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Abstract

Despite decades of work on threshold signature schemes, there is still limited agreement on their
desired properties and threat models. In this work we significantly extend and repair previous work
to give a unified syntax for threshold signature schemes and a new hierarchy of security notions for
them. Moreover, our new hierarchy allows us to develop an automated analysis approach for protocols
that use threshold signatures, which can discover attacks on protocols that exploit the details of the
security notion offered by the used scheme, which can help choose the correct security notion (and
scheme that fulfills it) that is required for a specific protocol.

Unlike prior work, our syntax for threshold signatures covers both non-interactive and interactive
signature schemes with any number of key generation and signing rounds, and our hierarchy of security
notions additionally includes elements such as various types of corruption and malicious key generation.
We show the applicability of our hierarchy by selecting representative threshold signature schemes
from the literature, extracting their core security features, and categorizing them according to our
hierarchy. As a side effect of our work, we show through a counterexample that a previous attempt at
building a unified hierarchy of unforgeability notions does not meet its claimed ordering, and show
how to repair it without further restricting the scope of the definitions.

Based on our syntax and hierarchy, we develop the first systematic, automated analysis method
for higher-level protocols that use threshold signatures. We use a symbolic analysis framework
to abstractly model threshold signature schemes that meet security notions in our hierarchy, and
implement this in the Tamarin prover. Given a higher-level protocol that uses threshold signatures,
and a security notion from our hierarchy, our automated approach can find attacks on such protocols
that exploit the subtle differences between elements of our hierarchy. Our approach can be used to
formally analyze the security implications of implementing different threshold signature schemes in
higher-level protocols.

1 Introduction

A threshold signature scheme allows a group of signers to collaboratively sign messages in a secure and
decentralized manner, even if some of them are unavailable or have been compromised. Specifically, a
t-out-of-n scheme requires that at least t signers collaborate to produce a signature for a group with n
members. Each group member can sign messages using their private key pair and once at least t partial
signatures have been collected, they can be combined into a group signature. The resulting signature
verifies under the group’s shared public key, regardless of which subset of signers participated in creating
it.

The concept of threshold signatures was first proposed in the late 1980s [29] for distributed key
generation and signing. Recently, the idea has re-gained attention due to its potential applications in
modern blockchain and cryptocurrency systems [53, 54]. As a result, many new threshold signature
schemes have been introduced [5, 6, 16, 23, 27, 35, 36, 37, 42, 44, 48] and various advanced security
properties have been proposed [2, 4, 11, 13, 14, 23, 24, 25, 32, 42, 45, 48].
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The conventional security requirement for signature schemes is existential unforgeability against chosen
message attacks (EUF-CMA), which informally states that an adversary cannot forge valid message-
signature pairs without knowing the corresponding secret keys. In the context of threshold signatures,
this means that, for any message, a subset of less than t signers should not be able to create a group
signature that pass verification under their shared public key. The exact definition is, however, subject to
debate, and various models with subtle differences have been proposed in the literature.

For example, while many definitions [1, 4, 5, 6, 13, 16, 23, 24, 36, 42, 48] only consider unforgeability
for messages, recent work [11] extends the range to so-called leader requests, which also include addi-
tional associated data. Furthermore, different adversary models give the adversary varying compromise
capabilities, such as malicious key generation [4, 5, 24, 35, 42], and static [11, 13, 25, 36, 37, 44, 48]
or adaptive [2, 6, 16, 23, 27] signer corruption. These discrepancies between definitions mean that two
schemes that meet the unforgeability requirements might not provide the same security guarantees in
practice. Moreover, variations in the syntax definitions for threshold signatures have resulted in many
proposed security models being incompatible with schemes that implement different features.

Our first goal is to address the issues caused by conflicting definitions and security notions. To this
end, we develop a generalized syntax and new hierarchy of security notions for threshold signatures, which
goes beyond prior work in both terms of scope (we cover non-interactive as well as interactive schemes
with any number of rounds for key derivation and signing) and adversarial capabilities (we include several
types of corruption and malicious key generation).

As part of constructing our syntax and hierarchy, we revisit a prior unforgeability hierarchy proposed
by Bellare, Tessaro, and Zhu [10, 11] and show through a counterexample that the hierarchy incorrectly
claims implied relations between two of their levels, and propose an updated version that solves the issue.
Moreover, we show that their protocol transformation is better than advertised.

Our second goal is to enable automated analysis of higher-level protocols that use threshold signatures
as a building block. Based on our new hierarchy, we develop the first automated analysis method for
protocols deploying threshold signatures. In this part of our work, we use symbolic analysis methods,
modeling a family of threshold signing protocols in the framework of the Tamarin prover. By modeling
higher-level protocols in Tamarin together with our threshold signature models, our approach can be
used to systematically find attacks that exploit the subtle differences in security properties, and to offer
guidance in the selection of signature schemes.

Our methodology can also be used “in reverse”: Given a higher-level protocol that uses threshold
signatures, what exact guarantees should the threshold signature provide? This was also identified by
Bellare, Tessaro, and Zhu in [10, 11] as an open problem: “We stress that it is not clear which scenarios
demand which notions in our hierarchy. This is especially true because we are still lacking formal analyses
of full-fledged systems using threshold signatures, but it is not hard to envision a potential mismatch
between natural expectations from such schemes and what they actually achieve.” Specifically, we envision
our framework to be useful for protocol designers to evaluate the suitability of different threshold signature
schemes for their work.

Contributions. Our main contributions are the following:

1. We define a unified syntax for threshold signature schemes that covers both non-interactive and
interactive constructions, with any number of key generation and signing rounds. We identify
differences between proposed syntax definitions and generalize their core functionalities, which allows
us to define and categorize all different scheme types in one framework.

2. We propose a hierarchy of unforgeability notions for the unified syntax that extends and improves
previous work. We identify and correct inaccurate security guarantees in prior attempts at building
a unified hierarchy, and extend them with additional attributes that capture subtle differences in
the security requirements of different scheme types, and revisit the guarantees proven for existing
schemes in the context of our hierarchy.

3. We develop the first systematic, automated methodology for analyzing protocols that implement
threshold signature schemes. Our framework captures the unforgeability properties of our new
hierarchy and can be used to analyze the implications of using schemes that meet different security
notions from our hierarchy in higher-level protocols. We implement our models for a state-of-the-art
verification tool, the Tamarin prover.
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Outline. First, we provide background and relevant definitions from related work in Section 2. In
Section 3, we define a unified syntax for threshold signature schemes. In Section 4, we propose an extended
hierarchy of unforgeability notions. In Section 5, we compare our hierarchy with previous work [10, 11]. In
Section 6, we develop a formal analysis framework for automatic verification of protocols that implement
threshold signatures. Finally, we conclude in Section 7. We provide additional preliminaries and the
proofs to all theorems in this work in the supplementary material.

2 Background and Related Work

2.1 Unforgeability Definitions for Threshold Signatures

Since the inception of threshold signatures in the late 1980s [29], a great number of signature constructions
have been proposed [5, 6, 16, 23, 27, 35, 36, 37, 42, 44, 48], most providing slightly different security
guarantees [2, 4, 11, 13, 14, 23, 24, 25, 32, 42, 45, 48]. One of the most commonly adapted security
definitions is the conventional notion of existential unforgeability (against chosen message attacks). While
almost all threshold signature designs are proven to achieve some form of existential unforgeability, the
exact security guarantees that they achieve are often distinct. The main differences occur in three aspects:
syntax, adversary capabilities, and assumptions on communication channels, which we address in turn
below.

Syntax. Subtle variations in the syntax definitions of threshold signatures are a common reason for
incompatible security models. For example, [6, 24] define a syntax and associated security model for
threshold signatures with three message rounds in the signing phase. This directly excludes the possibility
of applying their model to schemes with more than three rounds. Moreover, while many existing threshold
signature definitions [4, 13] only consider two action phases, namely key generation and signing, modern
so-called echo schemes, such as FROST2 [24], achieve non-interactive signing by distributing pre-processing
tokens in a new pre-processing phase. Models that do not involve this additional phase, cannot cover the
constructions that require it.

To solve this problem, Bellare, Tessaro, and Zhu [10, 11] propose a generic syntax definition and
corresponding hierarchy of unforgeability levels. However, their definition is restricted to non-interactive
threshold signature schemes and, consequently, excludes all interactive schemes, such as [16, 24, 36].

Adversary Capabilities. A crucial difference between threshold signatures and other stateless
authentication protocols, such as digital signatures and message authentication codes, is that they are
multi-party protocols that often require multi-round group actions. Consequently, the corruption of some
signers at a given timepoint might impact the final security of the whole group. While the security goal in
various unforgeability models might be similar, i.e., preventing adversaries from forging a signature for
some message, the adversaries’ capabilities considered in different models differ vastly, making the models
themselves incompatible. Different adversary models consider e.g., static [11, 13, 25, 36, 37, 44, 48] or
adaptive corruption [2, 6, 16, 23, 27], and honest or malicious key generation [4, 5, 24, 35, 42].

Assumptions on Communication Channels. The security of the peer-to-peer communication
channels in threshold signature schemes have a crucial impact on the adversaries’ knowledge of the
transmitted messages and, therefore, the final security guarantees the protocol can provide. Depending on
the security assumptions on these channels, the adversary model changes drastically. Specifically, some
models require a secure channel for key generation, but not for message signing [6, 11, 13, 23, 24, 36, 42,
48], while others require authenticated [4, 5, 16] communication channels for all messages.

One of our goals is to provide a unifying framework for the preceding notions.

2.2 Other Security Notions

In addition to existential unforgeability, Bellare, Tessaro, and Zhu [10, 11] also propose a strong un-
forgeability notion for non-interactive threshold signatures. Informally, this notion prevents adversaries
from forging new, “unseen” signatures. We briefly recall it in Section 2.3 and expand on the details
in Section 4.2.

Besides unforgeability, several other security notions have also been proposed in the literature. These
include, for example, robustness [38, 48], identified aborts [48], proactivity [13], accountability or trace-
ability [14, 45], privacy [14], private accountability [14], and blindness [25]. Each of these notions provide
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certain security guarantees in some specific application scenarios. Since this work only focuses on the
generalization of the conventional unforgeability hierarchy, the discussion about other security notions is
considered out of scope.

2.3 Unforgeability Notions for Non-Interactive Threshold Signatures

Bellare, Tessaro, and Zhu [10, 11] propose the first generic syntax and unforgeability hierarchy for non-
interactive threshold signatures. Below, we define notions and recall definitions that are relevant for our
extended hierarchy.

Notation. We assume that all algorithms defined in this paper are parameterized implicitly by the
security parameter. We write [n] to denote the set of integers {1, . . . , n}. We write ⊥ to denote a special
error symbol that is not included in any set or list (unless specified), ∗ to denote a variable that is irrelevant,
and 0 to denote an empty string. Let x $←− Z denote sampling a variable x uniformly at random from a
set Z and let x $←− X(y) denote the execution of a probabilistic algorithm X with an input y followed by

assigning the output to a variable x. We write x← X(y) if the algorithm X is deterministic. Let L +← x

denote adding x into an (unordered) list or set L (L ← L∪ {x}) and let L −← x denote removing x from a
set or list L (L ← L \ {x}). For a dictionary D, let D[∗]← x denote initializing all elements to be x. We
use the keyword req to indicate that a following condition must be satisfied and the keyword parse to
indicate that a following expression must hold, and otherwise undo all executions in the current algorithm.
We use ∥ to denote string concatenation (e.g., x1 ∥x2 denotes the concatenation of two strings x1 and x2)
and ∥i∈I xi to denote the concatenation of strings xi for all i ∈ I, ordered by i from the smallest to the

largest. We write x
∥← y for x← x ∥ y. We use JexpK to denote the evaluation of the expression exp that

outputs 1 if exp is true and 0 otherwise.

Leader Requests and States. A threshold signature scheme lets a group of n stateful signers,
identified by i ∈ [n], collaboratively sign leader requests lr issued by a stateful leader, identified by 0.

Definition 1 (Leader Request [10, 11]). The leader request lr is a collection of variables that include:

• lr .m ∈ {0, 1}⋆: a message m to be signed.

• lr .SS ⊆ [n]: a set of signers SS that are expected to sign this request.

• lr .PP : lr .SS → {0, 1}∗: an optional function that specifies pre-processing tokens for every signer
i ∈ lr .SS; initialized with ⊥.

Note that [11, Section 3.1] defines that “leader request is mandated to specify a message lr .msg and
a set lr .SS ⊆ [1..ns] of servers from whom partial signatures are being requested” and for echo schemes
“additionally specifies a function lr .PP : lr .SS → {0, 1}⋆”. Here, we merge the definitions and assume
lr .PP = ⊥ for non-echo schemes.

Definition 2 (Echo Scheme [10, 11]). We say a threshold signature scheme is an echo scheme if leader
requests lr specify the function lr .PP ̸= ⊥.

Each signer i is associated with a per-signer long-term state sti.

Definition 3 (Signer States [10, 11]). The states of every signer Si are a collection of variables that
include:

• sti.id = i: the identifier of the signer Si.

• sti.sk: the signing key of the signer Si; initialized with ⊥.
• sti.VK: a dictionary that includes all signers’ verification keys; initialized with sti.VK [∗] ← ⊥.
(named sti.aux in [10, 11].)

• sti.gvk: the group verification key; initially ⊥. (named sti.vk in [10, 11].)

Similarly, the stateful leader holds the long-term state st0 for storing public information from signers.
In contrast to signer’s private long-term state, the leader’s long-term state is public, as it only includes
the signers’ public information.
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Definition 4 (Leader State [10, 11]). The states of the leader L are a collection of variables that include:

• st0.VK: a dictionary that includes all signers’ verification keys; initialized with st0.VK [∗]← ⊥.
• st0.gvk: the group verification key; initialized with ⊥.
• st0.DPP: the dictionary that includes all signers’ pre-processing tokens; initialized with st0.DPP[∗]← ∅.
(Cf. “the leader updates its state st0 to incorporate token pp” [10, 11, Section 3.1].)

Unforgeability Hierarchy. The conventional definition of unforgeability prevents an adversary
from forging a signature σ⋆ for a message m⋆, unless (m⋆, σ⋆) is a trivial forgery. Bellare, Tessaro, and
Zhu [10, 11] provide a unified classification for trivial forgeries, divided into five levels of unforgeability
(EUF-CMA), denoted TS-UF-{0,1,2,3,4}, where TS-UF-3 is only defined for echo schemes. Intuitively, a
message-signature pair (m⋆, σ⋆) is considered as trivial forgery if:

• TS-UF-0: A partial signature for the message m⋆ was generated by at least one honest signer.

• TS-UF-1: A partial signature for the message m⋆ was generated by at least t − c honest signers,
where c is the number of corrupted signers.

• TS-UF-2: There exists a leader request lr for the message m⋆ which was answered by at least t− c
honest signers.

• TS-UF-3: There exists a leader request lr for the message m⋆ such that every honest signer i ∈ lr .SS
if and only if i either answered lr or the token ppi associated with i in lr is maliciously generated.

• TS-UF-4: There exists a leader request lr for the message m⋆ such that every honest signer i ∈ lr .SS
answered lr .

The definitions of these notions allow for static (but not adaptive) corruption, and assume secure
communication channels among signers during the key generation phase. Bellare, Tessaro, and Zhu [10,
11] claim that these five levels are of increasing strength. However, in Section 5 we will show that TS-UF-4
security does not generally imply TS-UF-3 security for echo schemes. Our hierarchy will repair this
implication, notably by strengthening the highest level.

While numerous existential unforgeability models have been proposed for threshold signatures in the
literature, studies of strong unforgeability are very limited. To the best of our knowledge, the first and only
definition for strong unforgeability (SUF-CMA) for threshold signatures is provided by Bellare, Tessaro,
and Zhu [10, 11]. Informally, strong unforgeability prevents adversaries from forging a new “unseen”
signature σ⋆ for a message m⋆. Similarly to existential unforgeability, their strong unforgeability definition
is restricted to the non-interactive threshold signature and is classified into three levels: TS-SUF-{2,3,4}.
Using a similar argument as for the existential unforgeability case, TS-SUF-4 does not imply TS-SUF-3
security. In Section 4.2 we propose our own strong unforgeability hierarchy for generalized threshold
signatures.

We will return to the exact relation between the unforgeability part of our hierarchy and [10, 11] in
Section 5.

2.4 Symbolic Modeling of Cryptographic Primitives

Traditionally, symbolic analysis of security protocols only included extremely coarse approximations of
cryptographic primitives. For example, there existed only one symbolic model for any type of symmetric
encryption. Recent works have shown that it is possible to develop families of symbolic models for some
cryptographic primitives, including hashes [18], signatures [41], Diffie-Hellman groups [21], authenticated
encryption [19], and key encapsulation mechanisms [20]. This has resulted in more precise attack-finding
models capable of capturing subtle security flaws that have previously been undetectable by symbolic
analysis. The symbolic analysis methodology for threshold signatures that we develop in this work is in
the same spirit.
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3 Unified Syntax for Threshold Signatures

In this section, we propose a unified syntax for threshold signature schemes. Our syntax reuses the
definitions of leader requests (see Definition 1) and leader states (see Definition 4) from [10, 11], and extends
the definition of signer states (see Definition 3) for interactive schemes. Specifically, the extended signer
state definition includes variables for interactive signing in the long-term states and defines additional
session states πj

i for the j-th (sequential or parallel) interactive signing session. We use the abbreviations

Si = {sti} ∪ {πj
i }j and S j

i = {sti} ∪ {πj
i } to simplify presentation.

Definition 5 (Extended Signer States). Extending Definition 3, the state Si of every signer i includes
the following additional variables:

• sti.rnd ∈ {0, . . . , u+ 1}: the next round that the signer i will process in the key generation phase;
initialized with 0.

• πj
i .id = j: the session identifier of the signer session state πj

i .

• πj
i .rnd ∈ {0, . . . , w+ 1}: the next round that the signer i will process in the signing phase; initialized

with 0.

In Definition 6, we define (t, n)-threshold signature schemes with (u, v, w) rounds. Here, t and n
respectively denote the threshold and the number of total signers, u ≥ 0 and w ≥ 0 respectively denote
the communication rounds among signers during the key generation and signing phases, and v ∈ {0, 1}
specifies whether the optional pre-processing algorithm is necessary (v = 1) or not (v = 0). A signer
in a threshold signature scheme with u = 0 (resp. w = 0) has no interaction with other signers in
the key generation (resp. signing) phase and will only output outgoing messages to the leaders. v = 1
corresponds to an echo scheme in [10, 11]. As an example, we illustrate the well-known echo FROST2 [24]
and non-echo BLS [13] constructions respectively as (u, v, w) = (2, 1, 0) and (2, 0, 0) threshold signature
instances in Appendix B.

Definition 6. A (t, n)-threshold signature scheme TS = (KGen,VkAgg,SPP, LPP, LR,Sign,SigAgg,Vrfy)
with (u, v, w) rounds is stateful protocol as follows:

Key Generation: KGen = (KGen(0), . . . ,KGen(u)) allows a signer to generate a (per-signer) signing and
verification key pair and the group verification key. The interactive key generation algorithm includes
the following sub-algorithms for u ≥ 1:

• ∥i′∈[n]\{i}m
(1)
(i,i′)

$←− KGen(0)(Si): allows a signer i to output a sequence of outgoing messages

m
(1)
(i,i′) for other (n− 1) signers i′, where i′ ∈ [n] \ {i}.

