
A Formal Treatment of Key Transparency Systems with Scalability Improvements

Nicholas Brandt
ETH Zurich

Zurich, Switzerland
nicholas.brandt@inf.ethz.ch

Mia Filić
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Abstract—Key Transparency (KT) systems have emerged as
a critical technology for securely distributing and verifying
the correctness of public keys used in end-to-end encrypted
messaging services. Despite substantial academic interest, in-
creased industry adoption, and IETF standardization efforts,
KT systems lack a holistic and formalized security model,
limiting their resilience to practical threats and constraining
future development. In this paper, we introduce the first
cryptographically sound formalization of KT as an ideal func-
tionality, clarifying the assumptions, security properties, and
potential vulnerabilities of deployed KT systems. We identify a
significant security concern—a possible impersonation attack
by a malicious service provider—and propose a backward-
compatible solution. Additionally, we address a core scalability
bottleneck by designing and implementing a novel, privacy-
preserving verifiable Bloom filter (VBF) that significantly im-
proves KT efficiency without compromising security. Experi-
mental results demonstrate the effectiveness of our approach,
marking a step forward in both the theoretical and practical
deployment of scalable KT solutions.

1. Introduction

Key Transparency (KT) systems offer a solution to the
challenges of public key distribution in end-to-end encrypted
communication platforms. KT systems are vital to prevent-
ing trivial man-in-the-middle attacks. Traditionally, verify-
ing the authenticity of another party’s public key in secure
communication systems required either physical meetings
to exchange keys—a cumbersome process, especially with
frequent key rotations and new device additions—or reliance
on a third-party authority. KT systems address these chal-
lenges by providing an automated mechanism that allows
users to verify they are receiving the correct public key,
or at least one that is consistent with what other users are
seeing from the same service, while preserving privacy. That
is, unlike traditional public key infrastructure systems which
require a trusted (third) party, KT systems aim to reduce or
even remove such trust assumptions.

KT systems have not only attracted significant academic
interest, as evidenced by works such as [33, 4, 9, 39, 41,
20, 40, 10, 28, 24, 25], but have also been implemented
by platforms such as Keybase [29], Zoom [3], Google [21],

WhatsApp [26], Apple iMessage [1], and Proton [17]. Com-
plementing this industry adoption, the Internet Engineering
Task Force (IETF) has formed the KEYTRANS working
group [30] to both formalize and standardize KT systems.
Our findings are aimed at supporting these standardization
efforts by addressing crucial security and scalability chal-
lenges.

Despite this momentum, current KT systems lack a
rigorous, formalized security framework, which limits both
our understanding of these systems and our ability to protect
them against real-world adversaries. Previous works have
conflated the objective of KT systems with their proposed
protocol that realizes this objective. This absence of a pre-
cise formalism restricts security analysis to isolated aspects
of KT protocols, leaving several potential vulnerabilities
undetected and unaddressed. For example, existing protocols
do not fully address scenarios where a malicious service
provider could manipulate key states to compromise user
privacy and impersonate users, particularly if users have
limited trust in their service providers. Moreover, without
a formalized model, it is challenging to build upon cur-
rent KT implementations or make meaningful advancements
that can be seamlessly integrated into past or future sys-
tems. In this paper, we present the first cryptographically
sound formalization of KT systems as an ideal functionality.
This foundational step clarifies the underlying assumptions,
goals, and security guarantees for KT systems, offering a
more complete framework for evaluating and enhancing
these protocols.

Scalability also remains a pressing issue for KT sys-
tems, particularly for real-world large scale deployments
like WhatsApp’s KT protocol [23]. Such deployments have
over a billion active users and demand a frequency of key
queries and updates that far exceed the limits of what past
academic work has considered. Existing KT architectures
face performance bottlenecks due to their reliance on cen-
tralized, resource-intensive operations to handle key queries
and updates, making them increasingly costly to deploy at
scale.

Addressing this challenge in previous KT research has
largely focused on making this centralized core KT pro-
tocol more efficient, optimizing elements like data struc-
tures or reducing computation within the primary system
to handle increased loads. While these approaches improve



performance, they hit a clear ceiling: as user bases grow
and the volume of key queries rises, the core KT pro-
tocol alone struggles to meet demand without substantial
resource consumption. Some works have suggested to ad-
dress scalability by distributing the KT protocol, yet these
approaches treat distribution as an afterthought, overlooking
the unique challenges posed by KT’s stringent security
requirements. Unlike traditional distributed systems, where
achieving eventual consistency is often sufficient, KT pro-
tocols demand strict, synchronized consensus to ensure that
every user receives accurate, verifiable responses at all times.
This level of security makes straightforward distribution
infeasible, as KT systems cannot tolerate inconsistencies
or delayed synchronization without compromising user trust
and protocol integrity.

Our work tackles the scalability challenge in KT systems
by introducing a structured distribution model that maintains
rigorous security guarantees while enabling efficient, scal-
able query handling across decentralized nodes. At the core
of this solution is a new primitive we call the verifiable
Bloom filter (VBF), designed specifically to handle key
queries in a privacy-preserving and resource-efficient man-
ner. Unlike conventional approaches that centralize query
processing on a primary server, the VBF allows key queries
to be processed on distributed, light-weight edge devices.
This shift significantly reduces the computational burden
on the central provider, allowing it to focus on critical
functions while edge devices handle the bulk of routine
query processing in real time.

The VBF achieves this by integrating verifiability di-
rectly into its design through cryptographic guarantees,
ensuring that responses from edge devices can be trusted
without requiring constant synchronization with the central
server. This verifiability is crucial in maintaining the KT
protocol’s high security standards, as it allows users to
verify the accuracy of responses independently, even in a
decentralized context. Moreover, our VBF-based approach
is modular, allowing it to be seamlessly integrated with ex-
isting KT frameworks. This adaptability means that the VBF
can enhance scalability and flexibility in current KT systems
without necessitating extensive changes to their core archi-
tecture. In essence, the VBF acts as an efficient, privacy-
preserving summary layer that complements traditional KT
protocols, extending their reach and performance capacity
across larger user bases. Through this design, our approach
not only addresses the scalability limits of centralized KT
systems but also introduces a robust solution for secure,
distributed key management that scales with demand.

Our specific contributions are thus threefold:
• We give the first cryptographically sound formalization

of KT systems in the form of an ideal functionality. This
clarifies the assumptions, features and security guarantees
of KT systems which have been somewhat recondite in
previous literature.

• We point out a security concern (an impersonation attack
by a malicious service provider) that was so far (implic-
itly) considered unavoidable. We suggest a (backwards-
compatible) solution for coping with malicious service

providers. Moreover, we observe that implementations of
KT protocols based on Meta’s AKD library [22] exhibit
no formal privacy guarantees!

• We identify a performance bottleneck in the current ar-
chitecture of KT systems, and propose a scalable and
privacy-preserving solution based on a new primitive that
we call verifiable Bloom filter. We implement our protocol
and provide experimental evidence of its performance
improvements over the current state-of-the-art. In fact, at
the scale of two billion users our scalable protocol reduces
the total computation time for processing queries by 64%
in typical deployment conditions versus a protocol not
using our VBF mechanism. Additionally, we discuss how
the VBF’s modularity enables it to be combined with other
KT protocols, extending its applicability across diverse
deployment scenarios.

In summary, this paper not only provides a rigorous
framework for understanding and advancing KT systems
but also offers practical solutions to the core challenges of
security and scalability. We anticipate that our findings will
inform the design of future KT protocols and contribute to
the ongoing IETF standardization efforts, with the potential
to make decentralized, transparent key management a reli-
able, scalable feature in secure communication platforms.
Future work will explore extending the formalism of VBFs
and refining additional elements of the KT model to further
enhance scalability and security in real-world applications.

2. Preliminaries

2.1. Notation and Conventions

Given an integer m ∈ Z+, we write [m] to mean
the set {1, 2, ...,m}. We consider all logarithms to be in
base 2. Within our pseudocode we use the notation := for
deterministic assignment, and ← for assignment according
to a distribution or randomized algorithm. We index into
arrays using [·] notation. For a k-dimensional array A, the
entry at position (i1, i2, . . . , ik) is denoted A[i1, i2, . . . , ik].
Similarly, if F is a function returning a k-dimensional array,
we write F (x)[i1, i2, . . . , ik] to access the corresponding
element at those coordinates.

For any randomized algorithm alg, we may denote
the coins that alg can use as an extra argument r ∈ R
where R is the set of possible coins, and write output =:
alg(input1, input2, ..., inputl; r). We may also suppress coins
whenever it is notationally convenient to do so. If an algo-
rithm is deterministic, we allow setting r to ⊥. We remark
that the output of a randomized algorithm can be seen as a
random variable over the output space of the algorithm.

