finalized by applying the multilinear polynomial commitment scheme (MLPCS),
as described in Section 3.1.

In cases where non-systematic codes are employed, additional verification
is required to confirm that the codeword E is correctly derived from C. This
verification is performed using the sum-check protocol, as detailed in Section
3.3, which extends the scheme to support non-systematic codes.

3.1 LiLAC-MLPCS

Through the recursive structure of LiLAC-Reduce, invoked by our proposed mul-
tilinear polynomial commitment scheme LiLAC, substantial reductions in both
verification costs and proof size are achieved, bringing them to logarithmic scale.

Setup for LiLAC. During Setup, the necessary information for the encoding
function used in each reduction is computed. This includes the message length,
codeword length, and details of the encoding matrix. The data for all rounds is
stored, and the public parameters are generated, including the commitments to
the encoding matrices.

Let rn denote the number of recursion rounds in LiLAC-Reduce, which de-
pends on both N and ℓ. For each round in LiLAC-Reduce, the number of coeffi-
cients N is reduced to ψ(2(ℓ+ 1)

√
N). The recursion continues until the size of

N stabilizes relative to ψ(2(ℓ+ 1)
√
N), ensuring that further reductions are no

longer necessary. At this point, rn is determined. For each i ∈ [rn], there exists
an encoding matrix Gi ∈ Fki×ni for the encoding function Enci : ki → ni. The
party computes the Merkle commitment for each matrix Gi, resulting in com-
mitments denoted as cmGi

. Let pp be the set consisting of {cmGi
}, and {Gi}

for all 1 ≤ i ≤ rn. The party then returns pp.

Commit for LiLAC. In Commit, the prover computes the Merkle commitment
for the coefficient matrix C.
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Setup(1λ, N)

1 : C ← {Collection of Linear Codes}
2 : ℓ← constructparamater(λ, C)
3 : rn← min{i |Ni ≤ Ni+1}

where N1 = N and Ni+1 = ψ(2(ℓ+ 1)
√
Ni)

4 : for 1 ≤ i ≤ rn,
5 : Gi ← constructEncodeMatrix(C, Ni)
6 : cmGi ← Merkle.CM(Gi)
7 : pp = ({cmGi ,Gi}1≤i≤rn)
8 : return pp

Commit(pp, fC
N )

1 : C← fC
N

2 : cmC ← Merkle.CM(C)
3 : return cmC

Open(pp, fC
N , cmC)

1 : C← fC
N

2 : V accepts if cmC = Merkle.CM(C)

Eval(pp, cmC, z, σ; fC
N )

1 : P claims σ = fC
N (z) to V

2 : P computes E = Enc(C)

3 : P sets D = (E[i, j])1≤j≤k
k+1≤i≤n

4 : P computes cmD = Merkle.CM(D) and sends it to V
5 : V samples w←$ Flog N and sends it to P
6 : P and V call the LiLAC-Reduce(pp, cmC, cmD, z,w, σ; C,E)
V accepts if 1← LiLAC-Reduce

Fig. 3: LiLAC

Open for LiLAC. In Open, the verifier verifies that cmC is a valid commitment
to f .

Evaluation for LiLAC. In Eval, the prover and verifier recursively execute
LiLAC-Reduce to verify whether the evaluation of the polynomial fC

N at z equals
σ. The prover begins by applying the encoding function Enc to encode each col-
umn of the matrix C ∈ Fk×k, resulting in the codeword E = Enc(C) ∈ Fn×k.
In case that a systematic code is used, the codeword E can be expressed as
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where D ∈ F(n−k)×k is a submatrix, allowing for efficient separation of
the original data C and the additional parity bits D. The prover commits to
D using Merkle commitments and sends this commitment, denoted as cmD, to
the verifier. The verifier then samples a random point w←$ FlogN and sends it
to the prover. Next, the prover and verifier execute LiLAC-Reduce with the in-
put (pp, cmC, cmD, z,w, σ; C,E). The verifier accepts the result if LiLAC-Reduce
outputs 1.

3.2 LiLAC-Reduce

In this section, we describe the process LiLAC-Reduce that simplifies a multilin-
ear polynomial by reducing the number of its coefficients, producing a smaller
multilinear polynomial.

The LiLAC-Reduce process consists primarily of two stages: the tensor IOPP
process and the sum-check process. In the tensor IOPP process, the prover starts
with a matrix C, constructed from the coefficients of a multilinear polynomial f ,
and an encoded matrix E, which is generated by applying an encoding function
to each column of C. Both the prover and the verifier have Merkle tree commit-
ments for C and E, denoted by cmC and cmE, respectively. The process takes
as inputs the vector z, which contains values substituted for the variables of f ,
and the evaluation result σ = f(z). Additionally, a random vector w, selected
by the verifier for the proximity test, is provided as an input. The steps of the
LiLAC-Reduce process are as follows:

– Folding: Using the input vector z and the verifier-provided vector w, the
prover folds the coefficient matrix C, computing yz and yw.

– Membership Proof : The verifier selects positions to check, and a member-
ship proof is provided for the corresponding intermediate Merkle tree roots
representing rows at those positions.

– Commitment for the Next Round: A new coefficient matrix C′ for the
next round is generated, and its encoding and corresponding commitment
cmE′ are computed.

– Multilinear Extension and Sum-Check: The sum-check protocol is used
to verify the proximity and consistency tests required in the tensor IOPP,
as well as to validate the tensor product calculations. The sum-check pro-
cess transitions to the multilinear polynomial evaluation of a random vector
z′. Since the coefficient matrix C′, intended for the next round, is already
encoded and committed as cmE′ , the same random vector z′ can also be
used for the proximity test, eliminating the need to select a separate random
vector w′.

– Invoke for the Next Round: This step is performed to initiate the MLPCS
evaluation for the subsequent round, aiming to prove the evaluation result
σ′ = f(z′).
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LiLAC-Reduce(pp, cmC, cmD, z,w, σ; C,E)
1 : if N ≤ N ′ = ψ(2(ℓ + 1)

√
N),

2 : P and V execute a MLPCS as a black box to verify that fC
N (z) = σ.

3 : V outputs 1 if the check passes, 0 otherwise
4 : else
5 : P computes rz = ⊗r

i=log k+1(1− zi, zi), yz = Fold(C; rz)

6 : P computes rw = ⊗r
i=log k+1(1− wi, wi), yw = Fold(C; rw)

7 : P computes cmyz = Merkle.CM(yz), cmyw = Merkle.CM(yw) and sends it to V
8 : V computes cmE = Merkle.CM(cmC, cmD)
9 : V samples I = {l1, · · · , lℓ} ⊂ [n] and sends it to P

10 : P computes cmE[lt:] = Merkle.CM(E[lt, :]) and cmG[lt:] = Merkle.CM(G[lt, :]) for all lt ∈ I

11 : P sends cmE[lt:], cmG[lt:], and co-paths to V for all t ∈ [ℓ]

12 : V checks cmE[lt:] ∈ cmE and cmG[lt:] ∈ cmG for all t ∈ [ℓ]

13 :
P sets C′ = (G[l1, :], . . . ,G[lℓ :], 0, · · · , 0︸ ︷︷ ︸

N′
2 −kℓ−k

,yz,E[l1, :], . . . ,E[lℓ :], 0, · · · , 0︸ ︷︷ ︸
N′
2 −kℓ−k

,yw) ∈ FN′

14 : P computes E′ = Enc′(C′) and sets D′ = E′[i, j]1≤j≤k′

k′+1≤i≤n′

15 : P computes cmD′ = Merkle.CM(D′) and sends it to V

16 : P and V compute l̃z(x), r̃z(x), and r̃w(x)

17 : P computes ỹz(x), ỹw(x), G̃(y,x) and Ẽ(y,x)

