RevoLUT : Rust Efficient Versatile Oblivious Look-Up-Tables

Sofiane Azogagh
azogagh.sofiane@courrier.uqgam.ca
Univ Québec a Montréal
Canada

Marc-Olivier Killijian
killijian.marc-olivier.2@uqam.ca
Univ Québec a Montréal
Canada

ABSTRACT

In this paper we present RevoLUT, a library implemented in Rust
that reimagines the use of Look-Up-Tables (LUT) beyond their con-
ventional role in function encoding, as commonly used in TFHE’s
programmable boostrapping. Instead, RevoLUT leverages LUTs as
first class objects, enabling efficient oblivious operations such as
array access, elements sorting and permutation directly within the
table. This approach supports oblivious algortithm, providing a
secure, privacy-preserving solution for handling sensitive data in
various applications.
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1 INTRODUCTION

For many years, fully homomorphic encryption was limited to
vanilla arithmetic operations - multiplication and addition of cipher-
texts. Non-linear functions, such as ReLu, had to be approximated
using polynomial interpolation. A breakthrough came with the
development of FHEW-like schemes [8, 12, 14], which introduced
new bootstrapping operations that enabled an important mecha-
nism: programmable bootstrapping (PBS). During a PBS operation,
any function, linear or non-linear, can be evaluated at no cost. The
outputs of the function are discretized in a Look-Up-Table (LUT)
and then applied during the PBS on the bootstrapped data. Other
works are also trying to apply this paradigm to other encryption
schemes such as the CKKS scheme [9] like in [2] but, to the best of
our knowledge, at the moment PBS is only available in pratice in
TFHE.

Look-Up-Tables are a well-established concept in computer sci-
ence, where they serve as data structures that store precomputed
values to avoid expensive runtime computation. However, in the
context of fully homomorphic encryption, LUTs have evolved fur-
ther their traditional role. They have become essential building
blocks for many applications ranging from storing an activation
function in neural networks [6, 7] to designing a 8-bit FHE processor
abstraction [16].

With RevoLUT, we take the innovation a step further by intro-
ducing LUTs as first-class objects. The library offers a range of
oblivious mechanisms to manipulate, compute, access, permute,
and even sort these objects. This approach provides a novel abstrac-
tion, empowering engineers to design efficient oblivious algorithms
for computing on encrypted data.
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2 PRELIMINARIES

2.1 Notation

Let p be a power of 2. We denote by Z, the set of messages and
by [m] the TFHE encryption of a message m € Z,. For N a power
of 2, we define R as the quotient ring Z[X]/(XN +1) and Rq as
the same ring modulo g, that is Z4[X]/ (XN +1). Unless otherwise
specified, all operations in this paper are performed in the ring
Rq. We also make use of the Kronecker delta function &;,j, which
equals 1 when i = j and 0 otherwise. Using this notation, we
can define the one-hot encoding of an integer i as the bit vector
8i = (8i0, ..., 8ip-1) € {0,1}P, which contains a single 1 at index
i and 0s elsewhere. Other notations are defined in the text when
needed.

2.2 The TFHE Cryptosystem

The TFHE encryption scheme, proposed in 2016 [10, 11], is based
on the security of the Learning With Errors (LWE) problem and its
ring variant, the Ring-LWE (RLWE) problem.

2.2.1 Ciphertext Types. In TFHE, several types of ciphertexts are
defined depending on the nature of the plaintext and the encryption
method employed. A commonly used type in this paper is the
General LWE (GLWE) ciphertext, defined as follows:

GLWE Ciphertexts. A message m € Z, can be encrypted under
the secret key s = (so,...,Sk_1) i ZIZC as a GLWE ciphertext

(a,b) € Ré”, where a = (ag, ..., a5_1) <i RS and b = Zf:_ol a; -
si+Am+e, with A = » and e being a noise term sampled from a
Gaussian distribution. The vector a is called mask and b body.
Specifically, when N = 1, the ciphertext is referred to as an LWE
ciphertext. When k = 1and N > 1, it is termed an RLWE ciphertext.
In this case, an LWE ciphertext encrypts a message in Zg, while an
RLWE ciphertext encrypts a polynomial in Z4[X] modulo XN +1.

