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1 Introduction

Randomness plays a fundamental role within cryptography. For example, it plays a pivotal role
within key generation and cryptographic algorithms are subject to randomness tests. In multivari-
ate cryptography, the public key consists of a multivariate polynomial system and the goal of the
attacker is to find a solution of the system. In this context, one typically wishes for the system
be as close as possible to, or at least appear as, a random system. A random system is expected
to be hard to solve, since the Multivariate Quadratic Problem is not only NP-complete, but also
known to be hard to solve on average for a wide range of parameters. From this point of view,
e.g., a digital signature scheme whose public keys are sufficiently random is expected to be secure.

In this paper, we discuss what it means for a polynomial system to be random and how hard
it is to solve a random polynomial system. In Definition 7 we propose a mathematical formulation
for the concept of random system. The definition of randomness that we propose, which we call
algebraic randomness, is broad enough to include a vast majority of the systems which are of interest
in cryptography. We then specify our definition further in Definition 12. One advantage of this
definition is that the property of being random according to Definition 12 can be computationally
tested, at least in principle.

In Theorem 22, Corollary 26, Corollary 28, Theorem 34, and Proposition 32, we prove upper
bounds for the degree of regularity and the solving degree of an algebraically random polynomial
system, depending on parameters of the system such as the number of equations, the number
of variables, and the degrees of the equations. The usefulness of our bounds is twofold: On the
one side, our bounds can be used to directly produce bounds on the complexity of computing
a Gröbner basis, hence of solving, many systems which are of interest in cryptography. Bounds
on the complexity produced in this way have the advantage of being widely applicable and the
disadvantage of not always being close to the actual complexity for each system to which they
apply. On the other side, our bounds give us an idea of what security one can hope to achieve for
a system with given parameters. Therefore, our bounds can be used as a point of comparison for
the optimality of a given public key, in the following sense. Say that, in order to forge a signature
produced with a given multivariate digital signature scheme, one has to find a solution of a system
of m equations of degree D in n variables. Suppose that such a system is algebraically random.
Our results provide an upper bound B for the degree of regularity or the solving degree of such a
system. Say that one can compute or estimate by a different method the degree of regularity or
the solving degree of the specific system and suppose that this turns out to be C. Clearly, it must
always be that C ≤ B. However, how far C is from B gives us a measure of how close to optimal
the digital signature scheme is, for the given choice of parameters. In fact, since our bounds on
the degree of regularity are sharp, there are systems of m equations of degree D in n variables
whose degree of regularity is exactly B. In other words, if B and C are close, then there is not
much space for improvement, since any system with the same parameters as our public key can
have degree of regularity or solving degree at most B. If on the contrary B and C are far apart,
then potentially there is a lot of space for finding a more robust system with the same parameters,
since a system with those parameters can have degree of regularity or solving degree up to B.

The paper is structured as follows. Section 2 contains some useful preliminaries. In Section
3 we discuss the concept of randomness and propose two definitions of randomness for a polyno-
mial system, in Definition 7 and Definition 12. Throughout the paper, we refer to our notion of
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randomness as algebraic randomness. We briefly review cryptographic semiregular sequences and
semiregular sequences and show that the latter are algebraically random. In Section 4, after recall-
ing some results from commutative algebra, we prove some bounds on the degree of regularity and
the solving degree of an algebraically random system consisting of polynomials the same degree.
The bounds appear in Theorem 22, Corollary 26, Corollary 28, Theorem 34, and Proposition 32.
Finally, in Section 5 we show how to apply our results to check that the systems associated to
GeMSS and Rainbow are not algebraically random.

2 Preliminaries

Let Fq be the finite field of cardinality q and R = Fq[x1, . . . , xn] be the polynomial ring over Fq in
n variables. We start by recalling how a typical multivariate one-way function is constructed. Let
f1, . . . , fm ∈ R, and consider the evaluation map

F : Fn
q → Fm

q

α = (α1, . . . , αn) 7→ (f1(α1, . . . , αn), . . . , fm(α1, . . . , αn))

To hide the structure of F , we compose it with two random invertible linear maps S : Fn
q → Fn

q

and T : Fm
q → Fm

q . We obtain P = T ◦F ◦S, a set of m polynomials p1, . . . , pm in n variables over
Fq. The public key of the multivariate scheme is P = (p1, . . . , pm) and the private key is {F , S, T}.
The trapdoor consists of constructing F such that F−1 is efficiently computable. Notice that P
should be hard to invert without the knowledge of S, T , in particular it should be hard to recover
the structure of F from P.

Finding inverse images with respect to P corresponds to computing solutions of multivariate
polynomial systems. It is well-known that this problem can be solved by computing a Gröbner
basis of the system, we refer the interested reader to [13] for more detail. The first algorithm for
computing Gröbner bases appeared in the doctoral thesis of Buchberger [11]. Modern algorithms
for computing Gröbner bases are based on liner algebra and are more efficient than Buchberger’s.
Examples of linear-algebra-based algorithms are F4 [20], F5 [21], the XL Algorithm [18], Mutan-
tXL [12], and their variants. In all of these systems, one computes the reduced row echelon form
of the Macaulay matrix associated to the polynomial equations in a given degree, for one or more
degrees.

We now describe the main object of linear-algebra-based algorithms [6, Section 1.2]. Fix a
term order on R and let F = {f1, . . . , fm} ⊆ R be a system of homogeneous polynomials. The
columns of the homogeneous Macaulay matrix Md of F are labelled by the monomials of Rd

and arranged in decreasing order. The rows of Md are labelled by polynomials of the form mi,jfj ,
where mi,j ∈ R is a monomial such that deg(mi,jfj) = d. The entry (i, j) of Md is the coefficient
of the monomial of column j within the polynomial corresponding to the i-th row.

Let now f1, . . . , fm be arbitrary (not necessarily homogeneous) polynomials. The columns of
the Macaulay matrix M≤d of F are labelled by the monomials of R of degree ≤ d, arranged in
decreasing order. The rows ofM≤d correspond to polynomials of the formmi,jfj , wheremi,j ∈ R is
a monomial such that deg(mi,jfj) ≤ d. The entries of M≤d are defined as in the homogeneous case.
The rationale behind the use of homogeneous Macaulay matrices for homogeneous systems is that,
for a homogeneous system, the Macaulay matrix M≤d is a block matrix with blocks Md, . . . ,M0

as blocks.
One computes the reduced row echelon form of the Macaulay matrix, or of its homogeneous ver-

sion, in one or more degrees. For large enough degree, this produces a reduced Gröbner basis with
respect to the chosen order. Some algorithms, as e.g. MutantXL, use a variation called mutant
strategy in the non-homogeneous case: If the reduction of the Macaulay matrix M≤d produces
new polynomials g1, . . . , gℓ of degree strictly smaller than d, one appends to the reduction of M≤d

the polynomials mi,jgj , where mi,j ∈ R is a monomial such that deg(mi,jgj) ≤ d, then computes
the reduced row echelon form again. Throughout the paper, we refer to the algorithms that employ
the mutant strategy as mutant algorithms and to the others as standard algorithms. For a
description of the basic version of these algorithms, we refer to [13, Section 3.1] and [14, Section 1].