18 : P computes Sz(y,x) = G̃(y,x)ỹz(x)− Ẽ(y,x)r̃z(x) and T (x) = l̃z(x)ỹz(x)

19 : P computes Sw(y,x) = G̃(y,x)ỹw(x)− Ẽ(y,x)r̃w(x)

20 : V samples c←$ Flog N′
2k and sends it to P

21 : P computes Sz(c,x), Sw(c,x)

22 : P and V run sum-check protocol for
∑

i∈{0,1}log k Sz(c, i) = 0 and
∑

i∈{0,1}log k T (i) = σ

23 : P and V run sum-check protocol for
∑

i∈{0,1}log k Sw(c, i) = 0

24 : P sends G̃(c,b), Ẽ(c,b), ỹz(b), ỹw(b) to V

25 : V computes l̃z(b), r̃z(b), and r̃w(b)

26 : V checks Sz,log k(blog k) ?= G̃(c,b)ỹz(b)− Ẽ(c,b)r̃z(b) and Tlog k(blog k) ?= l̃z(b)ỹz(b)

27 : V checks Sw,log k(blog k) ?= G̃(c,b)ỹw(b)− Ẽ(c,b)r̃w(b)
28 : V samples a←$ F and sends it to P

29 : P and V set z′ = (c||b||a) ∈ Flog N′

30 : P and V compute
cmC′ = Merkle.CM(cmG[l1:], . . . , cmG[lℓ:], 0, · · · , 0︸ ︷︷ ︸

N′
2k

−ℓ−1

, cmyz , cmE[l1:], . . . , cmE[lℓ:], 0, · · · , 0︸ ︷︷ ︸
N′
2k

−ℓ−1

, cmyw )

31 : P and V compute σ′ = (1− a)

G̃(c,b) +
log N′

2k∏
i=1

ci · ỹz(b)

+ a

Ẽ(c,b) +
log N′

2k∏
i=1

ci · ỹw(b)


32 : P and V run LiLAC-Reduce(pp, cmC′ , cmD′ , z′, z′, σ′; C′,E′)

Fig. 4: LiLAC-Reduce
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Let rn = min{i |Ni ≤ Ni+1} where N1 = N , Ni+1 = ψ(2(ℓ+1)
√
Ni), and ℓ is

a testing parameter. Our reduction process is executed rn rounds, and in the i-th
reduction, the size of the polynomial decreases from Ni to ψ(2(ℓ+1)

√
Ni). Each

reduction involves a verification cost and proof generation of O(logNi) for the
tensor IOPP and the Membership Proof Phase. Therefore, the total verification
time and proof size across all reductions are

∑
O(logNi) =

∑
O(logN

1
2i ) =

O(logN).
Let us examine the code provided in Figure 4 line by line to analyze its

functionality. For simplicity, we assume the code rate ρ is fixed at 1
2 .6

MLPCS evaluation. (lines 1-3) If the number of coefficients in the polynomial
cannot be further reduced, the reduction process terminates, and the existing
MLPCS is invoked to directly verify whether fC

N (z) = σ. This verification utilizes
a multilinear polynomial commitment scheme, such as Brakedown [GLS+23] (see
Appendix A). For a sufficiently reduced N , this operation imposes only constant
overhead. If fC

N (z) = σ, the verifier outputs 1; otherwise, it outputs 0.

Folding. (lines 4-8) If the reduction is possible, the verifier and prover engage
in two crucial assessments: the consistency test, utilizing the vector z, and the
proximity test, employing the vector w. As shown in Figure 4, the steps related
to the proximity test with w are specifically highlighted in blue.

The prover first performs the Kronecker product ⊗ri=r/2+1(1− zi, zi) on the
right half of the vector z ∈ Fr, producing the vector rz ∈ Fk. Similarly, the
prover computes the Kronecker product ⊗ri=r/2+1(1−wi, wi) on the right half of
the vector w ∈ Fr, resulting in the vector rw ∈ Fk. Using the vectors rz and rw,
the prover proceeds to fold the coefficient matrix C, subsequently calculating the
vectors yz = C ·rz and yw = C ·rw. The prover then constructs the Merkle trees
corresponding to the vectors yz and yw, denoted as cmyz and cmyw , respectively,
and sends these to the verifier.

Finally, the verifier recomputes the Merkle trees cmC and cmD to generate
the Merkle tree of the codeword E, denoted as cmE.

Membership Proof. (lines 9-12) Given the random ℓ indices in the set I =
{l1, · · · , lℓ}, for each lt ∈ I, the prover sends the Merkle commitment cmG[lt:]
for the lt-th row G[lt, :] of G and cmE[lt:] for the lt-th row E[lt, :] of E, along
with the co-paths for each commitment, to the verifier. The verifier then uses
the received commitments and co-paths to verify membership, ensuring that for
all t ∈ [ℓ], cmG[lt:] ∈ cmG and cmE[lt:] ∈ cmE.

Commit. (lines 13-15) During this phase, the prover constructs a new co-
efficient matrix C′ with N ′ = ψ(2(ℓ + 1)

√
N) coefficients using the vectors

G[l1, :], · · · ,G[lℓ, :], E[l1, :], · · · ,E[lℓ, :], along with the vectors yz and yw. To
6 When ρ = 1

2 , the verifier does not require additional verification steps to confirm that
the codeword E is derived from the coefficient matrix C, simplifying the scheme. For
general code rates ρ > 0, where this verification is necessary, we provide a detailed
explanation in Section 3.3.
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fully utilize the tree structure of the Merkle commitment, the prover replicates
the vectors yz and yw ℓ times, resulting in C′:

C′ =
(

G[l1, :], . . . ,G[lℓ :], 0, · · · , 0︸ ︷︷ ︸
N′
2 −kℓ−k

,yz,

E[l1, :], . . . ,E[lℓ :], 0, · · · , 0︸ ︷︷ ︸
N′
2 −kℓ−k

,yw

)
∈ FN

′

Subsequently, the prover encodes C′ using the encoding function for next
round rn′, denoted as Encrn′ , to compute the new codeword E′ = Encrn′(C′).

Assuming that all encodings use systematic codes such as the Spielman code
[Spi95] or the generalized Spielman code introduced in [GLS+23]7, the codeword
E′ resulting from encoding the matrix C′ is represented as

[
C′

D′

]
∈ Fn

′×k′ , where
D′ serves as the syndrome in Fk

′×k′ . Finally, the prover commits to D′ using a
Merkle commitment scheme, producing a commitment cmD′ , which is then sent
to the verifier.

Multilinear Extension. (lines 16-19) In this phase, we verify the ℓ consistency
checks, proximity checks, and the processes of encoding and folding by utilizing
the sum-check protocol. Each matrix and vector involved is converted into a
multilinear polynomial and structured within a sum-check framework.

The prover and verifier first perform the multilinear extension of the vec-
tors lz = ⊗r/2

i=1(1 − zi, zi), rz, and rw ∈ Fk, thereby obtaining the multilinear
polynomials l̃z(x), r̃z(x), and r̃w(x) ∈ F[x1, . . . , xlog k]. Additionally, the prover
performs the multilinear extension of the vectors yz, yw ∈ Fk and the matri-
ces G[I, :] and E[I, :] ∈ Fℓ×k, resulting in the multilinear polynomials ỹz(x),
ỹw(x) ∈ F[x1, . . . , xlog k], G̃(y,x), and Ẽ(y,x) ∈ F[y1, . . . , ylog N′

2k
, x1, . . . , xlog k].

