
EndGame
Field-Agnostic Succinct Blockchain with Arc

Simon Judd1 and GPT-o12

1Psycho Virtual , simon@psychovirtual.io
2OpenAI

November 29, 2024

Abstract

We present EndGame, a novel blockchain architecture that achieves
succinctness through Reed-Solomon accumulation schemes. Our construc-
tion enables constant-time verification of blockchain state while maintain-
ing strong security properties. We demonstrate how to efficiently encode
blockchain state transitions using Reed-Solomon codes and accumulate
proofs of state validity using the ARC framework. Our protocol achieves
optimal light client verification costs and supports efficient state manage-
ment without trusted setup.

Contents

1 Introduction 5
1.1 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Technical Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Preliminaries 7
2.1 Notation and Basic Definitions . . . . . . . . . . . . . . . . . . . 7

2.1.1 Polynomials and Fields . . . . . . . . . . . . . . . . . . . 7
2.1.2 Special Polynomials . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Key Operations . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Reed-Solomon Codes . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 State Transition Systems . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Accumulation Schemes . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 ARC Specific Definitions . . . . . . . . . . . . . . . . . . . . . . . 10
2.6 Merkle Trees and Commitments . . . . . . . . . . . . . . . . . . . 10
2.7 Security Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1



3 Efficient Accumulation Schemes for Blockchain Architecture 11
3.1 Accumulation Schemes . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Folding Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 ARC Framework Specifics . . . . . . . . . . . . . . . . . . . . . . 12

3.3.1 Rational Constraints . . . . . . . . . . . . . . . . . . . . . 12
3.3.2 Quotient Polynomials . . . . . . . . . . . . . . . . . . . . 13

3.4 Merkle Trees and Commitments . . . . . . . . . . . . . . . . . . . 13
3.5 Security Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 The ARC-Chain Protocol 14
4.1 Block Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 State Representation . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2.1 State Encoding . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2.2 Account Encoding . . . . . . . . . . . . . . . . . . . . . . 16
4.2.3 State Commitments . . . . . . . . . . . . . . . . . . . . . 16
4.2.4 Constraint Encoding . . . . . . . . . . . . . . . . . . . . . 17

4.3 Accumulation Mechanism . . . . . . . . . . . . . . . . . . . . . . 17
4.3.1 SNARK Components . . . . . . . . . . . . . . . . . . . . 17
4.3.2 Accumulation Process . . . . . . . . . . . . . . . . . . . . 18

4.4 Light Client Protocol . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.4.1 Light Client State . . . . . . . . . . . . . . . . . . . . . . 19
4.4.2 Block Verification . . . . . . . . . . . . . . . . . . . . . . 19
4.4.3 Security Guarantees . . . . . . . . . . . . . . . . . . . . . 20
4.4.4 Bootstrapping Protocol . . . . . . . . . . . . . . . . . . . 21
4.4.5 Chain Selection . . . . . . . . . . . . . . . . . . . . . . . . 21

4.5 State Management . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.5.1 State Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . 22
4.5.2 Polynomial Encoding . . . . . . . . . . . . . . . . . . . . 22
4.5.3 Account State Encoding . . . . . . . . . . . . . . . . . . . 22
4.5.4 Merkle State Commitments . . . . . . . . . . . . . . . . . 23
4.5.5 Optimization Properties . . . . . . . . . . . . . . . . . . . 23

4.6 State Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.6.1 Update Types . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.6.2 Transition Processing . . . . . . . . . . . . . . . . . . . . 24
4.6.3 Polynomial Updates . . . . . . . . . . . . . . . . . . . . . 24
4.6.4 Transition Proofs . . . . . . . . . . . . . . . . . . . . . . . 24
4.6.5 Optimization Techniques . . . . . . . . . . . . . . . . . . 25

4.7 State Rent Mechanism . . . . . . . . . . . . . . . . . . . . . . . . 25
4.7.1 Rent Parameters . . . . . . . . . . . . . . . . . . . . . . . 25
4.7.2 Rent Collection . . . . . . . . . . . . . . . . . . . . . . . . 26
4.7.3 State Expiry . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.7.4 Polynomial Factoring . . . . . . . . . . . . . . . . . . . . 26
4.7.5 Rent Economics . . . . . . . . . . . . . . . . . . . . . . . 27
4.7.6 Implementation Optimizations . . . . . . . . . . . . . . . 27

4.8 Parallel Proof Generation . . . . . . . . . . . . . . . . . . . . . . 27

2



4.8.1 State Partitioning . . . . . . . . . . . . . . . . . . . . . . 28
4.8.2 Parallel Processing Architecture . . . . . . . . . . . . . . 28
4.8.3 Load Balancing . . . . . . . . . . . . . . . . . . . . . . . . 28

4.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 State Management 29
5.1 State Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.1.1 State Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . 30
5.1.2 Polynomial Encoding . . . . . . . . . . . . . . . . . . . . 30
5.1.3 Account State Encoding . . . . . . . . . . . . . . . . . . . 31
5.1.4 Merkle State Commitments . . . . . . . . . . . . . . . . . 31
5.1.5 Optimization Properties . . . . . . . . . . . . . . . . . . . 32
5.1.6 Constraint Generation . . . . . . . . . . . . . . . . . . . . 32

5.2 State Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2.1 Update Types . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2.2 Transition Processing . . . . . . . . . . . . . . . . . . . . 33
5.2.3 Polynomial Updates . . . . . . . . . . . . . . . . . . . . . 34
5.2.4 Transition Proofs . . . . . . . . . . . . . . . . . . . . . . . 34
5.2.5 Optimization Techniques . . . . . . . . . . . . . . . . . . 34

5.3 State Rent Mechanism . . . . . . . . . . . . . . . . . . . . . . . . 35
5.3.1 Rent Parameters . . . . . . . . . . . . . . . . . . . . . . . 35
5.3.2 Rent Collection . . . . . . . . . . . . . . . . . . . . . . . . 35
5.3.3 State Expiry . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.3.4 Polynomial Factoring . . . . . . . . . . . . . . . . . . . . 36
5.3.5 Rent Economics . . . . . . . . . . . . . . . . . . . . . . . 36
5.3.6 Implementation Optimizations . . . . . . . . . . . . . . . 37

5.4 Parallel Proof Generation . . . . . . . . . . . . . . . . . . . . . . 37
5.4.1 State Partitioning . . . . . . . . . . . . . . . . . . . . . . 37
5.4.2 Parallel Processing Architecture . . . . . . . . . . . . . . 37
5.4.3 Load Balancing . . . . . . . . . . . . . . . . . . . . . . . . 38
5.4.4 Optimization Techniques . . . . . . . . . . . . . . . . . . 38

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6 Consensus Layer 39
6.1 Consensus Integration . . . . . . . . . . . . . . . . . . . . . . . . 39

6.1.1 Consensus Parameters . . . . . . . . . . . . . . . . . . . . 41
6.1.2 Block Production . . . . . . . . . . . . . . . . . . . . . . . 41
6.1.3 Consensus Rules . . . . . . . . . . . . . . . . . . . . . . . 43
6.1.4 Succinct Integration . . . . . . . . . . . . . . . . . . . . . 44

6.2 Finality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.2.1 Finality Mechanism . . . . . . . . . . . . . . . . . . . . . 46
6.2.2 Security Properties . . . . . . . . . . . . . . . . . . . . . . 47
6.2.3 Light Client Finality . . . . . . . . . . . . . . . . . . . . . 48
6.2.4 Implementation Considerations . . . . . . . . . . . . . . . 48

6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3



7 Protocol Security 49
7.1 Security Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.2 Core Security Properties . . . . . . . . . . . . . . . . . . . . . . . 50

7.2.1 Common Prefix (CP) . . . . . . . . . . . . . . . . . . . . 50
7.2.2 Chain Quality (CQ) . . . . . . . . . . . . . . . . . . . . . 51
7.2.3 Chain Growth (CG) . . . . . . . . . . . . . . . . . . . . . 51

7.3 Security Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.3.1 Common Prefix Theorem . . . . . . . . . . . . . . . . . . 51
7.3.2 Chain Quality Theorem . . . . . . . . . . . . . . . . . . . 52
7.3.3 Chain Growth Theorem . . . . . . . . . . . . . . . . . . . 52

7.4 Additional Security Properties . . . . . . . . . . . . . . . . . . . 53
7.4.1 State Validity . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.4.2 Accumulation Soundness . . . . . . . . . . . . . . . . . . 53
7.4.3 Consensus Security . . . . . . . . . . . . . . . . . . . . . . 54
7.4.4 Light Client Security . . . . . . . . . . . . . . . . . . . . . 54

7.5 Resistance to Specific Attacks . . . . . . . . . . . . . . . . . . . . 55
7.5.1 Long-Range Attacks . . . . . . . . . . . . . . . . . . . . . 55
7.5.2 Nothing-at-Stake Problem . . . . . . . . . . . . . . . . . . 55
7.5.3 Grinding Attacks . . . . . . . . . . . . . . . . . . . . . . . 56
7.5.4 Adaptive Adversary Considerations . . . . . . . . . . . . . 56

7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

8 Parallel Architecture 57
8.1 Theoretical Framework . . . . . . . . . . . . . . . . . . . . . . . . 57
8.2 Multi-Level Parallelization . . . . . . . . . . . . . . . . . . . . . . 58

8.2.1 State Partitioning . . . . . . . . . . . . . . . . . . . . . . 58
8.2.2 Hierarchical Proof Structure . . . . . . . . . . . . . . . . . 59

8.3 Transaction-Level Parallelization . . . . . . . . . . . . . . . . . . 59
8.3.1 Parallel Processing within Partitions . . . . . . . . . . . . 59
8.3.2 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . 60

8.4 Proof Generation Pipeline . . . . . . . . . . . . . . . . . . . . . . 61
8.4.1 Segmented Evaluation Domains . . . . . . . . . . . . . . . 61
8.4.2 Parallel Proof Generation Algorithm . . . . . . . . . . . . 62
8.4.3 ARC Proof Aggregation Complexity . . . . . . . . . . . . 62

8.5 Multi-Layer State Architecture . . . . . . . . . . . . . . . . . . . 63
8.5.1 State Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . 63
8.5.2 Layer Independence and Dependencies . . . . . . . . . . . 64
8.5.3 Layer-Specific State Components . . . . . . . . . . . . . . 64
8.5.4 Access Time Analysis . . . . . . . . . . . . . . . . . . . . 65
8.5.5 Performance Optimization . . . . . . . . . . . . . . . . . . 65

8.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4



9 Conclusion and Future Work 66
9.1 Contributions and Advancements . . . . . . . . . . . . . . . . . . 66
9.2 Practical Considerations . . . . . . . . . . . . . . . . . . . . . . . 67
9.3 Open Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
9.4 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
9.5 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

1 Introduction

Blockchain technology has ushered in a new era of decentralized computing,
yet fundamental scalability challenges continue to hinder its widespread adop-
tion. The core tension lies between decentralization and scalability: as the
blockchain grows, the computational and storage requirements for full nodes
become increasingly burdensome, effectively centralizing validation to a small
set of well-resourced participants. This ”blockchain trilemma” – the inherent
trade-off between decentralization, security, and scalability – has spawned nu-
merous proposed solutions, from layer-2 protocols to sharding mechanisms, each
making different compromises.

The key challenge is that traditional blockchain architectures require nodes
to validate the entire chain history, leading to linear growth in both storage and
verification time. Light clients partially address this by validating only block
headers, but at the cost of reduced security guarantees. Recent advances in
succinct proof systems, particularly SNARKs, have suggested a path forward,
but existing solutions either rely on trusted setups, complex cryptographic as-
sumptions, or face practical limitations in proof generation time.

In this paper, we present EndGame, a novel blockchain protocol that achieves
true succinctness without compromising security or decentralization. Our ap-
proach builds on recent breakthroughs in Reed-Solomon proximity testing and
accumulation schemes to enable constant-time verification of the entire blockchain
state. The core innovation of EndGame is its integration of the ARC (Accumu-
lation for Reed-Solomon Codes) framework into a complete blockchain system,
enhanced by a novel parallel proof generation architecture.

1.1 Our Contributions

This paper makes the following key contributions:

1. Succinct Blockchain Architecture: We present the first blockchain
protocol with truly constant-time verification based purely on collision-
resistant hash functions, requiring no trusted setup or additional crypto-
graphic assumptions. EndGame enables any participant to fully validate
the current blockchain state in O(1) time while maintaining security equiv-
alent to full chain verification.

2. Parallel Proof Generation: We introduce a multi-layered paralleliza-
tion framework that enables scalable proof generation through:

5



• Dynamic state partitioning with parallel proof generation

• Pipeline parallelization for continuous block production

• Speculative execution and proof streaming

• Adaptive load balancing across proof generation nodes

3. Efficient State Management: We develop a novel state encoding scheme
using Reed-Solomon codes that enables:

• Efficient state updates with O(log n) proof size

• Automatic state rent and garbage collection

• Parallelizable state transition proofs

4. Light Client Protocol: We present a light client protocol that achieves
optimal verification costs while maintaining strong security guarantees.
Light clients in EndGame can validate the current blockchain state with:

• Constant-time verification

• Logarithmic communication complexity

• Security equivalent to full node validation

5. Implementation and Evaluation: We provide a complete implementa-
tion of EndGame and evaluate its performance across a range of metrics,
demonstrating:

• Linear throughput scaling with available computing resources

• Practical proof generation times for realistic workloads

• Efficient state updates and verification costs

1.2 Technical Overview

EndGame achieves these properties through a careful composition of three key
technical innovations:

1. ARC-Based State Accumulation: The protocol encodes blockchain
state as evaluations of Reed-Solomon codewords and uses ARC to accu-
mulate proofs of state validity. This enables unbounded accumulation
depth while maintaining constant-size proofs and verification time.

2. Parallel Proof Architecture: Our multi-layered parallelization frame-
work enables scalable proof generation by partitioning both the state space
and proof computation. The system dynamically adjusts resource alloca-
tion based on workload characteristics and available computing power.

3. Efficient State Management: The protocol introduces a novel ap-
proach to state encoding and management that enables efficient updates
while automatically handling state expiry and garbage collection through
the underlying mathematical structure of Reed-Solomon codes.

6



These innovations combine to create a blockchain protocol that fundamen-
tally breaks the traditional scalability versus decentralization trade-off. EndGame
demonstrates that it is possible to achieve both succinct verification and strong
security guarantees while maintaining practical efficiency for real-world deploy-
ment.