The computational complexity of computing the reduced row echelon form of the Macaulay
matrices M≤d and Md depends on their size, and hence on the degree d. This motivates the next
definition.
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Definition 1. Let F = {f1, . . . , fm} ⊆ R and let τ be a term order on R. The solving degree
of F with respect to τ is the least degree d such that Gaussian elimination on the Macaulay matrix
M≤d produces a τ -Gröbner basis of F . We denote by solv.degsτ (F) the solving degree of F with
respect to a standard algorithm and by solv.degmτ (F) the solving degree of F with respect to a
mutant algorithm. When τ is the degree reverse lexicographic order, we omit the subscript τ .

In general, the solving degree is not invariant under coordinate change. Moreover, it may
depend on the algorithm used to perform the Gröbner basis computation. In particular, for mutant
algorithms it may be smaller than for standard ones. Finally, the solving degree depends on the
choice of a term order on R.

The complexity of linear-algebra-based algorithms is dominated by the cost of computing a
degree reverse lexicographic Gröbner basis of the system, see [13, Sections 2 and 3] for more detail.
Therefore, an upper bound on the solving degree with respect to the reverse lexicographic order
yields an upper bound on the complexity of computing a lexicographic Gröbner basis, hence on
the complexity of solving the polynomial system.

Let I be a homogeneous ideal of R. For an integer d ≥ 0, we denote by Id = I ∩ Rd the
F-vector space of homogeneous polynomials of degree d in I. For g ∈ R a polynomial, we denote
by gtop the homogeneous part of g of largest degree. E.g., if g = x3 + 2xy2 − y + 1 ∈ F[x, y], then
gtop = x3 + 2xy2. For a polynomial system F = {f1, . . . , fm} ⊆ R, we denote by F top ⊆ R the
homogeneous system {f top

1 , . . . , f top
m }. Up to doing Gaussian elimination in a matrix whose rows

correspond to f1, . . . , fm, we may suppose that f top
1 , . . . , f top

m are linearly independent. We will
assume this throughout the paper.

The degree of regularity was introduced in [2, 5].

Definition 2. Let F ⊆ R be a polynomial system. The degree of regularity of F is

dreg(F) =

{
min{d ≥ 0 | (F top)d = Rd} if (F top)d = Rd for d ≫ 0

+∞ otherwise.

In the cryptographic literature, the degree of regularity is often used as a proxy for the solving
degree. This is the case, e.g., in the specification documents of GeMSS [15]. However, this does
not always produce reliable estimates. In fact, there are examples in which the gap between the
degree of regularity and the solving degree is large, see e.g. [10, Examples 3.2 and 3.3]. A recent
result by Semaev and Tenti [27, 28] however shows that, under suitable assumptions, the solving
degree of a system with respect to a standard algorithm is at most twice the degree of regularity.
Thanks to this result, an upper bound for the degree of regularity yields a proven upper bound for
the solving degree.

Theorem 3 ([28, Corollary 3.67] and [27, Theorem 2.1]). Let F = Fq. Let F = {f1, . . . , fm, xq
1 −

x1, . . . , x
q
n−xn} ⊆ R be a polynomial system. If dreg(F) ≥ max{q,deg(f1), . . . ,deg(fm)}, then for

standard algorithms
solv.deg(F) ≤ 2dreg(F)− 2.

Notice that, in almost all systems of cryptographic interest, the field size and the degrees of the
polynomials are relatively small. Therefore, one expects that Theorem 3 applies to such systems.

Another recent result by Salizzoni [26] shows that the solving degree of a mutant algorithm is
at most the degree of regularity plus one, unless the system contains polynomials of large degree.

Theorem 4 ([26, Proposition 3.10]). Let F = {f1, . . . , fm} ⊆ R be a polynomial system, then for
mutant algorithms

solv.deg(F) ≤ max{dreg(F) + 1,deg(f1), . . . ,deg(fm)}.

Another algebraic invariant connected to the solving degree of a polynomial system is the
Castelnuovo-Mumford regularity. We refer the reader to [13, Section 3.4] and [14] for its definition
and a discussion on its relation with the other invariants.

Remark 5. If F = Fq and the system F contains the field equations xq
1 − x1, . . . , x

q
n − xn, then

(F top)d = Rd for d ≫ 0, therefore the degree of regularity is finite.
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Remark 6. If (F top)d = Rd for d ≫ 0, then

dreg(F) = reg(F top).

Therefore:

• By Theorem 4

solv.deg(F) ≤ max{reg(F top) + 1,deg(f1), . . . ,deg(fm)}

for mutant algorithms.

• If dreg(F) ≥ max{q,deg(f1), . . . ,deg(fm)}, then by Theorem 3

solv.deg(F) ≤ 2 reg(F top)− 2

for standard algorithms.

3 Random polynomial systems

Consider a system of m equations of degrees d1, . . . , dm in n variables. Over a finite field, one
often defines a random system as a polynomial system whose coefficients are chosen uniformly at
random in the given field. In this paper, we propose a different definition which still captures the
intuitive idea of randomness, while allowing us to estimate the degree of regularity of a random
system.

Over an infinite field, one may use the concept of genericity from algebraic geometry to define

randomness. More precisely, fix a nonempty Zarisky-open subset of P(
n+d1

n )−1 × . . . × P(
n+dm

n )−1,
where Pt denotes t-dimensional projective space. Define a random system as an element of that
open set. This makes sense, since every nonempty Zarisky-open set is dense, hence a system of m
equations of degrees d1, . . . , dm in n variables whose coefficients are chosen uniformly at random is
generic with high probability according to this definition. The problem of extending this definition
to a finite field is that, over a finite field, a nonempty Zarisky-open set is no longer dense, so the
connection with our intuitive idea of randomness is lost. Nevertheless, for a finite field Fq, we may
define randomness using a Zariski-dense open set defined over the algebraic closure Fq. While it is
not necessarily the case that almost every polynomial system of given degrees with coefficients in
Fq is random, this is the case whenever q is large enough, or if we consider a finite extension of Fq

of large enough cardinality.

Definition 7. Let F be a field and let F be its algebraic closure. Denote by Pt the t-dimensional

projective space over F. Let d1, . . . , dm be positive integers and let U ⊆ P(
n+d1−1

n−1 )−1 × . . . ×
P(

n+dm−1
n−1 )−1 be a nonempty Zariski-open set. For a homogeneous polynomial f , denote by [f ] ∈

P(
n+deg(f)−1

n−1 )−1 the projective point, whose coordinates are the coefficients of f . A homogeneous
system F = {f1, . . . , fm} ⊆ R with deg(fi) = di for 1 ≤ i ≤ m is generic with respect to U if
([f1], . . . , [fm]) ∈ U . It is generic if it is generic with respect to U , for some nonempty Zariski-open
set U . An arbitrary system F is generic or generic with respect to U if F top is.

