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Abstract 

One of the most crucial measures to maintain data security is the use of cryptography schemes and 

digital signatures built upon cryptographic algorithms. The resistance of cryptographic algorithms 

against conventional attacks is guaranteed by the computational difficulties and the immense 

amount of computation required to them. In the last decade, with the advances in quantum 

computing technology and the realization of quantum computers, which have higher 

computational power compared to conventional computers and can execute special kinds of 

algorithms (i.e., quantum algorithms), the security of many existing cryptographic algorithms has 

been questioned. The reason is that by using quantum computers and executing specific quantum 

algorithms through them, the computational difficulties of conventional cryptographic algorithms 

can be reduced, which makes it possible to overcome and break them in a relatively short period 

of time. Therefore, researchers began efforts to find new quantum-resistant cryptographic 

algorithms that would be impossible to break, even using quantum computers, in a short time. Such 

algorithms are called post-quantum cryptographic algorithms. In this article, we provide a 

comprehensive review of the challenges and vulnerabilities of different kinds of conventional 

cryptographic algorithms against quantum computers. Afterward, we review the latest 

cryptographic algorithms and standards that have been proposed to confront the threats posed by 

quantum computers. We present the classification of post-quantum cryptographic algorithms and 

digital signatures based on their technical specifications, provide examples of each category, and 

outline the strengths and weaknesses of each category. 
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1. Introduction 

Data security, whether during transmission or storage, is quite important to all individuals and 

organizations. According to the report published by the White House Office of Management and 

Budget on the budget of the United States government for 2024, the budget allocated to the 

Cybersecurity and Infrastructure Security Agency (CISA) for 2024 equals $3.1 billion, 

representing a $145 million increase compared to the previous year. The purpose of this increment 

is to make the United States cyberspace more resilient and defensible [1]. This example illustrates 

the increasing importance of cybersecurity, of which data security is one of its basic concepts [2]. 

The three core principles of data security are confidentiality, integrity, and availability. Various 

sorts of cryptographic algorithms and digital signatures are widely used to maintain all these 

principles [2], [3]. The resistance of cryptographic algorithms to conventional attacks  (i.e., 

preventing the revelation of the plain text or the secret key) is ensured through the computational 

difficulties and the enormous amount of computation required to break them. In other words, the 

underlying principle of all cryptographic algorithms is that breaking them, even using the most 

powerful computers in the world, should take so long that the useful life of the encrypted data is 

over before the breaking [4]. In the article [4] presented by Joseph et al., the term "shelf-life" is 

used to refer to the useful life of data. According to the definition they provided, shelf-life is the 

time frame that the data must remain confidential and secure after transmission. Cryptographic 

algorithms and schemes are called "computationally secure" if the time required to break them, 

even using the most powerful supercomputers, exceeds the shelf-life of the data they are designed 

to protect [5]. 

Conventional cryptographic algorithms were all considered computationally secure according to 

the above definition when they were accepted as appropriate algorithms and considered as the 

foundation for cryptography and digital signature standards. However, a few decades after the 

introduction of these algorithms, the advent of quantum computing technology has led researchers 

to believe that attackers equipped with powerful quantum computers could break many of such 

algorithms in a short period of time (i.e., before the end of the shelf-life of encrypted data) [6]. 

Therefore, researchers began efforts to devise and design new cryptographic algorithms that would 

be resistant even to powerful quantum computers. These algorithms are called post-quantum 

cryptographic algorithms. Two of the basic principles in designing post-quantum cryptographic 

algorithms are that these algorithms must be resistant to both conventional (i.e., non-quantum) and 

quantum computers, and they must also be implementable and executable on conventional 

computers. In other words, it is assumed that attackers have access to both conventional and 

quantum computers, while people who try to protect their data are limited to using only 

conventional computers [5], [7], [8]. 
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The National Institute of Standards and Technology (NIST) in the United States is one of the 

organizations working to identify and standardize suitable post-quantum cryptographic algorithms. 

In 2016, this institute initiated a competition inviting participants to submit cryptographic 

algorithms and digital signatures designed to be resistant to quantum computers. The NIST held 

this competition in four rounds. In each round, a selection of algorithms was made based on criteria 

such as security, temporal and hardware cost, and computational performance from the qualified 

algorithms and advanced to the next stage of the competition. Security was the most critical factor, 

defined as the resistance to being broken by all kinds of attacks that can be performed using 

conventional or quantum computers against cryptographic algorithms and digital signatures. The 

term "temporal cost" refers to the time required to execute the algorithm, and "hardware cost" 

means the hardware needed to implement the algorithm, including components such as the 

processor and memory. ''Computational performance'' also refers to the structural features of 

algorithms, such as simplicity in design and flexibility in implementation (i.e., the possibility of 

implementation on different platforms). Finally, at the end of the third round, four algorithms were 

selected to be standardized for worldwide practical encryption and digital signing in the future. 

Furthermore, the NIST competition continues into the fourth round, with new candidates being 

evaluated to identify at least one more post-quantum cryptographic algorithm for standardization 

and future use. The fourth round of the competition is still ongoing at the time of writing this article 

[8], [9], [10]. 

The major contributions of this study are listed as follows: 

 This article explains and illustrates the vulnerabilities of conventional cryptographic 

algorithms and digital signatures against quantum computers, serving as a warning for 

users of such algorithms. 

 This article provides a comprehensive review of various categories of post-quantum (i.e., 

quantum-resistant) cryptographic algorithms and digital signatures that can be utilized 

securely in the post-quantum era. Such information will be valuable to all individuals and 

companies involved in information technology and helps them to select the proper 

algorithms to secure their data and communications. 

 The field of Post-Quantum Cryptography (PQC) still needs much research and 

development. By offering a comprehensive review of different categories of post-quantum 

cryptographic algorithms and digital signatures, along with their advantages, 

disadvantages, and limitations, this article provides worthwhile insights to researchers, 

motivating them for further research and improvements in this field. 
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This article is organized as follows: Section 2 briefly reviews conventional cryptographic 

algorithms and digital signatures, including their structural and functional information. Section 3 

discusses the challenges and vulnerabilities posed by quantum computing to each category of 

conventional cryptographic algorithms. Section 4 provides a comprehensive review of various 

kinds of post-quantum cryptographic algorithms. Section 5 presents the algorithms selected by the 

NIST for encryption and digital signing in the post-quantum era. Section 6 provides valuable 

information about the implementation details of the post-quantum cryptographic algorithms and 

digital signatures selected by the NIST. Finally, Section 7 concludes this research and states 

possible ways to pursue this path. 

 

2. Conventional Cryptography 

In this article, the term "conventional cryptography" refers to the use of cryptographic algorithms 

and digital signature schemes designed and standardized in the last few decades. These algorithms 

and schemes were regarded safe before the advent of quantum computing, and even now, they are 

widely used in today’s systems. In a classification, these algorithms are generally divided into two 

categories: symmetric-key and asymmetric-key (commonly referred to as public-key) 

cryptographic algorithms. In symmetric-key algorithms, there is only one key for both encryption 

and decryption, which is why they are called symmetric-key algorithms. Both the sender and 

receiver should have access to this key and must keep it confidential. One of the most well-known 

symmetric-key cryptographic algorithms is the Advanced Encryption Standard (AES) [11]. In the 

second category, each user possesses a pair of keys: a public key and a private key. Public keys are 

non-confidential and are shared with others, while private keys must remain confidential and be 

securely maintained by their respective owners. Asymmetric-key algorithms are designed such that 

a text encrypted with a user’s public key can only be decrypted using the same user’s private key. 

Conversely, if a text is encrypted with a user’s private key, it can only be decrypted by the same 

user’s public key. This is why such algorithms are called asymmetric-key algorithms. The 

corresponding private and public keys are different but mathematically associated to each other. It 

is not possible to derive one of them from the other. As two of the most celebrated asymmetric-

key cryptographic algorithms, we can mention Rivest–Shamir–Adleman (RSA) public-key 

algorithm and the Elliptic-Curve Cryptography (ECC) scheme [11], [12]. 

Based on the features and structures of asymmetric-key algorithms, these algorithms are employed 

for both encryption and digital signing operations to maintain the confidentiality or integrity of the 

data. The meaning of confidentiality is to prevent unauthorized people from reading the data, and 

integrity refers to preventing unauthorized people from modifying the data. During the encryption 
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operation, the sender encrypts the data (referred to as plain text) using the recipient’s public key 

(which is available to everyone) and sends the encrypted data (referred to as cipher text). When 

the recipient receives the encrypted data, he/she can decrypt it using his/her private key, which is 

accessible only to this user. Therefore, the data remains confidential while being transmitted, even 

through unsecured channels. During digital signing operation, the sender encrypts the data with 

his/her private key to generate his/her digital signature and sends the signature along with the 

original data to the recipients. When the recipients receive the signed data, they can verify its 

authenticity by decrypting the signature using the sender’s public key and comparing its output 

with the received original data. Any mismatch detected indicates that the original text has been 

modified during the transmission. Hence, the integrity and authenticity of the data is protected 

during the transmission because unauthorized parties do not know the sender’s private key, so they 

cannot alter the data and sign it again [8], [12], [13]. Fig. 1 and Fig. 2 show the details of encryption 

and digital signing operations using asymmetric-key cryptographic algorithms, respectively. 

 

 

Fig. 1. encryption operation using asymmetric-key cryptographic algorithms 

 

 

Fig. 2. digital signature operation using asymmetric-key cryptographic algorithms 

 

Most symmetric-key cryptographic algorithms are based on operations such as XOR, rotation, and 

S-Box functions applied to the bits of the text. They aim to create as much confusion and diffusion 

as possible to make cryptanalysis attacks as difficult as possible. Therefore, in general, symmetric-
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key cryptographic algorithms are faster than asymmetric ones and are often used to encrypt large 

text files, audio, video, or data streams [9], [11], [14]. On the other hand, most asymmetric-key 

cryptographic algorithms are designed based on difficult mathematical problems such as prime 

factorization and discrete logarithms, in which the time and computational costs to solve are based 

on exponential functions (i.e., with linear the increase in the key size, the time and computational 

cost increases exponentially). Due to the complex mathematical operations performed in these 

algorithms, most of these algorithms require a significant amount of time and computational 

resources for encryption and decryption. In other words, asymmetric-key algorithms are generally 

more costly to execute compared to symmetric-key algorithms [2], [10], [11]. 

Therefore, in most applications, with the assumption that each user knows his/her private and 

public keys and also has previously received the public keys of other users through secure 

channels, at the initiation of each communication session between two parties (e.g., user 𝐴 and 

user 𝐵), an asymmetric-key cryptographic algorithm is used to securely transmit the secret key of 

symmetric-key cryptography. Then, a symmetric-key cryptographic algorithm is employed to 

encrypt the other data to be exchanged. In other words, if 𝐾௨ି  and 𝐾௩௧ି are, respectively, the 

public and private keys of user 𝐴 for asymmetric-key cryptography, and 𝐾௦ is the secret key of 

symmetric-key cryptography generated by user 𝐵 (the initiator of the communication session), the 

operation 𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝐾௨ି , 𝐾௦) → 𝐶𝑖𝑝ℎ𝑒𝑟 is performed by user 𝐵, and subsequently, the 

operation 𝐷𝑒𝑐𝑟𝑦𝑝𝑡(𝐾௩௧ି, 𝐶𝑖𝑝ℎ𝑒𝑟) → 𝐾௦ is performed by user 𝐴, so that 𝐾௦ is delivered from 

user 𝐵 to user 𝐴 securely. Afterward, 𝐾௦ will be used as the key for symmetric-key cryptography 

between these two users. The process of secure key transmission using asymmetric-key 

cryptography is called "key encapsulation" operation. Also, asymmetric-key cryptographic 

algorithms used in key encapsulation are called Key Encapsulation Mechanisms (KEM) [15], [16], 

[17]. Fig. 3 shows the key encapsulation operation and also the symmetric-key cryptography, 

which is then performed using the transmitted secret key. 