2.2. Append-Only Zero-Knowledge Sets

A zero-knowledge set (ZKS) [34] is a cryptographic
primitive that allows for the efficient verification of set-
membership queries on a represented set without revealing
more information than the membership itself. An append-
only zero-knowledge set (aZKS) [9] is a variant of ZKS that
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allows for updates to the represented set in an append-only
manner, i.e., no existing entries are ever modified or deleted.
This construction carries the additional leakage of the size
of the represented set. We give a formal definition of aZKS
in Appendix A and refer the reader to [9] for the formal
security guarantees.

2.3. Bloom Filters

A Bloom filter [2] (BF) is the ubiquitous example of
a compressing probabilistic data structure. A BF provides
a compact representation of a given set, and admits set-
membership queries (e.g., is element x in the set?). The BF
structure is a length m bit-array. To represent a given set,
each element in the set is run through k pairwise indepen-
dent hash functions that map from {0, 1}∗ → [m], then for
every value output by these hash functions the corresponding
bit in the bit-array is set to 1 (or left set to 1 if already set).
To make a set-membership query to the BF for an element x,
x is run through these k hash functions and positive response
1 is returned iff all the corresponding bits in the bit-array are
set to 1 (0 otherwise). We give an algorithmic description
of the BF and more details in Appendix B.

The bit-array representation is typically much smaller
than the number of bits needed to fully represent the el-
ements in the set; thus, the responses to set-membership
queries are only approximately correct. In particular, while
Bloom filters do not have false-negative errors, they do
suffer false-positive errors at a rate that is a function of
the bit-array size (m), the number of hash functions (k),
and the size of underlying set.

2.4. Verifiable Random Functions

A verifiable random function (VRF) [35] is the public-
key analog of the pseudorandom functions primitive
(PRF) [19], with the additional feature that one can verify
that its outputs have been correctly computed. Looking
ahead, we will use VRFs to transform the Bloom filter into a
verifiable version of the structure that allows for verification
of its query responses with respect to a commitment on
the bit-array representation. Moreover, a VRF is an integral
component of the construction of the aZKS used in most
KT protocols. We give a formal definition of a (simulatable)
VRF and its security properties in Appendix C.

3. Modeling Key Transparency

Previous works, [33, 9, 28, 25, 24], to varying degrees,
have treated key transparency (KT) systems as a monolithic
block, i.e., they fail to differentiate between the specifi-
cation (the objective) of a KT system, and the protocol
that realizes that specification. This significantly compli-
cates the analysis of these protocols and the interpretation
of their derived security guarantees. We notice that this
was also the case in the early stages of the development
of other multi-party computation (MPC) applications [44],

like key exchange—where the word “key-exchange” was
used synonymously with the Diffie–Hellman key-exchange
protocol [12]. However, today there is a clear distinction
between a public-key encryption (PKE) scheme1 and a key-
exchange protocol. In modern cryptography, the objective of
an MPC is captured in the form of an ideal functionality that
specifies how the system behaves in an idealized setting. A
protocol for a given functionality is then judged to be secure,
if it realizes the functionality in the real-ideal simulation
paradigm [43, 5]. Since KT is inherently an MPC, we deem
it appropriate and important to formally specify an ideal
functionality for KT. Due to space restriction we refer the
interested reader to the monograph of Evans, Kolesnikov,
and Rosulek [13] for more details about MPC. While KT
was first introduced in [33], we accredit the first step towards
a proper formalization of KT to Chase et al. [9] through their
notion of a verifiable key directory (VKD). Though, while
formally defining several algorithms, their definition lacks
the previously described distinction between the objective of
the KT system and the protocol that realizes said objective.
We argue that in order to properly formalize KT, we need
to distinguish between three formal concepts:
• a KT functionality that specifies what the formal objective

of a KT system is (e.g. supplying users with previously
registered keys),

• a KT protocol that realizes (in the real-ideal paradigm)
the KT functionality (using a KT scheme), and

• a KT scheme that defines a set of algorithms (analogous
to a PKE scheme).

First, we give a definition of an optimal KT functionality
that captures the features and security that we intuitively
expect from a KT system.

Functionality FidealKT

FidealKT proceeds as follows, running with security pa-
rameter λ, n users U = {id1, ..., idn}, service provider S,
and adversary S. Messages not covered here are ignored.
Initially, set the epoch counter τ := 0, the update list
Lτ := [], the database D[τ, id] := ⊥.
• RegisterKey: When receiving a key k from user Uid,

store D[τ, id] := k.
• QueryKey: When receiving query (QueryKey, id′)

from user Uid, retrieve k := D[τ − 1, id′]. Send
(QueryResponse, id′, k) to Uid.

• EpochUpdate: When receiving EpochUpdate from S,
for each id if D[τ, id] = ⊥, then D[τ, id] := D[τ − 1, id],
and increment τ := τ + 1. Send (EpochUpdate, τ) to
each user Uid1 , ...,Uidn .

This functionality allows three high-level procedures:
1) In each epoch each user may register a new key.
2) In each epoch τ each user Uid may query any user Uid′’s

most recent key that was registered in (a previous) epoch
τ ′ ⪇ τ .

3) At any point the service provider may update the epoch.

1. A formal PKE scheme does not impose a notion of a sender or
receiver, only encryption and decryption (and key generation).
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This functionality models the behavior of an optimal KT
system. Unfortunately, we cannot realize FidealKT in the
plain model2 because it implies a commitment functionality
which is impossible without setup [6]. This impossibility
is the reason why previous protocols employ the additional
help of (to some degree) trusted auditors, and it explains why
their security guarantees are somewhat convoluted. Thus, to
obtain a realizable KT functionality, we need to grant the
adversary more abilities; optimally to the smallest extent
possible. On the other hand, to match the real-world deploy-
ment of KT systems, we need to make some restrictions on
the possible protocol that would realize a (weakened) KT
functionality. These restrictions depend on the deployment
scenario, and roughly speaking, the greater user convenience
the protocol provides the greater restrictions we need to
impose.
On malicious service providers and insufficient security
notions. Let us consider a few attack scenarios:
1) Impersonation attack: If we accept that users lose their

device, i.e., they lose their entire (secret) state, then
we need to assume that the service provider is honest
in order to make meaningful security guarantees. The
reason is that if the user has no secret state, then that
user has no authenticated channel to any other user, i.e.,
that user cannot communicate directly with other users.
However, since the user has no state (and thus no shared
secret with another user), a malicious service provider
can impersonate the affected user simply by simulating
the affected user.

2) Omission attack: If a user registers a new key with the
service provider but that key is only sent to the service
provider (i.e., the new key is not correlated with the
view of any other party), then there is no guarantee that
a (stop-fault) service provider will actually include the
newly registered key in the next epoch update.

In addressing these attacks, [9] defines a “soundness” secu-
rity property for VKD underlying their KT system. When
satisfied, it guarantees that if a user has successfully verified
their own key value in a given epoch, then all other users ob-
tain the same key within the epoch. However, it is important
to note that the property definition makes no statement about
what happens if the check fails. Therefore, this VKD level
property does not imply any security for its corresponding
KT system if the service provider is malicious.

Take, for example, a malicious service provider that
injects their own key for a particular user. While the system
in this setting is clearly insecure, the soundness notion is
still satisfied. The authors of [9] argue that such malicious
service provider can be detected by users and that the
users should then complain “out-of-band”. However, exactly
how this complaint is communicated to all system users,
what it entails, and why it would be acceptable in practical
applications remains unspecified.

Even more critically, there is no mention of what hap-
pens if users are allowed to be completely reset—such as

2. In the universal composibility framework of Canetti [5] without setup
assumptions.

by losing their device. Intuitively, a complete reset means
that a user has lost the means to prove their identity within
the system. Note that in this setting the above attack implies
that the service provider is able to completely impersonate
the user that is being reset without the means for the user
to raise a credible accusation within the model. Even more
concerning, relying solely on the above soundness notion
from [9] would allow not only a malicious service provider
to impersonate any user, but also enable a malicious user to
impersonate any other user. Consequently, in a system that
allows users to lose their device, the service provider must
be assumed at least semi-honest.

We contextualize this observation with the current de-
velopment of auditing mechanisms in KT systems. These
auditors should guarantee that the service provider acts
honestly, but if the service provider is presumed to be
corruptable, then the underlying security guarantees are
void. Put plainly, if the service provider is assumed to be
honest, then auditors are superfluous; if the service provider
is assumed to be malicious, then even honest auditors cannot
prevent impersonation attacks. Thus, the use of auditors only
makes sense if out-of-band communication is assumed.