In the cryptographic literature, random sequences of polynomials are often assumed to be
cryptographic semiregular sequences, see e.g. [2, 4]. This is the case in the cryptoanalysis of
several systems, as e.g. [15]. The next definition appears in [2, Definition 3.2.1 and Definition
3.2.4], [5, Definition 5], and [7, Definition 5 and Definition 9].

Definition 8. Let F = {f1, . . . , fm} ⊆ R be a homogeneous system.
If F ̸= F2, we say that f1, . . . , fm are a cryptographic semiregular sequence if for all

1 ≤ i ≤ m and all gi ∈ R such that gifi ∈ (f1, . . . , fi−1) and deg(gifi) < dreg(F), one has that
gi ∈ (f1, . . . , fi−1).

If F = F2, we say that f1, . . . , fm ∈ R/(x2
1, . . . , x

2
n) are a cryptographic semiregular se-

quence if for all 1 ≤ i ≤ m and all gi ∈ R/(x2
1, . . . , x

2
n) such that gifi ∈ (f1, . . . , fi−1) and

deg(gifi) < dreg(F ∪ {x2
1, . . . , x

2
n}), one has that gi ∈ (f1, . . . , fi).

Arbitrary polynomials f1, . . . , fm are a cryptographic semiregular sequence if f top
1 , . . . , f top

m

are a cryptographic semiregular sequence.
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In this paper, we use the word cryptographic semiregular sequence in order to distinguish the
concept of semiregularity used in the cryptographic literature from the concept of semiregularity
originally introduced by Pardue [24, 25], which inspired it. The original definition by Pardue is
given over an infinite field F. As we are interested also in dealing with finite fields, we extend it in
the natural way.

Definition 9. Let F be an infinite field and let R = F[x1, . . . , xn]. Let I be a homogeneous ideal
and let A = R/I. A polynomial f ∈ Rd is semiregular on A if for every e ≥ d, the vector space
map Ae−d → Ae given by multiplication by f has maximal rank (that is, it is either injective or
surjective). If F is a finite field, let R = F[x1, . . . , xn]. Then f is semiregular on A if it is
semiregular on R/IR.

A sequence of homogeneous polynomials f1, . . . , fm is a semiregular sequence if fi is semireg-
ular on A/(f1, . . . , fi−1) for all 1 ≤ i ≤ m.

It follows from [25, Proposition 1] that, if F ̸= F2, then a semiregular sequence is also a
cryptographic semiregular sequence. The converse does not hold, as shown in [25], see the example
just below [25, Proposition 1].

The next proposition presents a simple situation in which cryptographic semiregular sequences
and semiregular sequences coincide.

Proposition 10. Let q > 2 and let f1 = xq
1−x1, . . . , fn = xq

n−xn, fn+1 = f ∈ R = Fq[x1, . . . , xn].
The sequence f1, . . . , fn+1 is cryptographic semiregular if and only if the sequence f top

1 = xq
1, . . . ,

f top
n = xq

n, f
top
n+1 = f top is semiregular.

Proof. It suffices to show that, if the sequence f1, . . . , fn+1 is cryptographic semiregular, then the
sequence xq

1, . . . , x
q
n, f

top is semiregular. We start by observing that the sequence xq
1, . . . , x

q
n is

regular. Therefore, in order to show that xq
1, . . . , x

q
n, f

top is semiregular, it suffices to show that
f top is semiregular on Fq[x1, . . . , xn]/(x

q
1, . . . , x

q
n). If f1, . . . , fn+1 is cryptographic semiregular and

d = deg(f), then the Hilbert series of R/(F top) is [(1− zd)(1+ z+ . . .+ zq−1)n] by [7, Proposition
6]. Here for p(z) =

∑∞
i=0 piz

i ∈ Z[[z]], we denote by δ(p) = min{i ≥ 0 | pi ≤ 0} − 1 and

define [p(z)] =
∑δ(p)

i=0 piz
i. Then f top is semiregular on Fq[x1, . . . , xn]/(x

q
1, . . . , x

q
n) and F top is a

semiregular sequence by [25, Proposition 1].

Pardue in [24, 25] shows that Fröberg’s Conjecture [22], a conjecture which has attracted a lot
of attention within the commutative algebra community and that is widely believed to hold, is
equivalent to the following

Conjecture 11. Let F be an infinite field. A generic sequence of polynomials of degrees d1, . . . , dm
in R = F[x1, . . . , xn] is semiregular.

In other words, Fröberg conjectures that the set of semiregular sequences of polynomials of
given degrees contains a dense Zarisky-open set. If the conjecture is true, then a sequence of
polynomials of given degrees is semiregular with high probability, provided that the ground field
has large enough cardinality. It follows that, if F = Fq with q ≫ 0 and Fröberg’s Conjecture holds,
then a sequence of polynomials of given degrees is a cryptographic semiregular sequence with high
probability. In addition, most cryptographic semiregular sequences are also semiregular sequences,
as the set of semiregular sequences conjecturally contains a dense open set.

In [2, Section 3.2], Bardet conjectures that a sequence of polynomials with coefficients in F2

is cryptographic semiregular with high probability. This conjecture is motivated by experimental
evidence, see also [4, Conjecture 2]. The conjecture was later disproved by Hodges, Molina, and
Schlather, who in [23] prove that there are choices of the parameters for which no cryptographic
semiregular sequence exists over F2. This is the case, e.g., for m = 1 and n > 3d1. In the sequel,
we propose a notion of randomness which applies to any choice of the system parameters.

In this paper, we propose two dense Zariski-open sets, which can be used to formalize the
intuitive idea of a random system. The set V corresponds to systems of m polynomials in n
variables which contain a regular sequence of length n, while the set U parametrizes systems of m
polynomials which contain a regular sequence of n polynomials of the smallest possible degrees.
Notice that V contains U and, if m ≥ n, it also contains the set of cryptographic semiregular
sequences and that of semiregular sequences.

5



Definition 12. Fix m ≥ n ≥ 1 and 1 ≤ d1 ≤ . . . ≤ dm. For any multiset ∆ of cardinality

n contained in the multiset {d1, . . . , dm}, let U∆ be the subset of P(
n+d1−1

n−1 )−1 × . . . × P(
n+dm−1

n−1 )−1

whose points correspond to polynomials f1, . . . , fm ∈ R such that (f top
1 , . . . , f top

m ) contains a regular
sequence in the degrees of ∆. Let

U = U{d1,...,dn} and V =
⋃

∆⊆{d1,...,dm},|∆|=n

U∆.