 

3. Challenges Facing Conventional Cryptography 

As we mentioned in Section 1, with the advent of quantum computing, the security of some 

cryptographic algorithms and digital signatures was questioned. More precisely, the major 

challenges to conventional cryptographic algorithms arise from specific quantum algorithms 

introduced in recent decades. Quantum algorithms are algorithms that are designed according to 

the structure of quantum computers, which is based on quantum mechanics, and have the ability 

to solve some difficult mathematical problems (such as factorizing integer numbers into their 

prime factors) as well as tasks related to computer science (such as searching among unsorted data) 
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in a much shorter time than conventional (i.e., non-quantum) computers [5], [10], [18]. By using 

these algorithms on quantum computers, attacks leading to breaking conventional cryptographic 

algorithms can be carried out in a much shorter period of time. If this period of time is shorter than 

the useful life (shelf-life) of the encrypted data, data security will be endangered [4], [8]. 

In this section, we illustrate the security challenges posed by quantum computing and quantum 

algorithms for each kind of cryptographic algorithm that we explained earlier in Section 2. In 

Section 4, we explain the solutions provided by researchers to encounter these challenges and 

threats. 

 

Fig. 3. key encapsulation operation and symmetric cryptography using the transmitted secret key 

 

3.1 Challenges Facing Symmetric-Key Cryptographic Algorithms 

In 1996, in research [19], Grover presented a quantum algorithm for searching among unsorted 

data, which reduced the time order of this type of search from 𝑂(𝑛) to 𝑂(𝑛ଵ/ଶ). By using this 

algorithm, which is one of the most important quantum algorithms, the duration of breaking 

symmetric-key cryptographic algorithms through the “brute force” attack is reduced to the square 

root of the original duration. [5], [10], [20]. The brute force attack is an attack in which the attacker 

tries all possible arrangements of bits to find the correct key [21]. To address this vulnerability and 

strengthen symmetric-key algorithms, it is necessary to double the size of the keys. For example, 

if in the past we used the AES algorithm with a key length of 128 bits, now we must use the AES 

with a key size of 256 bits to be as secure as before. Therefore, in the case of symmetric-key 
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cryptographic algorithms, the threats caused by quantum computing can be removed by increasing 

the key size [5], [10], [17], [22], [23]. 

 

3.2 Challenges Facing Hash Functions 

Hash functions are one-way (irreversible) functions that take plain text as input, and then by 

performing operations such as XOR, rotation, and nonlinear functions on its bits, they hash it and 

generate a fixed-length output. MD5 and the family of SHA functions are some of the most famous 

hash functions [24].  Since these functions are often used in data security methods integrated with 

cryptographic algorithms and digital signatures, we review them in this section. 

Since hash functions are one-way and irreversible, the input text can never be obtained from the 

output of the hash function, but because the size of the input text is larger than the output of the 

hash function, two or more input texts may have the same hash output. Attackers can exploit this 

characteristic and replace the original message with a fake message while the hash output is exactly 

the same for both texts. A widespread use case of these functions is to append the hash output of a 

message alongside it. This allows detection of any modifications to the message by comparing the 

newly generated hash output with the previous output that has been made from the original 

message. However, by exploiting the characteristic we explain above, two common attacks are 

performed against hash functions: pre-image and collision attacks [5], [24].  

The definition of the pre-image attack is that the attacker tries to find an input text for a specific 

hash output so that if the hash function is run with the new input, the same specific output is 

produced. Therefore, the attacker can replace the original message with a fake message without 

any changes in the hash function output. In the collision attack, the attacker tries to find two plain 

texts with equal output of the hash function. Thus, these two texts can be replaced with each other 

without any changes in the output of the hash function [5], [24]. 

The quantum algorithms that were presented in the articles [25] and [26] based on Grover’s 

algorithm are able to execute pre-image and collision attacks in 𝑂(𝑛ଵ/ଶ) and 𝑂(𝑛ଵ/ଷ) time orders, 

respectively. Here, 𝑛 means the output size of the hash function. To strengthen hash functions and 

address the threats from quantum computers, hash functions with larger output sizes should be 

replaced [5], [10], [17], [27]. 
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3.3 Challenges Facing Asymmetric-Key Cryptographic Algorithms 

Before the concept of quantum computing emerged, it was believed that the time orders for solving 

the problems of factorization and discrete logarithms of integers were exponential functions of the 

number of digits in the input number. However, in articles [28] and [29], Peter Shor presented two 

quantum algorithms that can solve prime factorization and discrete logarithm problems of integers 

in polynomial time orders (instead of exponential time orders). This means that the time orders of 

these quantum algorithms are polynomial functions of the number of digits in the input numbers. 

These algorithms, which are among the most important quantum algorithms, caused the security 

of asymmetric-key cryptographic algorithms and digital signatures to be questioned because most 

of such algorithms are based on the above mathematical problems [8], [10]. For example, we can 

mention the asymmetric-key algorithm RSA, which is based on the prime factorization of integers, 

or the ElGamal and ECC asymmetric-key algorithms, which are designed based on discrete 

logarithms of integers [11]. Using Shor’s algorithms in quantum computers, attackers can break 

these cryptographic algorithms in a short period of time and calculate people’s private keys [5], 

[8], [10].  

For instance, according to the functional details of the RSA algorithm, each user selects two large 

prime numbers, such as 𝑝 and 𝑞, and generates his/her private and public keys from them. This 

user announces the multiplication of 𝑝 and 𝑞 (e.g., 𝑛) along with another random number (e.g., 𝑒) 

to everyone as his/her public key (i.e., 𝐾௨ = (𝑛, 𝑒)). In this case, finding the two prime numbers 

𝑝 and 𝑞 that have produced 𝑛 takes a very long time and has an exponential time order on 

conventional (non-quantum) computers. However, this process requires a short time using Shor’s 

algorithm on quantum computers, and its time order is a polynomial function. Therefore, the 

attacker (who knows 𝑛 and 𝑒), by finding 𝑝 and 𝑞, can calculate the user’s private key from them 

[5], [11]. 

It should be noted that the security weakness of asymmetric-key cryptographic algorithms against 

quantum computing cannot be solved even by increasing their key sizes because the time orders 

of breaking these algorithms using Shor’s algorithms will still be polynomial functions. Therefore, 

researchers presented other solutions that we discuss in the next section [5], [30], [31]. 

 

4. Post-Quantum Cryptographic Algorithms 

As we explained in the previous section, unlike symmetric-key cryptographic algorithms, in the 

case of asymmetric-key algorithms, the vulnerability posed by quantum computers is not 

eliminated by increasing the key size. Therefore, researchers are looking for alternative approaches 
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to remove this vulnerability. In the last two decades, new asymmetric-key cryptographic 

algorithms have been proposed to be resistant to quantum computers. The basis of these 

algorithms, similar to conventional asymmetric-key algorithms, are problems (often mathematical 

problems) that are very difficult to solve, even using quantum algorithms  on quantum computers 

[5], [10]. 

In this section, we review these algorithms, which are called post-quantum (or quantum-resistant) 

cryptographic algorithms and digital signatures. These algorithms, according to their technical 

specifications, are generally divided into five main categories, which are: lattice-based, code-

based, hash-based, isogeny-based, and multivariate cryptography [5], [8], [10], [22]. In each 

category, algorithms for public-key cryptography, key encapsulation, and digital signatures are 

designed and presented to be resistant to quantum computing. In the following, we explain each 

category and provide examples. 

Additionally, we describe the MPC-in-the-head category, a novel category of digital signature 

schemes, in this section. Due to its infancy, most renowned references in the field of post-quantum 

cryptography, such as [32], have not mentioned this category and its specifications or have not 

considered it a main category of post-quantum cryptographic algorithms and digital signatures. 

Describing this category and its characteristics, along with providing some instances of the known 

algorithms in this category, is one of the prominent contributions of this article and also one of its 

distinctions compared to the previous works. 

 

4.1 Lattice-Based Cryptography 

A lattice is an infinite set of discrete points in an n-dimensional Euclidean space. Therefore, each 

point of an 𝑛-dimensional lattice is determined by 𝑛 real numbers, which are the coordinates of 

that point. For example, the point 𝑋 = (𝑥ଵ, 𝑥ଶ, … , 𝑥) in an 𝑛-dimensional Euclidean space can be 

a point in an 𝑛-dimensional lattice. Fig. 4a shows an example of 2-dimensional lattices. For each 

𝑛-dimensional lattice, one or more 𝑛-membered sets of vectors can be found, which all of the 

nodes in the lattice can be reached from the zero point (origin) of the lattice through the linear 

combination of the vectors of each set. Each of such sets of vectors for a lattice is called the "basis" 

of that lattice, and the member vectors of each set are called "basis vectors". There may be more 

than one basis set for a lattice. Usually, to define and demonstrate a lattice, its basis is shown [33]. 

For example, a lattice like 𝐿 is represented by the linear combination of its basis as follows: 

𝐿 = {∑ 𝑎𝑣

ୀଵ |𝑎 ∈ ℤ} (1) 
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As we said above, the basis of a lattice is usually not unique, and there may be several bases for a 

lattice. In such a case, if a basis of a lattice contains short vectors (as shown by Fig. 4b), it is called 

a short basis (or good basis), and if it contains long vectors (as shown by Fig. 4c), it is called a 

long basis (or bad basis). In lattice-based cryptography, which is the largest category of post-

quantum cryptographic algorithms, some mathematical problems related to lattices are used, which 

can be easily solved by having a short basis of the lattice. While on the other hand, having a long 

basis, it will be very difficult to solve them (especially when 𝑛 is large enough). It is also very 

difficult to calculate the short basis from the long basis. Therefore, the short basis is used as the 

private key, and the long basis is used as the public key of the asymmetric cryptography. In this 

case, for decryption, the user who has the private key can easily solve the lattice problem. 

However, the users who only have the public key will have a very difficult and time-consuming 

task ahead, that has an exponential time order even using quantum computers [5], [33], [34]. 

Two of the most well-known lattice problems used in lattice-based cryptography are the Shortest 

Vector Problem (SVP) and the Closest Vector Problem (CVP). In the SVP, assuming we have one 

basis of the lattice, the shortest vector must be found that connects the zero point of the lattice to 

its nearest point. In the CVP, in addition to having one of the bases of the lattice, a random point 

in the space is also determined, and the closest point of the lattice to the determined point must be 

found. If we have the short basis of the lattice, these problems can be easily solved, but if we only 

have the long basis, solving these problems will be difficult and time-consuming [5], [33].  

 

Fig. 4. An example of a lattice and two sorts of its bases 

Another fundamental lattice problem, which is the basis of some algorithms in this category, is the 

Short Integer Solution (SIS) problem. This problem is described as follows: Let 𝐴 ∈ ℤ
× be an 

𝑛 × 𝑚 matrix with entries in ℤ (i.e., the ring of integers modulo 𝑞), that consists of 𝑚 uniformly 

random vectors as its columns and 𝛽 > 0 is a real number. This problem is shown as 𝑆𝐼𝑆,,,ఉ, 
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and its goal is to find a non-zero integer vector like 𝑥 ∈ ℤ such that: 𝐴𝑥 = 0 (𝑚𝑜𝑑 𝑞) and 

||𝑥||ଶ ≤ 𝛽 [35], [36]. There are a few well-known variants of the SIS problem, such as 

Inhomogeneous SIS (I-SIS), Ring-based SIS (RSIS), and Modulated SIS (MSIS). In recent 

decades, many lattice-based algorithms have been proposed based on these lattice problems [37]. 