LUT Ciphertexts. Additionally, [4] introduced the concept of
Look-Up-Table (LUT) ciphertexts, which are essentially RLWE ci-
phertexts that include some redundancy. A Look-Up-Table in TFHE
is a vector (m;j)o<i<p of Zp elements represented as a polynomial
M(X) € Rq of the form:
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This polynomial is then encrypted as an RLWE ciphertext to form
a LUT ciphertext as illustrated in Figure 1.

(1.,.1\\24..2 6..6/[2...2[[4..4][6.. 6] 7.“7H6A..6\8
(\1qusuzmuaw\\s\a

Fig. 1. lllustration of a RLWE ciphertext (top) with redundancy shown in
gray boxes, which implements a LUT ciphertext (bottom) where each box
represents an element in Z,, (here p = 8).

In this paper, ciphertexts are denoted within brackets to indicate
their type. For instance, [M]lLut = [mo, ..., mp-1]LuT represents
the message M = (my, ..., mp—1) encrypted as a LUT ciphertext,
while [m]lLwe is an LWE ciphertext and [m]_wg is a trivially en-
crypted LWE ciphertext (that is a ciphertext whose mask and noise
are set to 0).

2.2.2 TFHE’s operations. TFHE provides several building blocks
for performing homomorphic operations on ciphertexts. The main
operations used in this paper are:

e Blind Rotation (BR): (l[*]]LWE: [[*]]LUT) - |[*]]RLWE~ This
operation is used to privately rotate the polynomial M(X) (en-
crypted as an RLWE ciphertext) by [i]Lwg coefficients.

e Sample Extraction (SE): (%, [x]lruwe) — [*]lLwe-

This operation extracts a coefficient from the polynomial M(X) =
Zﬁi 0_1 m; X! encrypted as an RLWE ciphertext, resulting in an
LWE ciphertext [m;]Lwg. The LWE ciphertext is generated by
selecting specific coefficients from the RLWE input.

e Key Switching (KS): [*x]lwe — [*]LwE-

This operation switches the secret key or parameters of an LWE
ciphertext to new ones by homomorphically re-encrypting the
ciphertext with a different key.

e Public Functional Key Switch (PFKS): {[x]lLwe} — [*]rRLwE-

Introduced in [12] (Algorithm 2), this operation allows for the
compact representation of multiple LWE ciphertexts into a single
RLWE ciphertext, effectively packing several LWE ciphertexts
into one.

The redundancy in a LUT ciphertext is mainly important to
guarantee the correctness of the bootstrapping operation. Indeed,
the LWE ciphertext used in the Blind Rotation operation serves
as an index to select the correct coefficient from the LUT cipher-
text. However, this LWE ciphertext incorporates a gaussian noise e
which is bounded by N/p after the so-called Modulus Switching
operation (see [13] for more details). This bound gives exactly the
size of the redundancy of the coefficients in the RLWE ciphertext
implementing the LUT. These sequences of consecutive coefficients
in the RLWE ciphertext implementing a LUT are generally called
boxes. During the (functional) bootstrapping operation, each box
corresponds to a specific message m; of the LUT ciphertext. When
the Blind Rotation is performed, [i]]LwE points to the i-th box con-
taining the message m; in the LUT. Thus, the redundancy ensures
that, despite the random error present in [[i]Lwg, the Sample Ex-
traction operation will still correctly select the message m; as long
as the noise e is smaller than the redundancy.
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3 REVOLUT’S OPERATIONS

The aforementioned operations implemented in [17] led us to de-
sign a library named RevoLUT that leverages the LUT ciphertexts
and enables manipulating data obliviously in those recipients. In
the following, we present the main operations implemented in Rev-
oLUT and used in our sorting algorithm. We refer the interested
reader to [1] for more details and more operations.

3.1 Reading operations

Look-Up-Tables seen as ciphertexts of arrays and TFHE’s opera-
tions offer some reading operations that can be used to implement
oblivious algorithms.

Blind Array Access (BAA). Introduced in [3], this operation is the
most basic reading operation on a LUT ciphertext. It is basically
the programmable bootstrapping of TFHE. Given a LUT ciphertext
of an array and a LWE ciphertext of an index, BAA returns a LWE
ciphertext of the array element at the given ciphered index.