Due to the commutative property of encoding and folding (see Proposition
1), these multilinear polynomials satisfy the following conditions for all j ∈
{0, 1}log N′

2k : ∑
i∈{0,1}log k

G̃(j, i)ỹz(i) =
∑

i∈{0,1}log k

Ẽ(j, i)r̃z(i) (Consistency)

∑
i∈{0,1}log k

G̃(j, i)ỹw(i) =
∑

i∈{0,1}log k

Ẽ(j, i)r̃w(i) (Proximity)

Furthermore, since the folding of the vector yz with lz equals σ, we also have:∑
i∈{0,1}log k

l̃z(i)ỹz(i) = σ (Tensor product)

7 Reed-Solomon (RS) codes [RS60] could also be used; however, this increases the
prover’s cost to O(N logN) due to the Fast Fourier Transform and removes the
scheme’s field-agnostic property.
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Using these identities, the prover defines the following multivariable polynomials:

Sz(y,x) := G̃(y,x)ỹz(x)− Ẽ(y,x)r̃z(x) (Consistency)

Sw(y,x) := G̃(y,x)ỹw(x)− Ẽ(y,x)r̃w(x) (Proximity)

Tz(x) := l̃z(x)ỹz(x) (for tensor product)

Sum-check. (lines 20-27) The verifier samples and sends the vector c ∈ Flog N′
2k

to the prover. In response, the prover calculates the polynomials Sz(c,x) and
Sw(c,x) using the provided vector c. For the consistency check and proximity
test, the verifier employs the sum-check protocol to verify the following condi-
tions: ∑

i∈{0,1}log k

Sz(c, i) = 0,
∑

i∈{0,1}log k

Sw(c, i) = 0,

∑
i∈{0,1}log k

Tz(i) = σ.

Unlike the original sum-check protocol, our scheme does not require the verifier
to directly compute the final polynomial evaluations, such as Sz,log k(blog k) =
Sz(c,b), Sw,log k(blog k) = Sw(c,b), and Tz,log k(blog k) = Tz(b). Instead, the veri-
fier receives these computed values—G̃(c,b), Ẽ(c,b), ỹz(b), and ỹw(b)—directly
from the prover for verification. Here, the vector b is composed of all the chal-
lenges b1, · · · , blog k, which are randomly chosen by the verifier in the sum-check
protocol and sent to the prover in each round.

Additionally, the verifier calculates l̃z(b), r̃z(b), and r̃w(b) independently to
confirm the following conditions:

Sz,log k(blog k) = G̃(c,b)ỹz(b)− Ẽ(c,b)r̃z(b),

Sw,log k(blog k) = G̃(c,b)ỹw(b)− Ẽ(c,b)r̃w(b),

Tz,log k(blog k) = l̃z(b)ỹz(b).

This methodology enhances the computational efficiency of the verifier, but it
imposes a crucial requirement: the verifier must rigorously ensure the correctness
of each of the G̃, Ẽ, ỹz, and ỹw.

Invoke for the Next Round. (lines 28-32) To address the aforementioned
issue, we define a new function fC′

N ′ where N ′ = ψ(2(ℓ+ 1)k).
The verifier sends a scalar a ∈ F to the prover. Both the prover and verifier

then concatenate the vectors a ∈ F, b ∈ Flog k, and c ∈ Flog N′
2k to define a new

vector z′ = (c||b||a) ∈ FN
′ and set G′ = Grn′ . Next, the prover and verifier use

the commitments cmG[l1:], . . ., cmG[lℓ:], cmyz , cmE[l1:], . . ., cmE[lℓ:], and cmyw to
compute the commitment cmC′ for the subsequent round.
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Similar to the approach described in line 13, to match the size of the Merkle
tree (see Figure 2), we pad with N ′

2k − ℓ− 1 zeros, thus forming:

cmC′ = Merkle.CM(cmG[l1:], . . . , cmG[lℓ:], 0, · · · , 0︸ ︷︷ ︸
N′
2k −ℓ−1

, cmyz ,

cmE[l1:], . . . , cmE[lℓ:], 0, · · · , 0︸ ︷︷ ︸
N′
2k −ℓ−1

, cmyw).

Finally, using the scalar a, the prover and verifier calculate the scalar σ′ as
follows:

σ′ =(1− a)

G̃(c,b) +
log N′

2k∏
i=1

ci · ỹz(b)

+ a

Ẽ(c,b) +
log N′

2k∏
i=1

ci · ỹw(b)


(thus, σ′ is equal to fC′

N ′ (z′)). The prover and verifier then proceed by invoking
the LiLAC-Reduce with the new input (pp, cmC′ , cmD′ , z′,w′ = z′, σ′; C′,E′)
with the next round rn′.
Theorem 1. For an [n, k, d]-linear code C, with the testing parameter ℓ and
relative distance δ, the LiLAC-Reduce (for the first round) is both complete and
sound, with soundness error given by ϵ1 = max {ϵReduce, ϵMLPCS}, where

ϵReduce = O
(
ℓ · logn+ d2 + 2 log k

|F|
+
(

1− δ

2

)ℓ)
and ϵPCS denotes the soundness error of the multilinear polynomial commitment
scheme utilized in the MLPCS evaluation phase.
Proof. Refer to the Appendix B for the proof.

Recursive rounds. From the second reduction onward, the process is almost
identical to the first reduction, with the key difference merging the proximity
and consistency test. This is because the multilinear polynomial, reduced in
size after the first reduction, already includes both proximity and consistency
tests, allowing verification of the initial polynomial by performing tensor IOPP
(consistency and tensor product) on this polynomial.

Specifically, while two different vectors z and w were used for consistency and
proximity, respectively, from the second reduction onward, both the consistency
and proximity tests are conducted using the same vector, z and z.
Theorem 2. Let 2 ≤ i ≤ rn where rn denotes the number of rounds during
which the number of coefficients is reduced. For an [ni, ki, di]-linear code Ci with
testing parameter ℓi and relative distance δi, the LiLAC-Reduce (for subsequent
rounds) is both complete and sound, with soundness error ϵ2 at the i-th recursive
round given by max {ϵReduce, ϵMLPCS}, where

ϵReduce = O
(
ℓi · logni + d2

i + 2 log ki
|F|

+
(

1− δi
2

)ℓi
)
,
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and ϵMLPCS denotes the soundness error of the multilinear polynomial commit-
ment employed in the MLPCS evaluation phase.

Proof. This follows directly from Theorem 1.

Theorem 3. Let N denote the size of the coefficients, such that N = k2. For
an [n, k, d]-linear code C, with testing parameter ℓ and relative distance δ, there
exists a field-agnostic multilinear polynomial commitment scheme characterized
by the following parameters:

– The prover performs O(N) field operations;
– The proof length consists of O(logN) field elements;
– The verifier requires O(logN) field operations;
– The soundness error is bounded by

O

(
ℓ · logn+ d2 + logN

|F|
+
(

1− δ

2

)ℓ)
+ ϵMLPCS.

Proof. The completeness of the LiLAC protocol follows directly from Theorems
1 and 2. Our LiLAC procedure performs LiLAC-Reduce (first round), which sub-
sequently invokes LiLAC-Reduce (subsequent rounds) (rn − 1) times, where rn
is the that is at most log logN and regarded as constant. Therefore, the total
soundness error for all reductions is

ϵ1 +
rn∑
i=2

ϵ2 < rn · ϵ1 = O
(
ℓ · logn+ d2 + logN

|F|
+
(

1− δ

2

)ℓ)
.

Upon completing all rounds of reduction and reaching the maximum rn, the
MLPCS protocol is applied, and thus the total soundness error of LiLAC is
bounded by

O

(
ℓ · logn+ d2 + logN

|F|
+
(

1− δ

2

)ℓ)
+ ϵMLPCS.

3.3 Generalization and Optimization of LiLAC

Extension to Non-systematic Codes. We extend the LiLAC-Reduce process
to handle cases involving non-systematic codes. In the LiLAC-Reduce process,
the verifier must ensure that the codeword E is correctly computed from the
coefficient matrix C. Specifically, the verifier must confirm the relation E = G·C,
where G is the encoding matrix. While systematic codes allow this verification
using the commitments cmC and cmD, non-systematic codes do not separate E
into two distinct parts (C and D), making direct verification infeasible. Instead,
the verifier indirectly ensures that E = G ·C by verifying that the matrix C has
been folded correctly. This is achieved by verifying the relation E · rz = G · yz
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via a sum-check protocol and additionally verifying yz = C · rz. Together, these
checks guarantee that:

E · rz = G · (C · rz).