One of the most widely used lattice problems, based on which many popular lattice-based 

algorithms have been designed and presented in recent years, is the Learning With Errors (LWE) 

problem [38]. The description of this algorithm is as follows: Let ℤ be the ring of integers modulo 

𝑞, and ℤ
× be the set of 𝑛 × 𝑚 matrices with entries from ℤ. The input to the LWE problem 

consists of a uniformly random matrix like 𝐴 ∈ ℤ
× that 𝑚 ≥ 𝑛, a uniformly random secret 

vector like 𝑠 ∈ ℤ
, and an error vector like 𝑒 = (𝑒ଵ, 𝑒ଶ, … , 𝑒), in which each 𝑒 has been sampled 

randomly according to an error distribution like 𝒳. Given 𝐴. 𝑠 + 𝑒 (𝑚𝑜𝑑 𝑞), the goal is to calculate 

the secret vector 𝑠, with a high probability (e.g., 𝑝 > 1 − 𝛿) [33], [35], [37]. Similar to the SIS 

problem, the LWE problem has a few renowned variants, such as Ring-based LWE (RLWE) and 

Modulated LWE (MLWE) [37]. Many of the well-known and popular post-quantum cryptographic 

algorithms and digital signatures of the recent decade, such as CRYSTALS-Kyber [39] and 

CRYSTALS-Dilithium [40], are designed based on the LWE family of problems. 

A noteworthy feature of lattice-based cryptographic algorithms is that their security levels are 

equal to the worst cases of the problems they are designed based on. While, most of the other 

algorithms, their security levels are equal to the average cases of their basic mathematical 

problems. Another advantage of this category of algorithms is their "algorithmic simplicity" and 

high "parallelization capability", which make them fast and convenient for execution by 

conventional computers. A notable drawback of these algorithms is the possible security 

vulnerabilities that may appear when implementing them on conventional computers [5], [8], [17], 

[34], [35]. 

One of the best-known algorithms in this category is the N-th-degree Truncated polynomial Ring 

Unit (NTRU) algorithm [41], based on which many newer algorithms were later built [9]. 

Algorithms in the NTRU family are mathematically based on the approximate Closest Vector 

Problem (appr-CVP) [42]. One of the distinctive advantages of the NTRU algorithm is that its 

complexity is 𝑂(𝑛ଶ), whereas many other public-key cryptographic algorithms have a complexity 

of 𝑂(𝑛ଷ). When comparing the same degree of security, the NTRU is 1.5 times quicker than the 

ECC algorithm. In the NTRU, key generation takes 300 times less time than the RSA algorithm, 

encryption takes 3 times less time, and decryption takes 30 times less time [9]. Specifically, the 

NTRU operations are based on objects in a truncated polynomial ring 𝑅 = ℤ[𝑥]/(𝑥ே − 1). This 

means that all polynomials used in this algorithm have integer coefficients, and their degrees are 
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at most 𝑁 − 1 [43]. The functional details of the NTRU algorithm are summarized as follows [41], 

[43]: 

 Firstly, the user, who owns the private and public keys, should select three integers such as 

𝑁, 𝑝, and 𝑞, so that 𝑁 is a prime number, 𝑞 is considerably larger than 𝑝, and 𝑝 and 𝑞 are 

coprime. 𝑁 is the polynomial degree bound, and 𝑝 and 𝑞 are small and large moduli, 

respectively. In this case, plain text messages are polynomials modulo 𝑝, and cipher text 

messages are polynomials modulo 𝑞.  

 Then, the owner user should select the polynomials 𝑓 and 𝑔 in the ring 𝑅 with coefficients 

in [−(𝑝 − 1)/2, (𝑝 − 1)/2]. The polynomial 𝑓 must satisfy the additional requirement, 

that it have inverses modulo 𝑞 and modulo 𝑝. These inverses can be calculated using 

Euclidean algorithm, and we denote them by 𝑓 and 𝑓, that is 𝑓. 𝑓 = 1 (𝑚𝑜𝑑 𝑝) and 

𝑓. 𝑓 = 1 (𝑚𝑜𝑑 𝑞). 

 Key Generation: To generate the public key, the owner user should calculate 𝐾௨ =

𝑝. ൫𝑓 . 𝑔൯(𝑚𝑜𝑑 𝑞). The private key is the pair of (𝑓, 𝑓), however in practice the user 

should also store 𝑔 and keep it confidential. 

 Encryption: To encrypt the message by a sender user, the plain text (e.g., 𝑀) is converted 

into a form of polynomial, in which the coefficients should be in the range of [−(𝑝 −

1)/2, (𝑝 − 1)/2], and its degree should not be more than 𝑁 − 1. The message polynomial 

(i.e., 𝑀) can be translated in a binary representation. In addition, the sender user should 

select a blinding polynomial (e.g., 𝑟) in the ring 𝑅, which has equal positive and negative 

coefficients. The encrypted message 𝑀 is computed as 𝑀 = ൫𝑟. 𝐾௨൯ + 𝑀 (𝑚𝑜𝑑 𝑞). 

 Decryption: If the sender user reveals the blinding polynomial (i.e., 𝑟), anybody knowing 

𝑟 will be able to compute the plain text (i.e., 𝑀) by evaluating 𝑀 − (𝑟. 𝐾௨). Therefore, 

the sender user cannot send 𝑟 to the recipient user (i.e., the owner of the keys). Hence, after 

receiving the message, the recipient user should obtain the plain text in two stages. Firstly, 

the recipient user should calculate 𝑎 = 𝑓. 𝑀 (𝑚𝑜𝑑 𝑞) using the first element of the private 

key. Afterward, the user can utilize the second element of the private key and calculate the 

plain text as 𝑀 = 𝑓 . 𝑎 (𝑚𝑜𝑑 𝑝). 

Some of the other renowned lattice-based cryptographic algorithms are NTRU-prime [44], 

SABER [45], and CRYSTALS -KYBER [39], which are designed for key encapsulation and 

public-key cryptography, and also FALCON [46], qTESLA [47], and CRYSTALS-DILITHIUM 

[40], which are presented for digital signature. 
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4.2 Code-Based Cryptography 

With over 40 years of age, this group is considered the oldest category of post-quantum 

cryptographic algorithms, which are used as asymmetric-key cryptographic algorithms. The 

function of algorithms in this category is based on error detection and correction codes. It means 

the codes that are used to detect and even correct errors in transmitted data bits and are widely 

used in digital communication. The procedure of encryption in these algorithms is that on the 

sender’s side, the data is first sent to an error correction code, and also, some random errors are 

added to it and then sent. On the receiver side, errors in the text are removed, and the text is 

decoded using another error correction code (associated with the sender’s error correction code). 

In this case, the sender’s error correction code is considered the public key, and the receiver’s error 

correction code is considered the private key [5], [8], [10], [17]. 

The most reputable member of this category is the McEliece algorithm [48], which was presented 

in 1978 based on linear and binary Goppa code [49], which is an error-correcting code. Due to the 

fact that reversing the error-correcting code used in this algorithm is an NP-complete problem [50], 

the high security of this algorithm is proven. However, the excessively large public key has 

prevented this algorithm from being practical in the past years [5], [10], [17]. The way this 

algorithm works is as follows [5], [9], [48]: 

 Firstly, the random number 𝑡 and three matrices 𝑆, 𝑃, and 𝐺 are determined. 𝑆 is the 

"scrambler" matrix with dimensions 𝑘 × 𝑘 and should not be singular, and 𝑃 is the 

"permutation" matrix with dimensions 𝑛 × 𝑛. The matrix 𝐺, with 𝑘 × 𝑛 dimensions, is the 

generator matrix for the selected linear binary Goppa code (which is an irreducible Goppa 

code). The matrix 𝐺 can quickly decode the message and correct a maximum of 𝑡 error 

bits. The number 𝑛 equals the length of the selected Goppa code and is of the form 𝑛 =

𝑚ଶ. The number 𝑘 is determined in the form 𝑘 ≥ 𝑛 − 𝑡𝑚. 

 Now, (𝐺ᇱ, 𝑡) is the public key, that 𝐺ᇱ = 𝑆. 𝐺. 𝑃, and (𝑃, 𝑆, 𝐺) is the private key. 

 On the sender’s side, the message is divided into 𝑘-bit blocks for encryption. Then, a block 

of message like 𝑢 is sent to the matrix 𝐺′ to produce an 𝑛-bit output. After that, an 𝑛-bit 

random error vector with weight 𝑡 (i.e., there are at most 𝑡 bits of 1 in it), like 𝑧, is added 

to it to produce 𝑡 bits of error in it. Therefore, the result is equal to 𝑥 = (𝑢 ∙ 𝐺ᇱ) ⊕ 𝑧 . 

Finally, 𝑥 is sent to the recipient as the encrypted message (the cipher text). 

 On the recipient’s side, for decryption, at first, 𝑥 is multiplied by the inverse of the matrix 

𝑃, i.e., 𝑃ିଵ. So, we have 𝑥ᇱ = 𝑥 ∙ 𝑃ିଵ = ൫(𝑢 ∙ 𝐺ᇱ) ⊕ 𝑧൯ ∙ 𝑃ିଵ = (𝑢 ∙ 𝑆 ∙ 𝐺) ⊕ (𝑧 ∙ 𝑃ିଵ) . 

Now, according to the fact that 𝑧 ∙ 𝑃ିଵ contains a maximum number of 𝑡 bits of errors, by 
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sending the above result to the Goppa code decoder, we are be able to remove 𝑧 ∙ 𝑃ିଵ and 

calculate 𝑢 ∙ 𝑆. Then, by calculating (𝑢 ∙ 𝑆) ∙ 𝑆ିଵ, 𝑢 (i.e., the plain text) will be acquired. 

As we said earlier, the security of this algorithm is guaranteed, but due to the huge size of the 

public key (e.g., about one megabyte) and the amount of additional data that is added to the plain 

text for encryption, that creates computational and communication overload, the algorithm has not 

been implemented and practical during the last decades. Although some efforts have been made to 

reduce the key size of this algorithm, they have failed and been broken [5], [9], [10]. Some of the 

other renowned algorithms in this category are BIKE [51], HQC [52] and [53], and RQC [54]. 

 

4.3 Hash-Based Cryptography 

As we said in Section 3, the post-quantum security of hash functions can be ensured by increasing 

their output size. Therefore, most hash functions can be considered secure without any remarkable 

changes in their structure. Hash-based cryptography is often used to generate digital signatures 

and uses hash functions to generate the private and public keys used in digital signatures [5], [8], 

[10]. In this section, we introduce the most celebrated hash-based digital signatures that have been 

contributing and inspiring to other researchers to design newer algorithms. 

In 1979, in the article [55], Lamport proposed a digital signature scheme based on hash 

functions. The function of Lamport digital signature is as follows [5], [55], [56]: 

 Firstly, it is assumed that the signer user has a secure 𝑛-bit hash function and a random 

number generator. 

 As the private key, the signer must generate 𝑛 pairs of 𝑛-bit random numbers. Hence, the 

size of the private key is 2𝑛ଶ bits.  

 As the public key, the signer must generate the hash output of all the numbers in the private 

key, resulting in 𝑛 pairs of 𝑛-bit hash outputs (2𝑛ଶ bits in total), which form the public key 

together. The signer can share the public key with everyone. 

 To sign a message, the signer first generates an 𝑛-bit hash output of the message using the 

mentioned hash function. Then, for each bit in the message hash output, the pair of numbers 

corresponding to it is considered in the private key, and if the value of this bit is 0, the first 

number, and if the value of this bit is 1, the second number of the mentioned pair is selected 

and added to the signature. Therefore, one of each pair of numbers in the private key is 

selected, and a total of 𝑛 𝑛-bit numbers are placed together (i.e., the signature size equals 

𝑛ଶ). The signature is sent to the recipient next to the plain text of the message. 
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 On the recipient’s side, to verify the signature, firstly, the message’s plain text is hashed by 

the same hash function, and an 𝑛-bit output is generated. Then, for each bit of this hash 

output, the corresponding pair of hashed numbers is considered in the public key. If the 

mentioned bit is equal to 0, the first number is selected, and if it is equal to 1, the second 

number is chosen from the hashed pair, and a total of 𝑛 hashed numbers are selected. 

 Then, the output of the hash of 𝑛 numbers in the received signature is also generated. If all 

the 𝑛 hashed numbers selected from the public key are equal to the hash output of the 

numbers in the received signature, that means the signature is correct and the message has 

not been modified during transmission. Otherwise, it means the message has been modified 

during transmission, and the signature is not valid. 