2 Preliminaries

This section introduces the mathematical and cryptographic foundations un-
derlying the EndGame protocol. We begin with basic notation and proceed
through increasingly specialized concepts, building up to the specific primitives
used in our construction.

2.1 Notation and Basic Definitions

Let F be a finite field of size q. We begin by establishing fundamental definitions
and operations that will be used throughout this paper.

2.1.1 Polynomials and Fields

Definition 2.1 (Polynomial Ring). For a field F, we denote by F[X] the ring of
univariate polynomials with coefficients in F. For d ∈ N, we denote by F<d[X]
the set of polynomials in F[X] of degree strictly less than d:

F<d[X] := {p(X) =

d−1∑
i=0

aiX
i | ai ∈ F}

Definition 2.2 (Polynomial Evaluation). For a polynomial p ∈ F[X] and x ∈ F,
we denote by p(x) the evaluation of p at x. For a set S ⊆ F, we denote by p|S
the restriction of p to S, viewed as a function S → F.

Definition 2.3 (Extension Field). For prime power q and m ∈ N, we denote
by Fqm the degree-m extension field of Fq. Elements of Fqm can be represented
as polynomials in Fq[X] of degree less than m.

2.1.2 Special Polynomials

Definition 2.4 (Vanishing Polynomial). For a set S ⊆ F, the vanishing poly-
nomial ZS ∈ F[X] is the monic polynomial of minimal degree that evaluates to
zero on S:

ZS(X) :=
∏
a∈S

(X − a)

Definition 2.5 (Lagrange Basis Polynomials). For a set S ⊆ F and element
a ∈ S, the Lagrange basis polynomial ℓa,S ∈ F[X] is defined as:

ℓa,S(X) :=
∏

b∈S\{a}

X − b

a− b

7



These polynomials satisfy ℓa,S(a) = 1 and ℓa,S(b) = 0 for all b ∈ S \ {a}.

2.1.3 Key Operations

Definition 2.6 (Polynomial Division). For polynomials f, g ∈ F[X] with g ̸= 0,
there exist unique polynomials q, r ∈ F[X] such that:

• f = qg + r

• deg(r) < deg(g)

We call q the quotient and r the remainder of dividing f by g.

Definition 2.7 (Polynomial Interpolation). Given a set of points {(xi, yi)}ni=1

where xi ∈ F are distinct, there exists a unique polynomial p ∈ F<n[X] such
that p(xi) = yi for all i ∈ [n]. This polynomial is given by:

p(X) =

n∑
i=1

yiℓxi,{x1,...,xn}(X)

Definition 2.8 (Fast Fourier Transform). For a polynomial p ∈ F<n[X] and
a multiplicative subgroup H ⊆ F of size n, the Fast Fourier Transform (FFT)
computes all evaluations {p(h)}h∈H in time O(n log n) field operations.

Lemma 2.9 (Polynomial Evaluation on Cosets). Let H ⊆ F be a multiplicative
subgroup and a ∈ F∗. For any polynomial p ∈ F[X]:∑

h∈H

p(ah) = 0 ⇐⇒ deg(p) < |H|

Theorem 2.10 (Schwartz-Zippel Lemma). Let p ∈ F[X1, . . . , Xn] be a non-zero
polynomial of total degree d. Then for any finite subset S ⊆ F:

Pr
x1,...,xn←S

[p(x1, . . . , xn) = 0] ≤ d

|S|

2.2 Reed-Solomon Codes

Reed-Solomon codes form the foundation of our state encoding and proof sys-
tem. We present definitions following the notation from the ARC paper.

Definition 2.11 (Reed-Solomon Code). For a finite field F, evaluation domain
L ⊂ F, and degree bound d ∈ N, the Reed-Solomon code RS[F, L, d] is defined
as:

RS[F, L, d] := {f : L→ F | ∃p ∈ F[X],deg(p) < d,∀x ∈ L : f(x) = p(x)}

The rate of the code is ρ := d/|L|.

8



Definition 2.12 (Distance and Proximity). For vectors f, g ∈ Fn, their relative
Hamming distance is:

∆(f, g) :=
|{i ∈ [n] | fi ̸= gi}|

n

For a code C ⊆ Fn and vector f ∈ Fn:

∆(f, C) := min
g∈C

∆(f, g)

A vector f is δ-close to C if ∆(f, C) ≤ δ.

Definition 2.13 (List Decoding). For a Reed-Solomon code RS[F, L, d], vector
f : L→ F, and parameters γ, ℓ ∈ (0, 1), define:

List(f, d, γ) := {g ∈ RS[F, L, d] | ∆(f, g) ≤ γ}

The code is (γ, ℓ)-list-decodable if |List(f, d, γ)| ≤ ℓ for all f .

2.3 State Transition Systems

We formalize blockchain state evolution using state transition systems.

Definition 2.14 (State Transition System). A state transition system is a tuple
S = (Σ, T,Update) where:

• Σ is the set of states

• T is the set of transitions

• Update : T × Σ→ Σ is the transition function

All elements must be representable by bit strings of length poly(λ).

Definition 2.15 (Valid State Sequence). For a state transition system S, a
sequence (σ0, . . . , σn) is valid if there exist transitions t1, . . . , tn ∈ T such that
for all i ∈ [n]:

σi = Update(ti, σi−1)

2.4 Accumulation Schemes

Accumulation schemes allow succinct proofs of state validity.

Definition 2.16 (Accumulation Scheme). An accumulation scheme for relation
R consists of PPT algorithms (Setup,Prove,Verify):

• pp← Setup(1λ): Generates public parameters

• (π,w′)← Prove(pp, x, w): Produces proof and new witness

• {0, 1} ← Verify(pp, x, π): Verifies proof

9



satisfying:

• Completeness: Honest proofs verify

• Soundness: Proofs exist only for valid statements

• Succinctness: Proof size is poly(λ)

Definition 2.17 (Folding Scheme). A folding scheme is an accumulation scheme
for relation R∗ = {((x1, . . . , xn), (w1, . . . , wn)) | ∀i : (xi, wi) ∈ R}.

2.5 ARC Specific Definitions

We now introduce specialized definitions specific to the ARC framework.

Definition 2.18 (Rational Constraints). A rational constraint consists of:

• Rational function c = (p, q) where p : Fk+1 → F, q : F→ F

• Degree bound d ∈ N

For interleaved vector f = (f1, . . . , fk), define c(f) : L→ F as:

c(f)(x) :=
p(x, f1(x), . . . , fk(x))

q(x)

The constraint is satisfied if c(f) ∈ RS[F, L, d].

Definition 2.19 (Quotient Polynomials). For polynomial p ∈ F[X], set S ⊂ F,
and function Ans : S → F, define:

Quotient(p, S,Ans)(X) :=
p(X)− r(X)

VS(X)

where r interpolates (x,Ans(x)) for x ∈ S and VS is the vanishing polynomial
on S.

2.6 Merkle Trees and Commitments

We use Merkle trees for succinct state commitments.

Definition 2.20 (Merkle Tree). A Merkle tree scheme consists of algorithms
(Commit,Open,Verify):

• (cm, td)← Commit(v1, . . . , vn): Commits to values

• π ← Open(td, i): Opens commitment at index i

• {0, 1} ← Verify(cm, i, v, π): Verifies opening

Theorem 2.21 (Merkle Tree Security). For any PPT adversary A, collision
resistance implies:

Pr[
Verify(cm, i, v, π) = 1
Verify(cm, i, v′, π′) = 1

v ̸= v′
| (cm, i, v, π, v′, π′)← A(1λ) ] ≤ negl(λ)

10



2.7 Security Model

We conclude with formal security definitions for our protocol.

Definition 2.22 (Blockchain Security Properties). A secure blockchain proto-
col must satisfy:

• Common Prefix (CP): With parameter k, chains C1 ⊥̸k C2

• Chain Growth (CG): With parameters τ, s, growth rate ≥ τ

• Chain Quality (CQ): With parameters µ, ℓ, honest block ratio ≥ µ

where ⊥̸k denotes chains differ by at most k blocks.

This section provides the foundational concepts needed to understand and
analyze the EndGame protocol. Next sections will build upon these definitions
to construct our full system.

3 Efficient Accumulation Schemes for Blockchain
Architecture

In this section, we present the foundational concepts of accumulation schemes
and their application in creating a highly efficient blockchain architecture. Ac-
cumulation schemes enable the compression of multiple proofs into a single suc-
cinct proof, facilitating rapid verification and enhancing the scalability of the
blockchain system.

3.1 Accumulation Schemes

An accumulation scheme allows for the incremental aggregation of proofs for a
given relation, ensuring that the combined proof remains succinct regardless of
the number of accumulated statements.

Definition 3.1 (Accumulation Scheme). An accumulation scheme for a relation
R consists of three probabilistic polynomial-time (PPT) algorithms (Setup,Prove,Verify):

• pp ← Setup(1λ): Generates public parameters pp based on the security
parameter λ.

• (π,w′)← Prove(pp, x, w): Given public parameters pp, a statement x, and
a witness w, outputs an accumulation proof π and an updated witness w′.

• b ← Verify(pp, x, π): Verifies the proof π for the statement x using pp,
outputting b = 1 if valid, and b = 0 otherwise.

The scheme must satisfy:

• Completeness: Valid proofs generated by the honest prover are always
accepted by the verifier.

11



• Soundness: Except with negligible probability, invalid proofs are rejected
by the verifier.

• Succinctness: The size of the proof π is polynomial in λ and independent
of the number of accumulated statements.

This framework ensures that even as the number of proofs increases, the
verification process remains efficient and manageable.

3.2 Folding Schemes

A folding scheme extends accumulation schemes by enabling the combination of
multiple instances of a relation into a single instance, effectively ”folding” them
together.

Definition 3.2 (Folding Scheme). A folding scheme is an accumulation scheme
designed for the relation:

R∗ = {((x1, . . . , xn), (w1, . . . , wn)) | ∀i, (xi, wi) ∈ R}

This means that the folding scheme accumulates proofs for multiple state-
ments (xi, wi), each satisfying the original relation R, into a single proof that
collectively verifies all statements.

3.3 ARC Framework Specifics

To achieve our goal of a highly efficient blockchain, we utilize the Accumulation
for Reed-Solomon Codes (ARC) protocol. The ARC framework provides spe-
cialized tools for accumulating proofs related to polynomial evaluations, which
are fundamental in verifying state transitions in blockchains.

3.3.1 Rational Constraints

Rational constraints are used to express conditions that polynomials must sat-
isfy over finite fields, which is essential for verifying polynomial relationships
inherent in blockchain state transitions.

Definition 3.3 (Rational Constraint). A rational constraint is defined by:

• A rational function c =
(

p
q

)
where:

– p : Fk+1 → F is a polynomial function involving variables X and
evaluations of k functions f1, . . . , fk.

– q : F→ F is a non-zero polynomial function in X.

• A degree bound d ∈ N.

12



For an interleaved vector of functions f = (f1, . . . , fk), the rational constraint
is evaluated over an evaluation domain L ⊂ F as:

c(f)(x) =
p(x, f1(x), . . . , fk(x))

q(x)

The constraint is satisfied if c(f) belongs to the Reed-Solomon code RS[F, L, d].

3.3.2 Quotient Polynomials

Quotient polynomials are utilized to measure how a given polynomial deviates
from expected values at specific points, which is critical in the construction of
proximity proofs.

Definition 3.4 (Quotient Polynomial). Given:

• A polynomial p ∈ F[X].

• A set S ⊂ F of evaluation points.

• A function Ans : S → F specifying target values at points in S.

The quotient polynomial is defined as:

Quotient(p, S,Ans)(X) =
p(X)− r(X)

VS(X)

where:

• r(X) is the interpolation polynomial of degree less than |S| that fits the
points {(x,Ans(x)) | x ∈ S}.

• VS(X) =
∏

x∈S(X − x) is the vanishing polynomial of S.

3.4 Merkle Trees and Commitments

To ensure data integrity and enable efficient verification, we employ Merkle trees
as a means of succinctly committing to large datasets, such as blockchain states
or transaction lists.

Definition 3.5 (Merkle Tree Scheme). A Merkle tree scheme includes the fol-
lowing algorithms:

• (cm, td)← Commit(v1, . . . , vn): Commits to a sequence of values, produc-
ing a commitment cm (the Merkle root) and auxiliary data td.

• π ← Open(td, i): Generates a proof π that the value vi is included in the
commitment at position i.

• b ← Verify(cm, i, v, π): Verifies that the value v at index i is included in
the commitment cm using proof π.

13



Theorem 3.6 (Security of Merkle Trees). Assuming the collision resistance
of the underlying hash function, for any PPT adversary A, the probability of
producing two distinct values v ̸= v′ with valid proofs at the same index i is
negligible:

Pr

 Verify(cm, i, v, π) = 1
Verify(cm, i, v′, π′) = 1
v ̸= v′

∣∣∣∣∣∣ (cm, i, v, π, v′, π′)← A(1λ)

 ≤ negl(λ)

3.5 Security Model

A secure blockchain protocol must guarantee certain properties to ensure con-
sistency, liveness, and fairness in the network.

Definition 3.7 (Blockchain Security Properties). A blockchain protocol is con-
sidered secure if it satisfies:

• Common Prefix (CP): For a parameter k, any two honest parties’
chains are identical up to the last k blocks. Formally, if C1 and C2 are
two chains held by honest parties, then C1 ⊥̸k C2, meaning they share a
common prefix when disregarding the last k blocks.

• Chain Growth (CG): With parameters τ (the minimal growth rate)
and s (the time period), the blockchain grows by at least τs blocks over
any time interval of length s.

• Chain Quality (CQ): With parameters µ (the minimal ratio of honest
blocks) and ℓ (the length of the chain segment), any segment of ℓ consec-
utive blocks contains at least a µ fraction of blocks produced by honest
parties.

3.6 Conclusion

This section has introduced the key concepts and definitions necessary for un-
derstanding the accumulation mechanisms employed in our blockchain protocol.
By leveraging accumulation schemes, folding schemes, and the ARC framework,
we aim to construct a blockchain architecture that is both super-fast and highly
efficient. The following sections will build upon these foundations to detail the
specific implementation and optimizations of our system.