Thus, during LiLAC-Reduce, the algorithm incorporates the additional check
yz = C · rz. As part of the proximity check, a similar verification for w, yw =
C · rw, is required. Since the checks for z and w are symmetric, it suffices to
describe the process for z.

This additional verification is efficiently handled using the sum-check proto-
col, similar to the consistency check in LiLAC-Reduce. Specifically, we define the
multilinear polynomial S′z(y,x) ∈ F[y1, · · · , ylog k, x1, · · · , xlog k] as:

ỹz(y)−
∑

x∈{0,1}log k

C̃(y,x) · r̃z(x),

where C̃ is the multilinear extension of C. Then, the prover and verifier run an
additional sum-check protocol for:∑

i∈{0,1}log k

S′z(c′, i) = 0,

where c′ ←$ Flog k is a random challenge. This ensures, with high probability,
that E = G · C, thereby extending the verification process to non-systematic
codes.

Generalization for Arbitrary Code Rate. When the generic code rate ρ is
applied (i.e., ni ̸= 2ki), the verifier cannot derive cmE solely from cmC and cmD.
This is because, for ni ̸= 2ki, the sizes of C ∈ Fk×k and D ∈ F(n−k)×k differ,
resulting in Merkle.CM(Merkle.CM(C),Merkle.CM(D)) ̸= Merkle.CM(E). In this
case, instead of transmitting cmD as described in Figure 4, the prover sends the
commitment cmE along with the co-path information of cmC. The verifier then
uses this co-path to confirm that cmC ∈ cmE, ensuring that C is part of E and
that the codeword E was generated from C.

In Eval, the prover does not compute matrix D or its commitment cmD.
Instead, the prover transmits the commitment cmE of codeword E along with
the co-path information of cmC to the verifier. The verifier uses this co-path
to confirm that cmC ∈ cmE. Subsequently, the prover and verifier set the input
(pp, cmC, cmE, z,w, σ; C,E) and proceed with the LiLAC-Reduce protocol, using
cmE in place of cmD.

In LiLAC-Reduce, since the verifier already holds cmE, it does not need to
compute cmE again. Similarly to Eval, the prover computes cmE′ instead of
cmD′ and sends it to the verifier. With this, the prover and verifier set the new
input (pp, cmC′ , cmE′ , z′,w′, σ′; C′,E′) and proceed recursively with the protocol
LiLAC-Reduce.

Code Selection for Optimizing ℓ. Optimizing the parameter N ′ requires
minimizing the testing parameter ℓ, which depends on the relative distance δ of
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the error-correcting code. Our approach balances the trade-offs between proving
time, proof size, and verification time by strategically selecting codes based on
the current size of N . Initially, we use generalized Spielman codes [GLS+23,
XZS22], which operate in linear time, to minimize proving time while efficiently
reducing N to a manageable size. Once N is sufficiently small, we transition to
Reed-Solomon codes [BSBHR18, ZCF23, ACFY24a], which enable a smaller ℓ,
further reducing N ′.

This two-stage approach leverages the strengths of both codes. Spielman
codes prioritize prover efficiency during the early stages whenN is large, ensuring
that the overall proving time remains manageable. Reed-Solomon codes, applied
once N has decreased, trade a slight increase in proving time (due to logarithmic
complexity) for significant reductions in proof size and verification time.

By adapting the code choice to the current size of N , this method achieves
a more balanced optimization across all three metrics: proving time, proof size,
and verification time.

Dynamic Adjustment of Code Rates. Proving time, verifying time, and
proof size in code-based PCS are closely interdependent, as these schemes rely
on error-correcting codes (ECC) to construct proofs. The proximity test in PCS
depends on the error-correcting capability (or minimum Hamming distance) of
the ECC, which determines the number of points sampled. A code with stronger
error-correcting capability reduces the number of points sampled, thereby de-
creasing verifying time and proof size, but at the cost of increased proving time.

To balance these trade-offs, we dynamically adjust the code rate ρ based on
the size of N . When N is large, using codes with higher rates (e.g., ρ = 1/2)
minimizes proving time by reducing the cost per coefficient. As N decreases,
codes with lower rates (e.g., ρ = 1/64 or ρ = 1/256) are applied. While these
increase proving time with a complexity of O(N), the smaller N mitigates this
impact. Additionally, the improved error-correcting capability of these codes
allows ℓ to be minimized, leading to more significant reductions in proof size and
verification time. In our proposed MLPCS, each round operates independently,
allowing for dynamic adjustment of ρ based on N .

If a code with ρ code rate is applied to N coefficients, the encoding time
increases to 1

ρ · N , while the number of sampling points for the proximity test
decreases by a factor of − log ρ. Consequently, the verifying time and proof size
are reduced to − log ρ · logN , as each sampling point requires logN membership
proofs. Proving time follows a complexity of O

(
1
ρ ·N

)
, while verifying time

and proof size are O
(

logN
− log ρ

)
. By dynamically tuning ρ, we achieve a balanced

reduction across all metrics, leveraging the trade-off between encoding time and
the reductions in verifying time and proof size.

For example, applying a code rate of 1/4 for 230 and 1/2 for 220 results in
a proving time of 4 · 230 + 2 · 220 > 232 and a verifying time and proof size
of 30

2 + 20 = 35. Alternatively, applying code rates of 1/2 and 1/32 results in
a proving time of 2 · 230 + 32 · 220 < 232 and a verifying time and proof size
of 30 + 20

5 = 34, showing a reduction in both metrics compared to the initial
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configuration. Therefore, when N is small, using low code rates significantly
reduces verification time and proof size, with only a small increase in proving
time.

3.4 Complexity of LiLAC

In this section, we analyze the asymptotic complexity of LiLAC. The protocol
consists of two main phases: Setup and Eval. The Eval phase recursively invokes
LiLAC-Reduce for the first round, followed by LiLAC-Reduce for the subsequent
rounds across rn−1 iterations. We will discuss the asymptotic costs for both the
prover and the verifier in each sub-protocol, as well as the size of the resulting
proof.

For convenience, in this section, we will refer to the two types of reduction
algorithms, LiLAC-Reduce for the first round and LiLAC-Reduce for the subse-
quent rounds, as LiLAC-Reduce1 and LiLAC-Reduce2, respectively. The symbols
F and H denote field multiplication and hash operation, respectively.

Preprocessing. In the Setup, the party computes the Merkle tree commitments
cmGi

for each rn. Given that each matrix Gi has dimensions ni × ki, the total
preprocessing cost is

∑rn
i=1 niki = O(N)H.

Prover’s cost. During the Eval, the prover encodes C ∈ FN using the encoding
function Enc, with a cost of nkF. To compute the Merkle tree commitment
for the submatrix D, the prover performs (n − k) × k hash operations, which
amounts to NH. Additionally, the evaluation value σ is computed with logN
field operations.

In the LiLAC-Reduce1, the prover calculates the vectors rz, rw, yz, and yw at
a cost of 2

√
NF and 2NF. The commitments cmyz , cmyw , cmE[lt:], and cmG[lt:]

require
√
N and ℓ

√
N hash operations. To generate the codeword E′ and its

submatrix commitment cmD′ for the next round, the prover incurs costs of NiF
and NiH. The sum-check protocol adds a cost of NF, while the computations of
G̃(c,b), Ẽ(c,b), ỹz(b), and ỹw(b) require N ′F and 2

√
NF.