• ∥i′∈[n]\{i}m
(y+1)
(i,i′)

$←− KGen(y)(Si,m) for y ∈ [u − 1]: allows a signer i to input an incoming

message m and output a sequence of outgoing messages m
(y+1)
(i,i′) for other (n − 1) signers i′,

where i′ ∈ [n] \ {i}.
• mi

$←− KGen(u)(Si,m): allows a signer i to input an incoming message m and output an outgoing
message mi to the leader.

The non-interactive key generation algorithm only includes the following one algorithm for u = 0:

• mi
$←− KGen(0)(Si): allows a signer i to output an outgoing message mi to the leader.

Verification Key Aggregation: gvk ← VkAgg(L, {mi}i∈[n]) inputs a set of signers’ messages, deter-
ministically initializes the leader’s long-term state, and outputs a group verification key.

Signer Pre-Processing: ppi
$←− SPP(Si) allows a signer i to output an outgoing message (so-called

pre-processing token1) pp that is used for i to sign messages later, if v = 1 (i.e., echo). If v = 0
(i.e., non-echo), this algorithm is omitted and the invocation of this algorithm simply outputs ⊥.

Leader Pre-Processing: LPP(L, pp) allows the leader to input a pre-processing token pp and to update
its local state, if v = 1 (i.e., echo). If v = 0 (i.e., non-echo), this algorithm is omitted.

Leader Signing-Request: lr $←− LR(L,SS ,m) allows the leader to input a set of signers SS and a
message m to produce a leader signing request lr .

1The outgoing messages output by the signer pre-processing algorithm are commonly called pre-processing tokens, which
we will use in the remainder of this paper.
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Signing: Sign = (Sign(0), . . . ,Sign(w)) allows signers to interactively sign messages and includes the
following sub-algorithms if w ≥ 1:

• ∥i′∈lr .SS\{i}m
(1)
(i,i′)

$←− Sign(0)(Si, lr) allows a signer i to start signing a leader request lr , and

output a sequence of outgoing messages m
(1)
(i,i′) for every signer i with i′ ∈ lr .SS \ {i}.

• ∥i′∈lr .SS\{i}m
(y+1)
(i,i′)

$←− Sign(y)(Si,m) for y ∈ [w − 1] allows a signer i to input an incoming

message m and to output a sequence of outgoing messages m
(y+1)
(i,i′) for every signer i′ with

i′ ∈ lr .SS \ {i}.
• ςi

$←− Sign(w)(Si,m) allows the signer i to input an incoming message m and to output a partial
signature ςi.

or the following algorithm if w = 0:

• ςi
$←− Sign(0)(Si, lr) allows the signer i to sign a leader request lr and to output a partial signature

ςi.

Signature Aggregation: σ ← SigAgg(L, lr , {ςi}i∈lr .SS ) allows a leader L to input a leader request lr
and a set of partial signatures ςi that are generated by signers i ∈ lr .SS and to deterministically
output a group signature σ.

Verification: 0/1 ← Vrfy(gvk ,m, σ) verifies whether σ is a valid group signature over the message m
with respect to the group verification key gvk (outputs 1) or not (outputs 0).

Optionally, TS might include an additional strong verification algorithm SVrfy as follows:

Strong Verification: 0/1← SVrfy(gvk , lr , σ) verifies whether σ is a valid group signature over the leader
request lr with respect to the group verification key gvk (outputs 1) or not (outputs 0). Moreover,
for every gvk and lr , there exists at most one σ such that SVrfy(gvk , lr , σ) = 1.

Correctness. Following the (strong) correctness definition in [10, 11], we define (strong) correctness
for our generalized threshold signature in Appendix C.

Message vs Leader Request. Unlike historical definitions of threshold signatures that only sign
a message m, our definition (following [10, 11]) signs a collection of data called a leader request lr
(see Definition 1). In addition to a message lr .m, this can also include a set of expected signers lr .SS and
other values, depending on the scheme. We stress that our syntax can still cover the historical definitions,
as every message m to be signed can be considered as a leader request lr with the message lr .m = m, and
the expected set of all signers lr .SS = [n].

Comparison with [10, 11]. Definition 6 extends the definition of threshold signatures in [10, 11,
Section 3.1], differing from it in three main aspects: First, while [10, 11, Section 3.1] is only defined for non-
interactive threshold signatures (w = 0), our definition also covers interactive threshold signatures (w ≥ 1).
Second, [10, 11, Section 3.1] only includes a compact key generation assumed to be “done by a trusted
algorithm”, whereas our key generation captures the underlying (possibly interactive) communication
between signers, in particular for threshold signature schemes with u ≥ 1. This modification allows our
security model to capture more find-grained features, such as malicious key generation and insecure
communication channels between signers. Third, unlike [10, 11, Section 3.1], our definition does not
explicitly include “a set HF of functions from which the random oracle is drawn”, making it more generic
and compatible with post-quantum secure constructions for future analyses.

4 Extended Hierarchy of Security Notions

In this section, we propose a new unforgeability hierarchy for threshold signature schemes, which includes
both (the weaker) existential unforgeability (EUF-CMA) and strong unforgeability (SUF-CMA). We depict
our generic security game GameUFTS in Figure 2. We provide a detailed description for the EUF-CMA
security hierarchy (i.e., UF = EUF-CMA), in Section 4.1 and extend it to the SUF-CMA security hierarchy
(i.e., UF = SUF-CMA) in Section 4.2.

Minimal Assumptions on Security Models. In our security model, we assume that all honest
signers employ unpredictable random number generators. Furthermore, we assume that the leader is
honest during the key generation phase to prevent a malicious leader from forging the group verification
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key and signing messages on behalf of the group. We also assume that the communication channels
between signers and the leader are authenticated during the key generation phase. Otherwise, an adversary
could impersonate all honest signers, so that the final group verification key produced by the leader relied
solely on the secrets chosen by the adversary. However, we stress that there are no assumptions on the
communication channels between signers and the leader in the signing phase. Moreover, our model allows
signers to concurrently sign messages.

4.1 Existential Unforgeability

In our existential unforgeability model (GameEUF-CMA
TS in Figure 2), an adversary is given access to four

oracles that respectively simulate key generation, pre-processing tokens generation, message signing, and
state corruption. The adversary wins if it can output a challenge message-signature pair that passes
verification and is not a trivial forgery. To systematically measure the security guarantees for threshold
signatures, we associate our unforgeability hierarchy with a quadruple of attributes.

Security Attributes. Our model is associated with a quadruple of attributes (SiGu, Corr, KGCh, SiCh),
each representing a class of security guarantees from the literature (see Section 2). Concretely, we identify
the following four attributes:

1. SiGu: Guarantees obtained on the Signers,

2. Corr: Adversary’s capability to Corrupt signers,

3. KGCh: Adversary’s capability wrt. the Key Generation Channel, and

4. SiCh: Adversary’s capability wrt. the Signing Channel.

For each attribute, we identify several levels. A specific attribute level is denoted as lev :name, where
name is a shorthand and lev ≥ 0 is an integer that represents the level. lev = 0 represents the weakest
security level (i.e., most restrictions for adversaries) and higher numbers indicate stronger security (i.e.,
fewer restrictions for adversaries). To emphasize the ordering within each attribute, we prefix every
instance name by its level, e.g., Att = lev :name. Thus, for a given attribute, the order on attribute
instances directly corresponds to the order on the prefixed numbers, i.e., for two levels of the same attribute
Att1 = lev1:name1 and Att2 = lev2:name2, we have that Att1 > Att2 if lev1 > lev2, and Att1 ≥ Att2 if
lev1 > lev2 or lev1 = lev2.

Attribute 1: Signer Guarantees. We identify five different levels of signer guarantees, denoted
SiGu ∈ {0: eM, 1: tM, 2: tLR, 3: tLRhPP, 4: aLRhPP}. Each level is specified by the set of challenge message-
signature pairs that are considered to be trivially forged in the model (see Figure 2, Line 13). In Table 1,
we provide the formal definitions used to define each level: the challenge message-signature pair (m⋆, σ⋆)
output by an adversary is considered as a trivial forgery, if there exists a leader request lr with lr .m = m⋆

such that tfSiGu(lr).
The five levels can be described more intuitively as follows, where nms is the number of malicious

signers at the end of the experiment, and t is the threshold:

• SiGu = 0: eM: At least one honest signer has involved in signing lr .m.

• SiGu = 1: tM: In addition to the 0: eM guarantee, the number of honest signers who has involved in
signing lr .m is at least (t− nms).

• SiGu = 2: tLR: At least (t− nms) signers have involved in signing the leader request lr .

• SiGu = 3: tLRhPP: In addition to the 2: tLR guarantee, for each honest signer i, we require that (i
has involved in signing the leader request lr) if and only if (the leader request lr includes i and (the
pre-processing token associated with i is honest, if TS is an echo scheme)).

• SiGu = 4: aLRhPP: In addition to the 3: tLRhPP guarantee, all honest signers in the leader request
have involved in signing the leader request lr .

For non-echo schemes (v = 0), the levels 3: tLRhPP and 4: aLRhPP are equivalent, because the leader
requests in non-echo schemes include no pre-processing tokens.
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SiGu 0: eM 1: tM 2: tLR 3: tLRhPP 4: aLRhPP

Corr 0: nC 1: sC 2: aC 3:mKG

KGCh 0:KGsC 1:KGaC 2:KGiC

SiCh 0:SisC 1:SiaC 2:SiiC

UF EUF-CMA SUF-CMA

Figure 1: The implications (indicated by arrows) between the attributes in our hierarchy.

Attribute 2: Signer Corruption. Corr ∈ {0: nC, 1: sC, 2: aC, 3:mKG} specifies the adversaries’ capa-
bilities to corrupt honest signers. While an honest signer must follow the protocol, a corrupted signer is
considered to be malicious and can deviate from the protocol at will.

Our model incorporates existing definitions of state corruption in the literature and considers the
following four levels of corruption:

• Corr = 0: nC: Adversaries are not allowed to corrupt any signer in the model.

• Corr = 1: sC: Adversaries must pre-choose a desired set of signers to be corrupted at the beginning
of the security model and are allowed to corrupt these signers only after the completion of the group
verification key aggregation. This level is often called “static corruption” in the literature.

• Corr = 2: aC: Adversaries are allowed to corrupt any signer at any time after the completion of the
group verification key aggregation. This level is often called “adaptive corruption” in the literature.

• Corr = 3:mKG: Adversaries are allowed to corrupt any signer at any time in the security model,
particularly, including the key generation phase. This level is often called “malicious key generation”
in the literature.

Attribute 3: Key Generation Channel Security. KGCh ∈ {0:KGsC, 1:KGaC, 2:KGiC} specifies
the adversaries’ capabilities to interfere with communication channels among signers2 during the key
generation phase3. For a threshold signature with no key generation rounds among signers (u = 0), all
levels of KGCh are equivalent.

Our model considers the following three levels of key generation channels:

• KGCh = 0:KGsC: Adversaries can neither eavesdrop nor manipulate the communication channels
among signers during the key generation phase. This level is often called a secure channel.

• KGCh = 1:KGaC: Adversaries can eavesdrop but cannot manipulate the communication channels
among signers during the key generation phase. This level is often called an authenticated channel.

• KGCh = 2:KGiC: Adversaries can both eavesdrop and manipulate the communication channels among
signers during the key generation phase. This level is often called an insecure channel.

Attribute 4: Signing Channel Security. SiCh ∈ {0:SisC, 1:SiaC, 2:SiiC} specifies the adversaries’
capabilities to interfere with communication channels among signers4 during the signing phase. For a
threshold signature with no signing rounds among signers (w = 0), all levels of SiCh are equivalent.

Our model considers the following three levels of signing channels:

• SiCh = 0:SisC: Adversaries can neither eavesdrop nor manipulate the communication channels
among signers during the signing phase. This level is often called secure channels.

2We stress that the KGCh attribute only applies to the communication channels among signers without involving the leader,
as we assume the communication channels between signers and the leader during the key generation phase are authenticated.

3For threshold signature schemes with multiple rounds in the key generation phase, we do not distinguish between the
communication channels for each round; we only consider the strongest channel assumption (i.e., the lowest level). Similar
arguments apply to the channels in the signing phase.

4The communication channels between the leader and every signer are considered insecure, as the adversaries are given
access to signing oracle for any leader request.
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Table 1: The trivial-forgery conditions tfSiGu and trivial-strong-forgery conditions tsfSiGu for SiGu ∈
{0: eM, 1: tM, 2: tLR, 3: tLRhPP, 4: aLRhPP}.

tf0:eM(lr) : D1[lr .m] ̸= ∅
tf1:tM(lr) : |D1[lr .m]| ≥ t− |LMS|
tf2:tLR(lr) : |D2[lr ]| ≥ t− |LMS|

tf3:tLRhPP(lr) : tf2:tLR(lr) and D2[lr ] = D3[lr ]

tf4:aLRhPP(lr) : tf2:tLR(lr) and D2[lr ] = D3[lr ] = D4[lr ]

tsf0:eM(lr , gvk , σ) : tf0:eM(lr) and SVf(gvk , lr , σ)

tsf1:tM(lr , gvk , σ) : tf1:tM(lr) and SVf(gvk , lr , σ)

tsf2:tLR(lr , gvk , σ) : tf2:tLR(lr) and SVf(gvk , lr , σ)

tsf3:tLRhPP(lr , gvk , σ) : tf3:tLRhPP(lr) and SVf(gvk , lr , σ)

tsf4:aLRhPP(lr , gvk , σ) : tf4:aLRhPP(lr) and SVf(gvk , lr , σ)

• SiCh = 1:SiaC: Adversaries can eavesdrop but cannot manipulate the communication channels
among signers during the signing phase. This level is often called authenticated channels.

• SiCh = 2:SiiC: Adversaries can both eavesdrop and manipulate the communication channels among
signers during the signing phase. This level is often called insecure channels.

We provide the full relations between the above attributes in Figure 1.

Security Model. At the beginning of our existential unforgeability model GameUFTS for UF = EUF-CMA
in Figure 2, the adversary A chooses a set LCS of signers to be corrupted, which makes particular
significance to the security notions in our hierarchy with Corr = 1: sC, i.e., static corruption. Next, our
model initializes two lists, LMS with the empty set and LHS with [n], which respectively denotes the list
of malicious and of honest signers, and a counter ctrSess with 0, which denotes the number of all signers’
(concurrent) signing sessions.

In our model, session identifiers identify the leader request to be signed. In particular, sessions πj
i and

πj′

i′ of signers i and i′ will sign the same leader request, as long as j = j′5. Our experiment initializes

eight dictionaries: DKGen
Trans and D

Sign
Trans respectively record honest signers’ output during the key generation

and signing phase; DLR records the leader requests signed in every session; DPP records the pre-processing
tokens output by every honest signers; D1, D2, D3, and D4 record information for the trivial forgery test
at the end of the experiment.

Afterwards, the adversary A is given access to the key generation and corruption oracles, followed
by outputting a set of outgoing messages on behalf of all malicious signers. The experiment derives the
group verification key gvk , if all necessary input messages, i.e., the recorded messages for honest signers
and the by A output messages for malicious signers, are not ⊥. The aggregated group verification key gvk
must not be ⊥.

In the end, the adversary A is given access to three oracles, respectively for state corruption, pre-
processing tokens generation, and message signing, followed by outputting a challenge message-signature
pair (m⋆, σ⋆). The adversary A immediately loses if the challenge message-signature pair cannot pass
the verification or at least t signers have been corrupted. The adversary A wins if the challenge message-
signature pair is not a trivial forgery, defined by the attribute SiGu (see Attribute 1: Signer Guarantees),
and loses otherwise.

The four oracles are defined as follows:

Oracle 1: Key Generation. The OKGen(i,m) oracle simulates an honest signer i’s key generation
execution with an incoming message m. We require that the signer i must be honest and the key generation
must be uncompleted. If the signer i has never executed key generation, it runs KGen(0)(sti) for an
outgoing message m ′. Otherwise, the signer i starts to run the subsequent round key generation and the
input message m must be non-⊥. If the communication channels among signers are secure or authenticated
(indicated by KGCh ≤ 1:KGaC), the input messages m should specify the incoming messages from malicious

5However, the reverse might not hold, as the signature generation might not involve all signers. Moreover, the same
leader requests might be repeatedly signed by the same signer in different sessions.
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GameUFTS(A), UF ∈ {EUF-CMA, SUF-CMA} :

1 // initialize counters, lists, and dictionaries

2 LCS
$←− A(); LMS

$←− ∅; LHS ← [n]; ctrSess ← 0; DKGen
Trans[∗],D

Sign
Trans[∗],DLR[∗]← ⊥; DPP[∗]← ∅

3 D1[∗],D2[∗],D3[∗],D4[∗]← ∅ // dictionaries for testing winning conditions

4 {m′
i}i∈LMS

← AOKGen,OCorrupt() // key generation phase

5 req ∀i ∈ LHS : DKGen
Trans[(u + 1, i, 0)] ̸= ⊥; req ∀i ∈ LMS : m′

i ̸= ⊥

6 gvk ← VkAgg(st0, {DKGen
Trans[(u + 1, i, 0)]}i∈LHS

∪ {m′
i}i∈LMS

); req gvk ̸= ⊥

7 (m⋆, σ⋆) $←− AOCorrupt,OPP,OSign(gvk) // adversary outputs a challenge message-signature pair

8 foreach lr ∈ {DLR[i] : i ∈ [ctrSess]} do// finalize for testing winning conditions

9 D1[lr .m]← D1[lr .m] ∩ LHS; D2[lr ]← D2[lr ] ∩ LHS

10 D3[lr ]← {i ∈ lr .SS : lr .PP(i) ∈ DPP[i] or v = 0} ∩ LHS; D4[lr ]← lr .SS ∩ LHS

11 if Vrfy(gvk ,m⋆, σ⋆) = false or |LMS| ≥ t then

12 return false // loses if at least t signers are corrupted

13 return ¬
(
∃lr with lr .m = m⋆: tfSiGu(lr)

)
// for GameEUF-CMA

TS experiment

14 return ¬
(
∃lr with lr .m = m⋆: tsfSiGu(lr , gvk , σ

⋆)
)

// for GameSUF-CMA
TS experiment

OKGen(i,m) // key generation

15 req i ∈ LHS and sti.rnd ≤ u

16 rnd← sti.rnd; m
′ ← ⊥

17 if rnd = 0 then

18 m′ $←− KGen(0)(sti)

19 else // if 1 ≤ rnd ≤ u

20 req m ̸= ⊥

21 if KGCh ≤ 1:KGaC then

22 foreach i′ ∈ LHS \ {i} do

23 req DKGen
Trans[(rnd, i

′, i)] ̸= ⊥

24 m
∥← DKGen

Trans[(rnd, i
′, i)]

25 m′ $←− KGen(rnd)(sti,m)

26 req m′ ̸= ⊥

27 rnd++

28 // record outputs

29 if rnd ≤ u then // if KGen is uncompleted

30 parse ∥i′∈[n]\{i} m′
(i,i′) ← m′

31 foreach i′ ∈ [n] \ {i} do

32 DKGen
Trans[(rnd, i, i

′)]← m′
(i,i′)

33 else // if KGen has completed

34 DKGen
Trans[(rnd, i, 0)]← m′

35 // for secure KGen channels among signers

36 if KGCh = 0:KGsC and rnd ≤ u then

37 return ∥i′∈LMS
DKGen

Trans[(rnd, i, i
′)]

38 // for authenticated or insecure KGen channels

39 return m′

OCorrupt(i) // state corruption

40 req i ∈ LHS and Corr ≥ 1: sC

41 req Corr ≥ 3:mKG or gvk ̸= ⊥

42 req Corr ≥ 2: aC or i ∈ LCS

43 LHS
−← i; LMS

+← i

44 return Si

OPP(i) // pre-processing phase

45 req v = 1 and i ∈ LHS

46 pp $←− SPP(sti); DPP[i]
+← pp

47 return pp

OSign(i, j,m) // honest signing

48 req i ∈ LHS and j ≤ ctrSess + 1

49 req πj
i .rnd ≤ w and m ̸= ⊥

50 if j = ctrSess + 1 then // new sessions

51 parse lr ← m

52 req lr .SS ⊆ [n] and lr .m ∈ {0, 1}⋆

53 ctrSess++; DLR[ctrSess]← lr

54 rnd← πj
i .rnd; lr ← DLR[j]; SS ← lr .SS ; m′ ← ⊥

55 if rnd = 0 then

56 req m = lr

57 else // if 1 ≤ rnd ≤ w

58 if SiCh ≤ 1: SiaC then

59 foreach i′ ∈ LHS ∩ SS \ {i} do

60 req DSign
Trans[(j, rnd, i

′, i)] ̸= ⊥

61 m
∥← DSign

Trans[(j, rnd, i
′, i)]

62 m′ $←− Sign(rnd)(Sj
i ,m); req m′ ̸= ⊥

63 D1[lr .m],D2[lr ]
+← i; rnd++

64 // record outputs

65 if rnd ≤ w then // if Sign is uncompleted

66 parse ∥i′∈SS\{i} m′
(i,i′) ← m′

67 foreach i′ ∈ SS \ {i} do

68 DSign
Trans[(j, rnd, i, i

′)]← m′
(i,i′)

69 // for secure Sign channels among signers

70 if SiCh = 0: SisC and rnd ≤ w then

71 return ∥i′∈LMS
DSign

Trans[(j, rnd, i, i
′)]

72 // for authenticated or insecure Sign channels

73 return m′

Figure 2: The (t, n)-(SiGu, Corr, KGCh, SiCh)-UF game GameUFTS(A) for an adversary A that breaks TS
with (u, v, w) rounds. The trivial-forgery conditions tfSiGu and trivial-strong-forgery conditions tsfSiGu
are defined in Table 1.
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signers to i. We require the necessary input messages from all other honest signers i′ to i to be non-⊥ and
append them to the incoming message m. The key generation algorithm is executed with the (possibly)
appended message m for an outgoing message m ′. We require m ′ ̸= ⊥.