It is noteworthy that the Lamport signature scheme is a one-time signature, and each pair of private 

and public keys should only be used once. If a pair of private and public keys is used more than 

once, its security is significantly reduced each time. For this reason, this digital signature algorithm 

is called Lamport’s One-Time Signature (OTS) [5], [56], [57]. Fig. 5 shows Lamport’s one-time 

digital signature. 

 

 

Fig. 5. Lamport’s one-time digital signature scheme 

 

Another prominent algorithm in this category was presented by Merkle in 1989 in research [57]. 

In that research, Merkle presented an algorithm for digital signature based on Lamport’s OTS, 

which, unlike Lamport’s algorithm, could be reused a limited number of times. Based on [57], 

[58], [59], [60], the function of this algorithm is as follows. 

 To generate private and public keys, firstly, 𝑁 pairs of private and public keys, such as 

(𝑆 , 𝑃), must be generated based on a one-time digital signature algorithm (such as 

Lamport’s OTS). Note that 𝑁 must be a power of 2, for example, 𝑁 = 2. Then, a binary 

tree is formed, which has 𝑛 + 1 levels and 2ାଵ − 1 nodes, and at its lowest level, the hash 
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outputs of 𝑁 public keys (i.e., 𝑃’s) are placed as leaves. For higher levels, the value of 

each node is equal to the hash output of the concatenation of its two children. For example, 

if 𝑎ଵ, is the node at level 1 and the first node from the left side, its children are 𝑎, and 

𝑎,ଵ, which are leaves at level zero. In this case, we have 𝑎ଵ, = 𝐻𝑎𝑠ℎ(𝑎,||𝑎,ଵ). Such a 

tree is called a Merkle tree. Fig. 6 shows a Merkle tree for 𝑁=8 (i.e., with 4 levels) where 

the 𝐻(𝑃)’s are the hash outputs of the public keys. The highest node (i.e., the root of this 

tree), which is the node 𝑎,, can be shared with everyone as the overall public key (shown 

with PUB). The key PUB can be used for 𝑁 times. In this algorithm, only the private keys 

(i.e., 𝑆’s) are confidential, while the leaves and nodes of the tree are not confidential, and 

it is secure to share them, although it will significantly increase the size of the public key 

and transmitted data. 

 On the sender’s side, for encryption, firstly, one of the 𝑁 pairs of the OTS private and 

public keys like (𝑆 , 𝑃) are selected. It should be noted that each pair should not be used 

more than one time so as not to reduce security. Then, the message’s text is signed by the 

OTS with the selected private key (i.e., 𝑆). In addition to the plain text of the message and 

the generated one-time digital signature, it is necessary to include some additional 

information in the message so that the recipient can verify whether this signature is correct 

and valid. This additional information consists of the used public key (i.e., 𝑃) and some 

other intermediate nodes from the Merkle tree used so that the recipient can generate the 

path between the used public key (i.e., 𝑃) and the root node (i.e., PUB) with a hash function 

and make sure that the 𝑃 belongs to the sender user. 

 On the recipient’s side, after receiving the message that contains the plain text, signature, 

and additional information, the recipient first checks if the plain text is validly signed with 

the received public key (i.e., the received 𝑃) to make sure that the text has not been 

modified during transmission. Then, as we said in the previous paragraph, using 𝑃 and 

additional information (i.e., the values of some intermediate nodes of the tree), it tries to 

generate the path from 𝑃 to PUB to ensure that the received 𝑃 belongs to the sender user. 

A Merkle signature can be used a limited number of times, which is equal to the number of pairs 

of public and private keys produced to form the Merkle tree. Therefore, this algorithm is also called 

Merkle’s Few-Time Signature (FTS). In addition, Merkle’s signature scheme is idiomatically 

“stateful”. It is because of the fact that when you are using this algorithm, you should maintain the 

state of the used and unused pairs of public and private keys. Another weakness of this algorithm 

is the large public and private key and additional information that must be sent to the recipient 

along with the digital signature [5], [59], [60]. 
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One of the most renowned studies that attempted to relieve the weaknesses of Merkle’s signature 

scheme was conducted by Buchmann et al. They proposed an enhanced version of Merkle’s 

signature, which is named eXtended Merkle’s Signature Scheme (XMSS) [59]. They reduced the 

signature length by 25%, which resulted in the reduction of communication and computational 

load. However, the problem of statefulness still remained because XMSS is stateful as well. 

 

 

Fig. 6. Merkle tree for N=8 with 4 levels and 8 leaves 

 

In the article [60], Bernstein et al. presented SPHINCS, one of the first celebrated stateless digital 

signature algorithms. Their strategy was to form a hypertree (i.e., a tree of trees) based on the 

Merkel tree idea and FTS algorithms. At the lowest level of this tree, as leaves, are few-time 

signature trees (i.e., FTS trees). To generate the few-time signatures, they used the HORST 

algorithm, which is an upgraded version of the old HORS algorithm [61] and has a smaller 

signature size, faster processing time, and higher security. To sign a message, each time the signer 

user randomly selects a signature (i.e., a pair of private and public keys) from one of the subtrees, 

each of them is an FTS, and using it, similar to what happens in the Merkel signature, signs the 

message. Although it is possible that a particular signature is accidentally used more than once 

(that is called a collision), due to the immense number of existing signatures, this probability is 
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insignificant. Even if this happens, due to the characteristics of the HORST few-time signature 

algorithm, the security of the signature does not reduce remarkably. Since using the SPHINCS 

signature does not require the signer user to maintain the state of the used and unused key pairs, 

this algorithm is called a "stateless" digital signature [60], [62]. 

The SPHINCS+ algorithm, which is one of the digital signature algorithms selected by the NIST, 

is an improved version of the SPHINCS [60] that was introduced in the article [62] by Bernstein 

et al. The improvements of SPHINCS+ compared to SPHINCS include: 1) Providing a new FTS 

algorithm called FORS, which has higher security, especially against collision attacks, compared 

to the HORST algorithm. 2) Using a newer method to randomly select the hypertree leaves that 

are used as keys in digital signatures. Together, these two changes increase the level of digital 

signature security and reduce the size of digital signature parameters (e.g., the signature and public 

key size), which means a remarkable reduction in the computational and communication load [62]. 

As some of the major advantages of hash-based digital signing algorithms, we can mention 

algorithmic simplicity and fast and convenient execution on conventional computers. On the other 

hand, some of the drawbacks of these algorithms are huge digital signatures as well as their security 

levels that are dependent on the security of utilized hash functions [5], [8], [62]. 

 

4.4 Multivariate Cryptography 

It is proved that solving systems of multivariate (multi-variable) polynomial equations over finite 

fields are NP-hard problems. Therefore, these problems are suitable for designing cryptographic 

algorithms and digital signatures resistant to quantum computing because they are difficult and 

time-consuming to solve even when using quantum computers [5], [17], [63] This category of 

algorithms is useable for both public-key cryptography and digital signatures. The basis of a 

multivariate cryptographic algorithm is a system of multi-variable polynomial equations. If this 

system includes 𝑛 variables and 𝑚 polynomial equations with degree 𝑑, the size of the public key 

is equal to: 𝑚 ∙ ൫ାௗ
ௗ

൯ . Usually, 𝑑 = 2 is enough to ensure high security. In this case, the 

polynomials used are called quadratic polynomials, and most algorithms of this category use this 

type of polynomial. Other types of polynomials, such as cubic ones with 𝑑 = 3, are also common 

[5], [17]. 

In a multivariate cryptographic algorithm, there is an easily invertible quadratic map like 𝐹: 𝐹 →

𝐹, and also there are two affine invertible linear maps like 𝑆: 𝐹 → 𝐹 and 𝑇: 𝐹 → 𝐹. In this 

case, the private key is a set of three matrices 𝑆𝐾 =  (𝑆, 𝐹, 𝑇), and the public key is the 

multiplication of them i.e., 𝑃𝐾 =  (𝑆 ∙ 𝐹 ∙ 𝑇). Here, the security of this algorithm is ensured by the 
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isomorphism problem, that is given the PK, the attacker should find two affine maps like 𝑆′ and 𝐹′ 

and an easily invertible quadratic map like 𝐹′ such that 𝑃𝐾 = 𝑆′ ∙ 𝐹′ ∙ 𝑇′ [5], [17], [63].  

For encryption usage, given the plain text 𝑥 ∈ 𝐹, the sender user should calculate equation 2 to 

generate the cipher text 𝑦 ∈ 𝐹. On the recipient’s side, equation 3 should be calculated in order 

to obtain the plain text. It is necessary that 𝑚 ≥  𝑛 to ensure that there is only one plain text for 

each given cipher text [5], [63]. 

𝑦 = 𝑃𝐾(𝑥)  |  𝑥 ∈ 𝐹 𝑎𝑛𝑑 𝑦 ∈ 𝐹 𝑎𝑛𝑑 𝑚 ≥ 𝑛 (2) 

𝑥 = 𝑆ିଵ(𝐹ିଵ(𝑇ିଵ(𝑦))) (3) 

Additionally, for digital signing usage, the signer should use a secure hash function with the output 

like 𝑧 ∈ 𝐹. Then, the signer should calculate equation 4 to sign the hash output of the message 𝑥 

with the signature 𝑠. On the recipient’s side, firstly, the hash output of the received message (i.e., 

𝑥′) should be calculated again (shown by 𝑧′). Then the recipient should use the sender’s public key 

(i.e., the 𝑃𝐾 map) and the received signature (shown by 𝑠′) to obtain the unsigned received hash 

output (shown by 𝑧"). The recipient’s calculations are shown by equation 5. Afterward, the 

recipient can verify validity of the signature by comparing 𝑧′ with 𝑧" [5], [63]. 

𝑧 = 𝐻𝑎𝑠ℎ(𝑥) 𝑎𝑛𝑑 𝑠 = 𝑇ିଵ(𝐹ିଵ(𝑆ିଵ(𝑧))) (4) 

𝑧ᇱ = 𝐻𝑎𝑠ℎ(𝑥ᇱ) 𝑎𝑛𝑑 𝑧" = 𝑃𝐾(𝑠′) (5) 

One of the main advantages of multivariate cryptography is the speed of execution and simple and 

efficient implementation. This is because multivariate cryptographic algorithms and digital 

signatures only require simple arithmetic operations such as addition and multiplication in finite 

fields. Therefore, developers can effectively implement them on hardware-limited devices. 

Another advantage of this category of algorithms is the small digital signatures that they produce, 

which reduces the communication load and makes such algorithms proper for generating digital 

signatures. On the other hand, as one of the disadvantages of this category of algorithms, we can 

mention the enormous size of the public key, which reaches hundreds of kilobits in some 

algorithms of this category, which is larger than keys in many conventional (e.g., RSA) and post-

quantum (e.g., lattice-based) asymmetric-key algorithms and creates a significant communication 

load. Another notable drawback of multivariate cryptographic algorithms is the lack of a proven 

security level in their case. Although some algorithms in this category have resisted various attacks 

for years, there is no accurate proof of their security levels [64]. 

As a few of the most well-known multivariate public-key encryption schemes, we can mention 

Simple Matrix [65], SRP [66], and EFLASH [67]. Also, as some of the most famous examples of 
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multivariate digital signature schemes, we can mention Oil-and-Vinegar [64], Unbalanced Oil-

and-Vinegar (UOV) [68], FLASH [69], Rainbow [70], and GeMSS [71]. 

 

4.5 Isogeny-Based Cryptography 

This category is the youngest in post-quantum cryptography, and its mathematical foundation is 

based on elliptic curve isogeny problems. An “elliptic curve” is a curve in 2-dimensional space 

that contains all points involved in the equation of 𝑦ଶ = 𝑥ଷ + 𝑎𝑥 + 𝑏 in a finite field. These points 

form a finite Abelian group, based on which an algebraic group operation law can be defined, 

which is called point addition. In an elliptic curve, the result of adding two points is another point 

on the same elliptic curve. If a particular point is added to itself multiple times, this operation is 

called “scalar multiplication” and is shown by 𝑘 ∙ 𝑃, in that 𝑘 is an integer, and 𝑃 is a point on the 

elliptic curve. Given k and P, it is easy to calculate 𝑄 =  𝑘 ∙ 𝑃. However, it is a difficult problem 

to calculate the integer 𝑘 in the above equation while having 𝑃 and 𝑄. This problem is known as 

the Elliptic Curve Discrete Logarithm Problem (ECDLP) and is very time-consuming to be solved 

by conventional (non-quantum) computers. Therefore, a renowned category of conventional 

asymmetric-key cryptographic algorithms has been designed based on this problem, which is 

named Elliptic Curve Cryptography (ECC) [11], [72]. 