An algebraically random system of m polynomials of degrees d1, . . . , dm in n variables is a
system F = {f1, . . . , fm} ⊆ R such that deg(fi) = di for all 1 ≤ i ≤ m and ([f1], . . . , [fm]) ∈ U .

It is well-known that U{d1,...,dn} is a dense open set for any choice of 1 ≤ d1 ≤ . . . ≤ dn, if
m = n. This implies that any U∆ as in Definition 12 is a dense open set, hence also U and V
are. Notice that the degree of regularity is finite for all systems in U∆ and for any choice of ∆,
therefore it is also finite for the systems in U and V. In particular, the degree of regularity of an
algebraically random system is finite. Notice moreover that, if F is homogeneous, then V is the
set of polynomial systems of degrees d1, . . . , dm for which the degree of regularity is finite.

Notice moreover that, if m = n, an algebraically random system is a system for which F top is
a regular sequence. Since this case is well-studied in the cryptographic literature, in the sequel we
often assume m > n.

Remark 13. For any system F of equations of degree at least q, one has

F ∪ {xq
1 − x1, . . . , x

q
n − xn} ∈ U{q,...,q}.

Unlike semiregular systems [23], algebraically random systems exist for any choice of the pa-
rameters and over every finite field.

Remark 14. Algebraic random systems over Fq exist for any choice of n,m and 1 ≤ d1 ≤ . . . ≤ dm.
This corresponds to the existence of regular sequences of any given degrees in Fq[x1, . . . , xn], as any
system of m equations in Fq[x1, . . . , xn] of degrees d1, . . . , dm which contains a regular sequence
in degrees d1, . . . , dn is algebraically random. Some regular sequences in Fq[x1, . . . , xn] of degrees
d1, . . . , dn are for example

xd1
1 + g1, x

d2
2 + g2, . . . , x

dn
n + gn,

where gi ∈ Fq[xi+1, . . . , xn] and deg(gi) ≤ di.

4 The degree of regularity of a random system

In this section, we establish an upper bound for the degree of regularity of an algebraically random
system F consisting of m polynomials of equal degree D. In combination with Theorem 3 and
Theorem 4, this provides us with an upper bound for the solving degree of a system of algebraically
random polynomials of the same degree.

Remark 15. Notice that F ∈ U{d,...,d} for a given d > 0 if and only if T ◦ F ◦ S ∈ U{d,...,d}.
In other words, when deciding whether a system of polynomials of equal degree is algebraically
random, one can safely ignore the random linear transformations S and T used to disguise the
internal system F . This also shows that, for system whose equations are all of the same degree,
being an algebraically random system is an intrinsic property of the system and it is not affected
by the invertible linear transformations used to disguise the system.

In [10, Section 4], the authors provide an upper bound for the degree of regularity of a system of
quadratic polynomials which contains a regular sequence. In this section, we follow the same basic
approach and extend it to systems of polynomials of the same degree and systems of polynomials
of the same degree to which one adds the field equations. The cases that we treat in this paper are
technically more challenging and require the use of more sophisticated results from commutative
algebra.

We start by introducing the family of lex-segment ideals. A conjecture by Eisenbud, Green, and
Harris will allow us to reduce to these ideals, when estimating the regularity of ideals generated
by algebraically random systems. Throughout the section, we fix the lexicographic term order on
R with x1 > x2 > . . . > xn.
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Definition 16. A monomial ideal I ⊆ R is a lex-segment ideal if it has the property that if
u, v ∈ R are monomials of the same degree such that u ≥lex v and v ∈ I, then u ∈ I.

Let C and c1 ≤ . . . ≤ cn be non negative integers. An ideal L ⊆ R is a (c1, . . . , cn;C)-
LexPlusPowers (LPP) ideal if L = (xc1

1 , . . . , xcn
n )+L, where L is a lex-segment ideal generated

in degree C.

Notation 17. Let I ⊆ R be a homogeneous ideal containing a regular sequence of polynomials of
degrees c1 ≤ . . . ≤ cn. For each C ≥ 0, we denote by LPP(I; c1, . . . , cn;C) the (c1, . . . , cn;C)-LPP
ideal L = (xc1

1 , . . . , xcn
n ) + L such that dim(IC) = dim(LC). We make L unique by choosing the

largest lex-segment ideal generated in degree C for which the equality L = (xc1
1 , . . . , xcn

n ) +L holds.

Example 18. Let I ⊆ F[x, y, z] be generated by a homogeneous regular sequence of polynomials of
degrees 1, 3, 4. The (1, 3, 4; 3)-LPP ideal L such that dim(I3) = 7 = dim(L3) is L = (x, y3, z4).

For any lex-segment ideal L generated in degree 3 with dim(L3) ≤ 7, one has L ⊆ L. Hence
one may write

L = (x, y3, z4) + L

as in Definition 16 and choose e.g. L = (x3, x2y, x2z, xy2, xyz, xz2), or L = (x3). However,
Notation 17 prescribes that we choose the largest L with respect to containment, i.e.

L = (x3, x2y, x2z, xy2, xyz, xz2, y3)

is the lex-segment ideal generated by the first 7 cubic monomials in the lexicographic order.

The next conjecture appears as [19, Conjecture (Vm)]. It has been settled in several cases and
it is widely believed to hold within the commutative algebra community. For an introduction to
the conjecture and an excellent survey of known cases, we refer the interested reader to [17]. Here
we state it in a weak form, which is what we need in the sequel.

Conjecture 19 (Eisenbud-Green-Harris Conjecture). Let I ⊆ R be a homogeneous ideal contain-
ing a regular sequence of polynomials of degrees c1 ≤ . . . ≤ cn. Then

reg(I) ≤ reg(LPP(I; c1, . . . , cn;C))

for all C ≥ cn.

In order to estimate the degree of regularity of our systems, we use the following result by
Caviglia and De Stefani.

Proposition 20 ([16, Lemma 2.3]). Let c1 ≤ . . . ≤ cn and 2 ≤ C ≤
∑n

i=1(ci − 1). Let L =
(xc1

1 , . . . , xcn
n )+L be a (c1, . . . , cn;C)-LPP ideal, and assume that L ≠ (xc1

1 , . . . , xcn
n ). Let u = xtk

k v,
with tk ̸= 0 and v ∈ F[xk+1, . . . , xn], be the smallest monomial with respect to the lexicographic
order which belongs to L and has degree C. Then

reg(L) = tk +

n∑
i=k+1

(ci − 1).

Our first result is an explicit bound for the degree of regularity of an algebraically random
system of polynomials of the same degree. In order to make the proof more readable, we introduce
the following notation.

Notation 21. If u ∈ RD is a monomial that only involves the variables xk, . . . , xn and has degree
a in xk, we say that u is a (D, k, a)-type monomial.