If the signer has not completed key generation, the outgoing message m ′ is parsed and recorded as
input messages of all other signers’ next-round key generation. Otherwise, the outgoing message m ′ is
recorded as the output to the leader. If the key generation is uncompleted over secure communication
channels, the oracle only returns the input messages of malicious signers’ next round key generation.
Otherwise, the full outgoing message m ′ is returned.

Oracle 2: Pre-Processing. The OPP(i) oracle simulates the process that an honest signer i generates
and transmits a pre-processing token pp to the leader. The oracle checks whether the threshold signature
employs pre-processing algorithm, indicated by v = 1, and whether the signer i is honest. If the check
passes, the oracle executes algorithm SPP with signer i’s long-term state sti for a pre-processing token pp,
which is then recorded into the dictionary DPP[i] and output. Otherwise, the oracle simply exits without
any output.

Oracle 3: Signing. The OSign(i, j,m) oracle simulates an honest signer i participating in signing the
globally j-th leader request with incoming message m. Recall that all signers’ sessions with the same
identifier must sign the same leader request, while the reverse might not hold. The oracle requires that
(1) the signer i must be honest, (2) the j-th session must exist or be the next one, (3) the j-th session must
be uncompleted, and (4) the incoming message m must be non-⊥. If the input j = ctrSess + 1 indicates a
new session, the input message m must be parsed as a leader request lr including a valid set of signers
lr .SS and a message lr .m. The oracle increments the session counter ctrSess by 1 and records the leader
request lr .

The cases split depending on the round index πj
i .rnd included in the session state. If the round equals

0, then the oracle requires that the incoming message to be j-th leader request recorded in the dictionary
DLR. Otherwise, if the signing communication channels are authenticated, indicated by SiCh ≤ 1:SiaC,
the input message m must specifies all messages sent from malicious signers to the honest signer i. The
oracle checks whether all necessary input messages from other honest signers i′ to i have been produced
and recorded, followed by appending them to the incoming message m. If the check fails, the oracle
undoes executed computation and exits. In both cases, the oracle runs the next round signing algorithm
with input m for an outgoing message m ′, which is required to be non-⊥. Then, the oracle records the
signer i into two dictionaries D1 and D2. If the signer i has not completed this j-th signing session, then
the outgoing message m ′ is parsed and recorded as other signers’ next-round signing inputs. Otherwise,
the outgoing message m ′ is recorded as the output, i.e., partial signature, to the leader. In the case that
the signing phase is uncompleted over secure communication channels, the oracle only returns malicious
signers’ next round signing inputs. Otherwise, the full outgoing message m ′ is returned.

Oracle 4: State Corruption. The OCorrupt(i) oracle simulates the state corruption of an honest
signer i. The oracle first checks whether the signer i is honest and whether the state corruption is allowed,
indicated by Corr ≥ 1: sC (see Attribute 2: State Corruption). Next, the oracle checks whether malicious
key generation is allowed, indicated by Corr ≥ 3:mKG, or the key generation phase is done, indicated by
gvk ̸= ⊥, which is the pre-condition for other levels of corruption with Corr < 3:mKG. Then, the oracle
checks whether the adaptive corruption is allowed, indicated by Corr ≥ 2: aC, or the signer i is pre-chosen
at the beginning of the model in LCS. If any check fails, the oracle simply exits. Otherwise, the oracle
marks the honest signer i to be malicious by removing i from the honest-signer list LHS and adding i into
the malicious-signer list, followed by returning all states of the signer i, including both the long-term state
sti and all existing session states {πj

i }j .

Definition 7. Let TS denote a (t, n)-threshold signature scheme with (u, v, w) rounds. We say TS is
ϵ-(SiGu, Corr, KGCh, SiCh)-EUF-CMA secure if the below defined advantage for all adversaries against the
experiment GameEUF-CMA

TS in Figure 2 is bounded by ϵ, i.e.,

AdvEUF-CMA
TS (A) := Pr[GameEUF-CMA

TS (A) = 1] ≤ ϵ

4.2 Strong Unforgeability

We define our generalized strong unforgeability hierarchy for interactive threshold signatures. We depict
the strong unforgeability model GameSUF-CMA

TS in Figure 2. Our strong unforgeability share the same
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Table 2: Threshold signature constructions and their provable unforgeability in the literature. For schemes
with w = 0, SiCh = 2:SiiC always holds. Schemes with u = − only consider centralized key generation
with a trusted dealer, which, in theory, could be replaced by some distributed key generation [39, 46].

Scheme (u,v,w) Proof Model UF SiGu Corr KGCh SiCh

BLS / TGS(G) [13, 15] (2, 0, 0)
Game [11, 13] EUF-CMA 1: tM 1: sC 0:KGsC 2:SiiC
Game [4] EUF-CMA 1: tM 3:mKG 1:KGaC 1:SiaC

SimpleTSig [24] (2, 0, 2) Game [24] EUF-CMA 1: tM 1: sC* 0:KGsC 2:SiiC

FROST [42] (2, 1, 0)
Simulation [42] EUF-CMA 1: tM 1: sC* 0:KGsC 2:SiiC
Game [11] SUF-CMA 3: tLRhPP 1: sC 0:KGsC 2:SiiC

FROST2 [24]
(2, 0, 1) Game [24] EUF-CMA 1: tM 1: sC* 0:KGsC 2:SiiC
(2, 1, 0) Game [11] SUF-CMA 2: tLR 1: sC 0:KGsC 2:SiiC

ROAST (FROST3) [48] (2, 0, 0) Game [48] EUF-CMA 1: tM 1: sC 0:KGsC 2:SiiC

Sparkle+ [23] (−, 0, 2) Game [23] EUF-CMA 1: tM 2: aC 0:KGsC 2:SiiC

GG18 [36] (4, 0, 9) Game [36] EUF-CMA 1: tM 1: sC 0:KGsC 2:SiiC

“New” GG20 [16]
(4, 0, 3)

UC [16] EUF-CMA 0: eM 2: aC 1:KGaC 1:SiaC
(4, 0, 6)

ASY20 [1, Section 6.1] (−, 0, 1) Game [1] EUF-CMA 1: tM 2: aC 0:KGsC 2:SiiC

Twinkle [6] (−, 0, 2) Game [6] EUF-CMA 1: tM 2: aC 0:KGsC 2:SiiC

HARTS [5] (9, 0, 0) Game [5] EUF-CMA 1: tM 3:mKG 1:KGaC 1:SiaC

* The model only considers malicious key generation without state corruption. We merge this
with the weaker static corruption case (Corr = 1: sC).

syntax (Definition 6), quadruple of attributes (SiGu, Corr, KGCh, SiCh), and security model (GameSUF-CMA
TS )

with the existential unforgeability, except for the following differences:

Differences in Syntax. A threshold signature scheme TS providing strong unforgeability must be
equipped with a strong verification algorithm (SVrfy, see Definition 6), which is optional for achieving
existential unforgeability. Recall that SVrfy can verify whether a signature σ is the unique possible
signature of a message m under any group verification key gvk . Correspondingly, TS must additionally
achieve strong correctness (see Definition 10).

Differences in Attributes. The definitions of Corr, KGCh, and SiCh for strong unforgeability are
identical to the ones for existential unforgeability. For SiGu, the following difference holds: Let gvk denote
the group verification key. The challenge message-signature pair (m⋆, σ⋆) output by an adversary is
considered as a trivial forgery, if there exists any leader request lr with lr .m = m⋆ such that in addition
to tfSiGu(lr) the condition SVrfy(gvk , lr , σ⋆) holds.

Differences in Security Models. Reflected by the differences in attributes, the GameSUF-CMA
TS -model

is identical to the GameEUF-CMA
TS -model, except for the final winning test. Namely, the execution of Line 13

is replaced by the one of Line 14.

4.3 Properties of Existing Threshold Signature Schemes

In Table 2, we select several representative threshold signature schemes from the literature. Moreover, we
extract and categorize the core features of their existing provable security models according to our generic
unforgeability hierarchy.

4.4 Linearity of Attribute Levels

The following theorems ensure the linearity of our unforgeability hierarchy. Roughly speaking, these
theorems prove that a threshold signature that satisfies unforgeability with respect to some element
of our hierarchy, also satisfies those with lower levels in any attribute. We provide the proof in Appendix E.
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Theorem 1 (Unforgeability Hierarchy). Let TS denote a (t, n) threshold signature with (u, v, w) rounds.

• If TS is ϵ-(SiGu1, Corr1, KGCh1, SiCh1)-UF secure, then TS is also ϵ-(SiGu2, Corr2, KGCh2, SiCh2)-
UF secure, for any SiGu2 ≤ SiGu1, Corr2 ≤ Corr1, KGCh2 ≤ KGCh1, SiCh2 ≤ SiCh1, UF ∈
{EUF-CMA,SUF-CMA}.

• If TS is ϵ-(SiGu, Corr, KGCh, SiCh)-SUF-CMA secure, then TS is also ϵ-(SiGu, Corr, KGCh, SiCh)-
EUF-CMA secure.

5 Revisiting the Hierarchy in [10, 11]

In our hierarchy we presented in the previous section, our first attribute, SiGu, largely follows the security
definitions proposed by Bellare, Tessaro, and Zhu in [10, 11], with a few notable exceptions. Namely, we
use a modified definition for SiGu = 4: aLRhPP and an extended application domain for all other levels.
In this section, we explain and motivate the need for our modifications.

The abstract of [11] states: “We give a unified syntax, and a hierarchy of definitions of security of
increasing strength, for non-interactive threshold signature schemes. They cover both fully non-interactive
schemes (these are ones that have a single-round signing protocol, the canonical example being threshold-
BLS) and ones, like FROST, that have a prior round of message-independent pre-processing.” As we show
in this section, their hierarchy is not of increasing strength for all schemes in their stated scope, i.e., even
for all echo schemes. Furthermore, we show that their ATS transformation (from their TS-(S)UF-3 to
TS-(S)UF-4 notions) is better than advertised.

We communicated our results and suggestions to the authors of [11] on 18 May 2024, and they
responded that they intended but forgot to further restrict the class of schemes for which their TS-(S)UF-3
is defined, and they would update their ePrint to clarify this. As of November 21st 2024, this planned
update has not happened yet.

Indeed, further restricting TS-(S)UF-3 can exclude our counterexample. However, an alternative route
to repairing the linearity, which we have taken in the definition of our own hierarchy, is to strengthen
the highest level. This has the benefit of increasing the scope of the hierarchy, and in fact matches the
guarantees achieved by the transformation of [10, 11], as we will show in the next subsections.

5.1 TS-(S)UF-i Security is not Linearly Increasing in Strength

We prove that the TS-(S)UF-i hierarchy in [10, 11] is not increasing in strength by constructing an echo
scheme Π (specified in Appendix D) that meets TS-(S)UF-4 but not TS-(S)UF-3. The main trick for not
achieving TS-UF-3 is that the signer i only checks whether i is included in the leader request, without
checking whether the associated pre-processing token is honestly generated. Note that neglecting the
precise check for the associated pre-processing token is not only a theoretical possibility, but is also
error-prone in practice.

The following theorems prove that our construction Π is TS-(S)UF-4 but not TS-(S)UF-3 secure. We
provide their full proofs in Appendix F to Appendix J.

Theorem 2. Suppose DS underlying Π is a digital signature scheme and 2 ≤ t < n. If DS is UF-CMA-
secure, then Π is TS-UF-4 secure.

Theorem 3. For any 2 ≤ t < n, Π is not TS-UF-3 secure.

Theorem 4. Suppose DS underlying Π is a digital signature scheme and 2 ≤ t < n. If DS is unique and
SUF-CMA-secure, then Π is TS-SUF-4 secure.

Theorem 5. For any 2 ≤ t < n, Π is not TS-SUF-3 secure.

Corollary 1. Neither TS-UF-3 security nor TS-UF-4 security implies the other. The same holds for
TS-SUF-3 security and TS-SUF-4 security.

Remark 1. In order to keep the linearity of the unforgeability hierarchy, we define our own SiGu =
4: aLRhPP level in Section 4.1. Recall that Si(lr) in [10, 11] is equivalent to Di[lr ] in our model. In terms of
signer guarantees definition, our SiGu = 4: aLRhPP security strengthens TS-(S)UF-4 security by requiring
not only S2(lr) = S4(lr) but S2(lr) = S3(lr) = S4(lr). Intuitively, our (4: aLRhPP, 1: sC, 0:KGsC, 2:KGiC)-
EUF-CMA (resp. -SUF-CMA) is a stronger replacement of TS-UF-4 (resp. TS-SUF-4) security.

14



5.2 The ATS Transformation is Better Than Advertised

In addition to the unforgeability hierarchy for non-interactive threshold signature schemes, Bellare, Tessaro,
and Zhu [10, 11] propose a transformation, ATS, from TS-(S)UF-3 security to TS-(S)UF-4 security.
Although their unforgeability hierarchy does not realize linear relation, as we proved in Section 5.1, we
surprisingly find that their ATS transformation is better than advertised. More concretely, while Bellare,
Tessaro, and Zhu [10, 11] proved that if a threshold signature can guarantee that all signers who signed
a leader request lr only if their respective associated pre-processing tokens included in lr are honestly
generated (i.e., S2(lr) ⊆ S3(lr), which is implied by S2(lr) = S3(lr)) except for negligible probability, the
transformed threshold signature might lose this guarantee, as TS-(S)UF-4 only requires S2(lr) = S4(lr)
without the requirement on S2(lr) ⊆ S3(lr). Below, we prove that such loss cannot happen. We adapt
ATS to our threshold signature syntax (Definition 6) for our new ATS3:tLRhPP4:aLRhPP transformation and prove
that it transforms the unforgeability attribute SiGu = 3: tLRhPP to SiGu = 4: aLRhPP, which is stronger
in terms of trivial forgery (Signer Guarantees) than TS-(S)UF-4 security (see Remark 1).

Theorem 6. Let TS denotes a (t, n) threshold signature with (u, v, w) rounds. Let DS denotes a digital
signature scheme. Let TS′ = ATS3:tLRhPP4:aLRhPP[TS,DS] denotes the (t, n) threshold signature with (u′, v′, w′) =
(max(1, u), v, w) rounds. If DS is ϵDS-SUF-CMA secure and TS is ϵTS-(3: tLRhPP, Corr1, KGCh1, SiCh1)-
UF1 secure, then TS′ is ϵTS′-(4: aLRhPP, Corr2, KGCh2, SiCh2)-UF2 secure, where Corr2 = Corr1, KGCh2 =
min(KGCh1, 1:KGaC), SiCh2 = SiCh1, UF2 = UF1 and

ϵTS′ ≤ nϵDS + (n− t)ϵTS

6 Automated Analysis of Protocols That Use Threshold Signa-
tures

We develop a formal analysis framework for automatic verification of protocols that implement threshold
signature schemes. Specifically, our methodology captures the unforgeability properties of the extended
hierarchy introduced in Section 4. First, we summarize relevant background and give a general intuition
of modeling threshold signatures in the symbolic model. Second, we instantiate our models for the
Tamarin prover [49]. Finally, we present attack-finding case studies conducted with our framework.
Because our approach is symbolic, we cannot use it to provide computational proofs, but our approach
can automatically find attacks (counterexamples). Furthermore, a symbolic verification result in our
approach can be used as a starting point for a computational proof attempt. As of writing, automated
symbolic approaches have shown to be more suitable for higher-level protocols than their computational
relatives (e.g., EasyCrypt [33]), and provide a much higher level of automation, which enables systematic
exploration of alternatives.

6.1 Methodology

Our framework is built for the symbolic model of cryptography, which represents protocol messages as
abstract terms, and cryptographic functions as equational theories operating on terms. For example,
signing a message m with a key k can be expressed as sign(m, k). Using equational theories, we can
specify the relation between signing and verification as verify(sign(m, sk),m, pk(sk)) = true, where pk(sk)
represents public-key derivation from a (secret) key sk.

Security properties in the symbolic model are expressed with some property specification language
such as first-order logic. The adversary is typically modeled as an active network adversary, as defined by
Dolev and Yao [30]. This means that the adversary has complete control of the network and can intercept,
read, modify, or delete messages, but is limited to applying cryptographic functions on known terms.

The Tamarin prover [49] is a state-of-the-art verification tool for the automatic analysis of crypto-
graphic protocols in the symbolic model. Given a protocol specification and a set of properties, the tool
works through backwards reasoning to prove the protocol or provide a counterexample representing an
attack. Protocols are formalized as collections of labelled multiset rewriting rules operating on facts. For
example, asymmetric encryption of a message m with a public key pkR can be expressed as follows:
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rule encrypt_message:
[ Sender(pkR , m) ] // Premise

--[ SendMessage(m) ]-> // Action(s)
[ Out(aenc(m, pkR)) ] // Conclusion

The rule consists of three parts: a premise, actions, and a conclusion, each containing multisets of
facts. Rules represent transitions that replace the facts in the premise with the ones in the conclusion,
marking the process in a trace with action facts. The premise determines the required facts for the rule to
be applicable, and the conclusion is the outcome of executing it. Our example rule consumes a sender
state containing the public key of the receiver and a message, and outputs an encrypted message into the
network.

Protocol properties are specified as fragments of first-order logic with timepoints. For example, we can
express secrecy of the sent message as follows:

lemma secrecy_of_m:
" All m #i . SendMessage(m)@i ==> not Ex #k. K(m)@k "

Informally, this states that for any message m that was sent at an arbitrary timepoint #i, there
does not exist a timepoint #k at which the adversary learns m. Since the adversary is unable to break
cryptographic primitives, the property holds as long as the encryption key remains secret.