As we explained in Section 3, although solving problems such as discrete logarithms and ECDLP 

using conventional computers is very time-consuming and has exponential time orders, quantum 

computers are able to solve these problems in relatively short periods of time (i.e., with polynomial 

time orders) using Shor's algorithms and some other quantum algorithms similar to them. 

Therefore, conventional ECC algorithms are not considered secure in the post-quantum era [5], 

[72]. 

In efforts to provide quantum-resistant cryptographic algorithms, isogeny-based cryptographic 

algorithms were presented, which are a relatively new kind of ECC algorithms. An isogeny is a 

rational map between two or more elliptic curves over a finite field. Two curves are considered 

isogenous (in other words, isomorphic) if there is an isogeny between them. The degree of an 

isogeny is its degree as a rational map. Isomorphic curves mutually compose a structure called the 

isomorphism class and are similar in some characteristics. An isogeny can be considered as a 

morphism from one isomorphism class to another. Hence, one can construct a graph of all 

isogenies, where nodes represent the isomorphism classes (composed of isomorphic curves), and 

edges represent the isogenies between curves. Given two distant nodes on an enormous isogeny 

graph, it is very difficult to find a path that connects these nodes. It is an example of isogeny-

related problems that are used to design algorithms in this category of post-quantum cryptography. 
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The most effective attack to compute an isogeny between two given isomorphism classes has the 

time order of 𝑂(𝑛ଵ/ଶ) on conventional computers and 𝑂(𝑛ଵ/ଷ) on quantum computers, where n is 

the degree of the isogeny [72], [73]. 

Isogeny-based cryptographic algorithms, based on their technical characteristics, generally belong 

to one of the three major groups of schemes, which are Ordinary Isogeny Diffie–Hellman (OIDH), 

Supersingular Isogeny Diffie–Hellman (SIDH), and Commutative SIDH (CSIDH). One of the first 

algorithms in this category, was presented by Rostovtsev and Stolbunov in [74]. This algorithm 

was founded based on the problem of finding isogenies between ordinary elliptic curves and 

belongs to the OIDH category. Unfortunately, later, a quantum algorithm was presented in [75], 

that could solve ordinary isogeny problems with sub-exponential time order and questioned the 

security of algorithms of this category [5], [17], [72]. 

In order to design algorithms resistant to the above attack, researchers considered schemes based 

on isogenies between supersingular elliptic curves, and thus, the SIDH category was born. In 2011, 

Jao and De-Feo proposed an algorithm for public-key encryption and key encapsulation based on 

supersingular elliptic curves [76], which is one of the first algorithms in the SIDH category. Later, 

in 2014, De-Feo et al., in the research [77], improved the algorithm presented in [76] and made it 

faster to execute and more secure. Another SIDH algorithm is the Supersingular Isogeny Key 

Encapsulation (SIKE) algorithm [78], [79], which is one of the popular algorithms in post-quantum 

cryptography. The SIKE consists of two parts: SIKE.PKE for public-key encryption and 

SIKE.KEM for key encapsulation. Until now, the most effective known attacks against the SIDH 

problem have exponential time orders. However, some recent research has shown that SIDH keys 

may be vulnerable to some active attacks and should not be reused [5], [72]. 

The SIDH problem requires a remarkable mathematical background to be entirely understood. 

Hence, this category has received less attention from researchers [5]. In 2018, Castryck et al. 

proposed a new isogeny-based cryptographic algorithm [80], that was designed based on the 

CSIDH problems and is the first member of CSIDH schemes. According to the structure of this 

algorithm, it is possible to adapt supersingular isogenies to the OIDH schemes instead of ordinary 

isogenies. Nevertheless, some recent research shows that the attacks using the quantum algorithm 

introduced in [75] may still be effective in breaking this algorithm in sub-exponential time [5], 

[72]. One of the first isogeny-based digital signature algorithms was presented by Dey et al. in 

2022 in the article [81]. The security of this algorithm is guaranteed by the hardness of the 

Commutative Supersingular Isogeny Decisional Diffie–Hellman (CSSIDDH) problem, which is 

an enhanced version of the CSIDH problem and has been presented by Moriya et al. in the article 

[82]. 
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Despite some challenges, such as vulnerability to some quantum algorithms and mathematical 

complexity, researchers are still interested in researching and studying the isogeny-based 

cryptography area because of some attractive advantages of this category, such as small public key 

size, small signature size, and low communication cost [8], [72]. 

 

4.6 MPC-in-the-Head Digital Signature Schemes 

This category is a novel category of post-quantum digital signature schemes, and due to its infancy, 

most official references, such as [32], have not considered it among the main categories of post-

quantum cryptographic algorithms and digital signatures. However, since a remarkable number of 

the recently presented post-quantum digital signature algorithms belong to this category, we review 

the characteristics of the algorithms in this category and provide some examples of such algorithms 

in this section. The functional basis of these algorithms is combining Multi-Party Computation 

(MPC) techniques and Zero-Knowledge Proof (ZKP) protocols to design a verifiable and 

unforgeable signature [83], the idea of which was first proposed by Ishai et al. in research [84].  

A Zero-Knowledge Protocol (ZKP) is a protocol in which a prover (e.g., 𝑃) can convince a verifier 

(e.g., 𝑉) of the correctness of a public (i.e., non-confidential) statement through a public and 

unsecured channel, without revealing any extra information. For example, user 𝑃 (the prover) 

announces to user 𝑉 (the verifier) that he/she knows a secret value (e.g., 𝑥), called the witness, but 

does not announce 𝑥 because the channel between users 𝑃 and 𝑉 is unsecured and there may be 

eavesdroppers. Afterward, user 𝑉 asks questions about 𝑥 to user 𝑃, and user 𝑃 sends the answers 

to 𝑉. These questions are called random challenges and must be designed so that they do not reveal 

the secret value (i.e., it is impossible to guess the secret value from these questions and their 

answers). For example, they can be one-way and irreversible functions, and it is not possible to 

determine the input value from their output. Finally, after asking questions about the secret value 

and receiving correct answers, user 𝑉 is convinced that user 𝑃 knows the secret value with a very 

high probability. Zero-knowledge proof protocols are very diverse, and according to the type of 

questions that the verifier asks the prover and how to ask these questions, there are various kinds 

and applications of these protocols. One of the most known applications of these protocols is 

authentication in security systems and cryptocurrency areas [85]. 

In research [86], Fiat and Shamir presented a method in which, by replacing hash functions instead 

of the above-mentioned one-way functions, protocols for authentication and digital signature can 

be created based on ZKP protocols. 
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Multi-Party Computation (MPC) techniques are protocols in which a user can allow multiple users 

(i.e., 𝑢ଵ, 𝑢ଶ, … , 𝑢), who are mutually distrustful of each other, to communicate with each other 

and jointly calculate the output of a public (non-confidential) function based on the secret inputs 

they each have (i.e., 𝑥ଵ, 𝑥ଶ, … , 𝑥). In other words, the primary user asks the users 𝑢ଵ, 𝑢ଶ, … , 𝑢 to 

jointly calculate 𝑓(𝑥ଵ, 𝑥ଶ, … , 𝑥) = 𝑦, while any user must not become aware of another user's 

input during the communications. A suitable MPC protocol has two features: the first feature is 

that each user's input value (i.e., 𝑥’s) remains confidential to that user, and the second condition 

is that the desired output (i.e., 𝑦) is correctly calculated [87]. 

The MPC-in-the-head method, which is the basis for designing digital signatures of this category, 

is a technique in which a ZKP protocol is implemented based on an MPC protocol. In this method, 

a prover (e.g., 𝑃) who wants to prove its knowledge of a secret value (e.g., 𝑥) to a verifier (e.g., 𝑉) 

without revealing 𝑥, executes an MPC protocol among 𝑛 virtual users (i.e., 𝑃ଵ, 𝑃ଶ, … , 𝑃). In this 

operation, the prover 𝑃 first generates the shares 𝑥ଵ, 𝑥ଶ, … , 𝑥 from the original 𝑥 and gives each 

𝑥 to a virtual user such as 𝑃 so that they can calculate the output of a function such as 

𝑓(𝑥ଵ, 𝑥ଶ, … , 𝑥) = 𝑦 together by exchanging information (without revealing the 𝑥’s). Then, 𝑃 

selects a subset of the transcripts exchanged between the 𝑃’s and sends them to 𝑉 as proof that it 

really knows the value of 𝑥. Then, by checking the correctness and consistency of the received 

transcripts, 𝑉 can determine that, with a high probability, 𝑃 knows the value of 𝑥 [83]. 

Some recently introduced digital signature algorithms are based on the MPC-in-the-head method 

and, therefore, fall into this category. Some of the most known digital signatures in this category 

are MIRA [88], MiRitH [89], MQOM [90], PERK [91], and RYDE [92]. Large signature size and 

small public key size are characteristics of the algorithms in this category [83], [93]. 

 

4.7 Summary on Post-Quantum Cryptographic Algorithms 

In this section, according to what we explained in Sections 4.1 to 4.6, we provide two summary 

tables about all categories of post-quantum cryptographic algorithms and digital signatures. We 

designed two separate tables to avoid complexity and make it more convenient for readers. In Table 

1, we briefly mention each category's functional basis, advantages, and disadvantages. Then, in 

Table 2, we introduce some of the most renowned algorithms presented as Key Encapsulation 

Mechanisms (KEM) and Public-Key Encryption (PKE) algorithms, as well as Digital Signature 

Schemes (DSSs) in each category. 
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Table 1. An overview of the algorithm categories in post-quantum cryptography 

Category Functional Basis Advantages Disadvantages 

Lattice-Based lattice-related 

problems 

high security level, fast and 

convenient execution, 

algorithmic simplicity 

vulnerable implementation on 

conventional computers 

Code-Based error-correcting 

codes 
guaranteed and high security 

level 

huge public key, additional data 

needed for verifying digital 

signatures 

Hash-Based hash functions 
algorithmic simplicity, fast and 

convenient execution 

huge digital signature, security 

dependency on utilized hash 

functions 

Multivariate multivariate 

polynomial equations 

simple and efficient 

implementation, fast and 

convenient execution, small 

digital signature size 

huge public key, lack of proven 

security level 

Isogeny-Based isomorphic elliptic 

curves 

small public key size, small 

digital signature size, low 

communication cost 

vulnerability to some quantum 

algorithms, mathematical 

complexity 

MPC-in-the-
Head 

combination of ZKP 

and MPC protocols 
small public key size huge digital signature 

 

Table 2. Some renowned examples for each category in post-quantum cryptography 

Category KEM and PKE instances DSS instances 

Lattice-Based NTRU [41], NTRU-prime [44], SABER 

[45], CRYSTALS -KYBER [39] 

FALCON [46], qTESLA [47], CRYSTALS-

DILITHIUM [40] 

Code-Based McEliece [48], BIKE [51], HQC [52], 

[53], RQC [54] 
- 

Hash-Based - 
Lamport’s OTS [55], Merkle’s FTS [57], XMSS 

[59], SPHINCS [60], SPHINCS+ [62] 

Multivariate Simple Matrix [65], SRP [66], EFLASH 

[67] 

Oil-and-Vinegar [64], Unbalanced Oil-and-

Vinegar (UOV) [68], FLASH [69], Rainbow 

[70], GeMSS [71] 

Isogeny-Based 
Rostovtsev and Stolbunov’s [74], Jao 

and De-Feo’s [76], [77], SIKE [78], 

[79], Castryck et al.’s algorithm [80] 

Dey et al.’s algorithm [81] 

MPC-in-the-
Head 

- 
MIRA [88], MiRitH [89], MQOM [90], PERK 

[91], RYDE [92] 
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5. Selected Algorithms by NIST 

As we mentioned in Section 1, one of the organizations that strives to find and standardize secure 

and suitable post-quantum cryptographic algorithms and digital signatures is the National Institute 

of Standards and Technology (NIST) in the United States. In 2016, this organization announced a 

call for proposed algorithms for asymmetric-key cryptography (i.e., both PKE and KEM) and 

digital signing, which are resistant to attacks from both conventional and quantum computers, to 

select the most suitable algorithms among them [94]. 