Algorithm 1: Blind Array Access (BAA)
Input : An encrypted index [i]lLwg
A LUT ciphertext [mo, ..., mp—1]LuT
Output: A LWE ciphertext [m;]Lwg
1 [rotated] Lyt < BR([[i]LwE. [mo.- -
2 |[mi]]LWE «— SE(0, |[rotated]]LUT)
3 return [m;|Lwg

Smp_1]lLut)

Blind Matrix Access (BMA). Introduced in [4], this operation is
the generalization of BAA to matrices. Given a matrix encoded as
a row first vector of LUT ciphtertexts, and a pair of indices as LWE
ciphertexts, BMA returns the value stored at the row and column
as a LWE ciphertext.

Algorithm 2: Blind Matrix Access (BMA)

[mo0, ... monllLuT

Input : A vector of LUT :
[mn0,. ... manlLur
A pair of LWE ciphertext [r]lLwe, [c]Lwe

Output: A LWE ciphertext [m,¢[lLwg
1 fori < 0tondo
2 | [micliwe < BAA([mi,....,min]lLut [clLwe)
3 end
4 [moc,....mncllLut < PFKS([mo.clLwe. - -
s [mrclliwe < BAA([moc, - .
6 return [m,c[Lwe

S maclliwe)
S Mueloot [rlowe)

3.2 Writing operations

Blind Array Add (BAAdd). Introduced in [5], BAAdd is a primitive
that enables blind writing in a LUT ciphertext by adding a value
to specific position. Given a LUT ciphertext, an encrypted index i,
and an encrypted value x, BAAdd adds x to the element at position
i while keeping all other elements unchanged. A related operation,
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Blind Array Assignment, could be implemented by first reading the
current value at position i using BAA, subtracting it from [x]|LwE,
and then using BAAdd with the difference. While this would enable
arbitrary value assignments, it requires an additional blind rotation.

Algorithm 3: Blind Array Add (BAAdd)
Input : An encrypted index [i]Lwg
ALUT ciphertext [mo,...,mi,...,mp—1]LuT
An encrypted value [x]Lwe
Output: A LUT ciphertext [mo, ..., m; +x,...,mp_1]LUT
1 [x8]Lut < PFKS([x]lLwe)
2 [xéi]lLur < BR(=[i]lLwE, [ x50 LuT)
3 return |[m]]LUT + [[xgi]]LUT

A caveat of this approach is that the [[x§; ]|yt is most likely mis-
aligned due to the noise present in the rotation index. This affects
the frontiers of the redundancy boxes present in LUT ciphertexts as
shown in Figure 2. A way to avoid error propagation is to bootstrap
the LUT by extracting every message and pack them in a fresh LUT,
as described in section 3.4.

Cl 1|2 2][6.6|[2. 2|[4.. 4l[6 . 6|[7..7 6...6\8
+

p— —\
C..o [0 ... 0][oo][o- o] [i-1l[o .~ 0][o.. o][o.. o][o- 8

~

Cl 1|2 2][6..6][2.-3|[E=4l[6...6[7..7 6...6@

Flg 2. Illustration OfBAAd('I4]]LWE, [[1, 2,6,2,4,6,7, 6]]LUT, [[1]]LWE) with
p = 8. The red areas at the boundaries of the redundancy boxes represent
errors due to the noise in the LWE encryption of [4]|Lwe. If the noise in the
LWE ciphertext were zero, the boxes would be perfectly aligned. However,
since we have no control over this noise, except that it does not exceed
(N/2p), only the center of the boxes remains accurate.

3.3 Ordering operations

3.3.1 Blind Permutation. The permutation primitive is a fundamen-
tal building block in many privacy-preserving application (e.g cloud
storage [15], private information retrieval, private set intersection,
etc). Blind Permutation is an homomorphic primitive that allows
to permute the elements of an encrypted vector without revealing
the permutation. It leverages some building blocks of TFHE’s boot-
strapping operations such as Blind Rotation, Sample Extraction
and Public Functional Key Switch. Specifically, the elements to be
permuted are in an encrypted LUT and the permutation indices,
the destination of each slot, are encrypted as an LWE ciphertext.
The permutation is done by extracting each element of the en-
crypted LUT as LWEs, then for each extracted element, a Public
Functional Key Switch is applied to create new LUTs with the ex-
tracted element at its first position. Then we apply a Blind Rotation
to the new LUTs using the LWEs representing the permutation
indices. And finally, as all the other elements of the LUTS are zeros,
we can sum them all to get the permuted LUT. To be sure that we
can apply this indefenitely, we apply a Sample Extraction for all the
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elements and we create a new LWE ciphertext with the permuted
elements.