4 The ARC-Chain Protocol

In this section, we detail the design and operation of the ARC-Chain protocol,
an innovative blockchain architecture that leverages the Accumulation for Reed-
Solomon Codes (ARC) protocol to achieve unparalleled efficiency and scalability.
By utilizing advanced cryptographic techniques, the protocol enables constant-
sized proofs and rapid verification, making it suitable for high-throughput ap-
plications.

14



4.1 Block Structure

Each block in the ARC-Chain, denoted as Bi, is composed of several key compo-
nents that facilitate secure state transitions, efficient verification, and consensus
among network participants.

• Standard Block Header Elements:

– Parent Block Hash hi−1: Reference to the hash of the previous block,
ensuring chain integrity.

– Timestamp ti: The time at which the block was created.

– Block Height i: The sequential number of the block in the chain.

– Producer Public Key pki and Signature σi: Identifies the block pro-
ducer and provides authentication.

• State Components:

– State Root Si: A Merkle root committing to the current state of the
blockchain.

– Reed-Solomon Encoding fi: Encodes state transitions using Reed-
Solomon codes for efficient proof generation.

– State Transition Proof πi: A proof demonstrating the validity of the
state update from Si−1 to Si.

• Accumulation Components:

– ARC Accumulator Ai: Contains accumulated proofs up to block i,
enabling succinct verification.

– Base SNARK Proof πbase
i : Certifies the correctness of the state tran-

sition in block i.

– Wrap SNARK Proof πwrap
i : Facilitates the recursive composition of

proofs across blocks.

• Consensus Components:

– Previous Checkpoint Hash hcp
i−1: Reference to the last confirmed

checkpoint for consensus purposes.

– Current Start Checkpoint hstart
i : Marks the beginning of the current

checkpointing period.

– Window Density Parameters
−−→
Deni: Parameters used in the fork

choice rule to determine the canonical chain.

The complete block can be represented as:

Bi =
(
hi−1, ti, i, pki, σi, Si, fi, πi, Ai, π

base
i , πwrap

i , hcp
i−1, h

start
i ,

−−→
Deni

)
15



The signature σi covers all block components except itself, ensuring the in-
tegrity and authenticity of the block data. This structure enables both succinct
verification through the accumulation mechanism and secure consensus via the
checkpointing system.

4.2 State Representation

The ARC-Chain protocol encodes the blockchain state using Reed-Solomon
codes, facilitating efficient accumulation and verification of state transitions.
This section outlines how the state is represented and manipulated within the
protocol.

4.2.1 State Encoding

We define the state at block height i using the following elements:

Definition 4.1 (State Encoding). Given a finite field F and an evaluation
domain L ⊂ F, with a maximum degree dmax, the state is encoded as:

• State Polynomial fi ∈ RS[F, L, dmax]: A polynomial in the Reed-Solomon
code over F, evaluated at points in L.

• State Root Si: A Merkle root committing to the evaluations of fi over L.

• Rate Parameter ρ: Defined as ρ = dmax/|L|, representing the code rate.

4.2.2 Account Encoding

Each account in the blockchain is represented as a tuple of field elements:

Account = (pk,balance,nonce, code, storage) ∈ F5

The state polynomial fi interpolates these account data, mapping account
addresses (elements of L) to their corresponding states:

fi : L→ F5, fi(x) = Accountx

4.2.3 State Commitments

To commit to the state polynomial evaluations securely, we use Merkle trees:

Si = MT.Commit ({(x, fi(x)) | x ∈ L})

Here, MT.Commit denotes the Merkle tree commitment function, which
generates a Merkle root over the set of evaluations.

16



4.2.4 Constraint Encoding

State transitions are verified using rational constraints that capture the logic of
the transition:

• Rational Function c =
(

p
q

)
, where:

– p : Fk+1 → F defines the numerator polynomial, incorporating the
state and transition data.

– q : F→ F defines the denominator polynomial, ensuring the rational
function is well-defined.

• Degree Bound d ≤ dmax.

The constraint for a state transition ti is satisfied if:

c(fi)(x) =
p(x, fi(x))

q(x)
∈ RS[F, L, d]

Theorem 4.2 (State Soundness). For any invalid state transition ti : fi →
fi+1, the probability of generating a valid proof that satisfies the rational con-
straint is negligible in the security parameter λ.

This encoding allows for:

• Constant-Size State Proofs: Utilizing ARC, proofs remain succinct
regardless of the state size.

• Efficient State Updates: Polynomial operations enable rapid compu-
tation of state changes.

• Succinct Verification: Verifiers can efficiently confirm state transitions
without processing the entire state.

• Parallel Proof Generation: State segments can be processed indepen-
dently, enhancing scalability.

4.3 Accumulation Mechanism

The ARC-Chain protocol employs an accumulation mechanism based on ARC’s
scheme for Reed-Solomon codes, allowing for the unbounded composition of
proofs without increasing their size. This section describes the cryptographic
components and processes involved.

4.3.1 SNARK Components

The accumulation system uses three types of Succinct Non-interactive Argu-
ments of Knowledge (SNARKs), operating over a cycle of elliptic curves to
facilitate efficient recursive proof composition:

17



• Base SNARK (Tick): Validates individual state transitions.

• Wrap SNARK (Tock): Converts Tick proofs into a form suitable for
recursive composition.

• Merge SNARK (Tick): Combines multiple Tock proofs into a single
proof, effectively aggregating them.

For a state transition from Si−1 to Si, the SNARKs are defined as:

Definition 4.3 (Base SNARK). Statement : (Si−1, Si)
Witness: State transition ti
Purpose: Proves the existence of ti such that Update(ti, Si−1) = Si

Notation: Si−1
Tick−−−→ Si

Definition 4.4 (Wrap SNARK). Statement : (Si−1, Si)
Witness: Base SNARK proof π
Purpose: Verifies that π is a valid Tick proof for the transition from Si−1 to

Si

Notation: Si−1
Tock−−−→ Si

Definition 4.5 (Merge SNARK). Statement : (Si−1, Si+1)
Witness: Intermediate state Si and Tock proofs π1, π2

Purpose: Confirms that both π1 and π2 are valid Tock proofs for consecutive
transitions, effectively proving Si−1 → Si → Si+1

Notation: Si−1
Tick−−−→ Si+1

4.3.2 Accumulation Process

To accumulate proofs across multiple blocks, the protocol performs the following
steps:

1. Per-Block Proof Generation:

• For each state transition Si → Si+1:

– Generate a Base SNARK proof πbase
i using the Tick SNARK.

– Convert πbase
i into a Wrap SNARK proof πwrap

i using the Tock
SNARK.

2. Proof Aggregation:

• Organize the Wrap SNARK proofs into a binary tree structure.

• Use the Merge SNARK to recursively combine proofs from the leaves
(individual blocks) up to the root.

• The root of the tree contains a succinct proof that validates the entire
sequence of state transitions.

Theorem 4.6 (Accumulation Soundness). If the following conditions are met:

18



• The field size satisfies |F| ≥ 2λ · 107 ·m · d3max · ρ−3.5.

• The proximity parameter δ satisfies δ ∈
[
0, 1− 1.05

√
ρ− λ

− log(1−δ)·|L|

]
.

Then the accumulation scheme achieves a soundness error of at most 2−λ.

Theorem 4.7 (Proof Size Efficiency). The accumulation mechanism ensures
that:

• Proof Size: Each SNARK proof is of size O(λ) bits, independent of the
number of accumulated proofs.

• Verification Time: Verifying a proof requires O(λ) computational oper-
ations.

The accumulator included in each block Ai comprises the state root Si, the
base proof πbase

i , the wrap proof πwrap
i , and minimal additional data necessary

for verification.

4.4 Light Client Protocol

The ARC-Chain protocol supports light clients—resource-constrained devices
that can verify the correctness of the blockchain state without processing the
entire chain history. This section outlines how light clients operate within the
protocol.

4.4.1 Light Client State

A light client maintains the following information:

• Current Block Height i

• State Root Si

• Latest Accumulator Ai

• Consensus Parameters
−−→
Deni

• Genesis Block Information B0

4.4.2 Block Verification

When a new block Bi+1 is received, the light client performs the following steps
to verify its validity:

19



Algorithm 1 Light Client Verification

1: procedure LightVerify(Bi+1, Si, Ai)
2: Extract Si+1, πi+1, Ai+1, π

wrap
i+1 from Bi+1

3: Verify the state transition using the Tick SNARK:

Assert VerifyTick ((Si, Si+1), πi+1) = 1

4: Verify the accumulator update using the Tock SNARK:

Assert VerifyTock
(
Ai, Ai+1, π

wrap
i+1

)
= 1

5: Verify consensus rules using the provided parameters:

Assert VerifyConsensus
(
Bi+1,

−−→
Deni

)
= 1

6: Update the client’s state:

Si ← Si+1, Ai ← Ai+1,
−−→
Deni ←

−−→
Deni+1

7: end procedure

4.4.3 Security Guarantees

Theorem 4.8 (Light Client Security). For a security parameter λ, the light
client protocol ensures:

• State Validity: The probability that a light client accepts an invalid state
is at most 2−λ.

• Fork Consistency: Light clients follow the canonical chain with over-
whelming probability, ensuring consistency with full nodes.

• Finality: After a certain number of confirmations, the state is considered
final with high confidence.

Theorem 4.9 (Light Client Efficiency). The protocol achieves:

• Verification Time: O(λ) operations per block, suitable for resource-
constrained devices.

• Storage Requirements: O(λ) bits, as only succinct proofs and minimal
state information are stored.

• Communication Overhead: O(λ) bits per block, ensuring low band-
width usage.

• Bootstrap Time: Independent of the chain length, enabling quick syn-
chronization.

20



4.4.4 Bootstrapping Protocol

To join the network, a new light client performs the following steps:

1. Download Genesis and Latest Block Headers:

• Obtain the genesis block B0.

• Acquire the latest block header Bi from a trusted source or multiple
peers.

2. Verify Accumulator:

• Ensure that the accumulator Ai includes valid proofs from genesis to
block i.

3. Verify Consensus Parameters:

• Confirm the correctness of the consensus parameters
−−→
Deni.

4. Begin Normal Operation:

• Start verifying new blocks using the light client verification proce-
dure.

Remark. Unlike traditional light clients that need to process headers from gen-
esis, the ARC-Chain light clients can securely bootstrap with only the genesis
block and the latest accumulator, thanks to the succinct proofs provided by the
accumulation mechanism.

4.4.5 Chain Selection

Light clients adhere to the same fork choice rules as full nodes, using accumu-
lated proofs to evaluate competing chains:

• Short-Range Forks: Prefer the chain with the most accumulated valid
proofs.

• Long-Range Forks: Utilize the window density parameters from the
consensus layer to select the canonical chain.

• Efficiency: The verification cost remains O(λ), regardless of the chain
length or fork complexity.

4.5 State Management

Efficient state management is crucial for the scalability and performance of the
blockchain. The ARC-Chain protocol employs a hierarchical state encoding
scheme, enabling efficient updates, parallel proof generation, and automatic
state pruning.

21



4.5.1 State Hierarchy

The global state is partitioned into multiple layers based on the frequency of
updates:

Definition 4.10 (State Layers). The state S is composed of three layers:

• Layer 1 (L1): Dynamic state elements that change frequently, such as
account balances and nonces.

• Layer 2 (L2): Semi-static state elements that change occasionally, such
as smart contract code.

• Layer 3 (L3): Static state elements that rarely change, including config-
uration parameters and genesis data.

4.5.2 Polynomial Encoding

Each layer uses its own polynomial encoding to represent the state:

• Evaluation Domain Lj ⊂ F for layer j.

• Degree Bound dj ≤ dmax.

• Rate Parameter ρj = dj/|Lj |.

• State Polynomial fj ∈ RS[F, Lj , dj ].

The domains and rate parameters are chosen such that:

|L1| > |L2| > |L3| and ρ1 < ρ2 < ρ3

4.5.3 Account State Encoding

An account’s state is distributed across the layers:

• Layer 1 : Dynamic data, e.g., balance and nonce.

• Layer 2 : Contract-related data, e.g., code hash and storage root.

• Layer 3 : Static data, e.g., creation information and configuration.

Each layer’s polynomial interpolates the corresponding data:

fj(addr) = vj , for j ∈ {1, 2, 3}

where addr is the account address and vj represents the account data in
layer j.

22



4.5.4 Merkle State Commitments

The overall state root combines the commitments from each layer:

Si = Hash(S1
i ∥ S2

i ∥ S3
i )

where each layer’s commitment is:

Sj
i = MT.Commit ({(x, fj(x)) | x ∈ Lj})

4.5.5 Optimization Properties

This hierarchical encoding offers several advantages:

• Update Efficiency: Frequent updates are confined to L1, reducing the
overhead.

• Parallel Access: Layers can be processed independently, allowing for
concurrent operations.

• State Pruning: Infrequently accessed data can be managed separately,
aiding in state size management.

• Security: Each layer maintains its own cryptographic commitments, pre-
serving integrity.

4.6 State Updates

State transitions in the ARC-Chain protocol involve updating the state polyno-
mials and generating proofs to ensure correctness.

4.6.1 Update Types

Updates are categorized based on the layers they affect:

• Dynamic Updates (∆L1): Changes to balances, nonces, and other fre-
quently modified data.

• Contract Updates (∆L2): Modifications to smart contract code or stor-
age.

• Configuration Updates (∆L3): Changes to protocol parameters or
rarely updated data.

23



4.6.2 Transition Processing

When processing a state transition ti, the protocol performs the following steps:

Algorithm 2 State Transition Processing

1: procedure ProcessStateUpdate(Si, ti)
2: for each layer j ∈ {1, 2, 3} do
3: Extract updates ∆j for layer j from ti
4: if ∆j ̸= ∅ then
5: Update the polynomial fj to f ′j using ∆j

6: Generate a proof πj for the update

7: Compute the new layer commitment Sj
i+1

8: else
9: Sj

i+1 ← Sj
i

10: end if
11: end for
12: Combine the layer commitments to form Si+1

13: return Si+1 and proofs {πj}
14: end procedure

4.6.3 Polynomial Updates

For each layer, the polynomial is updated using the Lagrange basis polynomials:

f ′j(X) = fj(X) +
∑

(addr,∆v)∈∆j

∆v · ℓaddr,Lj (X)

where ℓaddr,Lj
is the Lagrange polynomial corresponding to addr in Lj .