In the first round, a total of 82 algorithms were proposed, but only 69 of them met the minimum 

requirements announced by the NIST, and the rest were discarded. Most of these algorithms were 

lattice-based or code-based. Through holding technical conferences and receiving comments, the 

NIST evaluated the proposed algorithms in terms of the criteria it had defined. Some of the most 

important criteria were the security of algorithms and schemes, computational efficiency, and the 

amount of hardware required to store and execute each scheme [94], [95]. 

In 2019, at the end of the first round, the NIST announced a list of 26 algorithms from the initial 

69 candidates that were selected to advance to the second round of the competition. In the second 

round, the NIST evaluated and analyzed candidate algorithms by holding conferences and 

workshops and receiving comments based on different criteria, the most important of which was 

security and resistance to various attacks. As in the first round, many of the candidate algorithms 

were broken against attacks, or their security was reduced, and they were eliminated from the 

competition [8], [94], [95]. 

The second round of this competition, which was called the semi-final, ended in 2020, and the 

NIST announced that the seven selected algorithms, along with the eight alternate algorithms, will 

move to the third round (i.e., the final) as the finalists. The alternate algorithms were the algorithms 

that, in the previous round, either showed lower performance than the seven selected algorithms 

in terms of computation and hardware efficiency or needed more analysis and investigation in 

terms of security. Also, since five of the seven selected algorithms were from the lattice-based 

category, the NIST tried to select alternate algorithms from diverse categories. Among the seven 

algorithms selected in the second round, four were designed for PKE and KEM, and three were 

intended for digital signature generation [94], [95]. 

In 2022, the third round of the competition ended, and the NIST announced the list of the four 

winning algorithms that were selected for standardization and global use in the future years. Three 

of these algorithms are specific for generating digital signatures, which are CRYSTALS-Dilithium 

[40], FALCON [46], and SPHINCS+ [62], and one of them is also designed for PKE and KEM, 

which is called CRYSTALS-KYBER [39]. The Crystal-Kyber and Crystal-Dilithium algorithms 
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are both lattice-based algorithms that have been selected for their outstanding security and also 

excellent performance and efficiency, and the NIST expects them to work well in most 

applications. FALCON is also a lattice-based algorithm that can replace CRYSTALS-Dilithium in 

cases where smaller signatures are needed. SPHINCS+ is a hash-based digital signature algorithm, 

and one of the goals of its selection is to avoid dependence only on the category of lattice-based 

algorithms [5], [8], [17], [94]. 

In addition to the four algorithms selected at the end of the third round, four other third-round 

candidates were also selected to compete in the fourth round. The purpose of holding the fourth 

round is to select at least one post-quantum algorithm for PKE and KEM, which belongs to a 

category different from lattice-based ones. The four candidate algorithms in the fourth round are: 

BIKE [51], Classic McEliece [48], HQC [52], [53], and SIKE [78], [79]. BIKE and HQC are both 

code-based algorithms that can operate as general-purpose PKE and KEM algorithms. The NIST 

expects to select at most one of these two candidates for standardization at the end of the fourth 

round. SIKE is an isogeny-based algorithm that is an attractive candidate for standardization due 

to the small size of the public key and ciphertext. The classic McEliece algorithm, which belongs 

to the code-based category, was a finalist in the third round. However, because of the enormous 

size of its public key, which reduces its use case, it was not among the selected algorithms for 

standardization. Although, this algorithm may be selected at the end of the fourth round for the 

above purpose. The fourth round has not been finished at the time of writing this article, and the 

evaluation of candidate algorithms is still ongoing [5], [8], [94]. Table 3 provides an overview of 

the four rounds of the competition held by the NIST, including statistical information about the 

candidates in each round [94], [95]. The values related to the third round include the sum of the 

primary and alternate candidates. 

Table 3. An overview of the PQC algorithm selection by the NIST 

Category 
Round 1 Round 2 Round 3 Roud 4 

PKE/KEM DSS PKE/KEM DSS PKE/KEM DSS PKE/KEM DSS 

Lattice-Based 21 5 9 3 5 2 0 0 

Code-Based 17 2 7 0 3 0 3 0 

Hash-Based 0 2 0 1 0 1 0 0 

Multivariate 2 8 0 4 0 2 0 0 

Isogeny-Based 1 0 1 0 1 0 1 0 

MPC-in-the-Head 0 1 0 1 0 1 0 0 

Other 4 2 0 1 0 1 0 0 

Total 45 19 17 9 9 6 4 0 



28 
 

 

It is noteworthy that the Rainbow digital signature algorithm [70] from the multivariate category 

that was one of the primary candidates in the third round (i.e., it had succeeded in passing the first 

and second rounds) was broken by Ward Beullens on a conventional computer in the research [96]. 

Additionally, the SIKE public-key encryption algorithm from the isogeny-based category, which 

was one of the candidates in the fourth round, was broken in 2022 by Castryck and Decru in the 

research [97], only using a conventional computer. These two breaking means that it is possible 

that Some algorithms that seem secure in the initial stages of evaluation and analysis may be 

broken after some time, and their security may be questioned. This fact means that sometimes, 

several years of research by researchers worldwide is needed to confirm and ensure the correctness 

and security of a post-quantum cryptographic algorithm. 

In addition to the above competition, which was held in three rounds plus an extra fourth round, 

since 2022, the NIST has started to hold a new competition to find other suitable and secure post-

quantum digital signature schemes to diversify its post-quantum signature portfolio [98]. Since 

among the DSSs selected in the previous competition, two schemes are based on structured lattices, 

and also according to some potential weaknesses and vulnerabilities of structured lattice-based 

cryptosystems [99], the NIST has announced its preference for digital signature schemes that 

belong to the other categories. Additionally, the NIST prefers digital signature schemes with short 

signatures and fast verification [98]. 

In the first round of this competition, 50 proposed DSSs were submitted to the NIST, of which 40 

met the initial criteria set by the NIST and participated in the competition. Among these 40 DSSs, 

7 of them were lattice-based, 6 were code-based, 10 belonged to the multivariate category, one 

was isogeny-based, 4 were based on symmetric cryptography, 7 belonged to the MPC-in-the-head 

category, and 5 were based on other problems. The complete list of these DSSs is available in [98]. 

In 2024, the first round of this competition ended, and among the 40 candidates, 14 of them 

advanced to the second round. During the first round, some of the candidate DSSs were excluded 

from the competition due to the efficient attacks that were presented against them. Among the 14 

candidates that have entered the second round, one is lattice-based, 2 are code-based, 4 are from 

the multivariate category, one is isogeny-based, one is based on symmetric cryptography, and 5 

belong to the MPC-in-the-head category. The complete list of the second-round candidates is 

available in [98]. The second round of this competition is still going on when writing this article 

[98]. 

 



29 
 

6. Implementation Details 

In this section, we provide some useful information about implementing and deploying post-

quantum cryptographic algorithms and digital signatures. This information is about the four 

algorithms selected by the NIST after the previously explained three-round competition, which are 

supposed to be standardized for worldwide and long-term utilization in the future. The information 

presented in this section is mostly provided by the designers and creators of the algorithms and is 

available on the NIST’s website [94]. The rest has been provided by researchers studying in this 

field, who have implemented these algorithms and evaluated their performances. 

One of the most important specifications of each cryptographic or digital signing algorithm is its 

strength and resilience against conventional attacks. The metric that the NIST uses to measure the 

strength and resilience of such algorithms is comparing them with symmetric-key cryptographic 

algorithms and hash functions in terms of the mentioned specifications. In other words, the NIST 

expresses the time and computations needed to break cryptographic algorithms based on the time 

and computations needed to break well-known symmetric-key cryptographic algorithms and hash 

functions, such as AES and SHA, using conventional attacks, such as brute force and collision 

attacks, which we described in Section 3. For example, the time and computations required to 

break the CRYSTALS-Kyber-512 algorithm are nearly equal to what is needed to break the AES-

128. Therefore, the NIST has defined five security levels for measuring the security of 

cryptographic algorithms. With the advent of quantum computing and the realization of the threats 

from quantum algorithms, the time and computations needed to break criterion symmetric-key 

algorithms and hash functions reduced, as we described in Section 3. Hence, to use the old metrics 

in the post-quantum era, it is necessary to adjust them according to the post-quantum situation. 

More precisely, as we explained in Section 3, by employing Grover's quantum algorithm [19], it 

is possible to reduce the time order of breaking symmetric-key cryptographic algorithms, which 

are performed using brute force attacks, from 𝑂(𝑛) to 𝑂(𝑛ଵ/ଶ). Also, using Brassard's quantum 

algorithms [26], attackers can decrease the time order of performing collision attacks against hash 

functions from 𝑂(𝑛) to 𝑂(𝑛ଵ/ଷ). Therefore, to update the above security metrics, it is necessary to 

readjust the quantity of strength and resilience attributed to each criterion symmetric-key algorithm 

and hash function. After the update, one can use the metrics to show post-quantum security levels 

of various algorithms. Table 4 demonstrates the five security levels defined by the NIST to 

compare the post-quantum security levels of different cryptographic algorithms and digital 

signatures [94], [100]. 
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Table 4. Post-quantum cryptography security levels defined by the NIST 

Security level Benchmark algorithm 
Breaking time order 

(using quantum algorithms) 

1 AES-128 𝑂(2ସ) 

2 SHA-256 𝑂(2଼ହ) 

3 AES-192 𝑂(2ଽ) 

4 SHA-384 𝑂(2ଵଶ଼) 

5 AES-256 𝑂(2ଵଶ଼) 

 

After familiarity with the definition of security levels, here we provide information about the 

implementation-related characteristics of the cryptography and digital signing algorithms selected 

by the NIST. As we explained in Section 5, the NIST selected four post-quantum algorithms 

through a three-round competition to be standardized for worldwide and long-term use in the 

future. These four algorithms are CRYSTALS-Kyber [39], CRYSTALS-Dilithium [40], FALCON 

[46], and SPHINCS+ [62]. CRYSTALS-Kyber is designed for PKE/KEM usage, and the rest are 

intended for digital signing. For each of these algorithms, their creators have defined different 

implementation variants and standards. Each of these variants and standards has its own 

characteristics, such as the public key size, the cipher text block/digital signature size, the count of 

processor clock cycles for key generation, encryption/signing, and decryption/signature 

verification. In addition, the levels of security and resistance of the algorithms to common attacks 

vary depending on the values of the parameters of each of these standards, such as the key size, 

etc. Table 5 shows the implementation details and security levels of the popular standards for each 

of the four selected algorithms. The information in this table is mostly provided by the algorithm 

designers and creators and is available and documented for each algorithm on the NIST website 

[94]. For the FALCON algorithm, the information about the counts of processor clock cycles is 

available in the reference [101].  
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Table 5. Implementation-related details about the NIST's selected PQC algorithms 

Algorithm and 
standard 

Pub key 
size (bits) 

Cipher text/ 
Signature 
size (bits) 

Key-Gen 
(cycles) 

Encryption/ 
Signing 
(cycles) 

Decryption/ 
Verifying 
(cycles) 