We want to stress that some non-cryptographic tech-
niques are considered to mitigate this problem in practice.
For example Linker and Basin [27], formalizes the notion
of social authentication and implement a protocol for it. To
tackle the problem of users impersonating each others, [9]
relies on application-level access control. The IETF work-
ing group on KT systems [31] adapts the same approach.
Obviously, these approaches may provide valuable security
mechanisms in practice. Since, we are interested in modeling
KT systems in a cryptographically sound way, we consider
these approaches orthogonal to KT systems and thus out-
of-scope.
Coping with malicious service providers. For some high-
risk users (such as journalists or activists), the assumption
of a semi-honest service provider may not be acceptable,
e.g. due to government coercion. In light of the inherent
impersonation potential for reset users, we propose to let
users opt-in to a “high-security” mode, in which they are
expected to retain a high-entropy passphrase even when
losing their device.3 The advantage of this mode is that it
extends security guarantees to protect against a malicious
service provider. However, if the passphrase is compro-
mised, the user’s identity within the system is compromised.
Further, selecting this mode, the user needs to be aware
that if they forget their passphrase, they are no longer
able to update public keys related to their identity, e.g.
register new devices. We stress that this high-security mode
is backwards-compatible with existing implementations. In
this mode, a public key can only be updated if it is signed
by the user’s (persistent) private key, which is derived from
the passphrase.
Realizable KT functionality. We now define a functionality
FKT in Fig. 1 that can be realized but still provides a

3. Given that this is mostly relevant for high-risk users, we consider this
a reasonable assumption.
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Functionality FKT

FKT proceeds as follows, running with security parameter
λ, n users U = {id1, ..., idn}, and a service provider S,
and adversary S that corrupts C ⊆ U ∪ {S}. Messages not
covered here are ignored. Initialially, set the epoch counter
τ := 0, for all τ ′ ≥ −1, set the update list Lτ ′ := [] and
database Dτ ′ [id, v] := ⊥ for each id and version v. Set the
latest version list v̂[id] = −1 for each id. Let ρ : {0, 1}∗ →
{0, 1}ℓ(λ) be a random function.
• RegisterKey: When receiving a key k from user Uid,

if the service provider is corrupted, i.e., S ∈ C, send
(RegisterKey, id, k) to S. If S ̸∈ C or after receiving
AllowRegisterKey from S, store Lτ [id, v̂[id

′] + 1] := k.
• QueryKey: When receiving query (QueryKey, id′)

from user Uid, retrieve the key k:=Dτ−1[id
′, v̂[id′]]. if

the service provider is corrupted, i.e., S ∈ C, send
(QueryKey, id, id′, k) to S. If S ̸∈ C or after receiving
AllowQueryKey from S, send (QueryResponse, τ, id′,
k, R) to user Uid with leakage R := ρ(id′, v̂[id′]).

• EpochUpdate: When receiving EpochUpdate from S,
update the database with the entries of Lτ as Dτ [label] :=
Lτ [label] and Dτ [label] := Dτ−1[label] for all label =
(id, v) in Dτ−1, increment the counter τ := τ + 1. Send
leakage R := (τ, (ρ(label))label:Lτ−1[label] ̸=⊥) to S. Send
(EpochUpdate, τ) to each user Uid1 , ...,Uidn .

Figure 1: The functionality FKT that models the objective of a
system.

sufficient4 level of security. For ease of exposition, we con-
centrate on the case where the number of users is fixed and
known to all parties. In this functionality the adversary must
greenlight key registration requests (if the service provider
is corrupted) – reflecting the omission attack described
in Attack 2. However, the (potentially malicious) service
provider cannot impersonate users, as the functionality FKT

only registers a key for user Uid if that key stems from user
Uid. Moreover, to reflect unavoidable information obtained
by the adversary in the real world, the functionality FKT

provides leakage to the adversary. In particular, upon an
epoch update (we assume that the epoch update and proof
is public) the adversary learns a random function of the user
identifiers and the versions of the keys that were updated in
the previous epoch. This leakage ultimately stems from the
KT protocol of Chase et al. [9], namely, the epoch update
commitment contains VRF evaluations of (id, v) for each
updating user Uid. Similarly, when querying for the (most
recent) key of a user Uid′ , the querying user learns the
VRF image corresponding to (id′, v′). Thus, if the adversary
queries all users in each epoch, the adversary can trivially
learn which user updated their key in which epoch.
KT Scheme. Before we describe our protocol that real-
izes this functionality, let us introduce the notion of a KT

4. Optimal w.r.t. the previously discussed attacks.

scheme.5

Expcorr
KT,A(λ)

1 : σ := 0;D← ∅
2 : st← KT.Setup(1λ)

3 : crs← A(st)

4 : AQryKey′,UpdateEpoch′(st, crs)

5 : return σ

QryKey′(id, v)

1 : (kv, π)← KT.QryKey(st, id, v, crs)

2 : b := KT.VfyQry(com, id, v, kv, π, crs)

3 : if b = 1 ∧ D[id, v] ̸= kv then σ := 1

UpdateEpoch′(L)

1 : (st′,D′, π)← KT.UpdateEpoch(st,D, L, crs)

2 : com := KT.Commit(st,D, crs)

3 : com′ := KT.Commit(st′,D′, crs)

4 : b := KT.Audit(com, com′, π, crs)

5 : if b = 0 then σ := 1

6 : st := st′;D := D′

Expinter
KT,A(λ)

1 : (com, com′, πcom, id, v, v
′, k, k′, πv, πv+1, π

′, crs)

← A(1λ)
2 : req KT.Audit(com, com′, πcom, crs) = 1

3 : req KT.VfyQry(com, id, v, k, πv, crs) = 1

4 : // no skipping versions

5 : if KT.VfyQry(com, id, v + 1,⊥, πv+1, crs) = 1

6 : ∧ KT.VfyQry(com′, id, v′, k′, π′, crs) = 1

7 : ∧ v′ ≥ v + 2 ∧ k′ ̸= ⊥ then return 1

8 : // no modification of existing keys

9 : if KT.VfyQry(com′, id, v, k′, π′, crs) = 1

10 : ∧ k ̸∈ {k′,⊥} then return 1

11 : return 0

Expincl
KT,A(λ)

1 : (st,D, L, id, v, k, πv, πv+1, π
′, crs)← A(1λ)

2 : req (id, k) ∈ L ∧ k ̸= ⊥
3 : (st′,D′, πcom) := KT.UpdateEpoch(st,D, L, crs)

4 : com := KT.Commit(st,D, crs)

5 : com′ := KT.Commit(st′,D′, crs)

6 : req KT.Audit(com, com′, πcom, crs) = 1

7 : req KT.VfyQry(com, id, v, k, πv, crs) = 1

8 : req KT.VfyQry(com, id, v + 1,⊥, πv+1, crs) = 1

9 : req KT.VfyQry(com′, id, v + 1, k, π′, crs) = 1

10 : return 1

Figure 2: Games for our definition of KT schemes.

5. This notion has some similarity with the notion of a verifiable key
directory (VKD) in [9]. However, [9] explicitly omit any specification of
“system parameters”.
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Definition 1 (Key Transparency Scheme). A key trans-
parency (KT) scheme is a tuple of efficient algorithms KT =
(Setup, Init,Commit,QryKey,VfyQry,UpdateEpoch,Audit,
SimSetup) where
• Setup(1λ) on input security parameter 1λ, outputs a

common reference string (CRS) crs,
• Init(1λ, crs) on input security parameter 1λ and CRS crs,

outputs a server state st,
• Commit(st,D, crs) on input server state st, database D,

and a common reference string (CRS) crs, outputs a
commitment com to the server state.

• QryKey(st,D, id, v, crs) on input server state st, database
D, user identifier id, version v, and CRS crs, outputs the
key k associated with id at version v, and a proof π of
correctness,

• VfyQry(com, id, v, k, π, crs) on input commitment com,
user identifier id, version v, key k, proof π, and CRS crs,
outputs a bit indicating the correctness of the key relative
to the commitment com.

• UpdateEpoch(st,D, L, crs) on input server state st,
database D, list of key updates L = (idi, ki)i, and CRS
crs, outputs a new server state st′, a new database D′,
and a proof π of correctness.

• Audit(com, com′, π, crs) on input commitments
com, com′, proof π, and CRS crs, outputs a bit
indicating the validity of the new commitment relative to
the previous commitment.

• SimSetup(1λ) on input security parameter 1λ, outputs a
CRS crs and a simulation trapdoor τ .

• SimQryKey(com, id, v, k, crs, τ) on input user identifier id,
version v, CRS crs, and simulation trapdoor τ , outputs a
key k associated with id at version v, and a proof π.