Additionally, computing the commitment for the new input C′ and its eval-
uation σ′ in the next round requires (2ℓ + 2)H and

(
log 2N ′

k + 4
)

F, respec-
tively. Therefore, the total cost in the first round is O(N)F and O(N)H. In the
LiLAC-Reduce2, the operations are similar to those in LiLAC-Reduce1, excluding
the proximity test for the vector w. Thus, in each round i, the total cost is
O(Ni)F and O(Ni)H.

Overall, the total prover cost in LiLAC is O(N)F +
∑rn
i=1O(Ni)F = O(N)F,

and O(N)H +
∑rn
i=1O(Ni)H = O(N)H.

Communication cost. In the Eval, the prover sends the commitment cmD ∈ F
and the evaluation σ ∈ F to the verifier. During the reduction process, the prover
transmits (2 + 2ℓ) Merkle tree commitments, specifically cmyz , cmyw , cmG[lt:],
and cmE[lt:] ∈ F, in each round. Additionally, co-path data for cmG[lt:] and
cmE[lt:] is provided, with each data point sized at logni, totaling 2ℓ logni field
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elements. The prover also sends the commitment cmD′ ∈ F for the next round’s
submatrix, along with 2 log

√
Ni field elements during the sum-check protocol.

Finally, the prover transmits the values G̃(c,b), Ẽ(c,b), ỹz(b), and ỹw(b) ∈ F
for the evaluation step of the sum-check protocol.

Thus, the total communication cost for the prover is
∑rn
i=1(7+2ℓ+2ℓ logni+

2 log
√
Ni)F = O(logN)F.

Verifer’s cost. In the LiLAC-Reduce1, the verifier uses the commitments cmC
and cmD to compute the Merkle commitment cmE with a single hash operation.
The verifier then performs a membership proof, which requires lognH per com-
ponent, resulting in a total of 2ℓ logn hash operations. During the sum-check
protocol, the verifier performs 2 log

√
N field operations and verifies the evalu-

ations Sz,log k, Sw,log k, and Tlog k using l̃z(b), r̃z(b), and r̃w(b), each requiring
log
√
N field operations. Finally, the verifier computes the commitments cmC′

and σ′ for the next round, requiring (2ℓ+ 2)H and
(

log 2N ′

k + 4
)

F, respectively.
Thus, the verifier’s cost in LiLAC-Reduce1 is O(logN) field operations. Similarly,
in the LiLAC-Reduce2, the verifier incurs a cost of O(logNi) field operations.

Therefore, the total cost for the verifier is
∑rn
i=1O(logNi)F = O(logN)F.

4 Experiments

In this section, we present the implementation and performance evaluation of
our proposed scheme, LiLAC, and compare it with existing polynomial commit-
ment schemes, including Brakedown [GLS+23], Basefold, BasefoldFri [ZCF23],
Orion [XZS22], FRI [BSBHR18], STIR [ACFY24a], and WHIR [ACFY24b]. Our
implementation of LiLAC is written in C++ and builds upon the open-source im-
plementation of Orion [Ori], incorporating generalized Spielman codes with an
expander graph-based error correction code. The hash function used is SHA3.
All experiments were conducted on an Intel Xeon Gold 6242R CPU @ 3.10GHz
with 256GB memory running Ubuntu 22.

For performance evaluation, we tested polynomials of various sizes, specifi-
cally ranging from N = 222 to 230. For each case, we measured three core metrics:
proving time, proof size, and verification time. In our experiments, proving time
is defined as the total time required for commitment, encoding, and opening,
with the exception of FRI, and STIR. Note that FRI, and STIR only perform
the proximity test.

In this implementation, we propose two models. The first model, LiLAC
(Brakedown / Basefold), employs the Spielman code combined with Brakedown
or Basefold MLPCS to achieve linear proving time and field-agnostic proper-
ties. The second model, LiLAC(Shockwave), utilizes Shockwave MLPCS which
is identical to Brakedown MLPCS with Reed-Solomon codes, achieving smaller
proof sizes and faster proving times, albeit without field-agnosticism.

Our experiments are categorized based on field-agnostic requirements. For
field-agnostic MLPCS, we compared and analyzed Brakedown, Basefold, and
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our LiLAC(Brakedown/Basefold). For field-specific MLPCS, we compared Base-
foldFri, Orion, and WHIR with our LiLAC(Shockwave). Additionally, while FRI
and STIR are not MLPCS, we included their experimental results for broader
comparison. To evaluate the efficiency of the reduction process in LiLAC (Brake-
down/Basefold) and LiLAC(Shockwave), we measured proving time and proof
size at each reduction round. Cases marked as "N/A" indicate instances where
results could not be obtained due to insufficient memory on our 256GB system.

4.1 Field-agnostic MLPCS comparison

Parameters. We evaluate the performance of field-specific polynomial commit-
ment schemes over 128-bit fields, setting the security parameter λ = 128 for all
protocols. For Basefold, we used the parameters from the open-source imple-
mentation of Basefold [Bas]. The code rate is 1/2, and the query counts are 808,
971, and 1358 for 222, 224, and 226, respectively. For 228, since the parameter is
not provided, we set the query count to 1688 based on estimation.

For LiLAC(Brakedown/Basefold) and Brakedown, we configured the code rate
ρ to 1/2 and the relative distance δ to 0.09. Accordingly, we set the query count
to −128/ log2(1− 0.09/2) = 1927 for Brakedown implementations.

Analysis. We compare field-agnostic MLPCS: LiLAC(Brakedown), LiLAC(Basefold),
Brakedown, and Basefold, as shown in Table 3. Our scheme applies the Spielman
code for reductions from N = 230 to 230 → 228 → 226 and from N = 228 to
228 → 226, followed by Brakedown or Basefold MLPCS at N = 226. As shown
in Figure 3, LiLAC incurs the same costs as Brakedown/Basefold from N = 222

to 226 due to the absence of reduction.
In terms of proving time, LiLAC(Basefold) demonstrates significantly bet-

ter performance compared to Basefold. For example, at an input size of 228,
LiLAC(Basefold) completes in approximately 671 seconds, while Basefold requires
1034 seconds, making LiLAC(Basefold) around 1.5× faster. For larger input sizes,
although proving times are not available for Basefold, LiLAC(Basefold) continues
to offer competitive proving times compared to other schemes, making it highly
suitable for efficiently handling large datasets. In contrast, LiLAC(Brakedown)
shows proving times similar to Brakedown.

For proof size at an input size of 230, LiLAC(Brakedown) achieves a compact
size of about 36MB, which is approximately 3.7× smaller than Brakedown’s
133MB. Similarly, at an input size of 228, LiLAC(Basefold) offers a proof size of
29MB, around 1.4× smaller than Basefold’s 40MB. This reduction in proof size
helps reduce storage costs, and both protocols are particularly effective when
minimizing proof size is critical.

Regarding verifier time at an input size of 230, LiLAC(Basefold) provides
extremely fast verification, taking just 0.19 seconds compared to Brakedown’s
3.8 seconds, making it about 20× faster. LiLAC(Brakedown) takes around 1.7
seconds, which is still about twice as fast as Brakedown. LiLAC(Basefold) offers
the fastest verification performance overall.
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Table 3: Field-agnostic Multilinear Polynomial Commitment Schemes Compar-
ison with single core over 128-bit field and 128-bit security.