PQ security 
Levels 

CRYSTALS-

Kyber-512 
6,400 6,144 655,595 865,256 961,648 1 

CRYSTALS-

Kyber-768 
9,472 8,704 1,087,897 1,373,744 1,491,214 3 

CRYSTALS-

Kyber-1024 
12,544 12,544 1,696,314 2,057,522 2,199,958 5 

CRYSTALS-

Dilithium-2 
10,496 19,360 300,751 1,081,174 327,362 2 

CRYSTALS-

Dilithium-3 
15,616 26,344 544,232 1,713,783 522,267 3 

CRYSTALS-

Dilithium-5 
20,736 36,760 819,475 2,383,399 871,609 5 

FALCON-512 7,176 6,016 114,546,135 80,503,242 530,900 1 

FALCON-1024 14,344 11,696 365,950,978 165,800,855 1,046,700 5 

SPHINCS+-

SHA2-128f 
256 136,704 5,590,602 138,610,500 7,757,942 1 

SPHINCS+-

SHA2-128s 
256 62,848 358,061,994 2,721,595,944 2,712,044 1 

SPHINCS+-

SHA2-192f 
384 285,312 8,227,944 232,973,880 11,768,382 3 

SPHINCS+-

SHA2-192s 
384 129,792 524,116,024 5,012,149,284 4,333,066 3 

SPHINCS+-

SHA2-256f 
512 398,848 21,763,590 468,188,036 11,934,164 5 

SPHINCS+-

SHA2-256s 
512 238,336 346,844,762 4,499,800,456 6,060,438 5 

SPHINCS+-

SHAKE-128f 
256 136,704 9,649,130 239,793,806 12,909,924 1 

SPHINCS+-

SHAKE-128s 
256 62,848 616,484,336 4,682,570,992 4,764,084 1 

SPHINCS+-

SHAKE-192f 
384 285,312 14,215,518 386,861,992 19,876,926 3 

SPHINCS+-

SHAKE-192s 
384 129,792 898,362,434 8,091,419,556 6,465,506 3 

SPHINCS+-

SHAKE-256f 
512 398,848 36,950,136 763,942,250 19,886,032 5 

SPHINCS+-

SHAKE-256s 
512 238,336 594,081,566 7,085,272,100 10,216,560 5 
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Also, the creators of the SPHINCS+ algorithm have provided two classes of implementations: the 

simple implementation and the robust implementation. In order to avoid complexity, only 

information related to the simple implementations of this algorithm is included in this table. In 

addition, the ending letter "f" or "s" at the name of the SPHINCS+ standards indicates a fast 

implementation (i.e., large public key and signature sizes, while low clock cycle counts) or a small 

implementation (i.e., small public key and signature sizes, while high clock cycle counts). Another 

detail that is included in the names of the implementation standards for this algorithm is the name 

of the hash function used by the algorithm [94]. As we said in Section 4.3, this algorithm is a hash-

based digital signature algorithm and uses hash functions. 

 

7. Conclusion 

Although quantum computing offers numerous benefits and applications, its emergence presents 

significant challenges and potential threats to some kinds of cryptographic algorithms and digital 

signatures, raising concerns about their security and reliability.  This leads to  the inefficiency of 

many security methods and systems.  To address this issue, researchers have designed and proposed 

novel kinds of cryptographic algorithms, known as post-quantum algorithms, which are resistant 

to quantum computers and quantum algorithms (i.e., algorithms with special capabilities that 

specifically execute on quantum computers). In this article, while reviewing different types of 

conventional (non-quantum) cryptographic algorithms and digital signatures, we explained the 

reasons leading to a reduction in their security and the threats posed to them by quantum 

algorithms. Afterward, we described the five major categories of cryptographic algorithms and 

digital signatures that have been presented so far, along with their functional details and the 

mathematical basis of each one. We have outlined the advantages and drawbacks of each category 

and provided examples of the most well-known encryption and digital signature algorithms 

belonging to each category. Finally, we discussed the competitions organized by the National 

Organization of Standards and Technology (NIST) in the United States to select suitable and secure 

algorithms for cryptography and digital signing in the post-quantum world. We have provided 

useful information about these competitions and the selected algorithms. The primary purpose of 

producing this article is to provide a comprehensive view of the threats and challenges posed to 

conventional cryptographic algorithms by quantum computing, as well as the status of post-

quantum cryptographic algorithms that have been presented so far. This information is helpful to 

all individuals and organizations that use cryptography-based security systems and also researchers 

who are studying in the field of cryptography and cybersecurity. As we emphasized repeatedly 

throughout the article, post-quantum cryptography still needs a lot of research and development 

and has numerous deficits and drawbacks that require to be addressed by researchers. Quantum 
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computers will be commercially available in the near future, although they may already exist in 

many research centers. Therefore, it is necessary to adopt approaches and take measures as soon 

as possible to transition from the systems and methods based on conventional cryptography to 

post-quantum cryptography. Each of the issues discussed in this section can be the subject of 

further studies and research in the field of cryptography and cybersecurity. 

 

References 

1. Budget of the U.S. Government FISCAL YEAR 2024. U.S. Office of Management and 
Budget: [online] Available from: www.whitehouse.gov. 

2. Gaithuru, J.N., et al. A comprehensive literature review of asymmetric key cryptography 
algorithms for establishment of the existing gap. in 2015 9th Malaysian Software 
Engineering Conference (MySEC). 2015. IEEE. 

3. Boisrond, K., P.M. Tardif, and F. Jaafar, Ensuring the integrity, confidentiality, and 
availability of IoT data in Industry 5.0: A Systematic Mapping Study. IEEE Access, 2024. 

4. Joseph, D., et al., Transitioning organizations to post-quantum cryptography. Nature, 2022. 
605(7909): p. 237-243. 

5. Chamola, V., et al., Information security in the post quantum era for 5G and beyond 
networks: Threats to existing cryptography, and post-quantum cryptography. Computer 
Communications, 2021. 176: p. 99-118. 

6. Saha, R., et al., A blockchain framework in post-quantum decentralization. IEEE 
Transactions on Services Computing, 2021. 16(1): p. 1-12. 

7. Oliva delMoral, J., et al., Cybersecurity in Critical Infrastructures: A Post-Quantum 
Cryptography Perspective. IEEE Internet of Things Journal, 2024. 

8. Allgyer, W., T. White, and T.A. Youssef, Securing the Future: A Comprehensive Review of 
Post-Quantum Cryptography and Emerging Algorithms. SoutheastCon 2024, 2024: p. 
1282-1287. 

9. Hasija, T., et al. A survey on nist selected third round candidates for post quantum 
cryptography. in 2022 7th International Conference on Communication and Electronics 
Systems (ICCES). 2022. IEEE. 

10. Bavdekar, R., et al. Post quantum cryptography: A review of techniques, challenges and 
standardizations. in 2023 International Conference on Information Networking (ICOIN). 
2023. IEEE. 

11. Delfs, H. and H. Knebl, Introduction to cryptography. Vol. 2. Springer. 



34 
 

12. Al Busafi, S. and B. Kumar. Review and analysis of cryptography techniques. in 2020 9th 
International Conference System Modeling and Advancement in Research Trends 
(SMART). 2020. IEEE. 

13. Tan, T.G., P. Szalachowski, and J. Zhou, Challenges of post-quantum digital signing in 
real-world applications: A survey. International Journal of Information Security, 2022. 
21(4): p. 937-952. 

14. Hasija, T., et al. Symmetric Key Cryptography: Review, Algorithmic Insights, and 
Challenges in the Era of Quantum Computers. in 2023 14th International Conference on 
Computing Communication and Networking Technologies (ICCCNT). 2023. IEEE. 

15. Bettale, L., M. De Oliveira, and E. Dottax. Post-quantum protocols for banking 
applications. in International Conference on Smart Card Research and Advanced 
Applications. 2022. Springer. 

16. Verchyk, D. and J. Sepúlveda, A practical study of post-quantum enhanced identity-based 
encryption. Microprocessors and Microsystems, 2023. 99: p. 104828. 

17. Gharavi, H., J. Granjal, and E. Monteiro, Post-quantum blockchain security for the Internet 
of Things: Survey and research directions. IEEE Communications Surveys & Tutorials, 
2024. 

18. Lu, Y. and J. Yang, Quantum financing system: A survey on quantum algorithms, potential 
scenarios and open research issues. Journal of Industrial Information Integration, 2024: p. 
100663. 

19. Grover, L.K. A fast quantum mechanical algorithm for database search. in Proceedings of 
the twenty-eighth annual ACM symposium on Theory of computing. 1996. 

20. Zeydan, E., et al. Recent advances in post-quantum cryptography for networks: A survey. 
in 2022 Seventh International Conference On Mobile And Secure Services (MobiSecServ). 
2022. IEEE. 

21. Stiawan, D., et al., Investigating brute force attack patterns in IoT network. Journal of 
Electrical and Computer Engineering, 2019. 2019(1): p. 4568368. 

22. Malina, L., et al., Post-quantum era privacy protection for intelligent infrastructures. IEEE 
Access, 2021. 9: p. 36038-36077. 

23. Fernández-Caramés, T.M., From pre-quantum to post-quantum IoT security: A survey on 
quantum-resistant cryptosystems for the Internet of Things. IEEE Internet of Things 
Journal, 2019. 7(7): p. 6457-6480. 

24. Sharma, A.K. and S. Mittal. Cryptography & network security hash function applications, 
attacks and advances: A review. in 2019 Third International Conference on Inventive 
Systems and Control (ICISC). 2019. IEEE. 



35 
 

25. Boyer, M., et al., Tight bounds on quantum searching. Fortschritte der Physik: Progress of 
Physics, 1998. 46(4‐5): p. 493-505. 

26. Brassard, G., P. Høyer, and A. Tapp. Quantum cryptanalysis of hash and claw-free 
functions. in LATIN'98: Theoretical Informatics: Third Latin American Symposium 
Campinas, Brazil, April 20–24, 1998 Proceedings 3. 1998. Springer. 

27. Hamlin, B. and F. Song. Quantum security of hash functions and property-preservation of 
iterated hashing. in Post-Quantum Cryptography: 10th International Conference, 
PQCrypto 2019, Chongqing, China, May 8–10, 2019 Revised Selected Papers 10. 2019. 
Springer. 

28. Shor, P.W. Algorithms for quantum computation: discrete logarithms and factoring. in 
Proceedings 35th annual symposium on foundations of computer science. 1994. Ieee. 

29. Shor, P.W., Polynomial-time algorithms for prime factorization and discrete logarithms on 
a quantum computer. SIAM review, 1999. 41(2): p. 303-332. 

30. Kampanakis, P. and T. Lepoint. Vision paper: Do we need to change some things? Open 
questions posed by the upcoming post-quantum migration to existing standards and 
deployments. in International Conference on Research in Security Standardisation. 2023. 
Springer. 

31. Hekkala, J., et al., Implementing post-quantum cryptography for developers. SN Computer 
Science, 2023. 4(4): p. 365. 

32. Daniel J. Bernstein, J.B., Erik Dahmen, Post-Quantum Cryptography. 2009, Springer 
Berlin, Heidelberg. 

33. Nejatollahi, H., et al., Post-quantum lattice-based cryptography implementations: A 
survey. ACM Computing Surveys (CSUR), 2019. 51(6): p. 1-41. 

34. Canto, A.C., et al., Error detection schemes assessed on FPGA for multipliers in lattice-
based key encapsulation mechanisms in post-quantum cryptography. IEEE Transactions 
on Emerging Topics in Computing, 2022. 11(3): p. 791-797. 

35. Peikert, C., A decade of lattice cryptography. Foundations and trends® in theoretical 
computer science, 2016. 10(4): p. 283-424. 

36. Ducas, L., T. Espitau, and E.W. Postlethwaite. Finding short integer solutions when the 
modulus is small. in Annual International Cryptology Conference. 2023. Springer. 

37. Liu, F., et al., A survey on lattice-based digital signature. Cybersecurity, 2024. 7(1): p. 7. 

38. Regev, O., On lattices, learning with errors, random linear codes, and cryptography. 
Journal of the ACM (JACM), 2009. 56(6): p. 1-40. 