Algorithm 4: Blind Permutation (BP)
Input :A LUT ciphertext [mo, ..., mp—1]LuT
A permutation vector ([7o [Lwe. - - ., [7p-1]LwE)
Output: A permuted LUT [my,, ..., myg, , [LuT
// Constants in ciphertexts are trivially encrypted
1 |[res]]LUT — |[0, U O]]LUT
2 fori—O0top—1do
3 IImi]]LWE «— SE(i,[[mo,...,mp_l]]LUT)
4 | [rilror « PFKS([mi]uwe, [0]Lwe. - -
s | [rilleor < BR([7ilLwe. [7ilLut)
s | [resluur < [resliut + [rillLor
7 end

- [0]lLwe)

s return [res]Lur

3.3.2 Blind Sort. In RevoLUT, we implemented two sorting algo-
rithms that leverage one or more of the operations presented in
the previous sections. The first one is an homomorphic version of
the counting sort algorithm and the second one is another sorting
algorithm that we will call Double Blind Permutation.

Blind Counting Sort. The idea here is to exploit the known size of
the array and range of values that are given. It functions in a similar
manner to the classical counting sort algorithm, first building a
count table of every entries and then rebuilding the sorted array
from that count table.

Double Blind Permutation. The idea behind this approach is that,
to sort a vector of p elements within the range [0, p—1], the required
permutation is simply the vector itself. Each element of the vector
corresponds to its own index in the sorted vector. This concept
aligns perfectly with LUT ciphertext, as the range of elements and
the number of elements in the vector are identical. Therefore, we
can utilize this property to sort a vector of size p by using it as a
permutation vector in the Blind permutation algorithm. However,
issues arise when the vector contains fewer than p distinct elements.
Applying the Blind permutation as explained earlier will result in
a sparse vector where the non-sequential elements are separated
by 0. To address this issue, we propose using an additional Blind
Permutation where the permutation indices are computed on the fly
after the first Blind Permutation. The goal of the second permutation
is to compact the vector by moving the empty slots (represented as
0) to the end of the vector.

3.4 LUT Bootstrapping

Certain operations in RevoLUT, such as BAAdd (Algorithm 3) and
BP (Algorithm 4), can disrupt the redundancy boxes as detailed in
Section 3.2 and shown in Figure 2. This disruption occurs because
noise in the LWE ciphertext during Blind Rotation can cause the
boxes to become misaligned. To address this issue, we can extract
each message from the LUT using Sample Extract and repack them
into a fresh LUT before the box centers become corrupted. This
repacking process ensures that the redundancy boxes in the new
LUT ciphertext remain properly aligned.
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Algorithm 5: Blind Counting Sort (BCS)
Input :A LUT ciphertext [[my, ..
Output:A sorted LUT

1 |[count]]LUT — |[0, e 0]]LUT

2 fori —0Otop—1do

// county,; < countmy; +1

3 | [milluwe < BAA([ilLwe, [mo, - -
4 [count]LuT <
BAAdd([mi]lLwe, [count]LuT, [1]LWE)

mp_1]Lur

mp-1]Lur)

5 end
6 fori —1top—1do

// count; « count; + count;_;

7 | [xJuwe < BAA(li - 1]we, [count]Lur)

8 |[count]]LUT «— BAAdd([i]LwE, [[count]]LUT, [[x]]LWE)
9 end

o [resrur « [0.....0]uT

1 fori—p-1to0do

/1 county,; < countpy; —1

12 | [milowe < BAA([i]Lwe, [mo, ..