222 224 226 228 230

Prover time(s)
LiLAC(Brakedown) 9.09 33.15 150.41 613.27 2653.79

Brakedown 599.96 2605.95
LiLAC(Basefold) 12.53 49.94 208.14 671.00 2711.51

Basefold 1033.79 N/A
Proof size(MB)

LiLAC(Brakedown) 9.60 17.83 34.44 35.05 35.79
Brakedown 67.37 133.27

LiLAC(Basefold) 13.98 19.76 28.57 29.18 29.92
Basefold 40.24 N/A

Verifier time(s)
LiLAC(Brakedown) 0.40 0.41 1.67 1.69 1.71

Brakedown 1.78 3.80
LiLAC(Basefold) 0.08 0.12 0.15 0.17 0.19

Basefold 0.31 N/A

In summary, LiLAC(Basefold) excels in verification speed and proof size, mak-
ing it especially well-suited for applications that require rapid verification and
minimal proof size. On the other hand, LiLAC(Brakedown) achieves linear prov-
ing time and maintains proving times comparable to Brakedown, while outper-
forming LiLAC(Basefold) with slightly faster proving times. However, it intro-
duces minor overhead in proof size and verification time compared to LiLAC(Basefold),
making it a well-balanced option for scenarios that prioritize quick proving times
while still benefiting from reduced proof sizes and faster verification compared
to Brakedown.

Costs at Each Step. We analyze how effective the reduction is in our scheme.
We divide the process of the scheme into Encode-and-Commit, reduction, and
MLPCS, and examine how the reduction contributes to the overall time and
size. We analyze the effectiveness of the reductions by comparing the proving
time and proof size of our LiLAC using Spielman codes across different coefficient
sizes, as shown in Figure 5.

Figure 5(a) provides a detailed view of the proving time for LiLAC(Brakedown)
and LiLAC(Basefold) when using Spielman codes. Notably, the Encode-and-
Commit phase accounts for the majority of each bar. This indicates that most
of the time is spent during the initial phase of Eval, where the polynomial with
the largest coefficient is encoded and committed. In the case of Spielman codes,
when the coefficient size is 230 or 228, the reduction process ultimately reduces
it to 226. Thanks to this reduction process, the stages that reduce both 230 and
228 to 226 show similar proving times, suggesting that when reductions lead to
the same intermediate coefficient size, the proving times become comparable.



LiLAC 29

Encode-and-Commit 1st round 2nd round
Brakedown BaseFold

26 26 28 28 30 300

1,000

2,000

3,000

log2(Number of coefficients)

tim
e[

s]

(a) Proving time with Spielman code

26 26 28 28 30 300

10

20

30

log2(Number of coefficients)

si
ze

[M
B

]

(b) Proof size with Spielman code

Fig. 5: Cost for each round

Figure 5(b) shows the proof size when using Spielman codes. In most bars,
Brakedown and Basefold account for the majority of the proof size, indicating
that these two protocols generate relatively large proofs. In contrast, each time
LiLAC-Reduce is applied to reduce the polynomial’s coefficient size, the proof
size decreases, resulting in a relatively compact overall proof size. When using
Spielman codes, the proof size generated by LiLAC-Reduce is relatively small
compared to the total proof size, demonstrating that our LiLAC effectively man-
ages proof size even for large coefficient sizes.

This analysis reveals that while the Encode-and-Commit phase accounts for
the majority of the proving time, the MLPCS used plays a critical role in deter-
mining proof size. In particular, the proving time is proportional to the initial
coefficient size, and excluding the Encode-and-Commit phase, the proving time
in other stages decreases sharply. This highlights the significant role of the re-
duction technique in enhancing efficiency when handling polynomials with large
coefficient sizes and underscores the importance of developing efficient encoding
methods to reduce the time spent in the Encode-and-Commit phase.

4.2 Field-specific PCS comparison

Parameters. We evaluate the performance of field-specific polynomial commit-
ment schemes over 128-bit fields, setting the security parameter λ = 100 for
all protocols. For BasefoldFri, we followed the analysis of Reed-Solomon codes
in [GLS+23, ACFY24a, ACFY24b], setting the relative distance δ to (1 − ρ)/2
(unique decoding). With a code rate of ρ = 1/2, the query count for BasefoldFri
is calculated as −100/ log2(1−1/4) = 241. For Orion, we configure the code rate
ρ = 1/2 and the relative distance δ = 0.09. Accordingly, the query count is set
to −100/ log2(1 − 0.09/2) = 1506 to implement Orion. For FRI, STIR, WHIR,
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and LiLAC(Shockwave), we configure the code rate ρ and ℓ based on the capacity
bound (in this configuration, δ := 1− ρ− η) defined in WHIR [ACFY24b].

Additionally, to achieve a round-by-round soundness error of 2−100, a con-
stant proof-of-work with 22 bits is uniformly applied for all sizes N [ACFY24a,
ACFY24b] in FRI, STIR, WHIR, and LiLAC(Shockwave). Proof-of-work is a
method used in the Fiat-Shamir heuristic to transform an interactive protocol
into a non-interactive one, by requiring multiple hash computations to generate
randomness instead of a single computation. Specifically, it involves finding an n
such that H(n, τ) < 2|H|/D, where τ represents a context, |H| denotes the output
bit size of the hash, and D indicates the difficulty. By adjusting the difficulty
D, the number of hash computations required to find n can be controlled. For
example, with D = 222, an average of 222 hash computations are needed. In this
case, the number of hash operations required for an attacker to succeed with a
probability of 2−t is 2t+22. Hence, for an attacker to succeed after 2λ attempts,
the attacker’s success probability must be 2−λ · D. When D = 222, the IOP
soundness error can be relaxed from 2−100 to 2−78 while maintaining the same
hash computation effort required for the attacker to succeed.

Analysis. We compare our LiLAC(Shockwave) with field-specific MLPCSs, such
as BasefoldFri, Orion, and WHIR, and field-specific univariate PCSs, such as
FRI and STIR, as shown in Table 4. By applying the RS code, we significantly
reduce the proof size and verification time, but this comes at the cost of losing
the field-agnostic property.

As shown in Table 4, LiLAC(Shockwave) demonstrates outstanding perfor-
mance across all input sizes N compared to competing schemes in terms of
proving time, proof size, and verification time.

For proving time, LiLAC(Shockwave) performs similarly to or slightly faster
than WHIR and STIR for smaller input sizes, while clearly outperforming Base-
foldFri and Orion. As the input size increases, the performance gap becomes
even more pronounced. In large-scale input environments such as 228 and 230,
LiLAC(Shockwave) significantly outpaces all schemes. For instance, at 230, LiLAC
(Shockwave) is 4.7× faster than Orion, 2.8× faster than WHIR, and 2.3× faster
than STIR.

In terms of proof size, LiLAC(Shockwave) is also highly efficient. At 228, it
achieves a proof size 74× smaller than BasefoldFri. At 230, the proof size is about
52× smaller than Orion and 27% smaller compared to WHIR and STIR.

For verification time, LiLAC(Shockwave) outperforms all other schemes. At
228, LiLAC(Shockwave) achieves a verification time of 1.4ms, which is about 30×
faster than BasefoldFri and 68× faster than Orion. It also outperforms WHIR
and STIR, consistently showing better performance across all input sizes. At 230,
LiLAC(Shockwave) provides verification times that are 38% faster than STIR and
14% faster than WHIR.

In conclusion, LiLAC(Shockwave) maintains balanced performance across all
input sizes N , while the performance gap with competing schemes becomes more
pronounced in large-scale data environments. Specifically, compared to exist-
ing MLPCS’s, LiLAC(Shockwave) demonstrates superior performance in all as-



LiLAC 31

Table 4: Field-specific Polynomial Commitment Schemes Comparison with a
single core over 128-bit field and 100-bit security. Note that FRI, STIR, and
WHIR only verify the proximity test. In the case of LiLAC, for N = 228, 230,
each round is set with − log ρ = (1, 4, 6, 8, 3), while for N = 222, 224, 226, − log ρ
is set to (1, 2, 4, 6, 8, 3) where ρ denotes the code rate.