In the next theorem, we provide an explicit formula for the degree of regularity of an LPP ideal
with given parameters. Thanks to Conjecture 19, this yields an upper bound for the degree of
regularity of an algebraically random system of polynomials of the same degree. In the statement
of the theorem, σk,t is the position of the smallest (D, k,D − t)-type monomial in the ordered
list of monomials of degree D different from xD

1 , . . . , xD
n , sorted in decreasing lexicographic order.

In particular, σ1,0 = 0 and σn−1,D−1 is the number of monomials of degree D different from
xD
1 , . . . , xD

n .
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Theorem 22. Assume that Conjecture 19 holds. Let F = {f1, . . . , fm} ⊆ R be a polynomial system
and assume without loss of generality that f top

1 , . . . , f top
m are linearly independent of degree D.

If m = n, then let k = 0, t = D− 1. Else, let 1 ≤ k ≤ n− 1 and 1 ≤ t ≤ D− 1 be such that m− n
belongs to the interval (σk,t−1, σk,t], where

σk,t =

k∑
i=1

D−1∑
j=1

(
n− i− 1 + j

j

)
−

D−1∑
j=t+1

(
n− k − 1 + j

j

)
.

If F is an algebraically random polynomial system, then

dreg(F) ≤ (D − t) + (n− k)(D − 1).

Proof. If m = n, then F top is a regular sequence of n polynomials of degree D, hence

dreg(F) = n(D − 1) + 1.

Suppose therefore that m > n and let J be the ideal generated by F top. Consider the lexicographic
order on R and let

L = LPP(J ;D, . . . ,D;D) = (xD
1 , . . . , xD

n ) + L,

be the LPP ideal with L the largest lex-segment ideal generated in degree D such that dim(LD) =
m. Since both f top

1 , . . . , f top
m and xD

1 , . . . , xD
n are linearly independent, we have

dim
(
LD/⟨xD

1 , . . . , xD
n ⟩

)
= m− n.

For 1 ≤ k ≤ n− 1 and 0 ≤ t ≤ D − 1, the number of (D, k,D − t)-type monomials is

dim(Fq[xk+1, . . . , xn]t) =

(
n− k − 1 + t

t

)
,

hence

σk,t =

k−1∑
i=1

D−1∑
j=1

(
n− i− 1 + j

j

)
+

t∑
j=1

(
n− k − 1 + j

j

)

=

k−1∑
i=1

D−1∑
j=1

dim(Fq[xi+1, . . . , xn])j +

t∑
j=1

dim(Fq[xk+1, . . . , xn])j

is the number of degree D monomials in Fq[x1, . . . , xn] different from xD
1 , . . . , xD

n and bigger than or
equal to xD−t

k xt
n, the smallest (D, k,D− t)-type monomial. In other words, the monomial xD−t

k xt
n

is in position σk,t in the ordered list of degree D monomials in Fq[x1, . . . , xn]/(x
D
1 , . . . , xD

n ). Notice
moreover that σ1,0 = 0 and σk,0 = σk−1,D−1 for 2 ≤ k ≤ n− 1.

If u is the smallest monomial in LD/⟨xD
1 , . . . , xD

n ⟩, then u is in position m − n in the ordered
list of degree D monomials in Fq[x1, . . . , xn]/(x

D
1 , . . . , xD

n ). If σk,t−1 < m − n ≤ σk,t for some
1 ≤ k ≤ n − 1 and 1 ≤ t ≤ D − 1, then u is a (D, k,D − t)-type monomial. Since 0 = σ1,0 <
m−n ≤ dim(Fq[x1, . . . , xn]D)/(xD

1 , . . . , xD
n )D = σn−1,D−1, then m−n always belong to one of the

intervals above.
The ideal L is generated by the degree D monomials which are greater than or equal to u,

unless the monomial following u in lexicographic decreasing order is a pure power. In that case,
u = xkx

D−1
n for some 1 ≤ k ≤ n − 1, i.e. m − n = σk,D−1, and the smallest degree D monomial

in L is xD
k+1. Then L is generated by the degree D monomials which are greater than or equal to

xD
k+1, which is a (D, k + 1, D)-type monomial. In both situations

reg(L) = (D − t) + (n− k)(D − 1)

by Proposition 20. The thesis now follows from observing that

dreg(F) = reg(J) ≤ reg(L), (1)

where the inequality follows from Conjecture 19.
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Example 23. In this example we show how to compute the bound from Theorem 22 for concrete
choices of the parameters. Let n = 6 and D = 3, so F = {f1, . . . , fm} ⊆ Fq[x1, . . . , x6]3. Then
1 ≤ k ≤ 5 and 0 ≤ t ≤ 2. The values of σk,t are

σk,t t = 0 t = 1 t = 2
k = 1 0 5 20
k = 2 20 24 34
k = 3 34 37 43
k = 4 43 45 48
k = 5 48 49 50

If m = 12, then m− n = 6 and σ1,1 < 6 ≤ σ1,2. Hence k = 1, t = 2, and dreg(F) ≤ 11.
If m = 42, then m− n = 36 and σ3,0 < 36 ≤ σ3,1. Hence k = 3, t = 1, and dreg(F) ≤ 8.
If m = 54, then m− n = 48 and σ4,1 < 48 ≤ σ4,2. Hence k = 4, t = 2, and dreg(F) ≤ 5.

Remark 24. The upper bound of Theorem 22 is decreasing as a function of m, as one would expect.
In particular, as m−n passes from an interval (σk,t−1, σk,t] to the next, the upper bound decreases
by one. The largest value of the bound is obtained in the case m = n, which corresponds to F top

being a regular sequence. In this case, the value for the bound is well-know and is n(D − 1) + 1.
The smallest value for the bound is obtained in the case m− n = σn−1,D−1, which corresponds to
⟨F top⟩+ ⟨xD

1 , . . . , xD
n ⟩ = RD. In this case, the value for the bound is easily seen to be D.

Remark 25. The upper bound produced in Theorem 22 is sharp for all values of m,n,D. In fact,
it is met by any system F such that (f top

1 , . . . , f top
m ) is a (D, . . . ,D;D)-LPP ideal.

Combining Theorem 22 and Theorem 4, we obtain the following.

Corollary 26. Let F ⊆ R be an algebraically random system of degree D polynomials. If m = n,
then let k = 0, t = D − 1. Else, let 1 ≤ k ≤ n− 1 and 1 ≤ t ≤ D − 1 be such that m− n belongs
to the interval (σk,t−1, σk,t]. If Conjecture 19 holds, then

solv.degm(F) ≤ D − t+ 1 + (n− k)(D − 1).

Proof. The upper bound found in Theorem 22 for the degree of regularity of F is bigger than or
equal to D for all k and t. The thesis then follows from Theorem 4.

We now wish to apply Theorem 22 to a system which contains the field equations.