In our formalization of threshold signatures, we make use of Tamarin’s restrictions feature. Syn-
tactically, restrictions are similar to security lemmas, but instead of properties, specify restrictions for
Tamarin’s search algorithm. This allows us to avoid directly modeling complex cryptographic primitives
by discarding traces that violate their intended properties.

For a more comprehensive list of Tamarin’s features and syntax, we refer the reader to [7, 8, 49].

6.2 A Symbolic Model of Threshold Signatures

In Section 4, we proposed a new hierarchy of unforgeability notions for threshold signature schemes. Next,
we explain how the attributes in our hierarchy can be formalized in the symbolic model of cryptography
for automated analysis of security properties. Note that determining or proving the hierarchy level of any
specific signature scheme is out of scope for the framework. Instead, we represent each level of trivial
forgery as an abstract signing operation that captures its relevant security properties and model the
adversary capabilities by strengthening the default Dolev-Yao adversary.

Functions and Equational Theories. Recall from Section 6.1, that digital signatures in the symbolic
model can be specified by an equational theory that defines the association between a message, a signature,
and a key pair. In a threshold signature scheme, the group signature is created by aggregating partial
signatures from individual signers belonging to a common group. Once at least t signatures are combined,
the resulting signature can be verified with the group’s public key, without ever constructing the shared
secret key.

In the symbolic model, we can represent this with an abstract group entity that, given enough valid par-
tial signatures, signs a message on behalf of its members. We define a function symbol ts sign(m, sig, skg),
which in addition to the message m and the group’s signing key skg, contains the list of signers sig that
provided partial signatures. This allows us to differentiate between privacy-preserving and accountable
threshold signature schemes.

A privacy-preserving threshold signature scheme hides the threshold t from outsiders and does not
reveal the identities of the parties that produced a valid signature. More specifically, a group’s public key
and a set of message-signature pairs should not reveal the threshold or the identities of the parties that
produced any of the signatures. Privacy can further be divided into privacy against the public and privacy
against the signers. While the former only requires the information to be protected from outsiders, the
latter also hides the identities from inside parties.

To represent privacy-preserving signature schemes, we define an equational theory that ignores the
list of signers in the verification process. Similar to traditional signatures, the verification succeeds if the
function is given the correct message and public key.

ts verify private(ts sign(m, s, skg),m, pk(skg)) = true

In contrast, an accountable threshold signature scheme reveals the identities of the signing parties for
any given message-signature pair. We model this by allowing the signature verifier to check whether a
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given subset of signers participated in producing a signature.

ts verify accountable(ts sign(m, s, skg),m, s, pk(skg)) = true

Any group member or outsider (including the adversary) is allowed to generate a threshold signature
for a given key pair. However, no individual signer can produce a valid signature for the group, since the
private key is only known by the abstract signing entity. We specify a set of restrictions for determining
when the required conditions have been met. These restrictions represent the security guarantees of each
level in our hierarchy.

6.3 Modeling Threshold Signatures for the Tamarin Prover

We instantiate our symbolic model of threshold signatures for the Tamarin prover [49]. Specifically, we
model a family of (t, n) threshold signature schemes that achieves (SiGu, Corr, KGCh, SiCh)-UF security for:

• SiGu ∈ {0: eM, 1: tM, 2: tLR, 3: tLRhPP, 4: aLRhPP},
• Corr ∈ {0: nC, 1: sC, 2: aC},
• KGCh ∈ {0:KGsC},
• SiCh ∈ {0:SisC, 1:SiaC, 2:SiiC}, and
• UF ∈ {EUF-CMA,SUF-CMA}

On a high level, our model consists of three parts: (1) group creation, (2) partial signing, and (3) group
signing. We briefly summarize our main design choices and explain the limitations of our framework. All
of our models and detailed execution instructions are available at [22].

Group Creation. Groups are created in an iterative process that can terminate with any group size
n ≥ 1 and threshold 1 ≤ t ≤ n. We model the finished group as a persistent state that contains its
identifier, threshold, size, private key, and a list of its members. The group size and threshold can both be
restricted in the security lemmas for modeling a specific scenario or protocol.

Many threshold signature schemes [24, 28, 42] implement Pedersen’s distributed key generation
(DKG) [46] protocol or a variation of it. The protocol defines how a group of signers can create a shared
secret without any individual member being able to construct it. On a high level, the protocol works by
each participant choosing a secret value and distributing shares of it to the others using verifiable secret
sharing. Once each participant has received a share from every other signer, the shares are combined to
form a secret value. Any sufficiently large subset of these values can be combined to construct the shared
secret. We refer the reader to Appendix N for additional details.

In our signature model, we abstract away the key generation process by giving each signer an honestly
generated key pair (i.e., Corr < 3:mKG and KGCh = 0:KGsC) and binding them together through group
membership. However, in a separate key derivation model, we capture the missing attributes and verify a
well-known weakness of distributed key generation: rogue-key attacks [12, 40]. We explain the attack and
proposed solutions in Section 6.4.

Partial Signing. In our model, leader requests are created by a rule that selects an arbitrary subset of
signers from a group to sign a message. For SiCh = 0:SisC, we model the communication channel between
the leader and signers as a secure channel, which the adversary can neither read nor manipulate. For
SiCh = 1:SiaC, we let the adversary read messages from the channel, and for SiCh = 2:SiiC, we give the
adversary full control of the channel.

We model state corruption (Corr ∈ {1: sC, 2: aC}) by letting signers leak their secrets to the adversary.
Furthermore, uncompromised signers can choose to behave honestly or maliciously. An honest signer only
signs a message if it receives a valid pre-processing token. A malicious signer ignores the token and signs
any message.

Group Signing. We make use of Tamarin’s restrictions to capture the different Signature Guarantee
levels in our hierarchy (see Section 4.1 for details). Specifically, for each level of SiGu, we specify a signing
rule that captures the specific subset of signers that provided partial signatures:
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rule sign_sigu_i:
let

group_signature = ts_sign(msg , signers , skG)
in
[ !Group(~idG , t, n, skG , members)
, Signatures(~idG , msg , leader_request ,

signature_count , signers , signatures) ]
--[ /* SiGu -i-specific restrictions */ ]->

[ Out(<~idG , msg , group_signature >) ]

Security Guarantees. Following the hierarchy definitions in Section 4, we model different levels of
security guarantees for group signatures.

Unforgeability. Our model captures both existential (EUF-CMA) and strong unforgeability (SUF-CMA).
For EUF-CMA, we define a function and a corresponding equational theory, which give the adversary the
ability to create multiple signatures that verify under the same group key.

Signer Guarantees. The adversary breaks SiGu = X security by crafting a non-trivial forgery consisting
of a message M and a valid signature for it. We summarize the guarantees provided by each level of SiGu
security in Appendix M.

6.4 Case Studies

As initial case studies, we use our framework (1) to verify and fix a well-known rogue-key attack in
distributed key generation, and (2) to show that the SiGu attribute only guarantees accountability with
regards to the leader request for the highest level of strictness (SiGu = 4: aLRhPP). We provide all
our Tamarin models at [22]. Furthermore, in Appendix O, we give examples of practical application
scenarios for threshold signatures and discuss their specific security requirements. We briefly summarize
the motivations and results of our initial case studies below.

Rogue-Key Attacks in Distributed Key Generation. As previously mentioned, Pedersen’s dis-
tributed key generation (DGK) protocol [46], which is commonly implemented for threshold signature
schemes, is vulnerable to a rogue-key attack. The attack is caused by a lack of prior association between
signers, which allows a dishonest group member to select an arbitrary public key in the key derivation
process. By compromising a large enough subset of the group, the adversary can then choose their secret
share in a way that negates the other shares and, consequently, gain the ability to sign messages on behalf
of the group.

In a small group with a high level of trust between parties, the attack is arguably not very consequential.
However, in practice, there are application scenarios where an adversary can realistically achieve a sufficient
level of compromise to perform the attack. Namely, if (1) the group of signers is large and the threshold
is relatively small (i.e., t ≪ n), or (2) the group frequently changes members and consequently has to
perform re-keying. Both of these cases are often true in e.g., blockchain interoperability protocols [3, 17,
52, 57].

We model Pedersen’s DKG protocol [46] for a group of three signers, and show that an adversary can
perform the attack when Corr = 3:mKG and KGCh = 2:KGiC. This is by no means a new finding; it has
been documented and discussed in detail in the literature [9, 47]. However, modeling it in our framework
allows us to verify that proposed mitigation methods (used by recent threshold signature schemes) prevent
the attack, even in the presence of a strong adversary model.

Since rogue-key attacks rely on the adversary choosing a public key for which it does not know the
corresponding secret key, it can be easily prevented by requiring participants to prove knowledge of the
secret key (KOSK) [47]. By asking each signer to present a proof of having access to the secret key, a
dishonest signer can be caught and the key derivation process can be aborted. This can be achieved
through multiple different methods, two of which we confirm with our model (see Appendix N for additional
details):

1. Proof of possession requires each signer to prove that they have access to the commitment corre-
sponding to a secret value. For example, in FROST [42], each signer computes and distributes a
zero-knowledge proof of their secret value.
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2. Key commitment is a multi-round solution that requires each party to commit to their secret before
sending or receiving anything. For example, each signer can be required to send a hash of their
public key and only proceed once everyone has done so.

Proof Effort. In total, we analyze three variations of the protocol. First, we model the original version of
Pedersen’s algorithm to verify that our model captures a rogue-key attack in the default setting. Then,
we modify it to create two adaptations that capture the mitigation methods discussed previously. For
each model, we define two properties: a sanity check to ensure that it behaves as expected, and a security
lemma that captures rogue-key attacks. Out of the six lemmas, Tamarin proves five automatically with
the help of user-defined goal rankings. Specifically, we make use of the tactics feature, which allows us
to optimize the attack-finding search. Each model is approximately 300 lines of code in size, with an
additional 50 lines of tactics. The total running time for the five lemmas is approximately 20 minutes
on a 2023 MacBook Pro laptop. For the sixth lemma, we use manual exploration to find a trace that
represents an attack. Finding the trace required initially significant effort, but once identified, made it
easy to reproduce.

Limited Accountability for Leader Requests. Our second case study uses the signature model to
discover a set of traces, which are approximately equivalent to the counterexamples used by Bellare, Tessaro,
and Zhu in [10, 11] to show that FROST [42] and FROST2 [24] do not meet the requirements for TS-
(S)UF-3 and TS-(S)UF-4 respectively. In threshold signature schemes with Corr > 0: nC, SiCh = 2:SiiC,
and SiGu ∈ {2: tLR, 3: tLRhPP}, an adversary can corrupt a subset of < t signers and manipulate the
signing process to produce a group signature that seemingly was created by the members included in the
leader requests, even though only a subset of them actually provided partial signatures. The attack is
only defined for signature schemes with leader requests, since it does not violate the guarantees of weaker
schemes.

Rather than modeling any particular protocol to discover these attacks, we write a set of security
lemmas, which claim that in schemes with leader requests (i.e., SiGu ∈ {2: tLR, 3: tLRhPP, 4: aLRhPP}) the
following holds: whenever a group signature is produced, the subset of signers is equivalent to the subset
of signers in the corresponding leader request. As expected, this fails for SiGu ∈ {2: tLR, 3: tLRhPP}, since
the guarantees only limit the number of corrupted signers that are part of the leader request.

Proof Effort. The model uses Tamarin’s built-in pre-processor to generate threshold signature construc-
tions that meet the requirements of the different hierarchy levels (see [22] for details and instructions). In
total, this lets us generate 180 variations of it, each corresponding to a specific quadruple of attribute
values. For this case study, we analyzed accountability lemmas in 54 signature schemes. Specifically, we
generated signatures schemes corresponding to UF ∈ {EUF-CMA,SUF-CMA}, Corr ∈ {0: nC, 1: sC, 2: aC},
SiCh ∈ {0:SisC, 1:SiaC, 2:SiiC}, and SiGu ∈ {2: tLR, 3: tLRhPP, 4: aLRhPP}. As in the previous example,
each model defines two properties: a sanity check to ensure that it behaves as expected, and a security
lemma to verify or falsify the accountability property. The size of our model is approximately 800 lines of
code, with an additional 70 lines of tactics. The total running time for all 54 cases (including the sanity
checks) in approximately 80 minutes on a 2023 MacBook Pro laptop.

7 Conclusions

We defined a unified syntax for threshold signature schemes and proposed a new hierarchy of unforgeability
notions that combines, corrects, and extends previous work. Furthermore, we developed the first systematic,
automated analysis framework for protocols deploying threshold signatures. Our methodology and protocol
models are freely available from [22] and enable detecting protocol weaknesses caused by subtle differences
between the levels of unforgeability in our hierarchy. It can be used for automatic attack finding in the
symbolic model of cryptography, or as a general guideline in the selection of threshold signature schemes.
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Supplementary Material

In the following sections, we provide supplementary material that includes additional examples, proofs,
and clarifying explanations. In Appendix A, we provide additional preliminaries. In Appendix B, we show
that, in our syntax, FROST2 [24] is a (u, v, w) = (2, 1, 0) scheme and BLS [13] is a (u, v, w) = (2, 0, 0)
scheme. In Appendix C, we define (strong) correctness for our generalized threshold signature syntax.
In Appendix D, we provide a counterexample for TS-(S)UF-4 ̸⇒ TS-(S)UF-3 to prove that the TS-(S)UF-i
security hierarchy in [10, 11] does not provide a linear strength relation. In Appendix E–K, we give proofs
for the theorems and corollaries presented in Section 5. In Appendix L, we define a ATS3:tLRhPP4:aLRhPP[TS,DS]
transformation. In Appendix M, we summarize the security guarantees provided by each level of SiGu
in our hierarchy. In Appendix N, we explain Pedersen’s protocol for distributed key generation and the
rogue-key attack that it is vulnerable to. Finally, in Appendix O, we give examples of practical application
scenarios for threshold signatures and discuss their security requirements.

A Additional Preliminaries

A.1 Digital Signatures

Definition 8. A digital signature scheme over message space M, is a tuple of algorithms DS =
(DS.KGen,DS.Sign,DS.Vrfy) as defined below. In this work, we assume M = {0, 1}⋆, i.e., the set of
binary strings with limited length.

Key Generation: (vkDS, skDS) $←− DS.KGen() outputs a key pair (vkDS, skDS) consisting of a public
verification key and private signing key.

Signing: σ $←− DS.Sign(skDS,m) inputs a signing key skDS and a message m ∈M, and outputs a signature
σ.

Verification: 0/1← DS.Vrfy(vkDS,m, σ) verifies whether σ is a valid signature over the message m with
respect to the verification key vkDS (outputs 1) or not (outputs 0).

We say a DS is δ-correct, if for every (vkDS, skDS) $←− DS.KGen() and every message m ∈M, we have

Pr[0← DS.Vrfy(vkDS,m,DS.Sign(skDS,m))] ≤ δ

In particular, we call a DS (perfectly) correct if δ = 0. Moreover, we say a digital signature scheme
DS is unique, if for every (vkDS, skDS) $←− DS.KGen() and every message m ∈M, there exists at most one
signature σ such that

DS.Vrfy(vkDS,m, σ) = 1

In terms of the security notation, we recall the standard definitions for existential and strong unforge-
ability against chosen message attack (EUF-CMA/SUF-CMA).

GameEUF-CMA
DS (A):

1 L ← ∅

2 (vkDS, skDS) $←− DS.KGen()

3 (m⋆, σ⋆) $←− AOSign(vkDS)

4 if m⋆ ∈ L

5 return 0

6 return JDS.Vrfy(vkDS,m⋆, σ⋆)K
OSign(m)

7 σ $←− DS.Sign(skDS,m)

8 L +← m

9 return σ

GameSUF-CMA
DS (A):

1 L ← ∅

2 (vkDS, skDS) $←− DS.KGen()

3 (m⋆, σ⋆) $←− AOSign(vkDS)

4 if (m⋆, σ⋆) ∈ L

5 return 0

6 return JDS.Vrfy(vkDS,m⋆, σ⋆)K
OSign(m)

7 σ $←− DS.Sign(skDS,m)

8 L +← (m, σ)

9 return σ

Figure 3: EUF-CMA and SUF-CMA experiments for DS = (DS.KGen,DS.Sign,DS.Vrfy).

Definition 9. Let DS = (DS.KGen,DS.Sign,DS.Vrfy) be a digital signature scheme with message space
M. We say DS is ϵ-EUF-CMA secure (resp. ϵ-SUF-CMA secure), if for every adversary A, we have

ϵeuf-cma
DS (A) := Pr[GameEUF-CMA

DS (A) = 1] ≤ ϵ
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ϵsuf-cma
DS (A) := Pr[GameSUF-CMA

DS (A) = 1] ≤ ϵ

where the experiments GameEUF-CMA
DS (A) and GameSUF-CMA

DS (A) are defined in Figure 3.

B Examples of the Unified Syntax

We provide two examples for how existing threshold signature schemes can be expressed in our unified
syntax (see Definition 6). The first one is an echo scheme, and the second one is a non-echo scheme.

Example 1. The FROST2 construction [24] can be expressed as a (2, 1, 0)-round threshold signature
scheme (see Figure 4) by extending each signer’s state with the following temporal variables:

• sti.LPP: a list that includes signer i’ pre-processing tokens; initialized with sti.LPP ← ∅.
• sti.f : a polynomial function; initialized with ⊥.
• sti.ϕ(i′,k),∀i′ ∈ [n], k ∈ {0, . . . , t− 1}: a temporal value; initialized with ⊥.
• sti.f

i
i : a temporal value; initialized with ⊥.

Example 2. The BLS construction [13] can be expressed as a (2, 0, 0)-round threshold signature scheme
(see Figure 5) by extending each signer’s state with the following temporal variables:

• sti.a(i′,k),∀k ∈ {0, . . . , t− 1}: a temporal value; initialized with ⊥.
• sti.s(i′,i),∀i′ ∈ [n]: a temporal value; initialized with ⊥.

C Correctness Definition

In order to simplify the correctness definition for a (t, n)-threshold signature scheme TS with (u, v, w)
rounds, we use ({mi}i∈[n], trans) $←− KGen({Si}i∈[n]) to denote an honest key generation over authenticated
channels, i.e., the following sequential execution if u ≥ 1:

∥
i′∈[n]\{i}

m
(1)
(i,i′)

$←− KGen(0)(Si), ∀i ∈ [n]

∥
i′∈[n]\{i}

m
(y+1)
(i,i′)

$←− KGen(y)(Si, ∥
i′∈[n]\{i}

m
(y)
(i′,i)), ∀i ∈ [n], y ∈ [u− 1]

mi
$←− KGen(u)(Si, ∥

i′∈[n]\{i}

m
(u)
(i′,i)), ∀i ∈ [n]

trans← ∥
i∈[n]

i′∈[n]\{i}
0≤y≤u−1

m
(y)
(i,i′)

or the following execution if u = 0:

mi
$←− KGen(u)(Si), ∀i ∈ [n]

trans← 0

Moreover, we use ({ςi}i∈lr .SS , trans) $←− Sign(lr) to denote an honest interaction among signers i ∈ lr .SS
for signing a message lr .m using pre-processing tokens lr .PP(i), i.e., the following sequential execution if
w ≥ 1:

∥
i′∈lr .SS\{i}

m
(0)
(i,i′)

$←− Sign(0)(Si, lr), ∀i ∈ lr .SS

∥
i′∈lr .SS\{i}

m
(y+1)
(i,i′)

$←− Sign(y)(Si, ∥
i′∈lr .SS\{i}

m
(y)
(i′,i)), ∀i ∈ lr .SS ,∀y ∈ [w − 1]

ςi
$←− Sign(w)(Si, ∥

i′∈lr .SS\{i}

m
(w)
(i′,i)), ∀i ∈ lr .SS

trans← ∥
i∈lr .SS

i′∈lr .SS\{i}
0≤y≤w−1

m
(y)
(i,i′)
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KGen(0)(sti):

1 a(i,0), ..., a(i,t−1)
$←− Zq

2 Define function fi(x) =
∑t−1

j=0 a(i,j)x
j

3 sti.f ← f

4 ki
$←− Zq ; Ri ← gk

5 // Φ is a context string to prevent replay attacks.