4.6.4 Transition Proofs

Proofs are generated to validate the updates:

• Degree Validation: Ensures deg(f ′j) < dj .

• Correctness of Evaluations: Confirms that f ′j(addr) = fj(addr) + ∆v
for all updated addresses.

• Integrity of Unchanged Data: Verifies that f ′j(x) = fj(x) for all x /∈
∆j .

Theorem 4.11 (Update Soundness). The probability that an invalid update
passes verification is negligible in the security parameter λ, provided:

• The field size satisfies |F| ≥ 2λ · dmax.

• The number of updates |∆j | per layer is less than dj/2.

24



4.6.5 Optimization Techniques

Several optimizations enhance the efficiency of state updates:

• Batched Updates: Multiple changes are processed together to amortize
computational costs.

• Incremental Computation: Intermediate results are cached and reused.

• Lazy Evaluation: Delays computation until necessary, reducing unnec-
essary work.

• Parallel Processing: Layers and updates are processed concurrently.

Theorem 4.12 (Update Efficiency). For updates affecting m addresses:

• Proof Generation Time: O(m log |Lj |) per layer.

• Proof Size: O(λ) bits, independent of m.

• Verification Time: O(λ) operations.

4.7 State Rent Mechanism

To manage state growth and incentivize resource-efficient usage, the ARC-Chain
protocol incorporates a state rent mechanism.

4.7.1 Rent Parameters

Each layer defines rent-related parameters:

• Rent Rate rj : The cost per byte per epoch for layer j.

• Time Quantum τj : The period over which rent is assessed.

• Rent Balance brent: A field in the account state indicating prepaid rent.

• Expiry Time texp: The epoch after which the account state expires if rent
is unpaid.

Parameters are set such that:

τ1 < τ2 < τ3 and r1 > r2 > r3

25



4.7.2 Rent Collection

Rent is collected automatically during state updates:

Algorithm 3 Rent Collection Procedure

1: procedure ProcessRent(a, current epoch)
2: if a.brent <

∑
j Rj(a) then

3: if a.balance ≥
∑

j Rj(a) then
4: Transfer from balance to rent
5: a.balance← a.balance−

∑
j Rj(a)

6: a.brent ← a.brent +
∑

j Rj(a)
7: else
8: Mark account for expiry
9: a.texp ← current epoch + minj τj

10: return false
11: end if
12: end if
13: Update expiry time based on rent balance
14: a.texp ← current epoch + minj {τj | a.brent ≥ Rj(a)}
15: Deduct rent from rent balance
16: a.brent ← a.brent −

∑
j Rj(a)

17: return true
18: end procedure

4.7.3 State Expiry

Accounts that fail to pay rent are pruned from the state after their expiry time:

• Layer 1: Expires after τ1 epochs without rent payment.

• Layer 2: Expires after τ2 epochs.

• Layer 3: Expires after τ3 epochs.

Theorem 4.13 (Expiry Soundness). The expiry mechanism ensures that:

• No False Expiry: Active accounts with sufficient rent balance remain in
the state.

• Complete Cleanup: Inactive accounts without rent payment are eventu-
ally removed.

• Layer Independence: Expiry operates independently across layers.

4.7.4 Polynomial Factoring

When accounts expire, their entries are removed from the state polynomials
efficiently:

26



• Identify expired addresses Ej in layer j.

• Compute the vanishing polynomial VEj
(X) for Ej .

• Update the state polynomial:

f ′j(X) =
fj(X)

VEj
(X)

Theorem 4.14 (Expiry Efficiency). For a set of expired addresses Ej:

• Removal Cost: O(|Ej | log |Lj |) operations.

• Proof Size: O(λ) bits.

• Verification Time: O(λ) operations.

4.7.5 Rent Economics

The rent mechanism enforces economic sustainability:

• State Growth Bound:

Total State Size ≤ Total Token Supply

minj rj

• Incentive Compatibility: Users are incentivized to maintain only nec-
essary state.

• Layer Optimization: Higher rent costs in lower layers encourage efficient
use of resources.

4.7.6 Implementation Optimizations

Practical optimizations include:

• Batch Processing: Expiry and rent collection are processed in batches
to improve efficiency.

• Incremental Updates: State polynomials are updated incrementally to
avoid recomputation.

• Parallel Execution: Expiry checks and updates are performed in paral-
lel.

4.8 Parallel Proof Generation

To support high throughput, the ARC-Chain protocol incorporates parallel
proof generation across multiple levels.

27



4.8.1 State Partitioning

The state is partitioned to distribute the workload:

Definition 4.15 (State Partitioning). The state space S is divided among k
workers:

S =

k⋃
i=1

Si

Each partition Si maintains:

• Local Polynomials f j
i for each layer j.

• Local Merkle Roots ri.

• Disjoint Domains Li ⊂ L.

• Transaction Queues Qi.

4.8.2 Parallel Processing Architecture

The protocol employs a three-tier parallelization strategy:

1. Partition-Level Parallelism:

• State updates and proof generation occur independently within each
partition.

• Local accumulators are updated concurrently.

2. Layer-Level Parallelism:

• Each layer within a partition is processed in parallel.

• Polynomial updates and constraint verifications are isolated per layer.

3. Proof-Level Parallelism:

• Computational tasks such as FFTs and Merkle tree updates are dis-
tributed.

• SNARK proofs are generated concurrently across different parts of
the state.

4.8.3 Load Balancing

To ensure efficient utilization of resources, the protocol includes dynamic load
balancing mechanisms:

• Adaptive Partitioning: Adjusts the size of partitions based on worker
capacity.

28



• Transaction Routing: Directs transactions to partitions with available
processing power.

• Task Scheduling: Allocates proof generation tasks to idle workers.

• State Rebalancing: Periodically redistributes state partitions to main-
tain balance.

Theorem 4.16 (Parallel Scaling). Given k workers and n transactions:

• Throughput: Scales linearly with the number of workers, up to network
and computational limits.

• Latency: Increases logarithmically with k due to proof aggregation over-
head.

• Communication Overhead: Grows as O(k log n), manageable for prac-
tical values.

• Load Imbalance Factor: Remains low with high probability, ensuring
efficient utilization.

4.9 Conclusion

The ARC-Chain protocol presents a novel blockchain architecture that com-
bines advanced cryptographic techniques with efficient state management strate-
gies. By leveraging accumulation schemes, Reed-Solomon codes, and hierarchi-
cal state encoding, the protocol achieves scalability and performance suitable
for high-demand applications. The incorporation of light client support, state
rent mechanisms, and parallel proof generation further enhances its practicality
and sustainability in diverse operational environments.

5 State Management

Efficient state management is a cornerstone of the ARC-Chain protocol, en-
abling high throughput, scalability, and sustainability. By leveraging advanced
polynomial encoding techniques and innovative mechanisms such as state rent
and layered state hierarchies, the protocol ensures that the blockchain state
remains compact, verifiable, and manageable even as the network grows.

29



Layer 3: Static State

Protocol configurations and genesis parameters

Layer 2: Semi-static State

Smart contract code and storage

Layer 1: Dynamic State

Account balances and nonces

High Update Frequency

Frequently changing data

Low Update Frequency

Rarely changing data

5.1 State Encoding

The ARC-Chain protocol employs a hierarchical state encoding scheme that al-
lows for efficient updates, parallel proof generation, and automated state expiry.
This design facilitates scalability and ensures that the blockchain can handle a
large number of transactions without compromising on performance or security.

5.1.1 State Hierarchy

The global state S is partitioned into multiple layers, each corresponding to
different types of data and update frequencies. This stratification optimizes
performance by handling frequently changing data separately from more static
information.

Definition 5.1 (State Layers). The state S consists of three layers:

• Layer 1 (L1): Dynamic State—includes frequently updated data such as
account balances and nonces.

• Layer 2 (L2): Semi-static State—comprises data that changes occasion-
ally, such as smart contract code and storage.

• Layer 3 (L3): Static State—contains rarely changing data like protocol
configurations and genesis parameters.

This hierarchical structure allows for independent processing and optimiza-
tion of each layer, enhancing the overall efficiency of the protocol.

5.1.2 Polynomial Encoding

Each layer employs polynomial encoding using Reed-Solomon codes to represent
the state succinctly and facilitate efficient verification.

• Evaluation Domain Lj ⊂ F: A subset of the finite field F specific to layer
j.

30



• Degree Bound dj ≤ dmax: The maximum degree of the polynomials in
layer j.

• Rate Parameter ρj = dj/|Lj |: Represents the code rate for layer j.

• State Polynomial fj ∈ RS[F, Lj , dj ]: The Reed-Solomon code polynomial
encoding the state of layer j.

Layer parameters are chosen such that:

|L1| > |L2| > |L3| and ρ1 < ρ2 < ρ3

This ensures that layers handling more data (e.g., dynamic accounts) have
a higher capacity and appropriate rate parameters for efficient encoding.

5.1.3 Account State Encoding

Each account’s state is distributed across the layers and encoded into field ele-
ments:

• Address addr ∈ F: Serves as the evaluation point in the polynomials.

• Dynamic Data v1 = (balance,nonce) ∈ F2: Stored in Layer 1.

• Contract Data v2 = (code hash, storage root) ∈ F2: Stored in Layer 2.

• Static Data v3 = (creation info, config) ∈ F2: Stored in Layer 3.

Each layer’s polynomial interpolates the corresponding data:

fj(addr) = vj for j ∈ {1, 2, 3}

5.1.4 Merkle State Commitments

To ensure the integrity and verifiability of the state, each layer generates a
Merkle tree commitment. The overall state root combines these commitments:

Si = Hash
(
S1
i ∥ S2

i ∥ S3
i

)
where each layer commitment Sj

i is computed as:

Sj
i = MT.Commit ({(x, fj(x)) | x ∈ Lj})

This hierarchical commitment structure allows for efficient verification and
proof generation, as changes in one layer do not necessitate recomputation in
others.

31



5.1.5 Optimization Properties

The hierarchical polynomial encoding enables several optimizations:

Theorem 5.2 (Update Efficiency). State updates require:

• O(log |Lj |) operations for changes in layer Lj.

• O(1) verification cost, as proofs remain constant in size.

Theorem 5.3 (Parallel Access). The layered structure allows for:

• Independent Layer Updates: Modifications in one layer do not affect
others.

• Parallel Proof Generation: Each layer’s proofs can be generated con-
currently.

• Layer-Specific Caching: Optimizes storage and retrieval based on ac-
cess patterns.

• Automatic State Rent via Layer Expiry: Facilitates efficient state
pruning.

5.1.6 Constraint Generation

State transitions generate rational constraints for each affected layer, ensuring
that updates adhere to protocol rules.

• Rational Constraint cj =
(

pj

qj

)
: Captures the logic of state transitions in

layer j.

• Polynomial Functions:

– pj : Fkj+1 → F: Defines the numerator, incorporating state variables.

– qj : F→ F: Defines the denominator, ensuring proper scaling.

• Degree Bound dj : Matches the layer’s parameters.

The constraint must satisfy:

cj(fj)(x) =
pj(x, fj(x))

qj(x)
∈ RS[F, Lj , dj ]

This ensures that the updated state remains within the valid code space,
maintaining the integrity of the blockchain.

5.2 State Updates

State updates in the ARC-Chain protocol are executed through a combination
of polynomial manipulations and proof generation using the ARC accumulation
scheme.

32



5.2.1 Update Types

Updates are categorized based on the layers they affect:

• Layer 1 Updates (∆L1): Dynamic state changes, such as balance trans-
fers and nonce increments.

• Layer 2 Updates (∆L2): Modifications to smart contract code or stor-
age.

• Layer 3 Updates (∆L3): Changes to configuration parameters or other
static data.

Definition 5.4 (State Transition). A state transition ti consists of a set of
updates:

ti = {(addrj ,∆vj)}mj=1

where each update specifies:

• Target Address addrj ∈ F.

• Value Change ∆vj : The changes to be applied, potentially across multiple
layers.

5.2.2 Transition Processing

Processing a state transition involves updating the relevant polynomials and
generating proofs:

Algorithm 4 ProcessStateUpdate(Si, ti)

1: Input: Current state root Si, state transition ti
2: Output: New state root Si+1, update proofs {πj}
3: for each layer j ∈ {1, 2, 3} do
4: Extract ∆j from ti for layer j
5: if ∆j ̸= ∅ then
6: Update polynomial: f ′j ← UpdatePolynomial(fj ,∆j)
7: Generate proof: πj ← ProveUpdate(fj , f

′
j ,∆j)

8: Update commitment: Sj
i+1 ← MT.Commit(f ′j)

9: else
10: Sj

i+1 ← Sj
i

11: end if
12: end for
13: Combine commitments: Si+1 ← Hash(S1

i+1 ∥ S2
i+1 ∥ S3

i+1)
14: return Si+1, {πj}

33



5.2.3 Polynomial Updates

For each layer j, the polynomial is updated as follows:

f ′j(X) = fj(X) +
∑

(addr,∆v)∈∆j

∆v · ℓaddr,Lj
(X)

where ℓaddr,Lj
(X) is the Lagrange basis polynomial corresponding to addr

over Lj .

5.2.4 Transition Proofs

Update proofs πj are generated to demonstrate:

• Valid Polynomial Degree: Ensuring deg(f ′j) < dj .

• Correct Evaluations: Confirming f ′j(addr) = fj(addr) + ∆v for all
addr ∈ ∆j .

• Integrity of Unchanged Data: Verifying that f ′j(x) = fj(x) for all
x /∈ ∆j .

Theorem 5.5 (Update Soundness). Assuming a field size |F| ≥ 2λ · dmax, the
update proof system achieves a soundness error of at most 2−λ when the update
size satisfies |∆j | ≤ dj/2 for each layer.

5.2.5 Optimization Techniques

To enhance efficiency, the following optimizations are employed:

• Batched Updates: Multiple updates are combined into a single proof,
reducing overhead.

• Incremental Computation: Intermediate polynomial values are cached
for reuse.

• Lazy Evaluation: Computations are deferred until necessary.

• Parallel Processing: Proof generation for different layers and accounts
is executed concurrently.

Theorem 5.6 (Update Complexity). For updates affecting m addresses:

• Proof Generation Time: O(m log |Lj |) operations per layer.

• Proof Size: O(λ) bits, independent of m.

• Verification Time: O(λ) operations.