• SimUpdateEpoch(vk, com, com′, L, crs, τ) on input com-
mitments com, com′, list of key updates L = (idi, ki)i,
CRS crs, and simulation trapdoor τ , outputs a proof π.

Setup, SimSetup and Init are probabilistic, the other algo-
rithms are deterministic.

We define several correctness and security properties for
KT systems.
Correctness. For every (unbounded) stateful adversary A,
we have that Pr[Expcorr

KT,A(λ) = 1] = 0 where Expcorr
KT,A is the

correctness game defined in Fig. 2. Correctness guarantees
that (verifying) responses match the underlying database.
Intra-Epoch Consistency. For every commitment com,
user identifier id, version v, keys k0, k1, and proofs π0, π1,
we have that

VfyQry(com, id, v, k0, π0) = VfyQry(com, id, v, k1, π1)

=⇒ k0 = k1 .

Intra-Epoch consistency guarantees that within a single
epoch (a single commitment com) only a single key verifies
for a given query.
Inter-Epoch Consistency. For every (unbounded) ad-
versary A, we have that Pr[Expinter(λ) = 1] = 0
where Expinter

KT,A is the inter-epoch consistency game defined
in Fig. 2. This notion essentially corresponds to “VKD
soundness” in [9]; it ensures once a given key version has
been added, its valid response remains consistent across

epochs.
Inclusivity. For every (unbounded) adversary A, we have
that Pr[Expincl

KT,A(λ) = 1] = 0 where Expincl
KT,A is the

inclusivity game defined in Fig. 2. Inclusivity guarantees
that a key k is a valid response for a query (id, v) if an
(honest) auditor has verified an epoch update that contains
(id, k) ∈ L.
Privacy. For every (unbounded) adversary A, there exists
a simulator SA such that for each database D it holds that∣∣Pr[A(1λ, com) = 1

]
− Pr

[
SDA(1λ) = 1

]∣∣ ≤ negl(λ) (1)

where st ← Setup(1λ) and com := Commit(st,D).
Privacy guarantees the KT scheme leaks at most as much
information about the database as can be obtained by
oracle access to the database.6

The following three properties are used only in the proof
of security of our KT protocol.
CRS indistinguishability. The two distributions {crs ←
Setup(1λ) : crs} and {(crs, τ) ← SimSetup(1λ) : crs} are
computationally indistinguishable.
Query simulation. For each vk, com, id, v, k we
require that Pr[(crs, τ) ← SimSetup(1λ), (k, π) :=
SimQryKey(vk, com, id, v, crs, τ) :
VfyQry(vk, com, id, v, k, π, crs) = 1] = 1. In other
words, if the CRS is in simulation mode, arbitrary proofs
can be generated using the trapdoor.
Epoch update simulation. For each vk, com, com′, L
we require that Pr[(crs, τ) ← SimSetup(1λ), π :=
SimUpdateEpoch(vk, com, com′, L, crs, τ) :
Audit(vk, com, com′, π, crs) = 1] = 1.

Having established the definition of a KT scheme, we
now present our construction of a KT scheme based on the
append-only zero-knowledge set from [9].

Definition 2 (KT Scheme Instantiation). Let PRF be a PRF.
Let VRF be a VRF. Let aZKS be an append-only zero-
knowledge set. We define a KT scheme KT in Fig. 3.

Our KT scheme instantiation essentially provides a min-
imal API for parties to use in our KT protocol. To assure
deterministic algorithms, we derandomize Commit, QryKey
and UpdateEpoch by using a pseudorandom function [18].
It resembles the verifiable key directory (VKD) of [9], but
disentangles the underlying scheme from the KT protocol.
For example, a service provider in a KT protocol (not
part of the scheme itself) would generate its internal state
stKT ← KT.Init(1λ), and then use the KT.UpdateEpoch
function to generate a new epoch update proof πupd

KT and
update its internal state.

3.1. Comparison with Previous Work

We remark that the scheme instantiation in Fig. 3 repre-
sents the minimal components necessary to satisfy Defini-
tion 1 and its corresponding correctness and security prob-
lems. It is similar, but less complex than the instantiation

6. To guarantee functionality of the KT scheme, any adversary must at
least have oracle access to the database.
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Setup(1λ)

1 : return crs← aZKS.Setup(1λ)

Init(1λ)

1 : kPRF ← PRF.Gen(1λ); staZKS := ⊥
2 : return stKT := (kPRF, staZKS)

Commit(stKT,D, crs)

1 : (kPRF, staZKS) := stKT

2 : r := PRF.Eval(kPRF, staZKS||D||crs)
3 : (comaZKS, skaZKS) := aZKS.Gen(1λ,D, crs; r)

4 : return comKT := comaZKS

QryKey(stKT,D, id, v, crs)

1 : (kPRF, staZKS) := stKT

2 : r := PRF.Eval(kPRF, staZKS||D||id||v||crs)
3 : (πaZKS, k) := aZKS.Qry(staZKS,D, id||v, crs; r)
4 : πKT := πaZKS

5 : return (k, πKT)

VfyQry(comKT, id, v, k, πKT, crs)

1 : comaZKS := comKT;πaZKS := πKT

2 : return aZKS.Vfy(comaZKS, id, k, πaZKS, crs)

UpdateEpoch(stKT,D, L, crs)

1 : (kPRF, staZKS) := stKT

2 : r := PRF.Eval(kPRF, staZKS||D||L||crs)
3 : (πupd

aZKS, st
′
aZKS) := aZKS.UpdateDS(staZKS,D, L, crs; r)

4 : st′KT := (kPRF, st
′
aZKS);D

′ := D;πupd
KT := πupd

aZKS

5 : for (id, k) ∈ L do

6 : D′[id, v̂[id]] := k

7 : return (st′KT,D
′, πupd

KT )

Audit(comKT, com
′
KT, π

upd
KT , crs)

1 : comaZKS := comKT; com
′
aZKS := com′

KT;π
upd
aZKS := πupd

KT

2 : return aZKS.VerifyUpd(comaZKS, com
′
aZKS, π

upd
aZKS, crs)

SimSetup(1λ)

1 : return (crs, τ)← aZKS.SimSetup(1λ)

SimQryKey(comKT, id, v, k, crs, τ)

1 : comaZKS := comKT

2 : return πaZKS ← aZKS.SimQryKey(comaZKS, id||v, k, crs, τ)

SimUpdateEpoch(comKT, com
′
KT, L, crs, τ)

1 : comaZKS := comKT; com
′
aZKS ← com′

KT

2 : return
πaZKS := aZKS.SimUpdateDS(comaZKS,

com′
aZKS, L, crs, τ)

Figure 3: Our KT scheme instantiation building on the append-
only zero-knowledge set from [9].

one would get from SEEMless [9] if one were to distill the
presentation of their scheme via our methods. For instance,
SEEMless uses an additional data structure called history
tree to facilitate the reconstruction of the internal state of
the service provider from any arbitrary epoch. This is to
facilitate an additional operation called KeyHistoryQry, that
allows a user to view the history of all their key updates to

a system. While potentially useful, we omit this to target
the core functionality desired by KT—delivering the latest
key of one user to another user.

The lineage of papers following [9] keep the same
trend observed above. That is, while similar to our KT
scheme instantiation in Fig. 3 they extend our baseline
scheme (and that of their previous works’) to offer more
functionality or to provide greater efficiency (sometimes at
the expense of slightly relaxed security guarantees). For
instance, Parakeet [28] notes that the construction in [9]
is not scalable enough for large, real-world deployments. In
response, they present: a more efficient VKD construction
based on a primitive called an ordered zero-knowledge set
(a generalization of the aZKS), a compaction mechanism
that allows for the purging of obsolete entries, and a more
efficient method for broadcasting commitments. Similarly,
OPTIKS [25] improves on the simplicity and scalability
of [28], while ELEKTRA [24] adds support for the setting in
which users may register multiple devices with a particular
service.

4. Verifiable Summary

As discussed in Section 1 current KT protocols suffer
from a major scalability issue: namely, all query requests
must be processed using the service provider’s base KT
scheme. As responding to key queries is the most frequent
operation [7], it is sensible to focus on optimizing this
operation. In a recent presentation concerning the WhatsApp
KT deployment (based on the SEEMless protocol [9]) it was
stated that their verifiable key directory has 50 billion nodes
(implying an internal aoZKS depth of 34 and a username-
key pair count in the billions). Moreover, the system collects
over 150, 000 updates per epoch. At such a scale it is not
possible to store the key directory in RAM and external
storage layers must be used [23]. This means that to answer
a query, it is possible that information needs to be retrieved
off of hard-disk storage. This can make responding to the
typical per-epoch query load prohibitively expensive.