6 ci ← H(i,Φ, g
a(i,0) , Ri)

7 µi ← ki + a(i,0) · ci; σi ← (Ri, µi)

8 foreach k ∈ {0, ..., t− 1} do

9 ϕ(i,k) ← g
a(i,k)

10 sti.ϕ(i,0) ← ϕ(i,0)

11 Ci ← (ϕ(i,0), ..., ϕ(i,t−1))

12 foreach i′ ∈ [n] \ {i}

13 m(i,i′) ← (Ci, σi)

14 return ∥i′∈[n]\{i} m(i,i′)

KGen(1)(sti,m)

15 parse ∥l∈[n]\{i}(Cl, σl)← m

16 foreach l ∈ [n] \ {i}

17 (ϕ(l,0), ..., ϕ(l,t−1))← Cl

18 (Rl, µl)← σl

19 cl ← H(l,Φ, ϕ(l,0), Rl)

20 req Rl = gµl · ϕ−cl
(l,0)

21 foreach k ∈ {0, ..., t− 1} do

22 sti.ϕ(l,k) ← ϕ(l,k)

23 foreach i′ ∈ [n] \ {i}

24 m(i,i′) ← (l, sti.f(l))

25 sti.f
i
i ← sti.f(i); sti.f ← ⊥

26 return ∥i′∈[n]\{i} m(i,i′)

KGen(2)(sti,m)

27 parse ∥l∈[n]\{i}(i, f
i
l )← m

28 foreach l ∈ [n] \ {i}

29 req gfi
l =

∏t−1
k=0(sti.ϕ(l,k))

(ik mod q)

30 foreach k ∈ [t− 1]

31 sti.ϕ(l,k) ← ⊥

32 sti.sk ← sti.f
i
i +

∑
l∈[n]\{i} fi

l

33 sti.gvk ←
∏

i′∈[n] sti.ϕ(i′,0)

34 m′ ← (sti.vk , sti.ϕ(i,0))

35 sti.f
i
i ← ⊥

36 foreach i′ ∈ [n] do

37 sti.VK [i′]← sti.ϕ(i′,0)

38 sti.ϕ(i′,0) ← ⊥

39 return m′

VkAgg(st0, {mi}i∈[n])

40 foreach i ∈ [n]

41 parse {vki, ϕ(i,0)} ← mi

42 st0.VK [i]← vki

43 st0.gvk ←
∏

i∈[n] ϕ(i,0)

44 return st0.gvk

SPP(sti)

45 (di, ei) $←− Z⋆
q × Z⋆

q ; (Di, Ei)← (gdi , gei )

46 sti.LPP
+← (Di, Ei)

47 return (i,Di, Ei)

LPP(st0,m)

48 parse (i,D,E)← m

49 req i ∈ [n] and D,E ∈ G⋆

50 st0.DPP[i]
+← (D,E)

51 return

LR(st0,SS ,m)

52 req ∀i ∈ SS : st0.DPP[i] ̸= ∅

53 lr .SS ← SS ; lr .m ← m

54 foreach i ∈ SS do

55 pick some ppi from st0.DPP[i]

56 lr .PP(i)← ppi; st0.DPP[i]
−← ppi

57 return lr

Sign(0)(Si, lr)

58 req lr .m ∈ {0, 1}⋆ and lr .PP(i) ∈ sti.LPP

59 foreach i′ ∈ lr .SS

60 parse (Di′ , Ei′ )← lr .PP(i′)

61 req (Di′ , Ei′ ) ∈ G⋆ × G⋆

62 ρ ← H1(sti.gvk , lr); R ←
∏

i′∈lr.SS Di′ · (Ei′ )
ρ
i′ ; c ←

H2(sti.gvk , R, lr .m)

63 zi ← di + (ei · ρi) + λi · sti.sk · c // λi is the i-th Lagrange

coefficient determined by lr.SS

64 sti.LPP
−← lr .PP(i)

65 return zi

SigAgg(st0, lr , {ςi}i∈lr.SS )

66 foreach i ∈ lr .SS

67 parse (Di, Ei)← lr .PP(i)

68 req (Di, Ei) ∈ G⋆ × G⋆

69 ρ← H1(st0.gvk , lr)

70 R←
∏

i∈lr.SS Di · (Ei)
ρ; z ←

∑
i∈lr.SS ςi

71 return (R, z)

Vrfy(gvk ,m, σ)

72 parse (R, z)← σ

73 c← H2(gvk , R,m)

74 return JR · gvkc = gzK

SVrfy(gvk , lr , σ)

75 parse (R, z)← σ

76 foreach i ∈ lr .SS

77 parse (Di, Ei)← lr .PP(i)

78 req (Di, Ei) ∈ G⋆ × G⋆

79 ρ← H1(gvk , lr); c← H2(gvk , R
′,m)

80 R′ ←
∏

i∈lr.SS Di · (Ei)
ρ

81 return JR = R′K and JR · gvkc = gzK

Figure 4: The FROST2 construction [24] is a (2, 1, 0)-round threshold signature scheme. We use G to
denote the underlying cyclic group with generator g and prime order q.
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KGen(0)(sti):

1 a(i,0), ..., a(i,t−1), b(i,0), ..., b(i,t−1)
$←− Zq

2 Define function fi(x) =
∑t−1

j=0 a(i,j)x
j

3 Define function f ′
i(x) =

∑t−1
j=0 b(i,j)x

j

4 foreach k ∈ {0, ..., t− 1} do

5 C(i,k) ← g
a(i,k)h

b(i,k) mod p

6 Ci ← {C(i,k)}k∈{0,...,t−1}

7 foreach i′ ∈ [n] do

8 s(i,i′) ← fi(i
′) mod q

9 s′
(i,i′) ← f ′

i(i
′) mod q

10 sti.sk ← a(i,0)

11 foreach k ∈ {0, ..., t− 1} do

12 sti.a(i,k) ← a(i,k)

13 return ∥i′∈[n]\{i}
(
s(i,i′), s

′
(i,i′), Ci

)
KGen(1)(sti,m)

14 parse ∥i′∈[n]\{i} ←
(
s(i′,i), s

′
(i′,i), Ci′

)
← m

15 foreach i′ ∈ [n] \ {i}

16 parse {C(i′,k)}k∈{0,...,t−1} ← Ci′

17 req g
s
(i′,i)h

(s′
i′,i) =

∏t−1
k=0(C(i′,k))

ik mod p

18 sti.s(i′,i) ← s(i′,i)

19 foreach k ∈ {0, ..., t− 1} do

20 A(i,k) ← g
sti.a(i,k) mod p

21 sti.a(i,k) ← ⊥

22 m(i,i′) ← ∥k∈{0,...,t−1} A(i,k)

23 return ∥i′∈[n]\{i} m(i,i′)

KGen(2)(sti,m)

24 parse ∥i′∈[n]\{i},k∈{0,...,t−1} A(i′,k) ← m

25 foreach i′ ∈ [n] \ {i}

26 req g
sti.s(i′,i) =

∏t−1
k=0(A(i′,k))

ik mod p

27 sti.s(i′,i) ← ⊥

28 sti.VK [i′]← A(i′,0)

29 sti.gvk ←
∏

i′∈[n] A(i′,0) mod p

30 return A(i,0)

VkAgg(st0, {mi}i∈[n])

31 foreach i ∈ [n]

32 st0.VK [i]← mi

33 st0.gvk ←
∏

i∈[n] mi mod p

34 return st0.gvk

SPP(sti)

35 return ⊥

LPP(st0,m)

36 return

LR(st0,SS ,m)

37 lr .SS ← SS ; lr .m ← m

38 return lr

Sign(0)(Si, lr)

39 req lr .m ∈ {0, 1}⋆ and i ∈ lr .SS

40 ςi ← H1(lr .m)st.sk

41 return ςi

SigAgg(st0, lr , {ςi}i∈lr.SS )

42 foreach i ∈ lr .SS do

43 req e(st0.VK [i],H1(lr .m)) = e(g, ςi)

44 σ ←
∏

i∈lr.SS (ςi)
λi // λi is the i-th Lagrange coefficient

determined by lr.SS

45 return σ

Vrfy(gvk ,m, σ)

46 return Je(gvk ,H1(m)) = e(g, σ)K

Figure 5: The BLS construction [13] is a (2, 0, 0)-round threshold signature scheme. p is a prime order and
g is an element of order q in Z⋆

p, where q is a large prime dividing p− 1. h is an element in the subgroup
of Z⋆

p that is generated by g. e : Z⋆
p × Z⋆

p → GT is a bilinear map for some cyclic group GT with prime
order p.

25



GameCorrTS (A) and GamesCorrTS (A):

1 win← false

2 // key generation and group key aggregation

3 ({mi}i∈[n], trans)
$←− KGen({Si}i∈[n])

4 gvk ← VkAgg(L, {mi}i∈[n])

5 ()← AOPP,OSign({mi}i∈[n], trans,O)

6 return win

OPP(i) // signer i generates pre-processing tokens

7 req i ∈ [n] and v = 1 // only for echo scheme

8 pp $←− SPP(Si); req pp ̸= ⊥

9 LPP(L, pp)

10 return pp

OSign(m,SS) // signers sign messages

11 req SS ⊆ [n] and |SS | ≥ t

12 lr $←− LR(L,SS ,m)

13 req lr ̸= ⊥ // leader must produce a valid leader request

14 if lr .m ̸= m or lr .SS ̸= SS then

15 win← true

16 ({ςi}i∈lr.SS , trans) $←− Sign(lr)

17 σ ← SigAgg(L, lr , {ςi}i∈lr.SS )

18 if Vrfy(gvk ,m, σ) = false then // for GameCorrTS

19 if SVrfy(gvk , lr , σ) = false then // for GamesCorrTS

20 win← true

21 return (lr , {ςi}i∈lr.SS , trans, σ)

Figure 6: The (strong) correctness game GameCorrTS (A) and GamesCorrTS (A) for an adversary A that breaks
TS.

or the following execution if w = 0:

ςi
$←− Sign(0)(Si, lr), ∀i ∈ lr .SS

trans← 0

Following the (strong) correctness definition in [10, 11], we define (strong) correctness for our generalized
threshold signature as follows:

Definition 10 (Correctness). Let TS = (KGen,VkAgg,SPP, LPP, LR,Sign,SigAgg,Vrfy) denote a (t, n)-
threshold signature scheme with (u, v, w) rounds. We say TS is δ-correct (resp. strongly-correct) if the
below defined advantage for all adversaries against the game GameCorrTS (resp. GamesCorrTS ) in Figure 6 is
bounded by δ, i.e.,

AdvXXXTS (A) := Pr[GameXXXTS (A) = 1] ≤ δ, XXX ∈ {Corr, sCorr}

We say TS is (perfectly) correct (resp. strongly-correct) if δ = 0.

D Counterexample: TS-(S)UF-4 ̸⇒ TS-(S)UF-3

First, we recall necessary definitions and technical background from [10, 11] in D.1, and explain the
rationale behind our counterexample in D.2. Then, following the syntax in [10, 11], we depict a non-
interactive (t, n)-threshold signature scheme Π in Figure 7. Finally, we prove that Π is a counterexample
for TS-UF-4 ̸⇒ TS-UF-3 in Theorem 2 and 3, and for TS-SUF-4 ̸⇒ TS-SUF-3 in Theorem 4 and 5. We
summarize our results in Corollary 1.

D.1 Technical Background

The unforgeability models in [10, 11] assume static corruption, secure key generation channels, and
insecure signing channels (i.e., (Corr, KGCh, SiCh) = (1: sC, 0:KGsC, 2:SiiC) in our model). Furthermore,
in contrast to our syntax, they only consider threshold signature schemes with (u, v, 0) rounds and use
a single algorithm Kg to denote honest key generation over secure channels. The output of Kg is the
group verification gvk , some auxiliary information, and all signers’ secret keys sk1, . . . , skn. Moreover,
the algorithms in [10, 11] define states explicitly, i.e., an algorithm that inputs a state will also explicitly
output the state. The models include the following variables:

• CS denotes the corrupted (and therefore malicious) signers; equivalent to LMS in our model.

• PPi denotes the pre-processing tokens that were honestly generated by an honest signer i; equivalent
to DPP[i] in our model.

• HS denotes the set of honest signers; equivalent to LHS in our model.

• S2(lr) denotes the honest signers who have signed the leader request lr ; equivalent to D2[lr ] in our
model.
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• S3(lr) = {i ∈ HS ∩ lr .SS : lr .PP(i) ∈ PPi} denotes the set of honest signers i that are included in
the leader request lr and are associated with honestly generated pre-processing tokens; equivalent to
D3[lr ] in our model.

• S4(lr) = HS ∩ lr .SS denotes the set of honest signers i that are included in the leader request;
equivalent to D4[lr ] in our model.

Trivial forgery for TS-(S)UF-i with i ∈ {2, 3, 4} is formally defined [10, 11, Section 3.2] as follows:

• tf2(lr)⇔ |S2(lr)| ≥ t− |CS |.
• tf3(lr)⇔ tf2(lr) and S2(lr) = S3(lr).

• tf4(lr)⇔ tf2(lr) and S2(lr) = S4(lr).

• tsf2(lr , gvk , sig)⇔ tf2(lr) and SVrfy(gvk , lr , sig)

• tsf3(lr , gvk , sig)⇔ tf3(lr) and SVrfy(gvk , lr , sig)

• tsf4(lr , gvk , sig)⇔ tf4(lr) and SVrfy(gvk , lr , sig)

Intuitively, a trivial forgery that triggers S2(lr) = S4(lr) does not necessarily trigger S2(lr) = S3(lr),
although S3(lr) ⊆ S4(lr) for all lr . Indeed, the trick behind our counterexample Π is to trigger S4(lr) ̸⊆
S3(lr) for some lr .

D.2 The Rationale Behind TS-UF-4 ̸⇒ TS-UF-3

The rationale behind our counterexample is that the ranges of S2(lr) in tf3(lr) and tf4(lr) are incompa-
rable. Note that tf3(lr) and tf4(lr) respectively require that

S2(lr) = S3(lr)⇔ S3(lr) ⊆ S2(lr) ⊆ S3(lr)

S2(lr) = S4(lr)⇔ S4(lr) ⊆ S2(lr) ⊆ S4(lr)

Recall that S3(lr) ⊆ S4(lr) holds for every lr . We observe that the upper bound requirement of S2(lr)
in tf3(lr) is tighter than the one in tf4(lr), while the lower bound requirement of S2(lr) in tf4(lr) is
tighter than the one in tf3(lr). Consequently, while [11, Appendix A] uses the RTS3[DS] example to prove
TS-UF-3 ̸⇒ TS-UF-4 by triggering “upper bound separation” S2(lr) ⊆ S3(lr) ⊊ S4(lr), our example Π is
used to prove TS-UF-4 ̸⇒ TS-UF-3 by triggering “lower bound separation” S3(lr) ⊊ S4(lr) ⊆ S2(lr).

D.3 The Definition of Π

In Figure 7, we depict our threshold signature construction Π for (t, n) with 2 ≤ t ≤ n. Below, we give
additional details.

States. Our threshold signature Π requires the following additional state values:

• sti.ctr for all i ∈ [n]: the signer state sti includes a counter sti.ctr, which counts the pre-processing
tokens produced by i; initialized with 0.

Algorithms. Π makes use of a digital signature DS = (DS.Kg,DS.Sign,DS.Vf):

• The key generation algorithm Π.Kg executes DS.Kg of the underlying digital signature scheme DS
n times to obtain a key pair (vk i, sk i) for every i ∈ [n]. It sets the group verification key vk to
(vk1, . . . , vkn) and returns (vk , ϵ, sk1, . . . , skn).

• The signer pre-processing algorithm Π.SPP inputs the signer’s state st, increments the counter st.ctr
by 1, and returns the (incremented) counter st.ctr and the full state st.

• The leader pre-processing algorithm6 Π.LPP inputs a signer index i, a pre-processing token pp, and
the leader state st0. The leader sate st0 stores pp into the st0.DPP[i] locally. Finally, the leader state
st0 is returned.

6We note that [11] defines the input of the LPP algorithm in two ways: Sometimes it only contains the pre-processing
token pp and the leader state st0 (e.g., [11, Figure 1]), other times it also includes the signer index i (e.g., [11, Figure 4]).
Here, we use the syntax in which LPP has three inputs. However, the two definitions are easily exchangeable, as we can
always include the index of signer i into the pre-processing token pp by setting pp′ = (i, pp). Choosing either definition does
not influence the security analyses or counterexamples in this work.
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Π.Kg // the centralized key generation algorithm

22 for i = 1, ..., n

23 (vki, ski) $←− DS.Kg

24 vk ← (vk1, ..., vkn)

25 return (vk , ϵ, sk1, ..., skn)

Π.SPP(st)

26 st.ctr← st.ctr + 1 // the counter st.ctr was initialized with 0

27 return (st.ctr, st)

Π.LPP(i, pp, st0)

28 st0.DPP[i]
+← pp

29 return st0

Π.LR(M,SS , st0)

30 lr .m ←M , lr .SS ← SS

31 for i ∈ lr .SS do

32 pick some pp ∈ st0.DPP[i]

33 lr .PP(i)← pp; st0.DPP[i]
−← pp

34 return (lr , st0)

Π.PS(lr , st)// signer’s signing algorithm, equals our Sign(0)

35 if (st.id /∈ lr .SS or |lr .SS | < t) then return (⊥, st)

36 if (lr .PP(st.id) /∈ N+ ) then return (⊥, st)

37 psig $←− DS.Sign(st.sk , lr)

38 return (psig, st)

Π.Agg(lr , {psigi}i∈lr.SS , st0)

39 sig ← (lr , lr .SS , {psigi}i∈lr.SS )

40 return (sig, st0)

Π.Vf(vk ,M, sig)

41 (vk1, .., vkn)← vk , (lr , F, {psigi}i∈F )← sig

42 if (lr .m ̸= M or F ̸⊆ lr .SS) then return false

43 T ← {i ∈ F : DS.Vf(vki, lr , psigi)}

44 return (T = lr .SS = F and |T | ≥ t)

Π.SVf(vk , lr , sig)

45 (lr ′, F, {psigi}i∈F )← sig

46 return (Π.Vf(vk , lr .m, sig) and lr = lr ′)

Figure 7: Our threshold signature constructions Π. N+ = {1, . . . } denotes the set of positive natural

numbers. The text highlighted with a gray rectangle indicates the trick for not achieving TS-UF-3
security.

• The leader request algorithm Π.LR inputs a message M , a set of signers SS , and the leader state st0.
It then creates a new leader request by setting the message lr .m to M , the set of signers lr .SS to
SS , and the map lr .PP(i) to some pre-processing token ppi ∈ st0.DPP[i] for every i ∈ lr .SS . The
selected ppi is then removed from st0.DPP[i]. Finally, it returns the created leader request lr and
the leader state st0.