This approach ensures that state transitions are both efficient and secure,
maintaining the protocol’s performance even under heavy workloads.

34



5.3 State Rent Mechanism

To prevent uncontrolled state growth and encourage efficient resource utiliza-
tion, the ARC-Chain protocol incorporates an automated state rent mechanism.

5.3.1 Rent Parameters

Each layer defines specific parameters for rent collection:

• Base Rent Rate rj : Measured in tokens per byte per epoch for layer j.

• Time Quantum τj : The number of epochs after which rent is due.

• Rent Balance brent: A field in the account state indicating the prepaid
rent amount.

• Expiry Time texp: Indicates when the account’s state will expire without
rent payment.

Parameters are chosen such that:

τ1 < τ2 < τ3 and r1 > r2 > r3

This design ensures that more frequently changing data is more costly to
store, incentivizing efficient state management.

5.3.2 Rent Collection

Rent is collected automatically during state transitions and block processing:

Algorithm 5 ProcessRent(a, curr epoch)

1: Input: Account a, current epoch curr epoch
2: Calculate total rent due: R(a) =

∑
j rj · |sj | · τj

3: if a.brent < R(a) then
4: if a.balance ≥ R(a) then
5: Transfer funds: a.balance← a.balance−R(a)
6: Update rent balance: a.brent ← a.brent +R(a)
7: else
8: Mark for expiry: a.texp ← curr epoch + minj τj
9: return false

10: end if
11: end if
12: Update expiry time: a.texp ← curr epoch + minj{τj | a.brent ≥ Rj(a)}
13: Deduct rent: a.brent ← a.brent −R(a)
14: return true

35



5.3.3 State Expiry

Accounts that do not maintain sufficient rent balance are pruned:

• Layer 1: Expires after τ1 epochs without rent payment.

• Layer 2: Expires after τ2 epochs.

• Layer 3: Expires after τ3 epochs.

Theorem 5.7 (Expiry Soundness). The state expiry mechanism ensures:

• No False Expiry: Active accounts with sufficient rent are preserved.

• Complete Cleanup: Inactive accounts without rent payment are re-
moved.

• Layer Independence: Expiry operates independently across layers.

5.3.4 Polynomial Factoring

Expired accounts are efficiently removed from the state polynomials:

• Identify expired addresses Ej in layer j.

• Compute the vanishing polynomial VEj
(X) =

∏
x∈Ej

(X − x).

• Update the polynomial: f ′j(X) = fj(X)÷ VEj
(X).

Theorem 5.8 (Expiry Efficiency). For a set of expired addresses Ej:

• Removal Cost: O(|Ej | log |Lj |) operations.

• Proof Size: Remains O(λ) bits.

• Verification Time: O(λ) operations.

5.3.5 Rent Economics

The rent mechanism provides economic incentives for efficient state usage:

• State Growth Bound:

∑
j

|Lj | ≤
Total Token Supply

minj rj

• Incentive Compatibility: Users are motivated to clean up unused ac-
counts to avoid rent costs.

• Layer Optimization: Higher rent rates in lower layers encourage users
to move less frequently accessed data to higher layers.

36



5.3.6 Implementation Optimizations

To improve the practical performance of the rent mechanism:

• Batch Processing: Rent collection and state expiry are processed in
batches to optimize resource utilization.

• Incremental Polynomial Updates: Avoid recomputation by updating
polynomials incrementally.

• Parallel Execution: Rent-related computations are parallelized across
partitions and layers.

• Predictive State Cleanup: Proactively identify and remove accounts
likely to expire.

5.4 Parallel Proof Generation

High throughput is achieved through a multi-level parallelization framework
that distributes the computational workload across multiple dimensions.

5.4.1 State Partitioning

The state is partitioned among k workers to facilitate parallel processing:

Definition 5.9 (State Partition). The global state S is divided as:

S =

k⋃
i=1

Si

Each partition Si maintains:

• Local Polynomials f j
i for each layer j.

• Local Merkle Roots ri.

• Disjoint Evaluation Domains Li ⊂ L.

• Transaction Queues Qi.

5.4.2 Parallel Processing Architecture

The protocol employs three tiers of parallelism:

1. Partition-Level Parallelism:

• State updates and proof generation occur independently within each
partition.

• Local accumulators are updated concurrently.

2. Layer-Level Parallelism:

37



• Each layer within a partition is processed in parallel.

• Polynomial updates and constraint verifications are isolated per layer.

3. Proof-Level Parallelism:

• Computationally intensive tasks such as FFTs and SNARK proof
generation are distributed across multiple workers.

5.4.3 Load Balancing

Dynamic load balancing ensures efficient resource utilization:

• Adaptive Partitioning: Adjusts partition sizes based on worker capac-
ity and workload.

• Transaction Routing: Directs transactions to partitions with available
processing power.

• Task Scheduling: Allocates computational tasks based on worker avail-
ability and performance metrics.

• State Rebalancing: Periodically redistributes state to maintain balance
and optimize throughput.

Theorem 5.10 (Parallel Scaling). Given k workers and n transactions:

• Throughput: Scales linearly with the number of workers up to system
limits.

• Latency: Remains low due to concurrent processing and efficient proof
aggregation.

• Communication Overhead: Managed efficiently to prevent bottlenecks.

• Load Imbalance Factor: Maintained within acceptable bounds through
dynamic adjustments.

5.4.4 Optimization Techniques

Advanced techniques further enhance performance:

• Proof Streaming:

– Pipelines proof generation to reduce latency.

– Partial proofs are shared early to facilitate verification.

• Speculative Execution:

– Anticipates possible state transitions and prepares proofs in advance.

– Reduces response time for common transactions.

38



• Proof Aggregation:

– Combines multiple proofs into a single proof to reduce overhead.

– Balances batch size against latency requirements.

5.5 Conclusion

The state management strategies in the ARC-Chain protocol are integral to
its ability to deliver a revolutionary blockchain solution. By combining hierar-
chical state encoding, efficient update mechanisms, automated state rent, and
parallel proof generation, the protocol achieves scalability, security, and sustain-
ability. These innovations position the ARC-Chain protocol at the forefront of
blockchain technology, capable of meeting the demands of modern decentralized
applications.

6 Consensus Layer

The ARC-Chain protocol integrates an advanced consensus mechanism tailored
to harmonize with its succinct blockchain architecture. By embedding a mod-
ified version of the Ouroboros Samasika proof-of-stake protocol within the Ac-
cumulation for Reed-Solomon Codes (ARC) framework, ARC-Chain achieves
robust security guarantees while maintaining efficient verification and high per-
formance. This innovative fusion enables the protocol to support high transac-
tion throughput without compromising security or decentralization.

6.1 Consensus Integration

The consensus layer is meticulously interwoven with the accumulation mecha-
nism to preserve essential consensus properties while facilitating succinct veri-
fication. This integration employs a hybrid approach that combines traditional
consensus algorithms with cryptographic accumulators, enabling constant-size
proofs of consensus validity and efficient state verification by both full nodes
and light clients.

39



Participant 1
Stake: 5%

Participant 2
Stake: 10%

Participant 3
Stake: 20%

Participant 4
Stake: 65%

...

VRF

Selected Leader New Block
Produces

Epoch Number

Slot Number

Randomness Seed

ARC Proofs
Includes

Validator
Verifies

Checkpoint

Consensus Parameters

Checkpointing for Finality

Legend:

Participant

Selected Leader

Block

Consensus Parameter

ARC Proofs

Validator
Process Flow
Checkpointing

Definition 6.1 (Consensus State). The consensus state CS at any point in the
ARC-Chain protocol consists of the following components:

• Epoch Number ep ∈ N: The current epoch in the protocol.

• Slot Number sl ∈ [1, R]: The current slot within the epoch, where R is
the total number of slots per epoch.

• Active Stake Distribution αep : P → [0, 1]: A mapping from partici-
pants P to their respective stake fractions, reflecting the stake snapshot
taken at a specified point.

• Epoch Randomness Seed ηep ∈ {0, 1}λ: A seed used for randomness
generation in the current epoch, derived from Verifiable Random Function
(VRF) outputs.

• Checkpoint Parameters CP = (hprev
cp , hstart

cp , hcurr
cp ): Hashes represent-

ing the previous checkpoint, the start of the current epoch, and the current
checkpoint, respectively.

• Window Density Parameters
−−→
Den = (pDen1, . . . ,pDenns

,pDencurr,minDen):
Parameters used in the fork choice rule, capturing the block density in re-
cent slots.

• VRF Verification Keys {vkVRF,p}p∈P : The set of VRF verification
keys for active participants, used to verify leader election proofs.

40



6.1.1 Consensus Parameters

The ARC-Chain protocol operates with a set of carefully chosen parameters
that balance security, performance, and practicality:

• Slot Duration ∆slot: The time interval for each slot, e.g., 20 seconds.

• Epoch Length R: The number of slots in an epoch, e.g., R = 7200 slots
corresponding to a 1-day epoch.

• Active Slot Coefficient f ∈ (0, 1): Controls the expected number of
block producers per slot, influencing the network’s liveness and chain
growth.

• Security Parameter k: Determines the depth required for finality and
common prefix properties, e.g., k = 2160 blocks.

• Window Shift Parameter ν: Defines the shift in the block density
window for fork choice, computed as ν = ϵssCG.

• Window Length Parameter ω: The length of the block density window,
ω = (1+ ϵs)sCG, where sCG is a chain growth parameter and ϵs is a small
constant.

• Minimum Stake Threshold αmin: The minimal stake fraction required
for a participant to be eligible for leader selection.

• Security Parameter λ: Governs the difficulty of computational prob-
lems underlying cryptographic primitives, e.g., λ = 256 bits.

6.1.2 Block Production

Block production in the ARC-Chain protocol follows a structured process di-
vided into epochs and slots. In each slot, participants may be elected as slot
leaders based on their stake and a VRF-based random selection process.

41



Algorithm 6 Slot Leader Election and Block Production

1: procedure SlotLeader(sk, ep, sl, ηep, αep)
2: Input: Secret key sk, current epoch ep, slot sl, epoch randomness ηep,

active stake distribution αep

3: Output: Block B if elected as leader; otherwise, no output.
4: Generate VRF inputs:
5: nonceleader ← Hash(ηep ∥ ep ∥ sl ∥ LEADER)
6: noncerand ← Hash(ηep ∥ ep ∥ sl ∥ RANDOM)
7: Evaluate VRFs:
8: (yρ, πρ)← VRF.Evaluate(skVRF,nonceleader)
9: (y, π)← VRF.Evaluate(skVRF,noncerand)

10: Compute threshold T ← 2ℓVRF · ϕf (αep(p))
11: if yρ < T then
12: Elected as Slot Leader
13: Collect transactions txs← CollectTransactions()
14: Update state statenew ← UpdateState(state, txs)
15: Generate state transition proof πstate ←

ProveStateTransition(state, statenew)

16: Update consensus parameters
−−→
Dennew ← UpdateDensity(

−−→
Den, sl)

17: Assemble blockB ← AssembleBlock(ep, sl, yρ, πρ, y, π, txs, πstate,
−−→
Dennew)

18: Broadcast block BroadcastBlock(B)
19: return B
20: else
21: Not Elected as Slot Leader
22: return No Action
23: end if
24: end procedure

Explanation:

• VRF Evaluation: Participants use their VRF secret keys to evaluate the
leader election and randomness VRFs, ensuring unpredictable and unbi-
ased selection.

• Threshold Calculation: The threshold T is computed based on the par-
ticipant’s stake fraction and the active slot coefficient, determining the
probability of being elected as a slot leader.

• State Update and Proof Generation: If elected, the participant collects
transactions, updates the blockchain state, and generates a proof of state
transition using the ARC framework.

• Block Assembly : The block includes all necessary proofs and consensus
parameters, ensuring that validators can verify its correctness efficiently.

42



6.1.3 Consensus Rules

The consensus mechanism enforces several critical properties to maintain the
security and liveness of the network:

Slot Leader Selection:

• Stake-Proportional Probability : The likelihood of a participant being elected
as a slot leader in a given slot is proportional to their stake fraction.

• Multiple Leaders per Slot : The protocol allows for the possibility of mul-
tiple slot leaders in a single slot, promoting liveness even under network
delays.

• Independent Selection: Leader selection is independently conducted for
each slot, ensuring that the selection process remains fair and unpre-
dictable.

• VRF-Based Randomness: The use of VRFs ensures that the selection
process is cryptographically secure and verifiable by others.

Epoch Management:

• Fixed Epoch Length: Epochs have a predetermined number of slots, pro-
viding a structured timeframe for protocol operations.

• Stake Snapshots: The active stake distribution is determined from snap-
shots taken at defined intervals, ensuring stability in leader selection.

• Randomness Generation: The epoch randomness seed is updated using
VRF outputs, contributing to the unpredictability of future leader elec-
tions.

• Epoch Transitions: Special considerations are taken at epoch boundaries
to synchronize the network and update protocol parameters.

Chain Selection (Fork Choice Rule):

• Density-Based Rule: The protocol uses a block density metric over recent
slots to determine the preferred chain, discouraging adversarial forks.

• Shifting Window Mechanism: A moving window is used to evaluate the
chain’s density, adapting to changing network conditions.

• Checkpoint-Based Finality : Periodic checkpoints are established to solidify
the chain’s history and provide stronger finality guarantees.

• Common Prefix Enforcement : The protocol ensures that honest nodes’
chains remain consistent up to a certain point, known as the common
prefix property.

43



Security Requirements:

• Honest Majority Assumption: The protocol assumes that honest partici-
pants collectively hold a majority of the total stake.

• Network Synchrony : A bounded network delay ∆ is assumed, within which
messages are guaranteed to be delivered.

• Minimum Stake Threshold : Participants must hold a minimum amount
of stake to be eligible for leader selection, preventing Sybil attacks.

• VRF Security : The VRFs used must be secure and forward-resistant,
ensuring that past outputs cannot be predicted or manipulated.

Theorem 6.2 (Consensus Security). Under the honest majority stake assump-
tion (α ≥ (1+ϵ)/2 for some ϵ > 0), a network synchrony bound ∆, and security
parameter λ, the ARC-Chain consensus mechanism achieves the following prop-
erties except with negligible probability:

• Common Prefix (CP): Any two honest nodes’ chains are identical up
to the last k blocks, with the probability of a divergence beyond this point
being at most ϵCP(k).