N 222 224 226 228 230

Prover time(s)
LiLAC(Shockwave) 8.8 19.0 65.6 251.8 1145.9

BasefoldFri 12.0 48.3 202.2 927.6 N/A
Orion 10.5 47.3 206.8 905.2 5449.6
WHIR 10.3 37.9 165.5 738.7 3268.8

FRI 6.2 25.9 106.7 443.3 1922.8
STIR 8.5 36.4 144.6 617.9 2610.9

Proof size(KB)
LiLAC(Shockwave) 91 96 102 90 96

BasefoldFri 4274 5027 5840 6710 N/A
Orion 3942 4193 4457 4744 5027
WHIR 91 100 111 121 132

FRI 174 210 249 293 338
STIR 90 101 110 122 131

Verifier time(ms)
LiLAC(Shockwave) 1.4 1.5 1.6 1.4 1.8

BasefoldFri 24 26 30 43 N/A
Orion 66 72 81 96 157
WHIR 1.5 1.8 2.1 1.9 2.1

FRI 2.7 3.3 4.0 4.6 5.3
STIR 2.2 2.4 2.5 2.8 2.9

pects: proving time, proof size, and verification time. These characteristics make
LiLAC(Shockwave) the optimal choice for practical use, whether in small-scale
data or large-scale data environments.

Round-by-Round Performance. Table 5 illustrates the reduction process for
230. The size of N decreases progressively to 230, 224, 218, 214, and 212. For each
size of N , the code rate ρ is set to 1/2, 1/16, 1/64, 1/256, and 1/8, respectively.
After all reduction steps, we used Shockwave. Each reduction process includes
the encoding and committing required for the next round, so the encode and
commit needed in Shockwave were set with ρ = 1/8 and calculated in rn = 4.
Additionally, the testing parameter ℓ required in each round depends on the
code rate of the previous round. For example, in rn = 1, ⌈78/1⌉ = 78; in rn = 2,
⌈78/4⌉ = 20; in rn = 3, ⌈78/6⌉ = 13; and in rn = 4, ⌈78/8⌉ = 10.

Our reduction process consists of 5 steps for 222, 224, and 226, and 4 steps
for 228 and 230. In each step, we use specific code rates ρ and testing parameters
ℓ as follows:
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Table 5: Round-by-round performance evaluation for LiLAC at N = 230.

LiLAC
Encoding

+ Committing
+ Evaluating

rn = 1 rn = 2 rn = 3 rn = 4 Shockwave total

N 230 230 → 224 224 → 218 218 → 214 214 → 212 212 -
− log ρ 1 4 6 8 3 - -
ℓ - 78 20 13 10 26 -

Proving time(s) 1025.03 117.27 5.55 1.25 0.01 0.0006 1149.12
Verifying time(ms) - 0.93 0.20 0.12 0.08 0.52 1.85

Proof size(KB) - 52.67 15.67 10.30 7.86 9.87 96.37
Verifier hashes - 1684 500 328 25 212 2974

– For 222, 224, and 226: ρ = 1/2, in the encoding, committing, and evaluating;
ρ = 1/4 and ℓ = 78, in the first step; ρ = 1/16 and ℓ = 39, in the second
step; ρ = 1/64 and ℓ = 20, in the third step; ρ = 1/256 and ℓ = 13, in the
fourth step; ρ = 1/8 and ℓ = 10, in the fifth step.

– For 228 and 230: ρ = 1/2, in the encoding, committing, and evaluating;
ρ = 1/16 and ℓ = 78, in the first step; ρ = 1/64 and ℓ = 20, in the second
step; ρ = 1/256 and ℓ = 13, in the third step; ρ = 1/8 and ℓ = 10, in the
fourth step.

5 Conclusion

In this paper, we propose a field-agnostic, transparent multilinear polynomial
commitment scheme. The proposed scheme theoretically achieves linear proving
time, logarithmic verifying time, and logarithmic proof size with respect to the
number of polynomial coefficients. This complexity surpasses that of any cur-
rently known code-based polynomial commitment schemes. Beyond theoretical
efficiency, our scheme also demonstrates superior performance and proof size in
practical implementation compared to existing multilinear polynomial commit-
ment schemes. The proposed scheme employs a tensor IOPP-based approach,
where the verification of tensor IOPP is proven via sum-check, and our scheme
is recursively applied to verify the sum-check. This approach iteratively reduces
a given multilinear polynomial to one with fewer coefficients; once the coefficients
can no longer be reduced, existing multilinear polynomial schemes are applied
to the final polynomial. Thus, the effectiveness of our scheme improves with
the quality of the final multilinear polynomial scheme applied. In the future,
we will develop multilinear polynomial commitment schemes that yield small
proof size with reasonable performance for polynomials with a reduced number
of coefficients.
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A Linear-time Multilinear Polynomial Commitments

In this appendix, we recall linear-time polynomial commitment schemes for mul-
tilinear polynomials. Our scheme, LiLAC, reduces the size of the coefficients
through a reduction process before performing a polynomial commitment scheme
to complete verification. We employ the PCS as a black-box component and en-
hance efficiency by using linear-time PCSs such as [GLS+23,XZS22].

These PCSs are advancements based on the work of Bootle et al. [BCG20].
In [BCG20], they define tensor IOP, a generalization of the interactive oracle
proof (IOP), and design a PCS with a linear-time prover using a linear-time
encodable code. The key technique for the linear prover is to reduce the encoding
time by utilizing a linear-time encodable code, and the verifier checks whether
the encoding was correctly computed by performing a proximity test on ℓ random
entries rather than checking every entry.

Brakedown [GLS+23] expresses multilinear polynomials using Lagrange ba-
sis coefficients and commits to those coefficients using a Merkle tree hash func-
tion. To achieve a linear-time prover, it also uses an efficient linear-time encod-
able error-correcting code. Brakedown generalizes the results from [BCG20] and
demonstrates the existence of PCS with the following complexity.

Theorem 4. For security parameter λ and a positive integer t, given a hash
function that can compute a Merkle-hash of N elements of F with the same time
complexity as O(N) F-ops, there exists a linear-time polynomial commitment
scheme for multilinear polynomials. Specifically, there exists an algorithm that,
given as input the coefficient vector of an r-variate multilinear polynomial over
F over the Lagrange basis, with N = 2r, commits to the polynomial, where:

– the size of the commitment is Oλ(1),
– the running time of the commit algorithm is O(N) operations over F.

Furthermore, there exists a non-interactive argument of knowledge in the random
oracle model to prove the correct evaluation of a committed polynomial with the
following parameters:

– the prover’s running time is O(N) operations over F,
– the verifier’s running time is Oλ(N1/t) operations over F,
– the proof size is Oλ(N1/t).

Brakedown specifically achieves O(N) prover time, O(
√
N) verification time,

and proof size for matrices, which are tensors of order 2. Additionally, one of the
key features of Brakedown is that it is field-agnostic, meaning the scheme does
not depend on the choice of field.
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Orion [XZS22] improves upon Brakedown’s results by utilizing a technique
called code-switching [RZR24]. This code-switching method allows for efficient
proof composition, maintaining the linear prover while reducing both the verifi-
cation time and proof size to O(log2 N). Like Brakedown, Orion uses the gener-
alized Spielman code, a linear-time encodable code, to achieve a linear prover.
To efficiently locate this code, Orion introduces a testing algorithm for lossless
expander graphs.

B Proof of Theorem 1

Proof. Completeness: Let r = logN . If the round is the last, this follows triv-
ially from the completeness of the linear-time polynomial commitment scheme.
Now, let us assume that the round is not the last. For 0 ≤ e ≤ N − 1, define
the binary vector e = (e0, e1, . . . , er−1), where e = (er−1 · · · e1e0)2 represents the
binary expansion of e. Given that C ∈ FN , we can interpret C as a function from
{0, 1}r to F, defined by C(e) = C[e]. From the definition of the eq function, the
multilinear extension of eq is given by ẽq(x, e) :=

∏r
i=1 ((1− ei)(1− xi) + eixi).

Thus, the polynomial fC
N (x1, · · · , xr) can be expressed as

fC
N (x1, · · · , xr) =

∑
e∈{0,1}r

ẽq(x, e) · C(e).