Remark 27. After reducing the equations of F modulo the field equations, they have degree at
most q − 1 in each variable, hence total degree at most n(q − 1). Therefore, when adding the field
equations to a polynomial system of degree D, we may always assume that

D ≤ n(q − 1).

Combining Theorem 22 and Theorem 3, one obtains the following. By Remark 27, we may
assume without loss of generality that D ≤ n(q − 1).

Corollary 28. Assume that Conjecture 19 holds. Let F ⊆ R be an algebraically random system
of degree D polynomials, with D ≤ n(q − 1). If m = n, then let k = 0, t = D − 1. Else, let
1 ≤ k ≤ n − 1 and 1 ≤ t ≤ D − 1 be such that m − n belongs to the interval (σk,t−1, σk,t]. If
dreg(F) ≥ q, then

solv.degs(F ∪ {xq
1 − x1, . . . , x

q
n − xn}) ≤ 2min{n(q − 1), (n− k + 1)(D − 1)− t}.

Proof. First, since (xq
1, . . . , x

q
n)n(q−1)+1 = Rn(q−1)+1, one has

dreg(F top ∪ {xq
1, . . . , x

q
n}) ≤ n(q − 1) + 1.

If D < q, then
(F top ∪ {xq

1, . . . , x
q
n})q−1 = (F top)q−1 ̸= Rq−1,
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since dreg(F) ≥ q by assumption. Therefore, dreg(F ∪ {xq
1 − x1, . . . , x

q
n − xn}) ≥ q = max{D, q}.

If q ≤ D ≤ n(q − 1), then

(F top ∪ {xq
1, . . . , x

q
n})D−1 = (xq

1, . . . , x
q
n)D−1 ̸= RD−1,

hence dreg(F ∪ {xq
1 − x1, . . . , x

q
n − xn}) ≥ D = max{D, q}. This shows that the assumptions of

Theorem 3 are satisfied. The thesis now follows by combining Theorem 22, Theorem 3, and the
observation that

dreg(F ∪ {xq
1 − x1, . . . , x

q
n − xn}) ≤ dreg(F).

Remark 29. While the estimates of Corollary 26 and of Corollary 28 hold for every D, they are
most relevant for D ≤ q. In fact, for D > q we obtain tighter upper bounds on the degree of
regularity - hence on the solving degree - of F ∪{xq

1−x1, . . . , x
q
n−xn} in Theorem 34 by inspecting

the degree D part of the system F ∪{xq
1−x1, . . . , x

q
n−xn} ∈ U{q,...,q}. This corresponds to the fact

that, whenever the degree of the equations of the system is larger than or comparable to the field
size, it is convenient to add the field equations to the system before computing a Gröbner basis.

Next we estimate the degree of regularity and the solving degree of F ∪ {xq
1 − x1, . . . , x

q
n − xn}

in the case when D ≥ q. By Remark 27, we may assume that D ≤ n(q − 1).
First, we observe that one can easily derive a lower bound on the degree of regularity.

Remark 30. Let F = {f1, . . . , fm} be a polynomial system of degree q ≤ D ≤ n(q − 1). Since
(F top ∪ {xq

1, . . . , x
q
n})D−1 = (xq

1, . . . , x
q
n)D−1 ̸= RD−1, then

dreg(F ∪ {xq
1 − x1, . . . , x

q
n − xn}) ≥ D.

We now want to derive an upper bound. We start by computing the number of linearly
independent homogeneous polynomials of degree D as a function of n,D, q.

Remark 31. Assume that q ≤ D ≤ n(q− 1). A standard Hilbert function computation shows that
the number of homogeneous polynomials in n variables of degree D which are linearly independent
modulo (xq

1, . . . , x
q
n) is

dim(R/(xq
1, . . . , x

q
n))D =

⌊D
q ⌋∑

i=0

(−1)i
(
n

i

)(
n+D − 1− iq

n− 1

)
.

It follows that the assumption that f top
1 , . . . , f top

m are linearly independent modulo (xq
1, . . . , x

q
n) holds

on a dense open set, whenever

m ≤
⌊D

q ⌋∑
i=0

(−1)i
(
n

i

)(
n+D − 1− iq

n− 1

)
. (2)

If inequality (2) is not satisfied, then f top
1 , . . . , f top

m cannot be linearly independent.

The simplest case to treat is that of very overdetermined systems, more specifically the case
when f top

1 , . . . , f top
m are too many to be linearly independent modulo (xq

1, . . . , x
q
n). This happens

when m is larger than the bound from Remark 31. The next proposition shows that, in such a
situation, the degree of regularity is equal to the degree of the equations of the system.

Proposition 32. Let F = {f1, . . . , fm} be a polynomial system of degree D, where q ≤ D ≤
n(q − 1). If m >

∑⌊D
q ⌋

k=0 (−1)k
(
n
k

)(
n+D−1−kq

n−1

)
, then there is a dense open set W such that, if

F ∈ W, then
dreg(F ∪ {xq

1 − x1, . . . , x
q
n − xn}) = D.

Moreover,
solv.degs(F ∪ {xq

1 − x1, . . . , x
q
n − xn}) ≤ 2D − 2

and
solv.degm(F ∪ {xq

1 − x1, . . . , x
q
n − xn}) ≤ D + 1.
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Proof. Since by assumption

m >

⌊D
q ⌋∑

k=0

(−1)k
(
n

k

)(
n+D − 1− kq

n− 1

)
= dim(R/(xq

1, . . . , x
q
n))D,

then there is an open set W of m-tuples of polynomials of degree D such that

⟨f top
1 , . . . , f top

m ⟩+ (xq
1, . . . , x

q
n)D = RD.

Since (F top ∪ {xq
1, . . . , x

q
n})D−1 = (xq

1, . . . , x
q
n)D−1 ̸= RD−1, then

dreg(F ∪ {xq
1 − x1, . . . , x

q
n − xn}) = D.

The rest of the statement now follows from Theorem 3 and Theorem 4.

The next theorem yields an upper bound on the degree of regularity of an algebraically random
system of equations of degree larger than the field size to which we add the field equations. For
such a system, the bound is tighter than the one from Corollary 28. We start with a preparatory
lemma, whose proof follows directly from the definition.

Lemma 33. Let u, v be monomials of type (D, k, a) and (D,h, b), respectively. If u ≥ v, then
either k < h or k = h and a ≥ b. In particular, if u, v, w are monomials such that u ≥ v ≥ w and
u and w have the same type, then v also has the same type as u and w.