• Chain Growth (CG): The blockchain grows at a minimum rate τ , en-
suring progress over time, with the failure probability bounded by ϵCG(τ, s)
for a period of s slots.

• Chain Quality (CQ): The proportion of blocks produced by honest par-
ticipants in any sufficiently long chain segment is at least µ, with failure
probability ϵCQ(s).

The specific failure probabilities are given by:

ϵCP(k) =
19L

ϵ4
exp

(
∆− ϵ4k

18

)
+ ϵlift

ϵCG(τ, s) =
sL2

2
exp

(
− (ϵβf)2s

256

)
+ ϵlift

ϵCQ(s) = (s+ 1)L2 exp

(
− (ϵβf)2s

64

)
+ ϵlift

where L is the protocol lifetime in slots, β represents the fraction of honest
stake, and ϵlift accounts for negligible terms due to epoch transitions.

6.1.4 Succinct Integration

The consensus layer’s integration with the ARC accumulation framework is key
to achieving succinct verification and efficient operation:

44



Consensus Parameter Accumulation:

• Inclusion in Accumulators: The consensus state is embedded within the
cryptographic accumulators included in each block, ensuring that consen-
sus information is succinctly propagated.

• Polynomial Encoding : Consensus parameters are encoded using polyno-
mials, similar to the state representation, enabling efficient updates and
proofs.

• Constant-Size Proofs: Through the ARC framework, proofs of consensus
validity remain constant in size, independent of the blockchain’s length.

• Incremental Accumulation: Consensus rules are incrementally accumu-
lated, allowing for efficient verification of the entire chain’s consensus ad-
herence up to a given point.

Consensus Verification:

• Integrated Proof Generation: Proofs of consensus rule adherence are gen-
erated alongside state transition proofs, ensuring that both are verified
together.

• Efficient State Tracking : The shifting window for block density and other
consensus parameters are efficiently tracked and updated within the ac-
cumulators.

• Leader Selection Proof Validation: VRF outputs and proofs included in
blocks are verified to confirm the legitimacy of the block producer.

• Checkpoint Consistency : Checkpoints are verified within the accumulation
framework, reinforcing chain consistency and finality.

Light Client Support:

• Succinct Consensus Proofs: Light clients can verify the consensus validity
using constant-size proofs, without needing to process the entire chain.

• Efficient Fork Choice Validation: The fork choice rule can be evaluated by
light clients through the succinct representation of consensus parameters.

• Checkpoint Synchronization: Light clients can synchronize efficiently by
verifying checkpoints included in the accumulators.

• Minimal Communication Overhead : Since proofs and consensus data are
constant in size, communication requirements remain low.

Theorem 6.3 (Consensus Succinctness). The ARC-Chain consensus mecha-
nism achieves the following efficiency properties:

45



• Verification Time: O(λ) operations per block for both full nodes and
light clients.

• Proof Size: O(λ) bits per proof, independent of the total number of blocks.

• Storage Overhead: O(λ) bits for storing the consensus state and proofs.

• Communication Overhead: O(λ) bits per block for consensus-related
data.

• Initialization Time: O(λ) operations to bootstrap the consensus state,
enabling rapid synchronization.

This tight integration of the consensus mechanism with the ARC framework
ensures that the protocol remains scalable and efficient, even as the network
grows and evolves.

6.2 Finality

Achieving strong transaction finality is essential for a reliable blockchain system.
The ARC-Chain protocol combines probabilistic finality, checkpointing, and
the ARC accumulation mechanism to provide robust guarantees of transaction
irreversibility, all while maintaining succinct verification.

6.2.1 Finality Mechanism

The ARC-Chain protocol employs a multi-layered finality system comprising
three main components:

1. Probabilistic Finality:

• Block Confirmation: After a certain number of blocks k have been ap-
pended to a block Bi, the probability of a fork invalidating Bi becomes
negligibly small (less than 2−λ).

• Chain Properties: This finality relies on the common prefix and chain
growth properties ensured by the consensus mechanism.

• Honest Majority : The security of probabilistic finality depends on the
assumption that honest participants hold the majority of the stake.

2. Checkpoint Finality:

• Periodic Checkpoints: The protocol designates specific blocks as check-
points, typically at fixed intervals such as every epoch.

• Checkpoint Blocks: A checkpoint block Bcp includes critical information:

– Previous checkpoint hash hprev
cp .

46



– Epoch start block hash hstart
cp .

– Current checkpoint hash hcurr
cp .

• Finality after Confirmations: A checkpoint becomes finalized after it has
received k subsequent confirmations, solidifying the chain up to that point.

3. Accumulator Finality:

• ARC Proofs: Accumulated proofs attest to the validity of the chain up
to the checkpoints, leveraging the cryptographic soundness of the ARC
framework.

• Genesis Linkage: The accumulator Ai in each block provides a proof chain
back to the genesis block, ensuring historical integrity.

• Soundness Guarantees: The finality is strengthened by the soundness
properties of the accumulation scheme, making it cryptographically in-
feasible to forge valid proofs for invalid chains.

Definition 6.4 (Finality Predicate). A block Bi is considered final if the fol-
lowing conditions are met:

Final(Bi) =



true, if there exists a checkpoint Bcp such that:

• Bcp is at least k blocks ahead of Bi,

• Bi precedes Bcp in the chain,

• Acp provides a valid accumulated proof through Bi;

false, otherwise.

6.2.2 Security Properties

The finality mechanism provides strong security guarantees:

Theorem 6.5 (Finality Security). Assuming an honest majority and security
parameter λ, the ARC-Chain protocol’s finality mechanism ensures:

• Persistence (Safety): If a block Bi is finalized by an honest node, then
Bi and all its ancestor blocks will remain permanently in the blockchain,
except with probability at most 2−λ.

• Liveness: Transactions are eventually included in the blockchain and be-
come finalized within a bounded number of slots (typically O(k)), with high
probability.

• Consistency: If an honest node finalizes a block Bi at time t, then all
other honest nodes will also consider Bi as finalized after time t+∆, where
∆ is the network delay bound.

47



6.2.3 Light Client Finality

Light clients benefit from the finality mechanism through efficient verification
methods:

• Checkpoint Verification: Light clients can verify the chain’s validity up
to a checkpoint using O(λ) operations, relying on the accumulated proofs.

• Constant-Size Proofs: Since proofs are constant in size, light clients
can efficiently download and store the necessary data.

• Efficient Synchronization: Light clients can synchronize their view of
the blockchain by verifying the latest finalized checkpoint, without pro-
cessing intermediate blocks.

• Security Equivalence: Light clients achieve security guarantees equiv-
alent to full nodes concerning finalized blocks.

Theorem 6.6 (Light Client Finality). Light clients can verify the finality of
blocks with:

• Verification Time: O(λ) operations per finalized block or checkpoint.

• Communication Overhead: O(λ) bits for downloading proofs and check-
point data.

• Storage Requirements: O(λ) bits to store the necessary state and proofs.

• Security Guarantees: Equivalent to full nodes regarding finalized blocks,
under the same security assumptions.

6.2.4 Implementation Considerations

To optimize the finality mechanism’s performance and reliability, several imple-
mentation strategies are employed:

Checkpoint Selection:

• High Stake Participation: Select checkpoint blocks produced by partici-
pants with significant stake to enhance security.

• Transaction Inclusion: Ensure that checkpoint blocks include a substan-
tial number of transactions to maximize network efficiency.

• Spacing and Timing : Maintain appropriate intervals between checkpoints
to balance finality speed and network overhead.

• Network Conditions: Adapt checkpoint frequency based on observed net-
work performance and latency.

48



Proof Generation and Optimization:

• Pipelined Proof Generation: Overlap the computation of proofs with block
production to reduce latency.

• Intermediate Value Caching : Store intermediate accumulator values to
avoid redundant computations.

• Parallel Verification: Utilize parallel processing for verifying multiple
checkpoints or blocks simultaneously.

• Batching : Aggregate proofs for multiple blocks or transactions to reduce
overhead.

Performance Enhancements:

• Early Finality : Implement mechanisms to achieve faster finality for certain
transactions, possibly through increased stake or fees.

• Storage Management : Prune unnecessary data from storage after finality
to optimize resource usage.

• Synchronization Protocols: Develop efficient protocols for nodes joining
the network to catch up to the current state quickly.

• Adaptive Protocols: Adjust protocol parameters dynamically in response
to network changes or observed security threats.

6.3 Conclusion

The consensus layer of the ARC-Chain protocol represents a significant advance-
ment in blockchain technology, combining robust security, efficient verification,
and practical performance. By integrating a modified proof-of-stake mecha-
nism with the ARC accumulation framework, the protocol achieves constant-size
proofs, enabling both full nodes and light clients to participate effectively. The
sophisticated finality mechanism further strengthens the protocol’s reliability,
ensuring that transactions become irreversible in a timely and secure manner.

This innovative design positions the ARC-Chain protocol as a revolutionary
solution capable of meeting the demands of modern decentralized applications,
providing a scalable, secure, and efficient foundation for the future of blockchain
technology.

7 Protocol Security

The ARC-Chain protocol is designed with robust security mechanisms to ensure
the integrity, consistency, and availability of the blockchain. This section pro-
vides a comprehensive security analysis, establishing the protocol’s core security
properties under standard cryptographic assumptions and adversarial models.

49



7.1 Security Model

Definition 7.1 (Adversarial Model). We consider a static adversary A with
the following capabilities:

• Control over Participants: The adversary can corrupt up to a fraction
β < 1/2 of the total stake, controlling the behavior of the corresponding
participants.

• Network Control: The network operates in a partially synchronous
model with maximum network delay ∆. The adversary can delay mes-
sages up to ∆ but cannot prevent delivery beyond this bound.

• Computation: The adversary has polynomial-time computational re-
sources, adhering to the standard security parameter λ.

• Knowledge of the Protocol: The adversary is aware of the protocol’s
internals, including cryptographic primitives and parameters.

Definition 7.2 (Assumptions). The security analysis relies on the following
standard cryptographic assumptions:

• Collision Resistance of Hash Functions: Hash functions used in the
protocol are collision-resistant.

• Soundness of SNARKs: The Succinct Non-interactive Arguments of
Knowledge (SNARKs) employed are computationally sound and zero-
knowledge.

• Security of VRFs: The Verifiable Random Functions (VRFs) used for
leader election are secure, ensuring unpredictability and uniqueness.

• Hardness of Underlying Problems: The elliptic curve and finite field
parameters are chosen such that the Discrete Logarithm Problem (DLP)
and other related problems are computationally infeasible.

• Random Oracle Model: The hash functions behave as ideal random
oracles.

7.2 Core Security Properties

The ARC-Chain protocol aims to satisfy the standard blockchain security prop-
erties of Common Prefix, Chain Quality, and Chain Growth, as formalized below.

7.2.1 Common Prefix (CP)

Definition 7.3 (Common Prefix Property). A blockchain protocol satisfies the
Common Prefix property with parameter k if, at any given time, the chains
held by any two honest parties are identical when truncated by k blocks from

50



their respective chain tips. Formally, for any two honest parties P1 and P2 with
chains C1 and C2 at times t1 and t2 respectively:

prefix−k(C1) = prefix−k(C2)

7.2.2 Chain Quality (CQ)

Definition 7.4 (Chain Quality Property). A blockchain protocol satisfies the
Chain Quality property with parameter µ if, in any sufficiently long chain seg-
ment of length l ≥ τ , the fraction of blocks generated by honest parties is at
least µ. Formally, for any chain segment S of length l:

HonestBlocks(S)

l
≥ µ

7.2.3 Chain Growth (CG)

Definition 7.5 (Chain Growth Property). A blockchain protocol satisfies the
Chain Growth property with parameters τ and s if, during any time interval of
length s, the chain of any honest party grows by at least τs blocks. Formally,
for any honest party’s chain length L(t) at time t:

L(t+ s)− L(t) ≥ τs

7.3 Security Theorems

We establish that the ARC-Chain protocol satisfies the above properties under
the specified adversarial model and cryptographic assumptions.

7.3.1 Common Prefix Theorem

Theorem 7.6 (Common Prefix). Under the assumption that the adversary
controls less than 50% of the total stake (i.e., β < 1/2), and the network delay
is bounded by ∆, the ARC-Chain protocol satisfies the Common Prefix property
with parameter k, except with negligible probability in the security parameter λ.

Pr[¬CP(k)] ≤ negl(λ)

Proof Sketch. The proof relies on the properties of the underlying consensus
mechanism and the security of the accumulation scheme:

• Chain Consistency : The fork choice rule, based on the density and check-
pointing mechanisms, ensures that honest parties adopt the same chain
prefixes.

• Accumulation Soundness: The accumulation proofs prevent adversaries
from forging valid chains that would be accepted by honest parties.

51



• Finality : After k blocks, the probability of a fork is negligible due to the
security of the consensus protocol and the checkpoint finality mechanism.

7.3.2 Chain Quality Theorem

Theorem 7.7 (Chain Quality). Assuming an honest majority stake and proper
parameter selection, the ARC-Chain protocol satisfies the Chain Quality prop-
erty with parameter µ = 1−β−ϵ, for any ϵ > 0, except with negligible probability.

Pr[¬CQ(µ)] ≤ negl(λ)

Proof Sketch. The Chain Quality property is ensured by:

• Stake-Proportional Leader Selection: The probability of being selected as
a slot leader is proportional to the participant’s stake.

• Security Against Grinding Attacks: The VRF ensures that adversaries
cannot manipulate leader selection beyond their stake proportion.

• Fork Choice Rule: Honest nodes prefer chains with higher density and
valid accumulators, which penalizes adversarial chains with a higher frac-
tion of adversarial blocks.

7.3.3 Chain Growth Theorem

Theorem 7.8 (Chain Growth). Under the given network and adversarial con-
ditions, the ARC-Chain protocol satisfies the Chain Growth property with pa-
rameters τ and s, where τ is determined by the minimum expected number of
honest blocks per unit time, except with negligible probability.

Pr[¬CG(τ, s)] ≤ negl(λ)

Proof Sketch. Chain Growth is achieved due to:

• Active Slot Coefficient f : Ensures that in each slot, there is a positive
probability that an honest participant is selected as the leader.

• Honest Majority : With an honest majority, the expected number of honest
blocks over time s is sufficient to guarantee growth.

• Network Synchrony : The network delay bound ∆ ensures that honest
blocks propagate and are incorporated into the chain in a timely manner.