In our protocol, the same procedure is applied to the vector z for the con-
sistency test as well as to w for the proximity test, so it is sufficient to prove
completeness for z alone.

The value σ, which represents the evaluation of fC
N (x1, · · · , xr) at the vector

z, can be written as:

σ = fC
N (z1, · · · , zr) =

∑
e∈{0,1}r

ẽq(z, e) · C(e).

Using the definition of ẽq, the vectors lz and rz can be expressed as

lz = ⊗r/2
i=1(1− zi, zi) =

(
ẽq(z[1..r/2], i)

)
i∈{0,1}r/2 ,

and
rz = ⊗ri=r/2+1(1− zi, zi) =

(
ẽq(z[r/2+1..r], i)

)
i∈{0,1}r/2 .

Using the vector rz, the vector yz is computed by folding the matrix C as follows:

Fold(C; rz) := C · rz =

 k∑
j=1

C[j, i] · ẽq(z[r/2+1..r], i)


where i ∈ {0, 1} r

2 . Finally, using the vector lz, the folding of the vector yz is
given by:
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Fold(yz; lz) =
(
ẽq(z[1..r/2], j)

)T ·
 k∑
j=1

C[j, i] · ẽq(z[r/2+1..r], i)

 .

where j ∈ {0, 1} r
2 and i ∈ {0, 1} r

2 . This simplifies to:

k∑
i=1

k∑
j=1

ẽq(z[1..r/2], j) ·C[j, i] · ẽq(z[r/2+1..r], i)

=
k∑
i=1

k∑
j=1

ẽq(z[1..r/2], j) · ẽq(z[r/2+1..r], i) ·C[j, i]

=
∑

e∈{0,1}r

ẽq(z, e) · C(e).

Hence, we conclude that σ = fC
N (z) = lTz ·C · rz = lTz · yz.

Since for every lt ∈ I, Enc(yz)lt = Fold(E)lt (by Proposition 1), we obtain
the following ℓ identities:

k∑
i=1

G[lt, i] · yz[i] =
k∑
i=1

E[lt, i] · rz[i],

where G is the encoding matrix for Enc and E = Enc(C). Each vector G[lt, :],
yz, E[lt, :], and rz has length k. Let the multilinear extensions of these vectors
be denoted as G̃t(x), ỹz(x), Ẽt(x), and r̃z(x) ∈ F[x1, . . . , xlog k], respectively:

G̃t(x) :=
∑

e∈{0,1}log k

ẽq(x, e) ·G(lt||e),

ỹz(x) :=
∑

e∈{0,1}log k

ẽq(x, e) · yz(e),

Ẽt(x) :=
∑

e∈{0,1}log k

ẽq(x, e) · E(lt||e),

r̃z(x) :=
∑

e∈{0,1}log k

ẽq(x, e) · rz(e).

where lt is binary vector of lt.
By definition, N ′ = ψ(2(ℓ + 1)

√
N), and since N ′

2k ≥ ℓ, the ℓ multilin-
ear polynomials G̃t(x) (and Ẽt(x)) can be represented as a single multivariate
polynomial through multilinear extension using log N ′

2k variables y1, . . . , ylog N′
2k

.
This polynomial is defined as follows: G̃(y,x) =

∑
e∈{0,1}log N′

2k
ẽq(y, e) · G̃e(x)(

and Ẽ(y,x) =
∑

e∈{0,1}log N′
2k

ẽq(y, e) · Ẽe(x)
)

. Therefore, the ℓ identities can
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be combined into a single polynomial form, which satisfies the following property
for all j ∈ {0, 1}log N′

2k :∑
i∈{0,1}log k

G̃(j, i)ỹz(i) =
∑

i∈{0,1}log k

Ẽ(j, i)r̃z(i).

Defining Sz(y,x) as Sz(y,x) := G̃(y,x)ỹz(x)− Ẽ(y,x)r̃z(x), we see that for all
j ∈ {0, 1}log N′

2k , the sum
∑

i∈{0,1}log k Sz(j, i) = 0. This indicates that all ℓ identi-
ties hold true. Consequently, for any vector c←$ Flog N′

2k , we have
∑

i∈{0,1}log k Sz(c, i) =
0. Similarly, since folding the vector yz with the vector lz yields Fold(yz; lz) = σ,
we obtain the following identity:

∑
i∈{0,1}log k T (i) = σ, where T (x) = l̃z(x) ·

ỹz(x).
After performing the sum-check protocol, in order to compute the input for

recursive rounds, we define:

– N ′ := ψ(2(ℓ+ 1)
√
N)

– C′ :=
(
G[l1, :], · · · , G[lℓ, :],0,yz, E[l1, :], · · · , E[lℓ, :],0,yw

)
∈ FN

′

– z′ := (c ||b || a) ∈ FlogN ′

– fC′

N ′ (x1, · · · , xlogN ′) :=
∑

e∈{0,1}log N′ ẽq(x, e) · C ′(e)

Then, the completeness of our protocol is established through the following steps:

fC
′

N ′(z′) = fC
′

N ′ (c||b||a)

=
∑

ẽq
(
(c||b||a), (e1||e2||e3)

)
· C ′(e1||e2||e3)

=
∑

e1∈{0,1}log N′
2k

ẽq(c, e1)
( ∑

e2∈{0,1}log k

ẽq(b, e2)
( ∑
e3∈{0,1}

ẽq(a, e3) · C ′(e1||e2||e3)
))

=
∑

e1∈{0,1}log N′
2k

ẽq(c, e1)
((
G̃i(b) + ỹz(b)

)
(1− a) +

(
Ẽi(b)a+ ỹw(b)

)
a
)

= (1− a)

G̃(c,b) +
log N′

2k∏
i=1

ci · ỹz(b)

+ a

Ẽ(c,b) +
log N′

2k∏
i=1

ci · ỹw(b)


= σ′.

Soundness: The soundness error in the membership proof step, denoted by
ϵmp, results from the sum of errors in each of the Merkle tree proofs. Each error
corresponds to the probability of a collision occurring at each layer of the Merkle
tree. Therefore, the total soundness error for the 2ℓ commitments cmEt

and cmGt

is ϵmp = 2ℓ·depth
|F| , where depth = logn. In our protocol, the verifier selects ℓ ran-

dom rows to perform proximity and consistency tests. The soundness error for
these tests, derived in [BCG20,GLS+23], is given as O

(
d2

|F| +
(
1− δ

3
)ℓ), particu-

larly since we consider the case of t = 2. Additionally, based on the latest version
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of [AHIV17]8, the second term
(
1− δ

3
)ℓ can be optimized to

(
1− δ

2
)ℓ. Thus, the

total error probability for these tests becomes ϵtest = O
(
d2

|F| +
(
1− δ

2
)ℓ). Let

ϵsc represent the soundness error that arises within the sum-check protocol. The
polynomials T (x), Sz(y,x), and Sw(y,x) used in this protocol are polynomi-
als in log k variables, where each variable has a maximum degree of 2. Thus,
the soundness error for each sum-check protocol is log k

|F| , leading to a total of
ϵsc = 3 log k

|F| . The total soundness error is therefore given by

ϵReduce = ϵmp + ϵsc + ϵtest

= O
(
ℓ · logn+ d2 + log k

|F|
+
(

1− δ

2

)ℓ)

Thus, the LiLAC-Reduce protocol has the following soundness error depending
on the value of the round:{

ϵReduce if round is not last
ϵMLPCS if round is last

Here, ϵMLPCS represents the soundness error of the linear-time polynomial com-
mitment employed by the prover and verifier when the round is last. Conse-
quently, the overall soundness error of LiLAC-Reduce is given by ϵ1 = max {ϵReduce, ϵPCS}.

8 We referenced https://eprint.iacr.org/2022/1608 and used the soundness anal-
ysis presented in Appendix C.

https://eprint.iacr.org/2022/1608
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