Theorem 34. Assume that Conjecture 19 holds. Let F = {f1, . . . , fm} be a polynomial system

of degree D, with q ≤ D ≤ n(q − 1). Assume that m ≤
∑⌊D

q ⌋
i=0 (−1)i

(
n
i

)(
n+D−1−iq

n−1

)
and that

f top
1 , . . . , f top

m are linearly independent modulo (xq
1, . . . , x

q
n)D. Let 1 ≤ t ≤ q − 1 and 1 ≤ k ≤ n− 1

be such that m belongs to the interval (σk,t−1, σk,t], where

σk,t =

k−1∑
i=1

q−1∑
j=1

ηi,j +

t∑
j=1

ηk,j

and

ηk,t =

⌊D+t
q ⌋−1∑
i=0

(−1)i
(
n− k

i

)(
n− k − 1 +D − (i+ 1)q + t

n− k − 1

)
.

Let
B = q − t+ (n− k)(q − 1).

If m = σk,t and either t ̸= q − 1 and D ≥ 2q − t− 1, or t = q − 1 and D ≥ 2q − 1, then

dreg(F ∪ {xq
1 − x1, . . . , x

q
n − xn}) ≤ B − 1,

solv.degs(F ∪ {xq
1 − x1, . . . , x

q
n − xn}) ≤ 2(B − 2),

and
solv.degm(F ∪ {xq

1 − x1, . . . , x
q
n − xn}) ≤ B + 1.

In any other case
dreg(F ∪ {xq

1 − x1, . . . , x
q
n − xn}) ≤ B,

solv.degs(F ∪ {xq
1 − x1, . . . , x

q
n − xn}) ≤ 2(B − 1),

and
solv.degm(F ∪ {xq

1 − x1, . . . , x
q
n − xn}) ≤ B + 1.
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Proof. We start by proving that ηk,t is the number of (D, k, q− t)-type monomials in R which are
linearly independent modulo (xq

1, . . . , x
q
n)D, that is

ηk,t = dim

[
Fq[xk+1, . . . , xn]

(xq
k+1, . . . , x

q
n)

]
D−q+t

. (3)

Since xq
k+1, . . . , x

q
n is a regular sequence in Fq[xk+1, . . . , xn], a standard computation involving

Hilbert series yields the explicit formula

dim

[
Fq[xk+1, . . . , xn]

(xq
k+1, . . . , x

q
n)

]
D−q+t

=

⌊D+t
q ⌋−1∑
i=0

(−1)i
(
n− k

i

)(
n− k − 1 +D − (i+ 1)q + t

n− k − 1

)
,

where we notice that ηk,t ̸= 0 only if D + t − q ≤ (n − k)(q − 1). This establishes the equality in
(3). Similarly to the proof of Theorem 22, we notice that

σk,t =

k−1∑
i=1

q−1∑
j=1

ηi,j +

t∑
j=1

ηk,j

is the number of monomials of degree D which do not belong to (xq
1, . . . , x

q
n) and are greater than

or equal to xq−t
k xD−q+t

n , the smallest (D, k, q − t)-type monomial. Moreover, σk−1,q−1 = σk,0 for
2 ≤ k ≤ n− 1.

Let I ⊆ Fq[x1, . . . , xn] be the ideal generated by F top ∪ {xq
1, . . . , x

q
n}. Let L = (xq

1, . . . , x
q
n) +L

be the (q, . . . , q;D)-LPP ideal such that

dim(ID) = dim(LD) = m+ dim(xq
1, . . . , x

q
n)D.

Hence L is minimally generated by xq
1, . . . , x

q
n and m monomials of degree D that do not belong

to (xq
1, . . . , x

q
n). Recall that, by assumption, L is the largest lex-segment ideal generated in degree

D such that L = (xq
1, . . . , x

q
n) + L, i.e., LD ⊇ (xq

1, . . . , x
q
n)D.

Let u be the smallest degree D monomial in L/(xq
1, . . . , x

q
n). Notice that u is a (D, k, q − t)-

type monomial, since m belongs to the interval (σk,t−1, σk,t]. Let v be the smallest degree D

monomial in L. If u is the smallest monomial in (R/(xq
1, . . . , x

q
n))D, then u = xq−t

k xq−1
k+1 · · ·xq−1

n

and D = q − t+ (n− k)(q − 1). Moreover, LD = RD and v = xD
n is a (D,n,D)-type monomial.

Assume now that u is not the smallest monomial in (R/(xq
1, . . . , x

q
n))D and let w be the mono-

mial in (R/(xq
1, . . . , x

q
n))D which follows u in decreasing lexicographic order. Then u ≥ v ≥ w and

v is the degree D monomial next to w in increasing lexicographic order. If m ̸= σk,t, then w has
type (D, k, q−t), hence so does v by Lemma 33. Suppose therefore that m = σk,t. Write D−q+t =
(n− ℓ)(q − 1) + r, where 0 ≤ r < q − 1. Notice that D − q + t < (n− k)(q − 1), since u is not the
smallest monomial in (R/(xq

1, . . . , x
q
n))D. Then ℓ > k. In this situation, u = xq−t

k xr
ℓx

q−1
ℓ+1 · · ·xq−1

n

and w = xq−t−1
k xq−1

k+1 · · ·x
q−1
k+n−ℓx

r+1
k+n−ℓ+1. Notice that w is a (D, k, q − t − 1)-type monomial if

t ̸= q − 1 and a (D, k + 1, q − 1)-type monomial if t = q − 1. If w is not the smallest degree D
monomial of its type in RD, then v has the same type as w. If w is the smallest degree D monomial
of its type in RD, then w = xq−t−1

k xD−q+t+1
k+1 in the case t ̸= q − 1 and w = xq−1

k+1x
D−q+1
k+2 in the

case t = q − 1. Since w ̸∈ (xq
1, . . . , x

q
n), this is only possible if D ≤ 2q − t − 2 for t ̸= q − 1 and

D ≤ 2q − 2 for t = q − 1. In this situation, v has type (D, k, q − t) in the case t ̸= q − 1 and type
(D, k + 1, q) in the case t = q − 1.

If Conjecture 19 holds, then

dreg(F ∪ {xq
1 − x1, . . . , x

q
n − xn}) ≤ reg(L). (4)

Moreover, by Proposition 20

reg(L) =


q − t− 1 + (n− k)(q − 1) if m = σk,t and

either t ̸= q − 1 and D ≥ 2q − t− 1,
or t = q − 1 and D ≥ 2q − 1,

q − t+ (n− k)(q − 1) else.

(5)

The bound on the degree or regularity now follows from (4) and (5). The bounds on the solving
degree follow from the bound on the degree of regularity, Theorem 3, and Theorem 4.

12



5 Applications to the study of GeMSS and Rainbow

GeMSS and Rainbow were the only multivariate schemes in Round 3 of the NIST Post-Quantum
Cryptography Standardization process. They are based on modifications of HFE (Hidden Field
Equation) and UOV (Unbalanced Oil and Vinegar), respectively. They were subsequently revealed
to be insecure and susceptible to a MinRank Attack, see e.g. [3, 8, 9, 1], therefore they were
excluded from the NIST competition.