An obvious method to reduce load on a single key di-
rectory and eliminate a single point of failure is to distribute
the key transparency service. SEEMless [9] states: “We have
described the service in terms of a single server, but in
practice, the ‘server’ can be implemented using a distributed
network of servers, for reliability and redundancy. Our
model captures the server as a single logical entity, so it can
accommodate a distributed implementation fairly easily.”
However, is this actually true? We contend that this is—in
fact—not the case, due to theoretical as well as practical rea-
sons. From the theoretical side, as eluded to before, it seems
challenging to maintain synchronization among all parties in
a distributed KT system. More practically, we feel that the
apparent lack of deployed (or even proposed) distributed
KT systems is a strong indicator that this is a non-trivial
problem; especially considering the strong incentive for it.

Consider that unlike other distributed services, a con-
sistency guarantee that all nodes will eventually (for some
definition of eventually) receive and process all updates
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is not sufficient. To maintain correctness, inter-epoch con-
sistency, and inclusivity, it is crucial that every server in
a distributed KT service has the same exact state at the
beginning of a new epoch. To ensure this is the case, and
that a single consistent commitment is produced per epoch,
service providers, like WhatsApp [23], use a single “write-
path”. That is, updates are processed by a single server and
before a new epoch is triggered, the set of updates that will
be included in the next update is sent to all “read-path”
nodes in the distributed KT system. These nodes are then
able to update their internal state with a consistent set of
updates, and verifiably respond to queries when the next
epoch is triggered with answers that are consistent with all
other nodes in the system.

However, this distributed KT implementation still suffers
from a number of issues. For one, it requires communication
cost that is linear in the size of the updates to be sent to
each distributed KT server. Further, each of these distributed
nodes are required to have sufficient storage capacity to
store the entire state of the service provider, and above all
it does not alleviate the burden of processing queries using
the expensive full KT scheme. Instead, consider the common
design pattern of using a Bloom filter (BF) as a compact data
summary to reduce the load on a data store that is expensive
to access [36, 42, 14]. In the usual setting, the BF sits on
top of a large key-value store and the BF contains all the
keys in a store. A user first queries the key to the BF and
if the answer is negative, the query’s response is ⊥. Only
if the BF’s answer is positive, the full data store is queried,
whose response is then the definitive query response.

We propose a similar solution for solving the scalability
issues of KT systems by outsourcing the task of processing
key queries to multiple summary nodes controlled by the
service provider. These can be stored on comparatively light-
weight edge devices that essentially act as an approximate
cache for the service provider’s database; they store a com-
pact list (in the form of a Bloom filter) of users that updated
their key since the last epoch. Consider the case where a user
id queries all their contacts’ identifiers id′ after an epoch
update. Most of those contacts will not have updated their
keys. Now, the user id will query some edge device with
an identifier id to learn whether the user id′ has updated
their key. With high probability, the edge device will return
a negative response, as the user id′ has not updated their
key. Hence, the user id does not need to query the service
provider’s central server. Only in the case where the edge
device returns a positive response,7 will the user id query
the service provider’s server.

As a first naive solution attempt, consider having the
central update server publish a publicly available BF con-
taining a list of all user identifiers that updated their key
since the last epoch. Then users that have remained online
between epochs can first query this Bloom filter, and only
in the event of a positive response the query is forwarded
to the full KT scheme. However, this clearly compromises
privacy, because an adversary can now learn the identities

7. Note that Bloom filters have no false negatives.

of users that updated their key in a given epoch by a simple
exhaustive attack. That is, without needing to query the
service provider an adversary could build a set of users who
likely updated their key in the last epoch by simply running
local queries on the publicly available BF.

To protect privacy, consider instead having the central
update server create a secretly-keyed BF [15] and distribut-
ing them to the summary nodes. However, then a malicious
service provider could provide inconsistent responses to
different users (i.e. violate intra-epoch consistency in Def-
inition 1). The reason is that—even if the underlying KT
scheme is consistent—the user has no means of verifying
whether the BF response is correct (as this would require
the BF secret key).

Therefore, our complete solution is to use a verifiable
version of a Bloom filter, where the hash functions are
replaced by a verifiable random function (VRF) [35, 8].
In this way, the user can verify the correctness of the BF
response.

Let us now formalize the notion of a verifiable Bloom
filter (VBF).

Definition 3 (Verifiable Bloom Filter). A verifiable
Bloom filter (VBF) is a tuple of algorithms VBF =
(Gen,Rep,Qry,Vfy) defined as follows:
• Setup(1λ) on input security parameter λ, outputs a com-

mon reference string crs,
• Gen(1λ, crs) on input security parameter λ and CRS crs,

outputs a verification key vk and an evaluation key ek,
• Rep(ek,D, crs) on input evaluation key ek, data D and

CRS crs, outputs a representation repr and a commitment
com,

• Qry(ek, repr, x, crs) on input evaluation key ek, repre-
sentation repr, element x, and CRS crs, outputs a bit b
indicating whether x is in the set represented by repr,
and a proof π,

• Vfy(vk, com, x, b, π, crs) on input verification key vk, com-
mitment com, element x, bit b, proof π, and CRS crs,
outputs a bit indicating whether the proof is valid,

• SimSetup(1λ) on input security parameter λ, outputs a
simulated CRS crs and a trapdoor τ ,

• SimQryKey(com, x, b, crs, τ) on input commitment com,
element x, bit b, CRS crs, and trapdoor τ , outputs a proof
π.

Rep and Qry are deterministic. The algorithms are defined
in Fig. 4.

In our definition, the VBF commitment is simply the bit
vector representation of the underlying BF. Moreover, for
ease of exposition, we take it to be the case that the VRF
outputs a k length vector of elements in [m]. That is the
VRF output is equivalent to the normal output of the hash
functions in a standard BF.

We omit a full formalization of the security properties
of the VBF in the interest of readability and space. Instead,
we will state the properties that a VBF achieves and provide
high level arguments for why they hold.
Completeness. Given some query, any honestly generated
answer produced by the VBF will verify. This follows from
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Setup(1λ)

1 : return crs := VRF.Setup(1λ)

Gen(1λ, crs)

1 : return (vk, sk)← VRF.Gen(1λ, crs)

Rep(ek,D, crs)

1 : repr := 0m

2 : for x ∈ D

3 : y := VRF.Eval(ek, x, crs)

4 : for j ∈ [k] : repr[y[j]] := 1

5 : com := repr

6 : return (repr, com)

Qry(sk, repr, x, crs)

1 : (y, πVRF) := VRF.Eval(sk, x, crs)

2 : b :=
∧

j∈[k] repr[y[j]]

3 : π := (y, πVRF)

4 : return (b, π)

Vfy(vk, com, x, b, π, crs)

1 : vkVRF := vk; (y, πVRF) := π

2 : req VRF.Vfy(vkVRF, x, πVRF, crs) = 1

3 : if b = 1 req ∀j ∈ [k] : b1j = 1

4 : else req ∃j ∈ [k] : b0j = 1

5 : return 1

SimSetup(1λ)

1 : return (crs, τ)← VRF.SimSetup(1λ)

SimQryKey(com, x, y, crs, τ)

1 : return π ← VRF.SimEval(com, x, y, crs, τ)

Figure 4: Algorithms for a verifiable Bloom filter (VBF). VRF is
a VRF.

the perfect correctness of the underlying VRF (as is typical
for traditional VRF constructions).
Correctness. The VBF (like a standard BF) does not
permit false negatives and has a false positive rate essentially
equivalent to that of the underlying BF. This follows from
the fact that the VRF used in the construction essentially
provides a random mapping of the represented collection to
set bits in the filter.
Verifiability. The VBF guarantees that (for a binding CRS)
there exists only one (deterministically generated) answer
for a given query that will verify. This follows from the
perfect unique provability of the underlying VRF.
Privacy. The leakage of a VBF is equivalent to at most
the count of the unique elements that the underlying BF
represents. This result follows from the analysis of the
secretly-keyed BF construction in [16, 11].
Simulatability. The VBF is simulatable, meaning that arbi-
trary proofs can be generated for any query response using
the trapdoor of a CRS in simulation mode. This follows
from the simulatability of the underlying VRF.

5. Key Transparency Protocol

In this section we describe our scalable KT protocol in
Fig. 5 realizing the functionality FKT. To model real-world
application scenarios as closely as possible we make several
assumptions:
• Each user has a unique (permanent) identifier id (typically

a phone number or username).
• There exists an (asymmetric) public-key infrastructure

(PKI). More concretely, the service provider holds two
key pairs: (pkΣ, skΣ) for a signature scheme, and
(pkPKE, skPKE) for public-key encryption scheme.