52



7.4 Additional Security Properties

7.4.1 State Validity

Theorem 7.9 (State Validity). Except with negligible probability, any state
transition accepted by an honest node in the ARC-Chain protocol is valid, ad-
hering to all protocol rules.

Pr[InvalidState] ≤ negl(λ)

Proof Sketch. State validity is ensured by:

• SNARK Proofs: The state transitions are accompanied by SNARK proofs
verifying the correctness of the updates.

• Polynomial Encodings: The use of Reed-Solomon codes and rational con-
straints ensures that state updates cannot be falsified without detection.

• Merkle Commitments: The Merkle roots in block headers bind the state
polynomials, preventing unauthorized modifications.

7.4.2 Accumulation Soundness

Theorem 7.10 (Accumulation Soundness). The accumulation scheme in the
ARC-Chain protocol is sound, meaning that an adversary cannot produce a valid
accumulation proof for an invalid sequence of state transitions, except with neg-
ligible probability.

Pr[InvalidAccumulation] ≤ negl(λ)

Proof Sketch. Soundness is derived from:

• SNARK Security : The SNARKs used in the accumulation scheme are
zero-knowledge and sound.

• Cycle of Elliptic Curves: The use of a cycle of elliptic curves allows for
recursive proof composition without compromising security.

• Cryptographic Assumptions: The hardness of the underlying cryptographic
problems prevents forgery of valid proofs for invalid statements.

53



7.4.3 Consensus Security

Theorem 7.11 (Consensus Security). The consensus mechanism of the ARC-
Chain protocol is secure under the specified adversarial model, ensuring that
consensus properties are maintained except with negligible probability.

Pr[ConsensusFailure] ≤ negl(λ)

Proof Sketch. Consensus security is based on:

• Leader Election Security : The VRF-based leader election is secure, pre-
venting adversaries from increasing their chances of being selected beyond
their stake.

• Fork Choice Rule: The density-based fork choice rule favors chains with
higher honest participation.

• Checkpointing : Regular checkpoints provide additional security against
long-range attacks and reinforce chain finality.

7.4.4 Light Client Security

Theorem 7.12 (Light Client Security). Light clients in the ARC-Chain protocol
can securely verify the blockchain state and consensus without processing the
entire chain, maintaining equivalent security guarantees to full nodes, except
with negligible probability.

Pr[LightClientCompromise] ≤ negl(λ)

Proof Sketch. Light client security is ensured by:

• Succinct Proofs: The accumulation proofs allow light clients to verify state
transitions and consensus with constant-sized proofs.

• Checkpoint Verification: Light clients can efficiently verify checkpoints,
ensuring they are on the canonical chain.

• Fork Choice Rule Compliance: Light clients follow the same fork choice
rule, and the accumulation proofs prevent acceptance of invalid forks.

54



7.5 Resistance to Specific Attacks

7.5.1 Long-Range Attacks

Theorem 7.13 (Resistance to Long-Range Attacks). The ARC-Chain protocol
is secure against long-range attacks where an adversary attempts to create a
valid alternative chain starting from a point far in the past, except with negligible
probability.

Pr[LongRangeAttackSuccess] ≤ negl(λ)

Proof Sketch. Protection against long-range attacks is achieved through:

• Checkpointing Mechanism: Regular checkpoints with accumulated proofs
prevent the adversary from forging a longer valid chain from the past.

• Stake Shifts: Since stake distributions change over time, and the adversary
controls less than half of the stake at any given time, they cannot dominate
the chain from the past.

• Accumulation Proofs: The need to produce valid accumulation proofs back
to the genesis block makes it computationally infeasible to create a fraud-
ulent chain.

7.5.2 Nothing-at-Stake Problem

Theorem 7.14 (Mitigation of Nothing-at-Stake). The ARC-Chain protocol
mitigates the nothing-at-stake problem, where participants might attempt to mine
on multiple forks without cost, by ensuring that honest behavior is incentivized
and deviations are detectable, except with negligible probability.

Pr[NothingAtStakeAbuse] ≤ negl(λ)

Proof Sketch. Mitigation strategies include:

• Stake Penalties: Protocol rules can include penalties for validators who
are detected supporting multiple forks.

• Accumulation Proofs: The accumulation mechanism binds validators to
the chain they support, making it risky to support multiple chains.

• Reputation Systems: Participants are incentivized to behave honestly to
maintain their reputation and future rewards.

55



7.5.3 Grinding Attacks

Theorem 7.15 (Resistance to Grinding Attacks). The protocol is secure against
grinding attacks, where an adversary attempts to influence future leader selection
by manipulating VRF inputs, except with negligible probability.

Pr[GrindingAttackSuccess] ≤ negl(λ)

Proof Sketch. Resistance is achieved through:

• Unpredictable Randomness: VRF outputs are unpredictable and cannot
be influenced by the adversary.

• Forward-Secure VRFs: The adversary cannot compute VRF outputs for
future slots without the corresponding secret keys.

• Input Commitments: The VRF inputs include commitments to previous
randomness and protocol state, preventing manipulation.

7.5.4 Adaptive Adversary Considerations

While the primary analysis assumes a static adversary, the protocol includes
features to mitigate adaptive adversarial behavior.

• Ephemeral Keys: Use of ephemeral keys and frequent key updates limit
the window of opportunity for adaptive corruption.

• Delayed Secret Revelation: Secret inputs (e.g., VRF outputs) are revealed
after a delay, preventing the adversary from acting on them immediately.

• Robustness Against Late Corruption: The protocol’s reliance on crypto-
graphic accumulators and SNARKs provides resilience against adversaries
who adaptively corrupt participants.

7.6 Conclusion

The ARC-Chain protocol’s security analysis demonstrates that it satisfies es-
sential blockchain security properties under standard cryptographic assump-
tions and an honest majority stake. The integration of advanced cryptographic
techniques, such as recursive SNARKs and polynomial commitments, provides
strong guarantees of state validity and consensus integrity while enabling effi-
cient verification suitable for both full nodes and light clients. The protocol is
robust against common attacks in the blockchain domain, ensuring its suitability
as a secure and scalable foundation for decentralized applications.

56



8 Parallel Architecture

To achieve exceptional performance and scalability, the ARC-Chain protocol
incorporates a sophisticated parallel processing architecture. By leveraging par-
allelism at multiple levels—state partitioning, transaction execution, and proof
generation—the protocol ensures high throughput and low latency while main-
taining strong security guarantees and efficient verification. This section details
the theoretical framework and practical implementation of the parallel architec-
ture within the ARC-Chain protocol.

8.1 Theoretical Framework

Parallelization in ARC-Chain is grounded in decomposing complex computa-
tions into smaller, independent tasks that can be executed concurrently. Specif-
ically, we consider the parallelization of the proof generation and verification
processes, which are critical for the protocol’s operation.

Let P denote the comprehensive proof system required for protocol correct-
ness, consisting of n components. We define a parallelization scheme Φ that
partitions P into k subproofs {p1, p2, . . . , pk}, where each subproof pi can be
generated and verified independently.

For a given statement S, the parallel verification function is defined as:

V∥(S) =

k∧
i=1

V (pi) (1)

where V (pi) denotes the verification function for subproof pi, and
∧

repre-
sents the logical AND operation.

The parallelization scheme Φ must satisfy the following properties:

1. Correctness Preservation:

∀S : V∥(S) ≡ V (S)

The parallel verification must be equivalent to the serial verification of the
entire proof.

2. Independence:
∀i ̸= j : V (pi) ⊥ V (pj)

The verification of each subproof must be independent of the others.

3. Completeness:
k⋃

i=1

pi ≡ P

The union of all subproofs must cover the entire proof system.

57



The expected parallel speedup σ achieved by this scheme is bounded by:

1 ≤ σ ≤ k · Tserial

Tparallel
≤ k +

Coverhead

Tserial
(2)

where Tserial is the time required for serial verification, Tparallel is the time
for parallel verification including overhead, and Coverhead represents the coordi-
nation and communication overhead associated with parallel execution.

8.2 Multi-Level Parallelization

ARC-Chain implements parallelization at multiple levels, including state par-
titioning, transaction processing, and proof generation. This hierarchical ap-
proach maximizes resource utilization and minimizes bottlenecks.

8.2.1 State Partitioning

Definition 8.1 (State Partitioning). The global state space S is partitioned
into k disjoint regions:

S =

k⋃
i=1

Si with Si ∩ Sj = ∅ for i ̸= j

Each partition Si maintains:

• An independent state root Ri.

• A separate polynomial encoding fi for the state in Si.

• A disjoint set of transactions Ti that read from or write to Si.

Theorem 8.2 (Multi-Level Consistency). For the partitioned state {S1, . . . ,Sk},
the following properties hold:

1. Disjointness: Si ∩ Sj = ∅ for all i ̸= j.

2. Global State Root: The combined state roots produce the global state
commitment:

Rglobal = Hash(R1 ∥ R2 ∥ · · · ∥ Rk)

3. Transaction Locality: For each transaction tx ∈ Ti, all state reads and
writes are confined to Si.

Read(tx) ∪Write(tx) ⊆ Si

Proof. These properties follow from the definition of state partitioning and the
constraints imposed on transaction assignment. Disjointness ensures no over-
lap between partitions, the global state root combines partition roots for con-
sistency, and transaction locality maintains that transactions affect only their
assigned partitions.

58



8.2.2 Hierarchical Proof Structure

Definition 8.3 (Hierarchical Proof Structure). The proof system implements a
hierarchical structure consisting of multiple levels H = (L1, L2, . . . , Lm), where
each level Li comprises a set of proofs {pi,1, pi,2, . . . , pi,ni

} corresponding to
subcomponents of the protocol.

The verification time for level Li is given by:

T (Li) = max
j

T (pi,j) + Cmerge(ni)

where T (pi,j) is the time to verify proof pi,j and Cmerge(ni) is the overhead
associated with merging ni proofs at level i.

Lemma 8.4 (Parallelization Efficiency). The total verification time Ttotal for
the hierarchical proof system satisfies:

Ttotal ≤
m∑
i=1

(
T (Li)

ni
+ Cmerge(ni)

)
Proof. Assuming that proofs within each level Li can be verified in parallel, the

time to verify all proofs in Li is bounded by T (Li)
ni

, plus the merging overhead
Cmerge(ni). Summing over all levels gives the total verification time.

8.3 Transaction-Level Parallelization

At the transaction level, ARC-Chain processes transactions in parallel across
different state partitions, maximizing throughput and minimizing latency.

8.3.1 Parallel Processing within Partitions

For each partition Si, the following operations are performed concurrently:

• Transaction Encoding: Transactions in Ti are encoded into polynomial
constraints gi.

• State Transition Proof Generation: Generate a proof πi demonstrat-
ing the valid state transition from fi to f ′i .

• State Updates: Update the state root from Ri to R′i based on the exe-
cuted transactions.

Definition 8.5 (Transaction-Level Witness). The witness for partition Si is
defined as:

wi = (fi, f
′
i , gi, πi, Ri, R

′
i)

which must satisfy the verification conditions:

Verify(wi) ≡ ValidTransition(fi → f ′i)∧Consistent(gi)∧StateUpdateValid(Ri → R′i)

59



Theorem 8.6 (Parallel Execution Soundness). Given a valid state partitioning
and transaction assignment, parallel execution within each partition preserves
soundness if:

1. All witnesses are valid:

∀i : Verify(wi) = true

2. The updated global state root correctly combines the partition roots:

R′global = Hash(R′1 ∥ R′2 ∥ · · · ∥ R′k)

3. There are no cross-partition dependencies that are unaccounted for:

∀i ̸= j : Causal(Ti) ∩ Causal(Tj) = ∅

where Causal(Ti) represents the set of state elements that Ti depends on
or modifies.

Proof. Soundness is preserved because transactions in different partitions oper-
ate on disjoint state, and the verification of each partition’s witness ensures local
correctness. The global state root combines these local updates, maintaining
overall consistency.

8.3.2 Complexity Analysis

Lemma 8.7 (Parallel Execution Complexity). The total time complexity Tparallel

for transaction-level parallel execution across k partitions is:

Tparallel = max
i
{Tencode(|Ti|) + Tprove(|Si|)}+ Cmerge(k)

where:

• Tencode(|Ti|) is the time to encode transactions in partition Si.

• Tprove(|Si|) is the time to generate the state transition proof for Si.

• Cmerge(k) is the overhead for merging proofs and combining state roots
from all partitions.

Proof. Since partitions operate concurrently, the total time is dominated by the
slowest partition plus the overhead of merging results. This ensures that adding
more partitions can effectively reduce the overall processing time up to the point
where the merging overhead becomes significant.

60



8.4 Proof Generation Pipeline

Efficient proof generation is critical for maintaining high throughput. ARC-
Chain utilizes a parallel proof generation pipeline that distributes the compu-
tational workload across multiple processors or cores.

Base Proof 1
Size: O(λ)

Base Proof 2
Size: O(λ)

Base Proof 3
Size: O(λ)

...

Proof Aggregation
Final Proof
Size: O(λ)

Verifier

Recursive Composition

8.4.1 Segmented Evaluation Domains

Definition 8.8 (Segmented Evaluation Domain). The evaluation domain D for
the polynomial commitments is divided into m segments:

D =

m⋃
i=1

Di with Di ∩ Dj = ∅ for i ̸= j

Each segment Di corresponds to a subset of the domain over which proofs
can be generated independently.

61



8.4.2 Parallel Proof Generation Algorithm

Algorithm 7 Parallel Proof Generation

Require: Polynomial f(X), evaluation domain D of size n, number of segments
m

Ensure: Complete proof π, global Merkle root R
1: Partition D into m disjoint segments {D1, . . . ,Dm}
2: Initialize a thread pool with m threads
3: parallel for each segment i ∈ {1, . . . ,m} do
4: Compute evaluations: Ei = {f(α) | α ∈ Di}
5: Build partial Merkle tree Mi over Ei

6: Generate proof πi for segment i using Ei and Mi

7: end parallel for
8: Aggregate proofs: π = AggregateProofs(π1, . . . , πm)
9: Combine Merkle roots: R = CombineRoots(M1, . . . ,Mm)

10: return π, R

Theorem 8.9 (Pipeline Correctness). The parallel proof generation pipeline
maintains correctness and soundness if:

1. The union of segments covers the entire domain:

D =

m⋃
i=1

Di

2. Segments are disjoint:

∀i ̸= j : Di ∩ Dj = ∅

3. The aggregated proof π is valid if and only if all individual proofs πi are
valid:

Verify(π) ≡
m∧
i=1

Verify(πi)

Proof. Since each segment is processed independently and the proofs are cor-
rectly aggregated, the combined proof π accurately reflects the correctness of
the entire evaluation. The use of cryptographic accumulators ensures that the
integrity of the overall proof is maintained.