• The partial signing algorithm Π.PS (which equals to our Sign(0) algorithm) inputs a leader request
lr and a signer state st. If the signer index st.id is not included in the set lr .SS or the size of set
lr .SS is smaller than the threshold t, it returns ⊥ and the signer state st. The same is true if the
pre-processing token lr .PP(st.id) of the signer st.id is not a positive natural number. Otherwise, it
runs the signing algorithm DS.Sign of the underlying digital signature DS by using the signing key
st.sk for signing the leader request lr . Finally, it returns the produced partial signature psig and
the signer state st.

• The aggregation algorithm Π.Agg inputs a leader request lr , a collection of partial signatures psig i
of every signer i ∈ lr .SS , and the leader state st0. It generates a group signature sig by merging
the leader request lr , the set of signer lr .SS , and the collection of partial signatures {psig i}i∈lr .SS .
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Finally, it returns sig and the leader state st0.

• The verification algorithm Π.Vf inputs a group verification key vk , a message M , and a group
signature sig . It first parses the group verification key vk into n per-signer verification keys
vk1, . . . , vkn, and parses the group signature sig into a leader request lr , a set F , and a collection of
partial signatures {psig i}i∈F . If the message lr .m in the leader request is not equal to the input
message M , or the set F is not a subset of lr .SS , it returns false. Otherwise, it initializes a set T
that includes all signer i ∈ F such that the verification DS.Vf passes with the per-signer verification
key vk i, the message lr .m, and the signature psig i. Finally, it returns true if T = lr .SS = F and
the size of T is great than or equal t, and false otherwise.

• The strong verification algorithm Π.SVf inputs a group verification key vk , a leader request lr , and
a group signature sig . It first parses the group signature sig into a leader request lr ′, a set F , and a
collection of partial signatures. If Π.Vf(vk , lr .m, sig) returns true and the parsed leader request lr ′

equals the input one lr , it returns true. Otherwise, it returns false.

E Proof of Theorem 1

Proof. Theorem 1 makes the following two claims for a (t, n) threshold signature TS with (u, v, w) rounds:

Claim 1: If TS is ϵ-(SiGu1, Corr1, KGCh1, SiCh1)-UF secure, then it is also ϵ-(SiGu2, Corr2, KGCh2, SiCh2)-
UF secure, for any SiGu2 ≤ SiGu1, Corr2 ≤ Corr1, KGCh2 ≤ KGCh1, SiCh2 ≤ SiCh1, UF ∈
{EUF-CMA,SUF-CMA}.

Claim 2: If TS is ϵ-(SiGu, Corr, KGCh, SiCh)-SUF-CMA secure, then it is also ϵ-(SiGu, Corr, KGCh, SiCh)-
EUF-CMA secure.

E.1 Proof of Claim 1

We prove the following four cases and conclude the proof of Claim 1 by combing them together:

Case 1: SiGu2 ≤ SiGu1, Corr2 = Corr1, KGCh2 = KGCh1, SiCh2 = SiCh1

Case 2: SiGu2 = SiGu1, Corr2 ≤ Corr1, KGCh2 = KGCh1, SiCh2 = SiCh1

Case 3: SiGu2 = SiGu1, Corr2 = Corr1, KGCh2 ≤ KGCh1, SiCh2 = SiCh1

Case 4: SiGu2 = SiGu1, Corr2 = Corr1, KGCh2 = KGCh1, SiCh2 ≤ SiCh1

Case 1. We prove Case 1 by reduction. If there exists an adversary A that can break (SiGu2,
Corr2, KGCh2, SiCh2)-UF security for any UF ∈ {EUF-CMA,SUF-CMA}, then we can construct an adversary
B that breaks (SiGu1, Corr1, KGCh1, SiCh1)-UF, with SiGu2 ≤ SiGu1, Corr2 = Corr1, KGCh2 = KGCh1,
SiCh2 = SiCh1. The adversary B invokes A, forwards all queries from A to its challenger, and forwards
the reply from its challenger to A.

If UF = EUF-CMA, A outputs a challenge message-signature pair (m⋆, σ⋆) and wins if (1) Vrfy(gvk ,m⋆, σ⋆) =
true, (2) |LMS| < t, and (3) ¬

(
∃lr with lr .m = m⋆: tfSiGu2(lr)

)
. B forwards the challenge message-signature

pair (m⋆, σ⋆) to its challenger and wins if (1) Vrfy(gvk ,m⋆, σ⋆) = true, (2) |LMS| < t, and (3) ¬
(
∃lr with

lr .m = m⋆: tfSiGu1(lr)
)
. We only need to prove that(

¬
(
∃lr with lr .m = m⋆ : tfSiGu2(lr)

))
⇒

(
¬
(
∃lr with lr .m = m⋆ : tfSiGu1(lr)

))
⇔
(
∀lr with lr .m = m⋆ : ¬tfSiGu2(lr)

)
⇒

(
∀lr with lr .m = m⋆ : ¬tfSiGu1(lr)

)
⇔∀lr with lr .m = m⋆ : ¬tfSiGu2(lr)⇒ ¬tfSiGu1(lr)
⇔∀lr with lr .m = m⋆ : tfSiGu1(lr)⇒ tfSiGu2(lr)

Note that for all leader requests lr it always holds that

• tf4:aLRhPP(lr) ⇔ tf3:tLRhPP(lr), because tf4:aLRhPP(lr) ⇔
(
tf2:tLR(lr) and D2[lr ] = D3[lr ] =

D4[lr ]
)
⇒

(
tf2:tLR(lr) and D2[lr ] = D3[lr ]

)
⇔ tf3:tLRhPP(lr)

• tf3:tLRhPP(lr)⇒ tf2:tLR(lr), because tf3:tLRhPP(lr)⇔
(
tf2:tLR(lr) and D2[lr ] = D3[lr ]

)
⇒ tf2:tLR(lr)
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• tf2:tLR(lr) ⇒ tf1:tM(lr), because D1[lr .m] = ∪lr ′ with lr ′.m=lr .mD2[lr
′] ⊇ D2[lr ] and |D2[lr ]| ≥

t − |LMS|, which implies that tf2:tLR(lr) ⇔
(
|D2[lr ]| ≥ t − |LMS|

)
⇒

(
|D1[lr .m]| ≥ |D2[lr ]| ≥

t− |LMS|
)
⇔ tf1:tM(lr)

• tf1:tM(lr) ⇒ tf0:eM(lr), because tf1:tM(lr) ⇔
(
|D1[lr ]| ≥ t − |LMS| > 0

)
⇒

(
D1[lr ] ̸= ∅

)
⇔

tf0:eM(lr)

This means that for all leader requests lr , we always have that tfSiGu1(lr)⇒ tfSiGu2(lr) for all SiGu2 ≤
SiGu1 due to the transitivity. Thus, B wins whenever A wins.

If UF = SUF-CMA, A outputs a challenge message-signature pair (m⋆, σ⋆) and wins if (1) Vrfy(gvk ,m⋆, σ⋆) =
true, (2) |LMS| < t, and (3) ¬

(
∃lr with lr .m = m⋆: tsfSiGu2(lr , gvk , σ

⋆)
)
. B forwards the challenge

message-signature pair (m⋆, σ⋆) to its challenger and wins if (1) Vrfy(gvk ,m⋆, σ⋆) = true, (2) |LMS| < t,
and (3) ¬

(
∃lr with lr .m = m⋆: tsfSiGu1(lr , gvk , σ

⋆)
)
. We only need to prove that(

¬
(
∃lr with lr .m = m⋆ : tsfSiGu2(lr , gvk , σ

⋆)
))

⇒
(
¬
(
∃lr with lr .m = m⋆ : tsfSiGu1(lr , gvk , σ

⋆)
))

⇔
(
∀lr with lr .m = m⋆ : ¬tsfSiGu2(lr , gvk , σ⋆)

)
⇒

(
∀lr with lr .m = m⋆ : ¬tsfSiGu1(lr , gvk , σ⋆)

)
⇔∀lr with lr .m = m⋆ : ¬tsfSiGu2(lr , gvk , σ⋆)⇒ ¬tsfSiGu1(lr , gvk , σ⋆)

⇔∀lr with lr .m = m⋆ : tsfSiGu1(lr , gvk , σ
⋆)⇒ tsfSiGu2(lr , gvk , σ

⋆)

Note that for all leader requests lr it always holds that

tsfSiGu1(lr , gvk , σ)

⇔tfSiGu1(lr) and SVf(gvk , lr , σ)

⇒tfSiGu2(lr) and SVf(gvk , lr , σ)

⇔tsfSiGu2(lr , gvk , σ)

This means that for all leader requests lr , we always have that tsfSiGu1(lr , gvk , σ
⋆)⇒ tsfSiGu2(lr , gvk , σ

⋆)
for all SiGu2 ≤ SiGu1. Thus, B wins whenever A wins.

Case 2. We prove Case 2 by reduction. If there exists an adversary A that can break (SiGu2,
Corr2, KGCh2, SiCh2)-UF security for any UF ∈ {EUF-CMA,SUF-CMA}, then we can construct an adversary
B that breaks (SiGu1, Corr1, KGCh1, SiCh1)-UF, with SiGu2 = SiGu1, Corr2 ≤ Corr1, KGCh2 = KGCh1,
SiCh2 = SiCh1. The adversary B invokes A, forwards all queries from A to its challenger, and forwards
the reply from its challenger to A. The only exception is the queries to the corruption oracle OCorrupt.
B first runs all checks in the OCorrupt oracle for A. If no check fails, then B forwards the query to its
challenger, otherwise exits.

Finally, A outputs a challenge message-signature pair (m⋆, σ⋆) and B forwards it to its challenger.
Note that B can perfectly simulate the challenger to A and wins if and only if A wins, which concludes
the proof for Case 2.

Case 3. We prove Case 3 by reduction. If there exists an adversary A that can break (SiGu2,
Corr2, KGCh2, SiCh2)-UF security for any UF ∈ {EUF-CMA,SUF-CMA}, then we can construct an adversary
B that breaks (SiGu1, Corr1, KGCh1, SiCh1)-UF, with SiGu2 = SiGu1, Corr2 = Corr1, KGCh2 ≤ KGCh1,
SiCh2 = SiCh1. We only consider KGCh2 < KGCh1, since the case otherwise is trivial.

The adversary B simulates the dictionary DKGen
Trans by itself. Note that 2:KGiC ≥ KGCh1 > KGCh2 ≥

0:KGsC. B can always view and record all messages in the model. Moreover, B uses rnd1, . . . , rndn to
count the index of the next key generation round. These counts are incremented whenever sti.rnd should
be incremented.

The adversary B invokes A, forwards all queries from A to its challenger, and forwards the reply from
its challenger to A. The only exception is the queries to the key generation oracle OKGen(i,m). B
first checks whether rndi ≥ 1 and KGCh1 = 2:KGiC. If the check passes, B appends the input message m
with ∥i′∈LHS\{i}D

KGen
Trans[(rnd, i

′, i)] to m. Then, no matter whether the check passes or not, the adversary B
forwards i and the (possibly appended) message m to its challenger.

When B receives a reply m ′ from its challenger, B checks whether KGCh2 = 0:KGsC and rndi ≤ u. If
the condition is true, then B returns ∥i′∈LMS

DKGen
Trans[(rnd, i, i

′)]. Otherwise, B returns m ′.
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Finally, A outputs a challenge message-signature pair (m⋆, σ⋆) and B forwards it to its challenger.
Note that B can perfectly simulate the challenger to A and wins if and only if A wins, which concludes
the proof for Case 3.

Case 4. We prove Case 4 by reduction, which is very close to the proof of Case 3. If there exists an
adversary A that can break (SiGu2, Corr2, KGCh2, SiCh2)-UF security for any UF ∈ {EUF-CMA,SUF-CMA},
then we can construct an adversary B that breaks (SiGu1, Corr1, KGCh1, SiCh1)-UF, with SiGu2 = SiGu1,
Corr2 = Corr1, KGCh2 = KGCh1, SiCh2 ≤ SiCh1. We only consider SiCh2 < SiCh1, since the case otherwise
is trivial.

The adversary B simulates the dictionary DSign
Trans by itself. Note that 2:KGiC ≥ SiCh1 > SiCh2 ≥

0:KGsC. B can always view and record all messages in the model. Moreover, B uses rndi,j to count the

index of the next signing round of the session state πj
i . These counts are incremented whenever πj

i .rnd
should be incremented.

The adversary B invokes A, forwards all queries from A to its challenger, and forwards the reply from
its challenger to A. The only exception is the queries to the key generation oracle OSign(i, j,m). B first
checks whether rndi,j ≥ 1 and SiCh1 = 2:KGiC. If the check passes, B appends the input message m with

∥i′∈LHS∩lr .SS\{i}D
Sign
Trans[(j, rnd, i

′, i)], where lr is the leader request that is expected to be signed in signer

i’s j-th session. Then, no matter whether the check passes or not, the adversary B forwards (i, j) and the
(possibly appended) message m to its challenger.

When B receives a reply m ′ from its challenger, it checks whether SiCh2 = 0:SisC and rndi,j ≤ w. If

the condition is true, then B returns ∥i′∈LMS
DSign

Trans[(j, rnd, i, i
′)]. Otherwise, B returns m ′.

Finally, A outputs a challenge message-signature pair (m⋆, σ⋆) and B forwards it to its challenger.
Note that B can perfectly simulate the challenger to A and wins if and only if A wins, which concludes
the proof for Case 4.

Conclusion of Claim 1. The proof is claim 1 is concluded by combining the above four cases: for any
UF ∈ {EUF-CMA,SUF-CMA}

ϵ-(SiGu1, Corr1, KGCh1, SiCh1)-UF security

⇒ ϵ-(SiGu2, Corr1, KGCh1, SiCh1)-UF security

⇒ ϵ-(SiGu2, Corr2, KGCh1, SiCh1)-UF security

⇒ ϵ-(SiGu2, Corr2, KGCh2, SiCh1)-UF security

⇒ ϵ-(SiGu2, Corr2, KGCh2, SiCh2)-UF security

E.2 Proof of Claim 2

We prove Claim 2 by reduction. If there exists an adversary A that can break (SiGu, Corr, KGCh, SiCh)-
EUF-CMA security, then we can construct an adversary B that breaks (SiGu, Corr, KGCh, SiCh)-SUF-CMA.
The adversary B invokes A, forwards all queries from A to its challenger, and forwards the reply from its
challenger to A.

Finally, A outputs a challenge message-signature pair (m⋆, σ⋆) and wins if (1) Vrfy(gvk ,m⋆, σ⋆) = true,
(2) |LMS| < t, and (3) ¬

(
∃lr with lr .m = m⋆: tfSiGu(lr)

)
. B forwards the challenge message-signature

pair (m⋆, σ⋆) to its challenger and wins if (1) Vrfy(gvk ,m⋆, σ⋆) = true, (2) |LMS| < t, and (3) ¬
(
∃lr with

lr .m = m⋆: tsfSiGu(lr)
)
. We only need to prove that(

¬
(
∃lr with lr .m = m⋆ : tfSiGu(lr)

))
⇒

(
¬
(
∃lr with lr .m = m⋆ : tsfSiGu(lr)

))
⇔
(
∀lr with lr .m = m⋆ : ¬tfSiGu(lr)

)
⇒

(
∀lr with lr .m = m⋆ : ¬tsfSiGu(lr)

)
⇔∀lr with lr .m = m⋆ : ¬tfSiGu(lr)⇒ ¬tsfSiGu(lr)
⇔∀lr with lr .m = m⋆ : tsfSiGu(lr)⇒ tfSiGu(lr)

Note that this holds by definition. Thus, B wins whenever A wins.

F Proof of Theorem 2

We prove that our construction Π achieves TS-UF-4 security following the syntax and definitions in [10,
11].
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Proof. The proof is given by reduction. Namely, if there exists an adversary A that breaks TS-UF-4
security of Π, then we can construct an adversary B that breaks UF-CMA security of the underlying DS
by invoking A in the following steps.

• B initializes n counters ctr1, . . . , ctrn with 0, and lists L, S2(lr), and S4(lr) for all leader requests lr
with empty set ∅.

• When A queries the Init oracle with input CS that denotes the set of corrupted signers, B checks
whether CS ⊆ [1..n] and |CS | < t and aborts if the check fails. If the check passes, B sets the
set of honest signers to be HS ← [1..n] \ CS . Next, B queries the Init oracle and receives a
verification key vk⋆. Then, B samples an index i⋆ ∈ HS uniformly at random, and sets vk i⋆ = vk⋆.
Afterwards, B samples all other signers’ signing and verification key pairs honestly by itself, i.e., by
running (vk i, sk i)

$←− DS.Kg for all i ∈ [1..n] \ {i⋆}. Finally, B sets vk ← (vk1, . . . , vkn) and returns
(vk , ϵ, {sk i}i∈CS ) to A. Recall that the model must start with this oracle, which can be queried only
once.

• When A queries the PPO oracle with input i that denotes the index of a signer, B first checks
whether i is an honest signer by checking whether i ∈ HS or not. If the check passes, B increments
ctri by 1, i.e., ctri ← ctri + 1 and returns the new value ctri. Otherwise, B aborts.

• When A queries the PSignO oracle with inputs i and lr , where i denotes the index of a signer and
lr denotes a leader request, B first checks whether lr .SS ⊆ [1..n], lr .m ∈ {0, 1}⋆, and i ∈ HS . If any
check fails, B aborts. Otherwise, B stores lr into the list L (L← L ∪ {lr}). Afterwards, if i = i⋆,
B first checks whether i⋆ ∈ lr .SS , lr .SS ≥ t, and lr .PP(i⋆) ∈ N+. If any check fails, B returns ⊥.
Otherwise, B queries its SignO oracle with input lr and obtains a signature psig . If i ̸= i⋆, B runs
the honest signing algorithm psig $←− DS.Sign(sk i, lr) by itself, as B knows the corresponding private
signing keys. In both cases, if psig ̸= ⊥, B stores i into the list S2(lr) (S2(lr) ← S2(lr) ∪ {i}).
Finally, B returns psig .

• When A queries the RO oracle with any input x, B simulates an honest random oracle by itself,
since Π does not use of any random oracles.

• When A queries the Fin oracle with inputs M⋆ and sig⋆, B sets S4(lr)← HS ∩ lr .SS for all lr ∈ L.
Next, B checks whether Π.Vf(vk ,M⋆, sig⋆) = true. If the checks fails, B returns false.

If the check passes, B further checks the expression

not ∃lr (lr .m = M⋆ and tf4(lr))

⇔ not ∃lr (lr .m = M⋆ and |S2(lr)| ≥ t− |CS | and S2(lr) = S4(lr)).

If the express is true, B parses (lr⋆, F ⋆, {psig⋆i }i∈F⋆)← sig⋆. Note that this parsing was executed
in Π.Vf(vk ,M⋆, sig⋆) = true and therefore always works. Finally, if i⋆ /∈ F ⋆, B directly loses.
Otherwise, B invokes its Fin oracle with input (lr⋆, psig i⋆).