• Each user has an authenticated channel with the service
provider. This would typically be realized by a key-
exchange via two-factor authentication such as SMS or
an authenticator app.

• The service provider can (infrequently) broadcast mes-
sages (small epoch commitments) to all users. The mech-
anism for this would typically entail the service provider
signing the epoch commitment and then publishing it
to a public append-only database that is accessible to
all users. Proposed real-world mechanisms for this in-
clude blockchains [4, 38], gossip protocols [32], and a
novel light-weight “consensusless” consistency protocol
described in [28].

We employ our VBF to reduce the need to use the full
base KT scheme to resolve queries. Under two conditions
a user can use the VBF as their primary mechanism for
resolving a query. The first being that a user has remained
online between successive epochs. This means they are
connected to the network and allowing the KT service to
run in the background of their device. Secondly, they are
querying for a key for a user they have previously retrieved
some version of from the KT scheme. That is, they are
checking for an updated key for a user in their contacts or
checking on an update (or lack there of) of their own key.
Then, when a user Uid performs a key query for an identified
id′, it first queries the VBF in line 2. Only, if the response
b = 1 is positive—the user Uid′ has updated their key in
the last epoch (or a rare false positive occurs)—the user Uid

queries the full aZKS in line 6. As a key update or a false
positive (one can make this an arbitrarily small probability
by tuning the VBF parameters) will be sufficiently rare
events we contend that the large majority of queries will
be resolved solely using the VBF.

Again, in the case a user has been offline for a period
they will need to catch up by directly querying the aZKS.
We consider ways in which this requirement can be softened
in Section 5.1. Further, if a user is requesting the key of a
user they have never interacted with (i.e., they are getting
the key of some for the first time), then this query needs to
be resolved with the underlying KT scheme. For readability,
we do not specify these cases in Fig. 5. Moreover, to prevent
additional notational overhead, in our protocol the VBF
queries are technically answered by the service provider.
We emphasize that in practice the VBF queries could be
answered by an edge device that holds the service provider’s
VBF secret key, however in the most common case the
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S(1λ)

1 : (vkKT, stKT)← KT.Setup(1λ)

2 : (S.vkVBF, S.skVBF)← VBF.Gen(1λ)

3 : S.st := [stKT];S.τ := 0; S.L0 := []; S.v := []

4 : broadcast S.vkVBF

Uid(vkVBF ← S)

1 : Uid.vkVBF := vkVBF;Uid.C := [];

S(EpochUpdate← Z)
1 : τ := S.τ ; S.τ := τ + 1; I := (id)(id,k)∈S.Lτ ; S.Lτ+1 := []

2 : (S.stKT[τ + 1], S.Dτ+1, π
upd
KT )

← KT.UpdateEpoch(S.stKT[τ ], S.Dτ , S.Lτ )

3 : comτ+1
KT := KT.Commit(S.stKT[τ + 1],S.Dτ+1)

4 : for (id, k) ∈ S.Lτ do S.v[id] := S.v[id] + 1

5 : (S.reprτ+1
VBF , S.com

τ+1
VBF ) := VBF.Rep(S.skVBF, I)

6 : broadcast (EpochUpdate, comτ+1
KT , πupd

KT )

Uid(EpochUpdate, comτ+1
KT , πupd

KT ← S)

1 : τ ′ := Uid.τ

2 : req KT.Audit(Uid.com
τ ′
KT, com

τ+1
KT , πτ+1) = 1

3 : Uid.τ := τ ′ + 1;Uid.com
τ ′+1
KT := comτ+1

KT

Uid(RegisterKey, k← Z)
1 : send (RegisterKey, id, k)→ S

S(RegisterKey, k← Uid)

1 : τ := S.τ ; S.Lτ [id] := k

Uid(QueryKey, id′ ← Z)
1 : (k̃, ṽ) := Uid.L[id

′]; τ := Uid.τ ; (τlast, klast) := Uid.C[id
′]

2 : if τlast = τ − 1 send (QueryVBF, id′, τ)→ S

3 : receive (VBFResponse, id′, b, πVBF)← S

4 : if b = 0 ∧ VBF.Vfy(Uid.vkVBF, id
′, b, πVBF) = 1

5 : return (QueryResponse, τ, id′, klast)

6 : send (QueryKey, id′)→ S

7 : receive (QueryResponse, id′, k, v, πv, πv+1)← S

8 : req k ̸= ⊥ ∨ v = 0 // ensure most recent key

9 : req KT.VfyQry(Uid.com
τ
KT, id

′, v, k, πv) = 1

10 : req KT.VfyQry(Uid.com
τ
KT, id

′, v,⊥, πv+1) = 1

11 : Uid.C[id
′] := (τ, k)

12 : return (QueryResponse, τ, id′, k)

S(QueryVBF, id′, τ ← Uid)

1 : (k, πVBF) := VBF.Qry(S.skVBF,S.repr
τ
VBF, id

′)

2 : send (VBFResponse, id′, k, πVBF)→ Uid

S(QueryKey, id′, τ ← Uid)

1 : v := S.v[id′]

2 : (kv, πv) := KT.QryKey(S.stKT[τ ], id
′, v)

3 : (kv+1, πv+1) := KT.QryKey(S.stKT[τ ], id
′, v + 1)

4 : send (QueryResponse, id′, kv, v, πv, πv+1)→ Uid

Figure 5: Our KT protocol πKT.

VBFs will reside on light-weight nodes operated by the
service provider themselves. To be clear about the security
guarantees, we remark that there is no privacy guarantee
against a semi-honest edge device, since the edge device
holds the VBF secret key (the same guarantees the service
provider has).

Theorem 1. The protocol πKT securely realizes the func-
tionality FKT in the common reference string model.8

Proof Sketch: We omit a full proof as it is analogous
to the proof in [9]. Formally, we can proceed by a sequence
of hybrid games that are consecutively indistinguishable.
Starting from the real game we first switch the CRS to
simulation mode, so that soundness of all proof no longer
holds. Then we can replace honestly generated proof for
VRF evaluations (in VBF and aZKS) with simulated proofs.
Now, with simulated proofs, we can switch the VRF images
from honestly generated to random. Now, we are in the ideal
game.

The only difference is that in our protocol we also give
our VBF evaluations. However, these can be simulated in
an analogous fashion as the aZKS proofs—given that both
are built on the same VRF.

5.1. Practical Considerations

Observe that our protocol πKT is highly modular in the
way that it integrates our VBF to provide scalability. That
is, the algorithms (and subroutines of algorithms) specifying
all VBF operations could be omitted, and we would still
have a complete KT protocol that satisfies the function-
ality FKT. This is intentional. Recall, that in Section 3.1
we said the scheme instantiation in Fig. 3 represents the
minimal components necessary to satisfy Definition 1 and
its corresponding correctness and security problems. We
then remarked that the scheme instantiations put forth in [9,
28, 25, 24] are super-sets of the one we provide. That is,
one could use our VBF summary mechanism on top of
any KT protocol. In case it uses a VRF-based aZKS-like
scheme instantiation9 our summary mechanism is essentially
free. This is because the inputs to the VBF summary are
simply the VRF images of the user’s identifier and the
key version (id||v), which already needs to be computed
as part of the base KT scheme (for all schemes we con-
sider). Therefore, with minimal additional computation one
can produce our VBF summary. For instance if a service
provider was especially concerned with efficiency in the
multi-device setting they could implement ELEKTRA [24]
with our VBF summary mechanism on top of it to achieve
bleeding-edge scalability. We explore this exact scenario
in Section 6 where we use Meta’s AKD library [22] as our
base KT scheme to implement our protocol and explore the
expected efficiency gains achieved by using a VBF on top
of it.

8. In this model, we also assume that the service provider can publish
short messages, i.e., technically it has access to a broadcast functionality.

9. As is the case for all protocols we refer to in this work.
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Further, recall the requirement that a user remain online
between epochs to be able to query the VBF as their
primary query resolver in our KT protocol. In practice this
is not a big hinderance, as most users will have the KT-
enabled E2EE messaging app installed with permissions to
run in the background on an always-on mobile device with
a near constant network connection. However, it would be
beneficial if a momentary network disconnection did not
necessitate that a user resynochronize with the full base KT
protocol before being able to use the VBF again. To solve
this, one could easily modify our KT protocol to have the
light-weight edge device store the VBFs that correspond to
the past (say) t epochs. That is in addition to the current
VBF for epoch τ , the edge-device can additionally store the
VBF summaries for epochs τ−1, τ−2, . . . , τ−t−1. Then, if
a user experiences a short duration of network disconnection
and comes back online (a disconnection period that occurs
strictly between epochs τ and τ − t−1), they could linearly
query every VBF during the period in which they were
disconnected. This allows users to efficiently check for
updates from users in their contacts and to check to ensure
that no unauthorized modification of their key took place
primarily at the level of the VBF. In this way, this extended
mechanism allows for users to “catch up” with the current
state of the KT protocol without needing to resolve the high
majority of queries using the full base KT scheme.