36 
 

39. Bos, J., et al. CRYSTALS-Kyber: a CCA-secure module-lattice-based KEM. in 2018 IEEE 
European Symposium on Security and Privacy (EuroS&P). 2018. IEEE. 

40. Ducas, L., et al., Crystals–dilithium: Digital signatures from module lattices. 2018. 

41. Hoffstein, J., NTRU: A Ring Based Public Key Cryptosystem. Algorithmic Number Theory 
(ANTS III), 1998. 

42. Hoffstein, J., et al. NTRUSIGN: Digital signatures using the NTRU lattice. in 
Cryptographers’ track at the RSA conference. 2003. Springer. 

43. Kamal, A., et al., NTRU Algorithm: Nth Degree truncated polynomial ring units, in 
Functional Encryption. 2021, Springer. p. 103-115. 

44. Bernstein, D.J., et al. NTRU prime: reducing attack surface at low cost. in Selected Areas 
in Cryptography–SAC 2017: 24th International Conference, Ottawa, ON, Canada, August 
16-18, 2017, Revised Selected Papers 24. 2018. Springer. 

45. D’Anvers, J.-P., et al. Saber: Module-LWR based key exchange, CPA-secure encryption 
and CCA-secure KEM. in Progress in Cryptology–AFRICACRYPT 2018: 10th 
International Conference on Cryptology in Africa, Marrakesh, Morocco, May 7–9, 2018, 
Proceedings 10. 2018. Springer. 

46. Fouque, P.-A., et al., Falcon: Fast-Fourier lattice-based compact signatures over NTRU. 
Submission to the NIST’s post-quantum cryptography standardization process, 2018. 
36(5): p. 1-75. 

47. Alkim, E., et al. The lattice-based digital signature scheme qTESLA. in International 
Conference on Applied Cryptography and Network Security. 2020. Springer. 

48. McEliece, R.J., A public-key cryptosystem based on algebraic. Coding Thv, 1978. 4244: p. 
114-116. 

49. Goppa codes. IEEE Transactions on Information Theory, 2003. 19(5): p. 590-592. 

50. Berlekamp, E., R. McEliece, and H. Van Tilborg, On the inherent intractability of certain 
coding problems (corresp.). IEEE Transactions on Information theory, 1978. 24(3): p. 384-
386. 

51. Aragon, N., et al., BIKE: bit flipping key encapsulation. 2022. 

52. Melchor, C.A., et al., Hamming quasi-cyclic (HQC). NIST PQC Round, 2018. 2(4): p. 13. 

53. Deshpande, S., et al. Fast and efficient hardware implementation of HQC. in International 
Conference on Selected Areas in Cryptography. 2023. Springer. 

54. Bidoux, L., et al., RQC revisited and more cryptanalysis for rank-based cryptography. 
IEEE Transactions on Information Theory, 2023. 



37 
 

55. Lamport, L., Constructing digital signatures from a one way function. 1979. 

56. Udin, M.N., et al., Application of Lamport Digital Signature Scheme into the station-to-
station protocol. Malaysian Journal of Computing (MJoC), 2022. 7(2): p. 1139-1149. 

57. Merkle, R.C. A digital signature based on a conventional encryption function. in 
Conference on the theory and application of cryptographic techniques. 1987. Springer. 

58. Merkle, R.C. A certified digital signature. in Conference on the Theory and Application of 
Cryptology. 1989. Springer. 

59. Buchmann, J., E. Dahmen, and A. Hülsing. XMSS-a practical forward secure signature 
scheme based on minimal security assumptions. in Post-Quantum Cryptography: 4th 
International Workshop, PQCrypto 2011, Taipei, Taiwan, November 29–December 2, 2011. 
Proceedings 4. 2011. Springer. 

60. Bernstein, D.J., et al. SPHINCS: practical stateless hash-based signatures. in Annual 
international conference on the theory and applications of cryptographic techniques. 2015. 
Springer. 

61. Reyzin, L. and N. Reyzin. Better than BiBa: Short one-time signatures with fast signing 
and verifying. in Australasian Conference on Information Security and Privacy. 2002. 
Springer. 

62. Bernstein, D.J., et al. The SPHINCS+ signature framework. in Proceedings of the 2019 
ACM SIGSAC conference on computer and communications security. 2019. 

63. Dey, J. and R. Dutta, Progress in multivariate cryptography: Systematic review, challenges, 
and research directions. ACM Computing Surveys, 2023. 55(12): p. 1-34. 

64. Ding, J. and A. Petzoldt, Current state of multivariate cryptography. IEEE Security & 
Privacy, 2017. 15(4): p. 28-36. 

65. Tao, C., et al. Simple matrix scheme for encryption. in Post-Quantum Cryptography: 5th 
International Workshop, PQCrypto 2013, Limoges, France, June 4-7, 2013. Proceedings 
5. 2013. Springer. 

66. Yasuda, T. and K. Sakurai. A multivariate encryption scheme with rainbow. in Information 
and Communications Security: 17th International Conference, ICICS 2015, Beijing, 
China, December 9–11, 2015, Revised Selected Papers 17. 2016. Springer. 

67. Cartor, R. and D. Smith-Tone. EFLASH: a new multivariate encryption scheme. in Selected 
Areas in Cryptography–SAC 2018: 25th International Conference, Calgary, AB, Canada, 
August 15–17, 2018, Revised Selected Papers 25. 2019. Springer. 

68. Kipnis, A., J. Patarin, and L. Goubin. Unbalanced oil and vinegar signature schemes. in 
International Conference on the Theory and Applications of Cryptographic Techniques. 
1999. Springer. 



38 
 

69. Patarin, J., N. Courtois, and L. Goubin. FLASH, a Fast Multivariate Signature Algorithm: 
http://www. minrank. org/flash. in Topics in Cryptology—CT-RSA 2001: The 
Cryptographers’ Track at RSA Conference 2001 San Francisco, CA, USA, April 8–12, 2001 
Proceedings. 2001. Springer. 

70. Ding, J. and D. Schmidt. Rainbow, a new multivariable polynomial signature scheme. in 
International conference on applied cryptography and network security. 2005. Springer. 

71. Casanova, A., et al., GeMSS: a great multivariate short signature. 2017, UPMC-Paris 6 
Sorbonne Universités; INRIA Paris Research Centre, MAMBA Team …. 

72. Peng, C., et al., Isogeny-based cryptography: a promising post-quantum technique. IT 
Professional, 2019. 21(6): p. 27-32. 

73. Koziel, B., R. Azarderakhsh, and M.M. Kermani, A high-performance and scalable 
hardware architecture for isogeny-based cryptography. IEEE Transactions on Computers, 
2018. 67(11): p. 1594-1609. 

74. Rostovtsev, A. and A. Stolbunov, Public-key cryptosystem based on isogenies. Cryptology 
ePrint Archive, 2006. 

75. Childs, A., D. Jao, and V. Soukharev, Constructing elliptic curve isogenies in quantum 
subexponential time. Journal of Mathematical Cryptology, 2014. 8(1): p. 1-29. 

76. Jao, D. and L. De Feo. Towards quantum-resistant cryptosystems from supersingular 
elliptic curve isogenies. in Post-Quantum Cryptography: 4th International Workshop, 
PQCrypto 2011, Taipei, Taiwan, November 29–December 2, 2011. Proceedings 4. 2011. 
Springer. 

77. De Feo, L., D. Jao, and J. Plût, Towards quantum-resistant cryptosystems from 
supersingular elliptic curve isogenies. Journal of Mathematical Cryptology, 2014. 8(3): p. 
209-247. 

78. Campagna, M., et al., Supersingular isogeny key encapsulation. 2019. 

79. Seo, H., et al., Supersingular isogeny key encapsulation (SIKE) round 2 on ARM Cortex-
M4. IEEE Transactions on Computers, 2020. 70(10): p. 1705-1718. 

80. Castryck, W., et al. CSIDH: an efficient post-quantum commutative group action. in 
Advances in Cryptology–ASIACRYPT 2018: 24th International Conference on the Theory 
and Application of Cryptology and Information Security, Brisbane, QLD, Australia, 
December 2–6, 2018, Proceedings, Part III 24. 2018. Springer. 

81. Dey, K., et al., A post-quantum signcryption scheme using isogeny based cryptography. 
Journal of Information Security and Applications, 2022. 69: p. 103280. 

82. Moriya, T., H. Onuki, and T. Takagi. SiGamal: a supersingular isogeny-based PKE and its 
application to a PRF. in Advances in Cryptology–ASIACRYPT 2020: 26th International 



39 
 

Conference on the Theory and Application of Cryptology and Information Security, 
Daejeon, South Korea, December 7–11, 2020, Proceedings, Part II 26. 2020. Springer. 

83. Bettaieb, S., et al., Enabling PERK and other MPC-in-the-Head Signatures on Resource-
Constrained Devices. IACR Transactions on Cryptographic Hardware and Embedded 
Systems, 2024. 2024(4): p. 84-109. 

84. Ishai, Y., et al. Zero-knowledge from secure multiparty computation. in Proceedings of the 
thirty-ninth annual ACM symposium on Theory of computing. 2007. 

85. Sun, X., et al., A survey on zero-knowledge proof in blockchain. IEEE network, 2021. 
35(4): p. 198-205. 

86. Fiat, A. and A. Shamir. How to prove yourself: Practical solutions to identification and 
signature problems. in Conference on the theory and application of cryptographic 
techniques. 1986. Springer. 

87. Du, W. and M.J. Atallah. Secure multi-party computation problems and their applications: 
a review and open problems. in Proceedings of the 2001 workshop on New security 
paradigms. 2001. 

88. Aragon, N., et al., MIRA Specifications. 2023. 

89. Adj, G., et al., MiRitH: Efficient Post-Quantum Signatures from MinRank in the Head. 
IACR Transactions on Cryptographic Hardware and Embedded Systems, 2024. 2024(2): 
p. 304-328. 

90. Benadjila, R., T. Feneuil, and M. Rivain. MQ on my mind: Post-quantum signatures from 
the non-structured multivariate quadratic problem. in 2024 IEEE 9th European 
Symposium on Security and Privacy (EuroS&P). 2024. IEEE. 

91. Bettaieb, S., et al., PERK: compact signature scheme based on a new variant of the 
permuted kernel problem. Designs, Codes and Cryptography, 2024: p. 1-27. 

92. Aragon, N., et al., RYDE specifications. 2023. 

93. Bui, D., et al. Faster Signatures from MPC-in-the-Head. in ASIACRYPT 2024-
International Conference on the Theory and Application of Cryptology and Information 
Security. 2024. 

94. U.S. National Institute of Standards and Technology (NIST), Post-Quantum Cryptography. 
Available from: csrc.nist.gov/Projects/post-quantum-cryptography. 

95. Moody, D. and A. Robinson, Cryptographic standards in the post-quantum era. IEEE 
Security & Privacy, 2022. 20(6): p. 66-72. 

96. Beullens, W. Breaking rainbow takes a weekend on a laptop. in Annual International 
Cryptology Conference. 2022. Springer. 



40 
 

97. Castryck, W. and T. Decru. An efficient key recovery attack on SIDH. in Annual 
International Conference on the Theory and Applications of Cryptographic Techniques. 
2023. Springer. 

98. U.S. National Institute of Standards and Technology (NIST), Post-Quantum Cryptography 
- Additional Digital Signature Schemes. Available from: csrc.nist.gov/Projects/pqc-dig-sig. 

99. Ravi, P., et al., Lattice-based key-sharing schemes: A survey. ACM Computing Surveys 
(CSUR), 2021. 54(1): p. 1-39. 

100. Saarinen, M.-J.O. Mobile energy requirements of the upcoming NIST post-quantum 
cryptography standards. in 2020 8th IEEE International Conference on Mobile Cloud 
Computing, Services, and Engineering (MobileCloud). 2020. IEEE. 

101. Oder, T., et al. Towards practical microcontroller implementation of the signature scheme 
Falcon. in Post-Quantum Cryptography: 10th International Conference, PQCrypto 2019, 
Chongqing, China, May 8–10, 2019 Revised Selected Papers 10. 2019. Springer. 

 