Final Analysis. Now, we calculate B’s winning probability. First, note that Π.Vf(vk ,M⋆, sig⋆) = true
and (lr⋆, F ⋆, {psig⋆i }i∈F⋆) = sig⋆. Therefore, it must hold that

• lr⋆.m = M⋆

• F ⋆ = lr⋆.SS

• ∀i ∈ lr⋆.SS = F ⋆: DS.Vf(vk i, lr
⋆, psig⋆i ) = true

• |lr⋆.SS | = |F ⋆| ≥ t

Recall that |CS | < t. This means that there must be at least one honest signer in the set lr⋆.SS .

not ∃lr (lr .m = M⋆ and |S2(lr)| ≥ t− |CS | and S2(lr) = S4(lr))

⇔ ̸ ∃lr (lr .m = M⋆ and |S2(lr)| ≥ t− |CS | and S2(lr) = S4(lr))

⇔ ∀lr
(
¬(lr .m = M⋆ and |S2(lr)| ≥ t− |CS | and S2(lr) = S4(lr))

)
⇔ ∀lr

(
(lr .m ̸= M⋆ or |S2(lr)| < t− |CS | or S2(lr) ̸= S4(lr))

)
⇔ ∀lr

(
(lr .m ̸= M⋆ or |S2(lr)| < t− |CS | or S2(lr) ̸= HS ∩ lr .SS )

)
⇔ ∀lr with lr .m = M⋆

(
(|S2(lr)| < t− |CS | or S2(lr) ̸= HS ∩ lr .SS )

)
⇒ |S2(lr

⋆)| < t− |CS | or S2(lr
⋆) ̸= HS ∩ lr⋆.SS (∗)
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This indicates that if the adversary A wins, then the above expression (∗) must be true. We then consider
the following two cases.

Case 1: |S2(lr
⋆)| < t − |CS |. The number of honest signers who have signed lr⋆ and the number of

corrupted signers must be smaller than t. Recall that |lr⋆.SS | ≥ t. This means that there must be at
least one signer j⋆ ∈ lr⋆.SS such that

1. j⋆ has never signed lr⋆, and

2. j⋆ is not corrupted (and therefore honest).

Recall that B samples i⋆ ∈ HS ⊆ [n] uniformly at random and that A cannot distinguish the index i⋆

from the indices of all other honest signers, since B simulates the TS-UF-4 security model honestly. The
probability that i⋆ = j⋆ must be at least 1

|HS | , i.e.,

Pr[i⋆ = j⋆] ≥ 1

|HS |
≥ 1

n
.

Note that if i⋆ = j⋆, B wins in the UF-CMA model. Note also that the event i⋆ = j⋆ and the event A
wins TS-UF-4 model are independent. Thus, we have that

Pr[B wins] = Pr[(i⋆ = j⋆) and (A wins)] = Pr[i⋆ = j⋆] · Pr[A wins] ≥ 1

n
Pr[A wins]

Case 2: S2(lr
⋆) ̸= HS ∩ lr⋆.SS . We further divide this case into two sub-cases.

Case 2.1: ∃j⋆ ∈ S2(lr
⋆) but j⋆ /∈ HS ∩ lr⋆.SS . Note that j⋆ ∈ S2(lr

⋆) indicates that j⋆ ∈ HS . Thus,
j⋆ /∈ HS ∩ lr⋆.SS means that j⋆ /∈ lr⋆.SS . This further means that j⋆ has signed the leader request lr⋆,
where j⋆ /∈ lr⋆.SS . However, this sub-case is impossible, since the Π.PS algorithm always check whether
the signer is included in the request lr⋆.SS (see Line 35).

Case 2.2: ∃j⋆ ∈ HS ∩ lr⋆.SS but j⋆ /∈ S2(lr
⋆). This indicates that the honest signer j⋆ in the set

lr⋆.SS has never signed the leader request lr⋆. Similar to the argument in Case 1, we have that

Pr[B wins] ≥ 1

n
Pr[A wins]

In summary, if A can win in the TS-UF-4 model against Π with non-negligible probability, then B can
also win in the UF-CMA model against DS underlying Π with non-negligible probability, which concludes
the proof.

G Proof of Theorem 3

We prove that our construction Π does not achieve TS-UF-3 security following the syntax and definitions
in [10, 11].

Proof. For simple presentation, we only explain the case for (t, n) = (2, 3). However, the counterexample
can be easily generalized to any other (t, n). Consider the adversary A with the following queries:

1. A queries the Init oracle with input CS = ∅ and receives (vk , ϵ, ϵ), where vk = (vk1, vk2, vk3).

2. A queries the PPO oracle with input i = 1 and receives the value 1.

3. A creates a leader request lr⋆ as follows:

• lr⋆.m: any valid message (e.g., “000”).

• lr⋆.SS = {1, 2}
• lr⋆.PP(1) = lr⋆.PP(2) = 1

4. A queries the PSignO oracle with input (1, lr⋆). This allows A to receive a partial signature psig1
signed by the signer i = 1.

5. A queries the PSignO oracle with input (2, lr⋆). This allows A to receive a partial signature psig2
signed by the signer i = 2.
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6. A queries the Fin oracle with input (M⋆, sig⋆), whereM⋆ = lr⋆.m and sig⋆ = (lr⋆, lr⋆.SS , {psig1, psig2}).

Final Analysis. The adversary A wins the TS-UF-3 model if the following conditions holds:

1. Π.Vf(vk ,M⋆, sig⋆) = true, and

2. not ∃lr (lr .m = M⋆ and tf3(lr))

The first condition holds trivially. The second expression can be further unfolded as

not ∃lr (lr .m = M⋆ and tf3(lr))

⇔ not ∃lr (lr .m = M⋆ and |S2(lr)| ≥ t− |CS | and S2(lr) = S3(lr))

⇔ ̸ ∃lr (lr .m = M⋆ and |S2(lr)| ≥ t− |CS | and S2(lr) = S3(lr))

⇔ ∀lr
(
¬(lr .m = M⋆ and |S2(lr)| ≥ t− |CS | and S2(lr) = S3(lr))

)
⇔ ∀lr

(
(lr .m ̸= M⋆ or |S2(lr)| < t− |CS | or S2(lr) ̸= S3(lr))

)
⇔ ∀lr with lr .m = M⋆

(
(|S2(lr)| < t− |CS | or S2(lr) ̸= S3(lr))

)
(∗∗)

Note that the adversary A queries PSignO only for one leader request lr⋆. For all lr ̸= lr⋆, it always
holds that S2(lr) = ∅. Note also that |CS | = 0 < 2 = t. The above expression (∗∗) always holds for all
lr ̸= lr⋆ because |S2(lr)| = 0 < 2 = 2− 0 = t− |CS |.

Moreover, recall that PPi denotes the pre-processing tokens generated by the signer i. Since A only
queries PPO(i) oracle once with input i = 1, we have PP1 = {1} and PP2 = PP3 = ∅. For the leader
request lr⋆, we then further have that

• S2(lr
⋆) = {1, 2}, and

• S3(lr
⋆) = {i ∈ HS ∩ lr⋆.SS : lr⋆.PP(i) ∈ PPi} = {i ∈ {1, 2} : lr⋆.PP(i) ∈ PPi} = {1}

The above expression (∗∗) is therefore also holds for lr⋆, because S2(lr
⋆) = {1, 2} ̸= {1} = S3(lr

⋆). In
summary, A wins the TS-UF-3 model with probability 1.

H Proof of Theorem 4

We prove that our construction Π achieves TS-SUF-4 security following the syntax and definitions in [10,
11].

Proof. We first prove that our Π.SVf algorithm in Figure 7 is well-defined, i.e., for any vk and lr there
exists at most one signature sig such that Π.SVf(vk , lr , sig) = true. Suppose that there exists a vk , a

lr , and two signatures sig1 = (lr (1), F (1), {psig(1)i }i∈F (1)) and sig2 = (lr (2), F (2), {psig(2)i }i∈F (2)), such
that Π.SVf(vk , lr , sig1) = Π.SVf(vk , lr , sig2) = true. Note that Π.SVf(vk , lr , sig i) = true for i ∈ {1, 2}
if and only if Π.Vf(vk , lr .m, sig i) = true and lr = lr (i). By lr = lr (i) for i ∈ {1, 2}, it must hold that

lr (1) = lr (2) = lr . By Π.Vf(vk , lr .m, sig i) = true for i ∈ {1, 2}, it must hold

• lr .SS = F (i) for i ∈ {1, 2}, which implies that lr .SS = F (1) = F (2), and

• lr .SS = {j ∈ F (i) : DS.Vf(vk j , lr , psig
(i)
j ) = true}, which implies that ∀j ∈ lr .SS : DS.Vf(vk j , lr , psig

(1)
j ) =

DS.Vf(vk j , lr , psig
(2)
j ) = true. Due to the uniqueness of the underlying DS, we have {psig(1)i }i∈F (1) =

{psig(2)i }i∈F (2) .

Combing the statements above, it holds that sig1 = sig2. Thus, our Π.SVf algorithm is well-defined.
We then prove TS-SUF-4 security of our protocol Π. Note the trivial forgery formulation tsf4(lr , vk , sig) =

tf4(lr) and SVf(vk , lr , sig). An adversary that can break TS-SUF-4 security of Π must output M⋆ and
sig⋆ = (lr⋆, F ⋆, {psig⋆i }i∈F⋆) with Vf(vk ,M⋆, sig⋆) = true such that

not ∃lr
(
lr .m = M⋆ and tf4(lr) and SVf(vk , lr , sig⋆)

)
.

Due to the TS-UF-4 security of Π in Theorem 2, we know that for all M⋆ and sig⋆ = (lr⋆, F ⋆, {psig⋆i }i∈F⋆)
chosen by the adversary with Vf(vk ,M⋆, sig⋆) = true, it always holds that

∃lr
(
lr .m = M⋆ and tf4(lr)

)
.

34



Thus, an adversary that can break TS-SUF-4 security of Π must output M⋆ and sig⋆ = (lr⋆, F ⋆,
{psig⋆i }i∈F⋆) with Vf(vk ,M⋆, sig⋆) = true such that

∀lr
(
lr .m = M⋆ and tf4(lr)

)
: SVf(vk , lr , sig⋆) = false. (∗ ∗ ∗)

We prove that the equation (∗∗∗) never holds by contradiction: Suppose that the equation (∗∗∗) holds.
Recall from the definition of Π.SVf in Figure 7 that Π.SVf(vk , lr , sig⋆)⇔ Π.Vf(vk , lr .m, sig⋆) and lr = lr⋆.
Since Vf(vk ,M⋆, sig⋆) = true, we can observe that the equation (∗ ∗ ∗) is equivalent to

∀lr
(
lr .m = M⋆ and tf4(lr)

)
: lr ̸= lr⋆

⇔ ∀lr
(
lr .m = M⋆ and tf2(lr) and S2(lr) = S4(lr)

)
: lr ̸= lr⋆

⇔ ∀lr
(
lr .m = M⋆ and |S2(lr)| ≥ t− |CS | and S2(lr) = S4(lr)

)
: lr ̸= lr⋆.

Note that

Π.Vf(vk ,M⋆, sig⋆)

⇒ {i ∈ F ⋆ : DS.Vf(vk i, lr
⋆, psig⋆i )} = lr⋆.SS = F ⋆ and lr⋆.m = M⋆ and |lr⋆.SS | ≥ t

⇒ ∀i ∈ lr⋆.SS : DS.Vf(vk i, lr
⋆, psig⋆i ) and lr⋆.m = M⋆ and |lr⋆.SS | ≥ t.

Due to the uniqueness of the underlying DS, we know that there exists at most one partial signature
psig⋆i that can be verified under the per-signer verification key vk i and the leader request lr⋆. Due to
the SUF-CMA security of the underlying DS, we know that the adversary can not forge the signature
psig⋆i for any honest signer i. This means that the adversary must query the signing oracle for asking
every signer i ∈ S4(lr

⋆) to sign lr⋆, which indicates that S4(lr
⋆) ⊆ S2(lr

⋆). Moreover, S2(lr
⋆) ⊆ S4(lr

⋆)
holds trivially, as Π.PS algorithm always check whether the signer is included in the request lr⋆.SS (see
Line 35). So, we have that S4(lr

⋆) = S2(lr
⋆). The proof is concluded by the contradiction lr⋆, because

• lr⋆.m = M⋆,

• S4(lr
⋆) = S2(lr

⋆), and

• |S2(lr
⋆)| ≥ t−|CS |, since |lr⋆.SS | ≥ t and |lr⋆.SS | = |lr⋆.SS ∩HS |+ |lr⋆.SS ∩CS | ≤ |S4(lr

⋆)|+ |CS |.

I Proof of Theorem 5

Proof. TS-SUF-3 security implies TS-UF-3 security. Π is not TS-SUF-3 secure due to Theorem 3.

J Proof of Corollary 1

Proof. We summarize the conclusions of our proofs and the proofs in [11].

• TS-UF-3 security does not imply TS-UF-4 security [11, Proposation A.1].

• TS-UF-4 security does not imply TS-UF-3 security (see Theorem 2 and Theorem 3).

• TS-SUF-3 security does not imply TS-SUF-4 security [11, Proposation A.1].

• TS-SUF-4 security does not imply TS-SUF-3 security (see Theorem 4 and Theorem 5).

K Proof of Theorem 6

Proof. We split the theorem into the following two claims and prove them separately.

Claim 1: If TS is ϵTS-(3: tLRhPP, Corr1, KGCh1, SiCh1)-UF1 secure, then TS′ is ϵTS-(3: tLRhPP, Corr1, KGCh1, SiCh1)-
UF1 secure.

Claim 2: If further DS is ϵDS-SUF-CMA secure, then TS′ is ϵTS′-(4: aLRhPP, Corr2, KGCh2, SiCh2)-UF2
secure, where Corr2 = Corr1, KGCh2 = min(KGCh1, 1:KGaC), SiCh2 = SiCh1, UF2 = UF1, and
ϵTS′ ≤ nϵDS + (n− t)ϵTS.
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K.1 Proof of Claim 1

We prove Claim 1 by reduction. If there exists an adversaryA that can break the ϵTS-(3: tLRhPP, Corr1, KGCh1, SiCh1)-
UF1 security of TS′, then we can construct an adversary B that breaks ϵTS-(3: tLRhPP, Corr1, KGCh1, SiCh1)-
UF1 of TS.

First, B initializes a sequence of states stATSi for all i ∈ {0, . . . , n}, i.e., the leader and every signer.
Moreover, B initializes counters rndi for i ∈ [n] and rndi,j for i ∈ [n] and j ≥ 1 (whenever needed) that
count the index of the next round for key generation or signing. Then, B invokes A and answers all queries
to oracles from A as follows:

• OKGen(i,m): We consider the following four cases:

1. If u = 0 and rndi = 0, B samples a DS verification-signing key pair (vkDS, skDS) by running
DS.KGen and stores them into the state stATSi locally. Then, B outputs a sequence of message
m ′(i,i′) = vkDS for all i′ ∈ [n] \ {i} to A.

2. If u = 0 and rndi = 1, B parses the input message to a sequences of DS verification key vkDS
i′

for all i′ ∈ [n] \ {i} and stores them into stATSi . Then, B sends a query OKGen(i,0) to its
challenger and forwards the reply to A.

3. If u ≥ 1 and rndi = 0, B samples a DS verification-signing key pair (vkDS, skDS) by running
DS.KGen and stores them into the state stATSi locally. Then, B sends a query OKGen(i,0) to
its challenger for a reply ∥i′∈[n]\{i}m ′(i,i′). Finally, B appends vkDS to every m ′(i,i′) and returns

the appended ∥i′∈[n]\{i}m ′(i,i′) to A.

4. If u ≥ 1 and rndi ≥ 1, A extracts a sequence of DS verification key vkDS
i′ for i′ ∈ [n] \ {i} from

the input message m and stores them into the state stATSi . Then, B sends i and the rest of the
input message, which removes {vkDS

i′ }i′∈[n]\{i} from m, to its OKGen oracle and forwards the
reply to A.

• OCorrupt(i): B forwards the query to its challenger. If B receives a signer state Si that is non-⊥,
B returns both Si and stATSi to A. Otherwise, B returns nothing.

• OPP(i): B first checks whether v = 1. If v = 0, B exits. Otherwise, B forwards the query to its
challenger for a pre-processing token pp. Then, B use DS along with the signing key stATSi .sk to sign
pp for a signature σpp . Finally, B forwards both (pp, σpp) and the index i to A.

• OSign(i, j,m): We consider the following two cases:

1. If rndi,j = 0 and v = 1, B parses the input message m as a leader request lr . Next, for each
i′ ∈ lr .SS, B parses a pre-processing token ppi′ and an associated signature σpp

i′ from lr .PP(i′).
B verifies whether σpp

i′ is a valid DS signature of pre-processing token ppi′ by using the DS
verification key stATSi .VK [i′]. If the check fails, then B immediately exists and returns ⊥ to A.
If the check passes, B forwards (i, j, lr ′) to its oracle OSign, where lr ′ is identical to lr except
for removing all signature σpp

i′ from lr .PP(i′) for all i′ ∈ lr .SS. Finally, B forwards the reply
from its challenger to A.

2. Otherwise, B forwards the query to its challenger and forwards the reply from its challenger to
A.

Finally, A outputs a challenge message-signature pair (m⋆, σ⋆) and wins if (1) Vrfy(gvk ,m⋆, σ⋆) = true,
(2) |LMS| < t, and (3) ¬

(
∃lr with lr .m = m⋆: tf3:tLRhPP(lr)

)
(if UF = EUF-CMA) or ¬

(
∃lr with lr .m = m⋆:

tsf3:tLRhPP(lr)
)
(if UF = SUF-CMA).

B forwards the challenge message-signature pair (m⋆, σ⋆) to its challenger and wins if (1) Vrfy(gvk ,m⋆, σ⋆) =
true, (2) |LMS| < t, and (3) ¬

(
∃lr with lr .m = m⋆: tf3:tLRhPP(lr)

)
(if UF = EUF-CMA) or ¬

(
∃lr with

lr .m = m⋆: tsf3:tLRhPP(lr)
)
(if UF = SUF-CMA).

Note that B perfectly simulates the GameUFTS′ to A, and wins if and only if A wins. Thus, if A can win
with probability ϵTS, then so can B.

K.2 Proof of Claim 2

We prove Claim 2 by reduction. If there exists an adversary A that can break the (4: aLRhPP, Corr2,
KGCh2, SiCh2)-UF2 security of TS′, where Corr2 = Corr1, KGCh2 = min(KGCh1, 1:KGaC), SiCh2 = SiCh1,
UF2 = UF1, then we can construct an adversary B that breaks ϵDS-SUF-CMA security of DS.
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First, B samples an index i⋆ ∈ [n] uniformly at random. Next, B initializes a sequence of long-term
states stTSi and stATSi for all i ∈ {0, . . . , n}, i.e., the leader and every signer, and a sequence of session

states πj
i for all j ≥ 1 (whenever needed). Moreover, B initializes counters rndi for i ∈ [n] and rndi,j for

i ∈ [n] and j ≥ 1 (whenever needed) that count the index of the next round for key generation or signing.
B receives a DS challenge public verification key vk⋆ from its challenger. Then, B invokes A and honestly
simulates the honest execution of the corresponding oracle by itself, because B owns all states that are
needed:

• OKGen(i,m) with i ∈ [n] \ {i⋆}
• OCorrupt(i) with i ∈ [n] \ {i⋆}
• OPP(i) with i ∈ [n] \ {i⋆}
• OSign(i, j,m) with i ∈ [n]

For all other queries, B answers in the following ways:

• OKGen(i⋆,m): We consider the following four cases:

1. If u = 0 and rndi⋆ = 0, B stores vk⋆ into the state stATSi⋆ .VK [i⋆] locally. Then, B outputs a
sequence of message m ′(i,i′) = vk⋆ for all i′ ∈ [n] \ {i} to A.

2. If u = 0 and rndi⋆ = 1, B parses the input message to a sequences of DS verification key vkDS
i′

for all i′ ∈ [n] \ {i} and stores them into stATSi⋆ .VK [i′]. Then, B sends a query OKGen(i⋆,0)
to its challenger and forwards the reply to A.