Lastly, we explore an additional efficiency gain by using
a cache along with our VBF to speed up query responses
from the light-weight edge devices. The most expensive
subroutine when a VBF responds to a query is computing
the VRF evaluation. Therefore, at instantiation time the
service provider could also build a cache for the VBF
containing (id||v) inputs mapped to their corresponding
(y, πVRF) := VRF.Eval(sk, x, crs) output. This cache stores
pre-computations of the VRF evaluations for all keys that
have been updated during a given epoch. As resources allow,
an edge device could add to this cache for queries that are
made to the device that were not part of this initial set
during a given epoch. Thus, if a query that appears outside
of the update set is also repeated its VRF evaluation can be
retrieved from the cache. While this modification requires a
one-time additional communication overhead with the edge
devices, it greatly speeds up query responses to the clients.
We explore this concretely in Section 6.

To summarize, our VBF powered KT protocol is ben-
eficial for both the service provider and users. From the
service provider’s perspective it enables inexpensive and
flexible scalability. Unlike current distributed KT protocols,
like that of WhatsApp [23], it does not require that the
distributed nodes be able to maintain the full state of the
service provider. Instead, each light-weight node maintains
a summary of the most recent changes to state of the
service provider. This empowers service providers to build
a comparatively low cost and geographically dense network
of edge devices, that, in turn, greatly reduce the number
of queries that need to be resolved using a high-cost and
resource-intensive server storing the full state of the service
provider. Likewise, for users most responses can be handled

primarily at the summary level rather than at the base KT
scheme level. Moreover, as summaries can be deployed on
light-weight edge devices service providers can put more of
them online, and have them be physically closer to users
on the network. This results in an improved user experience
where KT queries are resolved much faster than the current
state-of-the-art solutions. We provide experimental evidence
for this in the following section.

6. Implementation and Experiments

We implement our scalable KT protocol in Rust using
Meta’s AKD library [22] for our base KT scheme. Their
implementation is based on [9] and its used to implement
the WhatsApp KT protocol [23]. We also provide an im-
plementation of our VBF summary mechanism. Our code is
available on GitHub.10 We provide standalone performance
numbers comparing our VBF versus the standalone base KT
scheme. We also simulate a large-scale KT deployment to
demonstrate how our verifiable summary mechanism greatly
aids in scalability of KT protocols. All experiments were run
a server with a 10-core Intel Xeon E5-2630 CPU clocked
at 2.20 GHz with 128 GB of RAM.

6.1. VBF and Base KT Scheme Performance Com-
parison

In Table 1 we compare the time to process updates
between the VBF summary mechanism versus the base KT
scheme (i.e., the underlying aZKS implemented by [22]).
Specifically, we compare the time to process 213, 215,
and 217 updates between the VBF with cache, the standard
VBF, an empty aZKS, and a pre-populated aZKS (with a
pre-existing 219 entries). Entries were created by generating
a random user identifier and a corresponding random public
key value. For each insertion set size we ran 100 trials and
report the average. As can be seen from Table 1, the VBF
with cache takes about 1.5 times longer to insert the same
number of entries as compared to the standard VBF as it
also builds the cache at insertion time. Inserting into an
empty aZKS is 2 to 3 times faster than inserting into a
pre-populated aZKS. We note that our test implementation
does not have the ability to use an external storage layer,
so our aZKS exist solely in RAM. This is an unrealistic
assumption for large scale, real-world deployments with
massive user bases. Therefore, we expect the insertion time
on the aZKS to substantially increase when they are holding
hundreds of millions or billions of entries, as they must
retrieve information off hard disk storage. As approximately
217 entries per epoch are the current needs of WhatsApp, we
argue that building a VBF is a negligible cost (≈ 2 seconds
to fully build from scratch) as compared to updating the full
aZKS. Further, recall that the VRF output that needs to be
computed on the concatenation of each user identifier and
key version to be added to the aZKS is the same input to the

10. Our code will be made publicly available after the anonymized
review process.
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Number of Updates
VBF with cache

(s)
VBF
(s)

Empty aZKS
(s)

Pre-populated aZKS
(s)

213 0.15 0.10 0.10 0.33

215 0.61 0.40 0.45 1.13

217 2.44 1.66 2.04 5.16

Table 1: Benchmarks for VBF with cache, VBF, (both with ϵ = 0.01), empty aZKS, and pre-populated aZKS (with 219 entries) insertion
times measured in seconds.

Number of Queries
VBF with cache

(s)
VBF
(s)

aZKS
(s)

213 0.31 1.82 14.93

215 1.21 7.29 60.75

217 4.89 29.19 245.53

Table 2: Benchmarks for VBF with cache, VBF, (both with ϵ =
0.01) and aZKS query times measured in seconds.

underlying Bloom filter of the VBF. As computing the VRF
is the majority of the computation cost of building the VBF
the additional expense becomes nearly zero—in practice,
just a relatively small number of hash computations and
writes to a bit-array.

In Table 2 we compare the time to process queries
between the VBF summary mechanism versus the base
KT scheme. Specifically, we compare the time to pro-
cess 213, 215, and 217 simultaneous queries between the
VBF with cache, the standard VBF, and the aZKS. The VBF
with cache and the standard VBF were pre-populated with
217 entries and the aZKS was pre-populated with 220 entries
(replicating a realistic deployment large-scale deployment
scenario). Queries were randomly selected user identifiers
from the space of randomly generated user identifiers. For
each query set size we ran 10 trials and report the average.
As can be seen from the table, the VBF with cache is
about 6 times faster to answer the same number of queries
as compared to the standard VBF. The aZKS is a full order
of magnitude (or more) slower than both variants of the
VBF when handling the same number of queries. Again, we
stress that this is for an aZKS that exists entirely in RAM.
When external storage layers must be used (as the size of
the aZKS grows) this difference in performance will become
even more drastic. We also measure the average verification
time for a query to the VBF and aZKS (both containing 217

pre-populated entries). These values were 218.74 µs and
979.77 µs for the VBF and aZKS, respectively—an almost
5 times computation reduction for the user verifying a VBF
query response. The practical implication of this being that
our mechanism enhances user experience by providing much
faster resolution to queries and verification of those queries.

6.2. Simulation of Large Scale Deployment

We start by comparing the relative size of a per-epoch
VBF and the full aZKS that needs to be stored for a
large scale KT deployment. Taking the average number of
updates made to WhatsApp at 150, 000 per epoch and a
targeted false positive rate of ϵ = 0.01 we arrive at a VBF

representation (and commitment) that is approx. 180 KB
using the analysis in Appendix B. Using results from [28]
the aZKS construction in SEEMless [9] would require 27 TB
of storage, while the more optimized construction of Para-
keet [28] would require 2.2 TB of storage to facilitate the
current size of WhatsApp’s user base. Moreover, per epoch
our protocol only requires transmitting the VBF to each edge
device, versus the full update list if one to distribute the
entire state of the service provider.11 Lastly, note that the
additional data a user needs to download is small—only the
VBF bit-array representation, less than 200 KB.

Recall that the additional overhead for producing a per-
epoch VBF is negligible from the viewpoint of the service
provider. Therefore, we focus our simulation on the concrete
speed up of resolving users queries. We will say that the
computation time to evaluate a VBF query is q. Extrapolat-
ing from the results in Section 6.1, we will conservatively
say the computation time to evaluate a query using the
full aZKS is 10q. We say conservatively, because, again,
our results do not reflect the real-world condition that the
aZKS is stored on hard-disk storage. We will now compare
the total query time Qb for the simulated base KT scheme
and Qs for our simulated scalable KT scheme with u total
users, fraction o of which have remained online between
epochs, each making n queries per epoch, where fraction
a of those queries are for users who have updated their
key and fraction b is for queries of users they have not
previously connected with. For our experiment we vary u
while setting o = 0.9, n = 100, a = b = 0.01. Moreover,
we fix the false positive rate for the VBF to be ϵ = 0.01.
We include our simulate script with our code, so that others
can vary these parameters and obtain results that match the
conditions of their particular KT deployment.