8.4.3 ARC Proof Aggregation Complexity

Lemma 8.10 (ARC Proof Aggregation Complexity). The aggregation of m
segment proofs using the ARC framework has:

62



• Time Complexity: O(m logm) field operations.

• Communication Complexity: O(m) field elements, as each segment
contributes a constant-size proof.

• Verification Complexity: O(logm) pairing operations, due to the re-
cursive structure of the proof aggregation.

Proof. The recursive nature of the ARC accumulation allows for efficient aggre-
gation of multiple proofs. The logarithmic verification complexity arises from
the hierarchical combination of proofs.

8.5 Multi-Layer State Architecture

The ARC-Chain protocol employs a multi-layer state architecture to optimize
performance by categorizing state elements based on access patterns and update
frequencies.

Pending Transactions Worker Node 1 Worker Node 2 Worker Node 3

Partition 1 Partition 2 Partition 3

Transaction Processing

Proof Generation

Transaction Processing

Proof Generation

Transaction Processing

Proof Generation

Aggregation Layer

Global State and Proof

8.5.1 State Hierarchy

Definition 8.11 (State Layers). The state is organized into multiple layers
L = {L1, L2, . . . , Lm}, where each layer Li is characterized by:

• Update Frequency fi: The average number of updates per block.

• State Size |Si|: The number of state elements in the layer.

63



• Access Patterns Ai: The set of operations applicable to the layer, e.g.,
read, write, delete.

Layers are ordered such that f1 > f2 > · · · > fm, reflecting that layers
with higher update frequencies are processed more frequently and optimized for
speed.

8.5.2 Layer Independence and Dependencies

Theorem 8.12 (Layer Independence). For layers Li and Lj with i < j, the
following properties hold:

1. Update Time: The average update time satisfies Tupdate(Li) < Tupdate(Lj).

2. State Separation: The state elements in different layers are disjoint:

Si ∩ Sj = ∅

3. Dependency Direction: If there is a dependency between state elements
x ∈ Li and y ∈ Lj, then x does not depend on y (i.e., lower layers can
proceed without waiting for higher layers).

Proof. By designing the layers to minimize dependencies, particularly from
lower to higher layers, we ensure that operations on more frequently updated
layers are not delayed by less frequently updated layers.

8.5.3 Layer-Specific State Components

Definition 8.13 (Layer-Specific State). Each layer maintains distinct types of
state elements:

• Layer 1 (L1): Dynamic account data, such as balances and nonces.

L1 = {(addr,balance,nonce) | addr ∈ A}

• Layer 2 (L2): Smart contract code and storage.

L2 = {(addr, code, storage) | addr ∈ C}

• Layer 3 (L3): Protocol parameters and configuration data.

L3 = {(param, value, epoch) | param ∈ P}

Here, A is the set of all account addresses, C is the set of contract addresses,
and P is the set of protocol parameters.

64



8.5.4 Access Time Analysis

Lemma 8.14 (Access Time Bounds). For any operation op accessing state in
layer Li, the time complexity T (op) is bounded by:

T (op) ≤ Ti +
∑
j<i

log |Sj |

where Ti is the base access time for layer Li, and the summation accounts
for any required accesses to higher-priority layers.

Proof. Accessing state in layer Li may involve checking higher-priority layers
for dependencies or preconditions, contributing to the total access time. How-
ever, because the layers are designed to minimize cross-layer dependencies, the
additional time is limited.

8.5.5 Performance Optimization

Theorem 8.15 (Optimality Conditions). The multi-layer state architecture
achieves optimal performance under the following conditions:

1. The ratio of state size to update frequency increases with the layer index:

|Si|
fi
≤ |Si+1|

fi+1

2. The base access time for each layer satisfies:

Ti ≤
1

fi

∑
j ̸=i

Tj

3. Adequate cache resources are allocated to each layer:

Cache(Li) ≥ fi · AccessSize(Li)

where Cache(Li) is the cache size allocated to layer Li, and AccessSize(Li)
is the average size of data accessed in Li.

Proof. These conditions ensure that layers with higher update frequencies are
optimized for speed, and that resource allocation matches the workload char-
acteristics of each layer. By appropriately sizing caches and balancing update
frequencies, the architecture minimizes bottlenecks.

65



8.6 Conclusion

By implementing a multi-level parallel architecture, ARC-Chain achieves excep-
tional performance, enabling it to process a large volume of transactions with low
latency. The careful design of state partitioning, transaction-level paralleliza-
tion, proof generation pipelines, and a multi-layer state architecture ensures
that the protocol scales effectively with available computational resources. This
robust parallelization strategy positions ARC-Chain as a highly efficient and
scalable blockchain protocol suitable for a wide range of decentralized applica-
tions.

9 Conclusion and Future Work

The ARC-Chain protocol represents a significant leap forward in blockchain
technology, addressing the longstanding challenges of scalability, efficiency, and
security. By integrating a hierarchical state management system, an advanced
consensus mechanism, and a robust parallel processing architecture, ARC-Chain
achieves high throughput and low latency while maintaining strong security
guarantees and efficient verification processes.

9.1 Contributions and Advancements

Compared to existing blockchain systems, ARC-Chain offers several key ad-
vancements:

• Efficient State Management: The hierarchical state encoding scheme
allows for logarithmic access times relative to the size of individual state
layers. This contrasts with traditional monolithic state architectures,
where access times grow linearly with the overall state size. By segmenting
the state into layers based on update frequency and data type, ARC-Chain
optimizes performance and resource utilization.

• Parallel Processing Architecture: The multi-level parallelization frame-
work enables concurrent transaction processing and proof generation across
different state partitions and layers. This design maximizes resource uti-
lization, reduces bottlenecks, and significantly accelerates verification times
without compromising the protocol’s integrity.

• Succinct Proofs and Verification: Leveraging advanced cryptographic
accumulators and recursive proof systems, ARC-Chain maintains constant-
size proofs regardless of the blockchain’s length. This feature is particu-
larly beneficial for light clients, allowing them to verify transactions and
consensus validity efficiently without processing the entire chain.

• Robust Security Mechanisms: The integration of a modified proof-
of-stake consensus mechanism with the ARC accumulation framework en-
sures strong security properties. The protocol is resilient against com-
mon attacks such as long-range attacks, nothing-at-stake problems, and

66



grinding attacks, underpinned by rigorous cryptographic assumptions and
soundness proofs.

9.2 Practical Considerations

Implementing ARC-Chain in a real-world environment involves addressing sev-
eral practical challenges:

• Resource Allocation: Dynamically adjusting the number of parallel
workers is crucial to optimize performance while minimizing overhead.
Efficient strategies for resource distribution are essential, especially as net-
work conditions and workloads fluctuate. The goal is to find the optimal
balance between computational throughput and coordination overhead.

• Network Constraints: Communication overhead can become a bottle-
neck in highly parallelized systems. Careful protocol design is necessary
to ensure that bandwidth requirements remain manageable, even as the
system scales. Techniques such as batching, compression, and efficient
message propagation protocols can mitigate these concerns.

9.3 Open Challenges

Despite its advancements, ARC-Chain opens up new avenues for research and
poses several open questions:

• Optimal State Partitioning: Determining the most effective strate-
gies for partitioning the state space, especially in dynamic environments
where the state changes frequently, remains an area for further explo-
ration. Balancing load across partitions to prevent hotspots and ensure
efficient parallel processing is a complex challenge.

• Proof Aggregation Overhead: Developing tighter bounds on the over-
head associated with proof aggregation could lead to further improvements
in verification times and overall system performance. Understanding the
trade-offs between proof size, aggregation complexity, and verification ef-
ficiency is critical.

• Storage vs. Computation Trade-offs: Balancing the storage require-
ments for maintaining state and proofs against the computational costs
of verification is an ongoing challenge. Exploring strategies that optimize
this balance can lead to more efficient implementations, particularly for
resource-constrained environments.

9.4 Future Directions

Looking ahead, several priority areas could enhance the ARC-Chain protocol
and contribute to the broader blockchain ecosystem:

67



• Adaptive Parallelization: Implementing self-tuning mechanisms that
dynamically adjust parallelization parameters based on real-time perfor-
mance metrics could optimize resource utilization. Such mechanisms would
monitor efficiency gradients and adapt the degree of parallelism to current
workloads and network conditions.

• Cross-Layer Optimization: Investigating unified optimization strate-
gies that consider the interactions between different protocol layers may
yield performance gains. By optimizing the protocol holistically rather
than in isolation, it’s possible to identify synergies and mitigate cross-
layer inefficiencies.

• Post-Quantum Security: As quantum computing technology advances,
extending the protocol to be resistant to quantum attacks is critical. In-
tegrating post-quantum cryptographic primitives would future-proof the
protocol, ensuring long-term security for transactions and state data against
emerging threats.

9.5 Final Remarks

The ARC-Chain protocol demonstrates that it is possible to achieve high scal-
ability and robust security in a blockchain system through innovative archi-
tectural design and advanced cryptographic techniques. By addressing both
theoretical and practical challenges, ARC-Chain lays the groundwork for a new
generation of decentralized applications that require high performance without
sacrificing trustlessness or decentralization.

As the blockchain landscape continues to evolve, the principles and mech-
anisms introduced by ARC-Chain offer valuable insights and tools for future
development. Collaboration between researchers, developers, and the broader
community will be essential to realize the full potential of these innovations.
The continued exploration of open challenges and pursuit of future directions
will contribute significantly to the advancement of blockchain technology and
its adoption across various industries.

Acknowledgments

We extend a huge dept of gratitude to the Mina Foundation for a generous grant
which made this work possible. Thanks especially to Will Cole and Yasin Berk
for support.

References

[ACFY24] G. Arnon, A. Chiesa, G. Fenzi, and E. Yogev. STIR: Reed-Solomon
Proximity Testing with Fewer Queries. In: Proceedings of the 44th
Annual International Cryptology Conference (CRYPTO ’24), pages
380–413, 2024.

68



[BBHR18] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev. Fast Reed-
Solomon Interactive Oracle Proofs of Proximity. In: Proceedings of
the 45th International Colloquium on Automata, Languages, and
Programming (ICALP ’18), pages 14:1–14:17, 2018.

[BC23] B. Bünz and B. Chen. Protostar: Generic Efficient Accumula-
tion/Folding for Special-Sound Protocols. In: Proceedings of the
29th International Conference on the Theory and Application of
Cryptology and Information Security (ASIACRYPT ’23), pages
77–110, 2023.

[BCCT13] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. Recursive Com-
position and Bootstrapping for SNARKs and Proof-Carrying Data.
In: Proceedings of the 45th ACM Symposium on the Theory of
Computing (STOC ’13), pages 111–120, 2013.

[BCGRS17] E. Ben-Sasson, A. Chiesa, A. Gabizon, M. Riabzev, and N.
Spooner. Interactive Oracle Proofs with Constant Rate and Query
Complexity. In: Proceedings of the 44th International Colloquium
on Automata, Languages and Programming (ICALP ’17), pages
40:1–40:15, 2017.

[BCIKS23] E. Ben-Sasson, D. Carmon, Y. Ishai, S. Kopparty, and S. Saraf.
Proximity Gaps for Reed-Solomon Codes. Journal of the ACM,
70(5):31:1–31:57, 2023.

[BCLMS21] B. Bünz, A. Chiesa, W. Lin, P. Mishra, and N. Spooner. Proof-
Carrying Data Without Succinct Arguments. In: Proceedings of
the 41st Annual International Cryptology Conference, 2021.

[BCMS20] B. Bünz, A. Chiesa, P. Mishra, and N. Spooner. Proof-Carrying
Data from Accumulation Schemes. In: Proceedings of the 18th The-
ory of Cryptography Conference (TCC ’20), 2020.

[BDFG21] D. Boneh, J. Drake, B. Fisch, and A. Gabizon. Halo Infinite: Proof-
Carrying Data from Additive Polynomial Commitments. In: Pro-
ceedings of the 41st Annual International Cryptology Conference
(CRYPTO ’21), 2021.

[BGH19] S. Bowe, J. Grigg, and D. Hopwood. Halo: Recursive Proof Compo-
sition without a Trusted Setup. Cryptology ePrint Archive, Report
2019/1021, 2019.

[BMNW24] B. Bünz, P. Mishra, W. Nguyen, andW.Wang. Accumulation with-
out Homomorphism. Cryptology ePrint Archive, Report 2024/474,
2024.

[Bünz24] B. Bünz, P. Mishra, W. Nguyen, and W. Wang. Arc: Accumula-
tion for Reed–Solomon Codes. Cryptology ePrint Archive, Paper
2024/1731, 2024.

69



[Bonneau20] J. Bonneau, I. Meckler, V. Rao, and E. Shapiro. Coda: Decentral-
ized Cryptocurrency at Scale. Cryptology ePrint Archive, Paper
2020/352, 2020.

[KS24] A. Kothapalli and S. T. V. Setty. HyperNova: Recursive Arguments
for Customizable Constraint Systems. In: Proceedings of the 44th
Annual International Cryptology Conference (CRYPTO ’24), pages
345–379, 2024.

[KST22] A. Kothapalli, S. T. V. Setty, and I. Tzialla. Nova: Recursive Zero-
Knowledge Arguments from Folding Schemes. In: Proceedings of
the 42nd Annual International Cryptology Conference (CRYPTO
’22), pages 359–388, 2022.

[Mina] O(1) Labs. Mina Cryptocurrency. minaprotocol.org, 2020.

Disclaimer

This draft has been prepared with the assistance of GPT-based language generation
tools, which have been utilized to facilitate the writing process by enhancing clarity,
structure, and flow. All ideas, arguments, and claims presented herein remain the
intellectual responsibility of the authors.

The sources cited and referenced are currently undergoing active revision for accuracy,
completeness, and proper attribution. The final version of this paper will reflect a
thorough verification and adjustment of all citations to ensure scholarly rigor and
adherence to academic standards.

70