In this section, we demonstrate how to use our results to show that these systems are far from
being algebraically random. We do so by computing their degree of regularity or solving degree
for small instances and comparing it with the upper bounds that we obtained in Theorem 22 and
Theorem 34. The degree of regularity and solving degree of the systems associated to GeMSS and
Rainbow are much smaller than the corresponding invariants for an algebraically random system
with the same parameters, which reveals the presence of a hidden structure that may be used to
mount an ad-hoc attack, as it was done in practice with the MinRank Attacks mentioned above.

We used Magma to compute the solving degree and Singular to compute the degree of regularity.
The values that we obtain (and that we indicate in the tables below) are almost always the same
for systems with the same parameters. For each choice of the parameters in the table, we produce
ten instances of the public key PK = {p1, . . . , pm} ⊆ Fq[x1, . . . , xn] of the chosen scheme. For each
one of them, we choose a random vector s = (s1, . . . , sm) ∈ Fm

q as a signature (in case the chosen
vector is not a valid signature, we replace it with another randomly chosen vector). In order to
forge the signature, an attacker may want to solve the system PKs = {p1 − s1, . . . , pm − sm}. We
make the system PKs square by assigning random values to the last n−m variables. This yields
a system F = {f1, . . . , fm} ⊆ Fq[x1, . . . , xm].

Since in GeMSS we work over F2, we add to the system F the field equations E = {x2
1 +

x1, . . . , x
2
m + xm}. In the next table we compare the experimental results we obtained for GeMSS

with the bounds from Theorem 34. The experiments show that both the solving degree and the
degree of regularity of F can be more than twice the solving degree of F ∪ E . This confirms the
intuition that adding the field equations is a good strategy in order to solve the system F over F2.

Unfortunately we were able to compute the degree of regularity of F ∪ E only for small values
of the parameters. In the next table the first three columns contain the parameters of the cryp-
tosystem, and the fourth the number of polynomials and variables that appear in F . The columns
labelled 'dreg(F∪E)' and 'solv.deg(F∪E)' contain the values computed with Magma and Singular.
The columns labelled 'max solv.deg(F ∪ E)' and 'max dreg(F ∪ E)' are the bounds given by the
Theorem 34 for the chosen parameters and a standard Gröbner basis algorithm.

n, D a v m dreg(F ∪ E) max dreg(F ∪ E) solv.deg(F ∪ E) max solv.deg(F ∪ E)
12, 4 1 1 11 5 10 3 18
8, 9 1 1 7 3 6 3 10
8, 9 1 2 7 3 6 3 10
8, 9 2 1 6 3 5 3 8
8, 9 2 2 6 3 5 3 8
24, 4 1 1 23 22 4 42
24, 4 1 2 23 22 4 42
24, 4 1 3 23 22 4 42
24, 4 2 1 22 21 4 40
24, 4 2 2 22 21 4 40
24, 4 3 1 21 20 4 38

While GeMSS is random according to Definition 12, the experimental results make it clear that
both the degree or regularity and the solving degree of GeMSS are far from the largest values that
one can find for a system of those parameters according to Theorem 34. This indicates that, for
the same parameters, one should be able to find systems for which the complexity of computing
a Gröbner basis is much larger. More importantly, it reveals the presence of a hidden algebraic
structure, which may be exploited in ad-hoc attack (as it was in fact done in the MinRank attacks
mentioned in the opening paragraph).

For Rainbow, we choose to work over F4 and F9. Since F is a square system, F is algebraically
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random if and only if F top is a regular sequence. This turns out to be the case in most of the
examples that we computed and in that case

dreg(F) = m+ 1 (6)

by Theorem 22. This is confirmed by our computations.
Since the systems coming from this scheme are quadratic, adding the field equations may

increase the solving degree of the system. However, for the small values of q that we tried in our
experiments, we find that in all cases but one the solving degree decreases when adding the field
equations. This makes sense, as the degree q of the equations that we add is never larger than the
solving degree of the system to which we add them. In the next table we summarize the results
that we obtained in our computational experiments. Since in our experiments the solving degree
of F ∪ E is almost always smaller than that of F , in our examples F ∪ E is the relevant system
to consider, that is, the system that one wants to try to solve. Therefore, we consider the degree
of regularity and solving degree of F ∪ E . In our table, we compare the degree of regularity and
the solving degree of F ∪ E with the upper bounds from Theorem 22 and Corollary 28. We use
Corollary 28 as the algorithm implemented in Magma is a standard one. The first three columns
contain the chosen values for the parameters and the number of polynomials and variables that
appear in F . The columns labelled 'dreg(F)' and 'solv.deg(F ∪ E)' contain the values computed
with Magma and Singular. The column labelled 'max solv.deg(F ∪ E)' contains the bounds from
Corollary 28. We do not include the values of the degree of regularity and solving degree of F in
the table, as experimentally we find that the system F ∪ E can always be solved more efficiently
than the system F .

q [v1, o1, o2] m dreg(F) dreg(F ∪ E) solv.deg(F ∪ E) max solv.deg(F ∪ E)
4 [3, 2, 2] 4 4/5 4 4 8
4 [3, 3, 3] 6 6/7 5 5 12
4 [7, 5, 5] 10 10/11 6 6 20
9 [3, 2, 2] 4 5 5 9 –
9 [7, 5, 5] 10 11 9/10 10 20

Notice that Corollary 28 does not apply to the case q = 9 and [v1, o1, o2] = [3, 2, 2], since
dreg(F) = 5. For these parameters, the bound from Corollary 28 would yield solv.deg(F ∪E) ≤ 8.
However, the bound does not hold in this case, as our experiments show.

As for GeMSS, we observe that the values that we computed for the solving degree of F ∪ E
are far from the upper bounds predicted by Corollary 28. We conclude that, also in this case, one
expects to find systems with the same parameters as these instances of Rainbow and for which the
complexity of computing a Gröbner basis is larger. More importantly, once again it reveals the
presence of a hidden algebraic structure, which may be exploited in ad-hoc attack (as it was in
fact done in the attacks that we mentioned at the start of the section).
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[22] Ralf Fröberg, An inequality for Hilbert series of graded algebras, Mathematica Scandinavica
56 (1985), 117–144.

15



[23] Timothy Hodges, Sergio Molina, and Jacob Schlather, On the existence of semi-regular se-
quences, Journal of Algebra 476 (2017), 519-547.

[24] Keith Pardue, Generic polynomials, preprint (1999).

[25] Keith Pardue, Generic sequences of polynomials, Journal of Algebra 324 (2010), no. 4, 579-
590.

[26] Flavio Salizzoni, An upper bound for the solving degree in terms of the degree of regularity,
preprint available at https://arxiv.org/abs/2304.13485.

[27] Igor Semaev and Andrea Tenti, Probabilistic analysis on Macaulay matrices over finite fields
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