In Fig. 6 we compare the total query times Qb when
using only the base aZKS KT scheme and Qs when using
our scalable scheme (the VBF in conjunction with an aZKS),
across a range of users u from 50 million to 2 billion.
The results suggest that our scalable protocol can signifi-
cantly decrease the query computation time in large-scale
KT deployments. Our combined VBF and aZKS approach
leverages the strengths of both structures: the VBF effi-
ciently handles the bulk of queries with minimal overhead,
while the aZKS provides accurate responses for cases where
the VBF may be insufficient (e.g., false positives, offline
users, updated keys). As shown in the plot, the use of a
VBF reduces the total query time by approximately 64%

11. If one were to use the VBF with cache then the required transmission
size to the distributed nodes per-epoch is about equal.
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Figure 6: Comparison of total query computation time Qb of using
the base KT scheme alone and total query computation time Qs of
our scalable scheme versus the number of users u in the system.
Note the x-axis scale is in billions and the y-axis scale is in trillions.

compared to using an aZKS alone when the user base
reaches 2 billion. This substantial reduction can lead to
improved user experience and reduced infrastructure costs.
Note that these results do take into consideration transport
time on the network. However, one can imagine that users
will be geographically closer to VBF edge nodes, and thus
have a faster connection when interacting with them versus
the full aZKS maintained by the service provider. Further,
recall that verifying a VBF query response is five times less
total computation time for the user. In sum, our scalable KT
protocol reduces the total query computation cost for the
service provider, while also improving the speed at which
queries are resolved and verified for users.

6.3. A Note On Meta’s AKD Library

VRFs that do not assume a trusted setup (e.g. not in the
CRS model) are typically unconditionally uniquely prov-
able, and thus unconditionally non-simulatable. We observe
that the VRF implementation in Meta’s AKD library [22]
does not have a CRS for setup and thus is not simulat-
able. However, both our proof and the proof of [9] rely
crucially on the simulatability of the VRF. Thus, the formal
security of protocols that rely on uniquely provable VRF
(in particular, Meta’s AKD library) is unclear.12 Given that
WhatsApp’s KT protocol is based on Meta’s AKD library,
this means that WhatsApp does not enjoy formal privacy
guarantees. To be clear, this does not constitute a security
vulnerability, but rather a lack of formal security guarantees.
We also note that as our experimental protocol implementa-
tion was built on top of the same library (and in particular
the same VRF), it also lacks these formal guarantees.

7. Conclusion

This work advances the field of key transparency (KT)
by addressing two fundamental challenges: the lack of a
formal security model and the scalability limitations in

12. Even worse, security cannot be shown using known simulation-based
techniques.

current KT solutions. We present the first cryptographically
sound formalization of KT as an ideal functionality, defining
essential security properties and assumptions that provide
a foundation for analyzing and improving KT protocols.
Through this formalization, we also identify a potential
security vulnerability – specifically, an impersonation risk
posed by malicious service providers – and propose a
backward-compatible mitigation strategy to protect against
such threats.

To tackle the scalability issue, we introduce a novel
cryptographic primitive, the Verifiable Bloom Filter (VBF),
which enables distributed, privacy-preserving query han-
dling without compromising the security guarantees required
by KT systems. By offloading the bulk of query processing
to light-weight edge devices, the VBF not only reduces
the computational load on central servers but also ensures
real-time response capabilities that can support large-scale
deployments. Our VBF-based approach is modular, allow-
ing for integration with existing KT protocols to enhance
flexibility and performance without extensive architectural
changes.

Our experimental results demonstrate the practical ef-
fectiveness of the VBF, highlighting its potential to signif-
icantly reduce query processing time and improve system
throughput. By providing a scalable, secure, and adaptable
solution for KT, this work lays the groundwork for future
advancements in decentralized key management and aligns
with ongoing efforts to standardize KT systems within the
IETF. Future work will focus on further formalizing the VBF
and a family of related primitives, in addition to exploring
additional optimizations for real-world deployment. With
this foundation, KT systems are poised to become more
resilient, scalable, and adaptable to the demands of modern,
secure communication platforms.
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Appendix

1. Append-Only Zero-Knowledge Set

Definition 4 (Append-Only Zero-Knowledge Set [34, 9]).
An append-only zero-knowledge set (aZKS) aZKS is a tuple
of algorithms aZKS = (CommitDS,Qry,Vfy,UpdateDS,
VerifyUpd) defined as follows:
• Setup(1λ) on input security parameter λ, outputs a com-

mon reference string crs,
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• CommitDS(1λ,D, crs) on input security parameter λ,
database D, and CRS crs, outputs a commitment com and
a state st,

• Qry(st,D, l, crs) on input state st, database D, label l and
CRS crs, outputs a value y and a proof π,

• Vfy(com, l, y, π, crs) on input commitment com, label l,
value y, proof π, and CRS crs, outputs a bit indicating
the validity of the proof,

• UpdateDS(st,D, L, crs) on input state st, database D,
update list L, and CRS crs, outputs a commitment com′,
a state st′, a database D′, and a proof π,

• VerifyUpd(com, com′, π, crs) on input commitments
com, com′, proof π, and CRS crs, outputs a bit indicating
the validity of the proof.

• SimSetup(1λ) on input security parameter λ, outputs a
simulated CRS crs and a trapdoor τ ,

• SimQryKey(com, l, y, crs, τ) on input commitment com,
label l, value y, CRS crs, and trapdoor τ , outputs a proof
π,

• SimUpdateDS(com, com′, L, crs, τ) on input commitments
com, com′, update list L, CRS crs, and trapdoor τ , outputs
a proof π.

To avoid the random oracle model, we modify the aZKS
definition of [9] to explicitly use a CRS. We refer to [9] for
the security guarantees of an aZKS. Chase et al. [9] omit
the algorithms Setup,SimSetup,SimQryKey,SimUpdateDS
in the aZKS definition but consider them in a proof in the
appendix of their work.

2. Bloom Filter

We give an algorithmic description of the Bloom filter
in Fig. 7. Recall, that the false-positive rate of a BF is
a function of the bit-array size (m), the number of hash
functions (k), and the size of the underlying set. Moreover,
given a targeted false-positive rate ϵ one can determine
the optimal BF parameters. From the analysis in [37], we
have that for targeted false-positive rate ϵ and set size n:
m = ⌈−n ln(ϵ)

ln(2)2 ⌉ and k = ⌈− ln(ϵ)
ln(2)⌉. That is, for fixed ϵ (we

set ϵ = 0.01 as a default for our protocol), as the size of the
underlying set n grows the bit-array used to represent the
BF grows. Further, as you set ϵ closer to 0 the bit-array also
grows and the number of hash functions used internally by
the filter increase.

3. Verifiable Random Function Definition

As Chase et al. [9]—we require a simulatable VRF [8].
This is crucial for the formal security proof of our KT
protocol (as well as the protocol of [9]).

Definition 5 (Simulatable Verifiable Random
Function). A simulatable verifiable random function
(sVRF) is a tuple of polynomial-time algorithms
(Setup,Gen,Eval,Vfy,SimSetup,SimEval) where
• Setup(1λ) on input security parameter 1λ, outputs a CRS
crs,

• Gen(1λ, crs) on input security parameter 1λ and CRS crs,
outputs a verification key vk and a secret key sk,

• Eval(sk, x, crs) on input secret key sk, preimage x and
CRS crs, outputs an image y ∈ {0, 1}ℓy(λ) and a proof π,

• Vfy(vk, x, y, π, crs) on input verification key vk, preimage
x, image y, proof π and CRS crs, outputs 1 if the proof
is valid and 0 otherwise,

• SimSetup(1λ) on input security parameter 1λ, outputs a
simulated CRS crs and a trapdoor τ ,

• SimEval(vk, x, y, crs, τ) on input verification key vk,
preimage x, image y, CRS crs, and trapdoor τ , outputs a
proof π.

Setup and Gen are necessarily probabilistic, Eval and Vfy
are deterministic. A simulatable VRF has two modes, a
binding mode and a simulation mode. In the binding mode,
the sVRF is a normal VRF with unique provability, i.e.,
only a single image can be proven correct relative to any
given preimage. In the simulation mode, given the trapdoor,
one can generate valid proofs for any preimage-image pair.
Moreover, both modes are computationally indistinguish-
able. For the formal security guarantees we refer the reader
to [8].
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Initalize(S)
1 : repr← zeros(1,m)

2 : for x ∈ S
3 : (y1, . . . , yk(λ))← R(x)

4 : for i ∈ [k(λ)] :

5 : repr[yi]← 1

6 : return repr

Query(repr, x)
1 : (y1, . . . , yk)← R(x)

2 : return
∧

i∈[k(λ)]

[repr[yi] = 1]

Figure 7: Bloom filter structure BF[R,m, k] with parameters integers m, k ≥ 0, and a function R : {0, 1}∗ → [m]k. Function R maps
data-object elements to a vector of positions in the array repr. BF[R,m, k] admits set-membership queries for elements x ∈ {0, 1}∗. A
concrete scheme is given by a particular choice of parameters.
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