13 [count]LuT <
BAAdd([mi]Lwe, [count]LuT, [-1]LwE)

// rescounty; = Mi

u | [mi]owe < BAA([ilLwe. [mo, . ..., mp-1]LUT)

15 [[COMntm,-]]LWE — BAA([[mi]]LWE, [[COlu’lt]]LUT)

16 |[res]]LUT —

BAAdd([[countmi ]]LWE, [[res]]LUT, [[mi]]LWE)

=

-

mp-1]Lur)

17 end

-

s return [[res] Lyt

4 EXPERIMENTAL RESULTS

In this section, we present few experimental results of our Blind
operations. All experiments are performed on a computer running
Ubuntu 24.04 with an Intel i9-11900KF CPU clocked at 3.5GHz and
64GB of RAM.

P BAA BMA | BAAdd BP BCS

4 7 ms 20 ms 8 ms 32ms | 116 ms
8 17 ms 56 ms 19ms | 140 ms | 462 ms
16 | 30ms | 120ms | 34 ms | 422 ms 1.34s
32 | 60ms | 471 ms 70 ms 1.8s 5.54s
64 | 128 ms 2.8s 162 ms 8.3s 26.09 s

Table 1: Runtimes (in ms) of some blind operations of Revo-
LUT. The LUTs contains p elements of Z,

5 APPLICATIONS OF REVOLUT

RevoLUT’s read/write operations on LUT ciphertexts can be used
to implement oblivious algorithms. In this section, we present
some use cases where RevoLUT can be used to implement privacy-
preserving algorithms, especially in the context of outsourcing
computation.

5.1 PROBONITE

Proposed in [3], PROBONITE, which stands for Private One-Branch-
Only Non Interactive decision Tree Evaluation, is a privacy-preserving
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algorithm that allows to evaluate decision trees on encrypted data
in a context of Machine-Learning as a service. The proposed algo-
rithm minimizes the number of comparisons by only evaluating
the relevant branch of the decision tree. It leverages two primi-
tives: Blind Node Selection which is based on Private Information
Retrieval techniques and Blind Array Access presented in this paper.
The former is used to select the appropriate branch of the decision
tree to evaluate, while the latter is used to fetch the appropriate
feature vector to compare to the client’s request.

5.2 Private k-NN

In [5], we demonstrate how RevoLUT’s Blind Counting Sort (BCS)
can be leveraged as a subroutine to implement an efficient top-k
algorithm in a tournament style. We demonstrate the effectiveness
of this Blind top-k algorithm by implementing a privacy-preserving
k-Nearest Neighbor. By using BCS instead of comparison-based
sorting methods, we achieve significant performance improvements
over the state-of-the-art. Traditional FHE-based sorting approaches
rely on TFHE comparators that require additional bits to handle
negacyclicity. In contrast, BCS operates directly with the preci-
sion of the values treated (i.e elements of Zy), as it uses counting
rather than comparisons. This key difference allows our k-NN im-
plementation to process larger batches of data more efficiently
while maintaining the same accuracy. This angle of optimization is
particularly interesting as it allows more room for the noise in the
LWE ciphertexts and thus more leveled operations (addition, scalar
multiplication etc.. ) with the same elements precision.

5.3 Oblivious Turing Machine

In [4], we present a construction of an Oblivious Turing Machine
using Blind Matrix Access (BMA). This construction enables clients
to securely outsource both their Turing Machine and its computa-
tions to an untrusted server. The proposed construction encodes
the machine’s instructions as a matrix of integers in Z,, and the tape
as a LUT ciphertext, allowing the server to execute the machine’s
operations without learning anything about the program or its data.

6 CONCLUSION

In this paper, we introduced RevoLUT, a Rust library built upon
tfhe-rs that reimagines Look-Up-Tables as first-class objects for
homomorphic encryption. Moving beyond their traditional role in
function encoding during programmable bootstrapping, we demon-
strated how LUTs can serve as versatile data structures enabling
efficient oblivious operations. The library provides a comprehen-
sive set of primitives for reading (BAA, BMA), writing (BAAdd),
and ordering (BP, BCS) operations on encrypted data, forming a
powerful toolkit for implementing privacy-preserving algorithms.
Our experimental results demonstrate the practical viability of Rev-
oLUT’s operations, with reasonable execution times even for larger
LUT sizes. Through concrete applications in the context of Ma-
chine Learning and Turing Machine evaluation, we showcased how
RevoLUT can be leveraged to build complex privacy-preserving
systems.
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