3. If u ≥ 1 and rndi⋆ = 0, B stores vk⋆ into the state stATSi⋆ .VK [i⋆] locally. Then, B sends a query
OKGen(i,0) to its challenger for a reply ∥i′∈[n]\{i}m ′(i,i′). Finally, B appends vk⋆ to every

m ′(i,i′) and returns the appended ∥i′∈[n]\{i}m ′(i,i′) to A.
4. If u ≥ 1 and rndi⋆ ≥ 1, A extracts a sequence of DS verification key vkDS

i′ for i′ ∈ [n] \ {i⋆}
from the input message m and stores them into the state stATSi⋆ .VK [i′]. Then, B sends i⋆ and
the rest of the input message, which removes {vkDS

i′ }i′∈[n]\{i⋆} from m, to its OKGen oracle
and forwards the reply to A.

• OCorrupt(i⋆): B aborts and loses. Note that A can query OCorrupt at most t− 1 times, and i⋆

is sampled uniformly at random. The probability that A sends such queries happens with probability
at most t

n .

• OPP(i⋆): B first checks whether v = 1. If v = 0, B exits. Otherwise, B forwards the query to its
challenger for a pre-processing token pp. Then, B forwards pp to its challenger for a signature σpp .
Finally, B forwards both (pp, σpp) and the index i to A.

Finally, A outputs a challenge message-signature pair (m⋆, σ⋆) and wins if

• Vrfy(gvk ,m⋆, σ⋆) = true,

• |LMS| < t, and

• ¬
(
∃lr with lr .m = m⋆: tf4:aLRhPP(lr)

)
(if UF = EUF-CMA) or ¬

(
∃lr with lr .m = m⋆: tsf4:aLRhPP(lr , gvk , σ

⋆)
)

(if UF = SUF-CMA).

B first checks whether Vrfy(gvk ,m⋆, σ⋆) = true and whether |LMS| < t. If any check fails, then both
A and B lose. A can win if and only if ¬

(
∃lr with lr .m = m⋆: tf4:aLRhPP(lr)

)
(if UF = EUF-CMA) or

¬
(
∃lr with lr .m = m⋆: tsf4:aLRhPP(lr , gvk , σ

⋆)
)
(if UF = SUF-CMA). Note that tsf4:aLRhPP(lr , gvk , σ

⋆) =
tf4:aLRhPP(lr) and SVf(gvk , lr , σ). We know that A wins only if

¬
(
∃lr with lr .m = m⋆ : tf4:aLRhPP(lr)

)
⇔∀lr with lr .m = m⋆ : ¬tf4:aLRhPP(lr)
⇔∀lr with lr .m = m⋆ : ¬

(
tf2:tLR(lr) and D2[lr ] = D3[lr ] = D4[lr ]

)
⇔∀lr with lr .m = m⋆ : ¬tf2:tLR(lr) or ¬

(
D2[lr ] = D3[lr ] = D4[lr ]

)
Recall from Claim 1 that TS′ is ϵTS-(3: tLRhPP, Corr1, KGCh1, SiCh1)-UF1 secure, which means that it

holds with probability at least (1− ϵTS) that

∃lr with lr .m = m⋆ : tf3:tLRhPP(lr)

⇔∃lr with lr .m = m⋆ : tf2:tLR(lr) and D2[lr ] = D3[lr ]
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This means that A wins only if it holds for all above lr with (1) lr .m = m⋆, (2) tf2:tLR(lr), and (3)
D2[lr ] = D3[lr ] that

D3[lr ] ̸= D4[lr ]

Recall that D3[lr ] ⊆ D4[lr ] by definition. Therefore, A can only win if

D4[lr ] ̸⊆ D3[lr ]

which means that there exists a signer i ∈ D4[lr ] but i /∈ D3[lr ]. This further means that there exists an
honest signer i ∈ lr .SS such that lr .PP(i) = (ppi, σ

pp
i ) is not honestly generated.

If such i = i⋆ exists, B returns (ppi, σ
pp
i ) to its challenger. In this case, the adversary B wins the

SUF-CMA security model by definition. Recall that i⋆ is chosen uniformly at random at the beginning of
the reduction, the probability that i = i⋆ holds with 1

n−t (under the condition that the reduction does not
abort). Otherwise, B immediately loses. In summary, it holds that

ϵTS′ ≤ nϵDS + (n− t)ϵTS

L Our ATS3:tLRhPP4:aLRhPP Transformation

We depict our ATS3:tLRhPP4:aLRhPP[TS,DS] transformation in Figure 8. It transforms a (t, n)-threshold signature
scheme TS with (u, v, w) rounds to a new (t, n)-threshold signature scheme ATS3:tLRhPP4:aLRhPP[TS,DS] with
(max(1, u), v, w) rounds by using a digital signature DS. For every i ∈ {0, . . . , n}, the state sti includes
two sub-states: stTSi is the state of the TS and stATSi is an additional state in our transformation. Below,
we explain each algorithm in our ATS3:tLRhPP4:aLRhPP transformation.

Key Generation. The key generation algorithm KGen is divided into the following two cases:

1. If the original TS has zero key generation rounds among signers (u = 0), the ATS3:tLRhPP4:aLRhPP transforma-

tion has to increment the number of rounds by 1. In the KGen(0)(sti) algorithm, every signer i first
parses sti into two sub-states stTSi and stATSi . Next, signer i generates a DS verification-signing key
pair and stores them into stATSi . Finally, signer i sends the DS verification key to every other signer.

In the KGen(1)(sti,m) algorithm, signer i first parses every other signers’ DS verification key from

the input message m and stores them in the state stATSi . Finally, signer i runs the m ′ $←− KGen(0)(sti)
algorithm of the original TS protocol and outputs m ′.

2. If the original TS has more than zero key generation rounds among signers (u ≥ 1), the KGen
algorithm is almost identical to the one of the original TS, with one minor exception: The ATS3:tLRhPP4:aLRhPP

transformation first samples a DS verification-signing key pair, stores them into stATSi , and distributes

the DS verification key in KGen(0). Finally, it stores other signers’ DS verification keys in the beginning
of KGen(1).

Verification Key Aggregation. The verification key aggregation algorithm VkAgg invokes and
outputs the VkAgg of the original TS protocol using stTS0 .

Signer Pre-Processing. The signer pre-processing algorithm SPP is only invoked if v = 1. First,
signer i invokes the SPP algorithm of the original TS protocol to receive a pre-processing token pp. Then,
signer i signs pp using the DS signing key stored in the state stATSi to produce a pre-processing signature
σpp . Finally, signer i outputs the index i, the pre-processing token pp, and the associated signature σpp .

Leader Pre-Processing. The leader pro-processing algorithm LPP is only invoked if v = 1. First, the
leader parses the input message into a tuple containing a signer index i, a pre-processing token pp, and an
associated signature σpp . Then, the leader runs the LPP algorithm of the original TS protocol using the
corresponding state stTS0 and the token pp. Finally, the leader stores (pp, σpp) in the local pre-processing
dictionary DPP[i] in the state stATS0 .

Leader Signing-Request. The leader first produces a leader request lr using the LR algorithm of
the original TS protocol. Then, if v = 1, the leader replaces the pre-processing token lr .PP(i) with the
corresponding tuple that was stored in stATS0 .DPP[i] for all i ∈ lr .SS. If such a tuple does not exist for any
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KGen(0)(sti)// if u = 0:

1 (stTSi , stATSi )← sti

2 (vkDS, skDS) $←− DS.KGen

3 stATSi .sk ← skDS; stATSi .VK [i]← vkDS

4 foreach i ∈ [n] \ {i} do

5 m′
(i,i′) ← vkDS

6 return ∥i′∈[n]\{i} m′
(i,i′)

KGen(1)(sti,m)// if u = 0

7 (stTSi , stATSi )← sti

8 parse ∥i′∈[n]\{i} vkDS
i′ ← m

9 foreach i′ ∈ [n] \ {i} do

10 stATSi .VK [i′]← vkDS
i′

11 m′ ← TS.KGen(0)(stTSi )

12 return m′

KGen(0)(sti)// if u ≥ 1

13 (stTSi , stATSi )← sti

14 (vkDS, skDS) $←− DS.KGen

15 stATSi .sk ← skDS; stATSi .VK [i]← vkDS

16 ∥i′∈[n]\{i} m′
(i,i′) ← TS.KGen(0)(stTSi )

17 foreach i ∈ [n] \ {i} do

18 m′
(i,i′)

∥← vkDS

19 return ∥i′∈[n]\{i} m′
(i,i′)

KGen(rnd)(sti,m)// if u ≥ 1 and rnd ≥ 1

20 (stTSi , stATSi )← sti

21 if rnd = 1 then

22 parse
(
m, ∥i′∈[n]\{i} vkDS

i′
)
← m

23 foreach i′ ∈ [n] \ {i} do

24 stATSi .VK [i′]← vkDS
i′

25 m′ ← TS.KGen(rnd)(stTSi ,m)

26 return m′

VkAgg(st0, {mi}i∈[n])

27 (stTS0 , stATS0 )← st0

28 return TS.VkAgg(stTS0 , {mi}i∈[n])

SPP(sti)

29 req v = 1

30 (stTSi , stATSi )← sti

31 pp $←− TS.SPP(stTSi ); σpp $←− DS.Sign(stATSi .sk , pp)

32 return (i, pp, σpp)

LPP(st0,m)

33 req v = 1

34 (stTS0 , stATS0 )← st0

35 parse (i, pp, σpp)← m

36 TS.LPP(stTS0 , pp); stATS0 .DPP[i]← (pp, σpp)

37 return

LR(st0,SS ,m)

38 (stTS0 , stATS0 )← st0; lr ← TS.LR(stTS0 ,SS ,m)

39 if v = 1 do

40 foreach i ∈ lr .SS do

41 pp ← lr .PP(i)

42 req ∃σpp s.t. (pp, σpp) ∈ stATS0 .DPP[i]

43 lr .PP(i)← (pp, σpp)

44 return lr

Sign(rnd)(Si,m)

45 (stTSi , stATSi )← sti

46 if rnd = 0 and v = 1 then

47 parse lr ← m

48 foreach i′ ∈ lr .SS do

49 parse (ppi′ , σ
pp

i′ )← lr .PP(i′)

50 req DS.Vrfy
(
stATSi .VK [i′], ppi′ , σ

pp

i′
)

51 lr .PP(i′)← ppi′

52 m ← lr

53 STS
i ← Si \ {sti} ∪ {stTSi }

54 m′ $←− TS.Sign(rnd)(STS
i ,m)

55 return m′

SigAgg(st0, lr , {ςi}i∈lr.SS )

56 (stTS0 , stATS0 )← st0

57 return TS.SigAgg(stTS0 , lr , {ςi}i∈lr.SS )

Vrfy(gvk ,m, σ)

58 return TS.Vrfy(gvk ,m, σ)

SVrfy(gvk , lr , σ)

59 if v = 1 then

60 foreach i ∈ lr .SS do

61 (pp, σpp)← lr .PP(i); lr .PP(i)← pp

62 return TS.SVrfy(gvk , lr , σ)

Figure 8: Our ATS3:tLRhPP4:aLRhPP[TS,DS] transformation that transforms a (t, n)-threshold signature scheme TS
with (u, v, w) rounds to a new (t, n)-threshold signature scheme ATS3:tLRhPP4:aLRhPP[TS,DS] with (max(1, u), v, w)
rounds by using a digital signature DS.
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i ∈ lr .SS, the leader undoes all execution within this algorithm and exits. If no error occurs, the leader
outputs the (possibly modified) leader request lr .

Signing. The signing algorithm Sign is mostly identical to the one of the original TS protocol, except
for round 0: If v = 1, signer i extracts a pre-processing token ppi′ and an associated signature σpp

i′ from
the leader request lr for every i′ ∈ lr .SS. Then, signer i checks whether the token ppi′ can be verified by
the signature σpp

i′ under the DS verification key that was stored in stATSi .VK [i′]. If any verification fails,
signer i undoes all execution within this algorithm and exits.

Signature Aggregation. The signature aggregation algorithm SigAgg invokes and outputs the SigAgg
algorithm of the original TS protocol by using state stTS0 .

Verification. The verification algorithm Vrfy invokes and outputs the verification algorithm of the
original TS protocol.

Strong Verification. The strong verification algorithm SVrfy first removes the pre-processing signature
σpp
i from lr .PP(i) for all i ∈ lr .SS if v = 1. Then (or in case v = 0), it invokes and outputs the SVrfy

algorithm of the original TS protocol.

M Security Guarantees for SiGu

Table 3: Security guarantees for each level of signer guarantees in our hierarchy. Let HS be the set of
honest signers that are willing to sign a message, CS the set of compromised signers, and SS a subset of all
signers. We assume that the adversary has corrupted the leader and some of the signers, s.t. |CS | ≤ t− 1.

SiGu Security guarantees

0: eM An adversary cannot forge a signature with access to less than t partial signatures, s.t.
|HS | = 0 and |CS | ≤ t− 1.

1: tM An adversary cannot forge a signature with access to less than t partial signatures, s.t.
|HS |+ |CS | ≤ t− 1.

2: tLR An adversary cannot forge a signature for a given leader request lr with access to less
than t partial signatures, s.t. |HS lr| + |CS lr| ≤ t − 1, where HSlr = HS ∩ lr.SS is the
subset of honest signers in lr.SS and CSlr = CS ∩ lr.SS is the subset of compromised
signers in lr.SS .

3: tLRhPP An adversary cannot forge a signature for a given leader request lr with access to less
than t partial signatures, s.t. |HSPP|+ |CS lr| ≤ t− 1, where HSPP = HS ∩ lr.SS is the
subset of honest signers in lr.SS that received a valid pre-processing token in the request
and CS lr = CS ∩ lr.SS is the subset of compromised signers in lr.SS .

4: aLRhPP An adversary cannot forge a signature for a given leader request lr without all honest
signers in lr receiving valid pre-processing tokens and providing a partial signature, i.e.,
|HSPP| = |lr.SS |, where HSPP = HS ∩ lr.SS is the subset of honest signers in lr.SS that
received a valid pre-processing token in the request.

We give an alternative characterization of the Signer Guarantee levels in Table 3.

N Distributed Key Generation

Pedersen’s distributed key generation (DKG) protocol [46] consists of three steps:

1. Share distribution. Each signer ni:

• Generates a random polynomial fi(x) =
∑t−1

i=0 aix
i and a corresponding commitment polynomial

Fi(x) =
∏

i g
aix

i

• Broadcasts a list of commitments corresponding to the commitment polynomial.

– [Ai,0, . . . , Ai,t−1] is the list of commitments for ni.

• Generates a random secret si, splits it into n shares, and distributes them to the other signers.
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– nj receives share si,j = (j, fi(j)) from ni.

2. Share verification.

• When nj receives (j, si,j), it verifies that the share matches the corresponding commitments:

– gsi,j =
∏t−1

k=0(Ai,k)
jk .

• If a signer receives an invalid share, it broadcasts a complaint.

– If the signer responsible of the invalid share fails to falsify the complaint by revealing the (valid)
share, it is considered invalid and removed from the group.

3. Share finalization.

• The final (secret) share of ni is:

– si =
∑n

j=1 sj,i for all valid signers j

• The collective public key associated with the valid shares is:

– S =
∑n

j=1 Aj,0 for all valid signers j

N.1 Rogue-Key Attack

Since Pedersen’s protocol does not require any previous knowledge of the other participants, a group of
malicious signers can perform a rogue-key attack. In a group of n signers, the adversary first receives
commitments A1,0, . . . , An−1,0 from the other signers, then chooses X = SkA, and claims that:

An,0 = gX−
∑n−1

i=1 ai,0 , i.e., sn,0 = X −
∑n−1

i=1 ai,0

When the signers calculate their shared key, it becomes:

SkG = (X −
∑n−1

i=1 ai,0) +
∑n−1

i=1 ai,0 = X

This allows the adversary to sign messages with SkA on behalf of the group.

N.2 Proposed Mitigation Methods

A common way to analyze key distribution schemes is to require knowledge of the secret key (KOSK) [47].
Since the commitment the adversary sends to the honest signers is derived from their commitments, the
adversary does not know the corresponding secret. By requiring proof of knowing the secret key (e.g.,
with a zero-knowledge proof) we can prevent the adversary from choosing a fraudulent commitment.

Proof of Possession (POP). Proof of possession requires each signer to prove that they have access
to the secret corresponding to a commitment. For example, in FROST [42], each signer computes a
zero-knowledge proof of the value ai,0:

σi = (Ri, µi), where

• k is a random value,

• Ri = gk,

• Φ is a context string to prevent replay attacks,

• ci = H(i,Φ, gai,0 , Ri), and

• µi = k + ai,0 · ci
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This can then be checked by the receiver by verifying that

Ri = gµi · ϕ−cii,0 , where ci = H(i,Φ, ϕi,0, Ri)

The algorithm is referred to as PedPoP in later publications.

Key Commitment. Key commitment is a multi-round solution that requires each party to commit to
their secret before sending or receiving anything. For example, each node can be asked to send a hash of
their commitments and only proceeding once everyone has done so.

O Practical Applications for Threshold Signatures

Threshold signature schemes have in recent years re-gained popularity as an alternative to traditional
signatures and have been adapted for applications, such as blockchains [53], timelock encryption [34], and
cryptocurrency wallets [58]. Next, we briefly introduce examples of each use case and discuss potential
security risks of implementing schemes of lower hierarchy levels.

Blockchain Interoperability. Blockchain interoperability is an open problem that has received
significant attention through the emergence and recent popularity of cryptocurrencies. Users wishing to
transfer or convert their coins between two (non-interoperable) blockchains have traditionally been forced
to rely on centralized exchanges, violating the goal of decentralization. Furthermore, giving a single entity
access to all funds on multiple blockchains poses a severe security risk.

Threshold signatures have been proposed as a solution to this problem (e.g., [3, 17, 52, 57]): by
distributing control of funds over multiple independent signers, the single point of failure can be eliminated.
Each signer is incentivized to validate transactions over the exchange and provide partial signatures to
accept them. If sufficiently many validators sign a given transaction, it gets executed.

Since each signer is expected to actively validate transaction and is penalized for failure to participate,
the subset of signers that is included in producing any given group signature does not matter. In other
words, the hierarchy level of the chosen scheme has no practical implications, as long as it requires at
least t signers to produce a valid signature.

However, choosing a scheme vulnerable to rogue-key attacks gives malicious signers a non-negligible
advantage. In many of these implementations, the number of signers is relatively high (100+) and the
threshold t is often around 2/3×n. Recall that a rogue-key attack allows a malicious signer to control the
group’s secret key by compromising n− t+ 1 signers. For example, in a scheme with n = 150 and t = 100,
this would mean that the adversary only needs to compromise approximately a third of the signers for the
attack to work. The requirement to become a signer is typically a sufficiently large proof-of-stake.

Distributed Randomness Beacons. Threshold signatures can also be used to create pseudorandom
values. drand [31] is a distributed randomness beacon that produces verifiable random values at fixed
intervals. A drand network consists of a set of nodes that broadcast (partial) signatures of shared messages
at periodic intervals. Once a node has collected a threshold of t-out-of-n signatures, it combines them
into a BLS signature that is verifiable with the groups’ public key. The signature is then hashed using
SHA-256 and published as a random value.

Threshold BLS provides SiGu = 1: tM security [11]. This implies that an adversary cannot forge
a signature with access to less than t partial signatures, s.t. |HS| = 0 and |CS| ≤ t − 1. Since BLS
signatures do not specify the subset of signers that provided partial signatures (i.e., no leader requests),
an adversary would have to either control > t signers, or influence the key derivation process to gain
control of the private key.

drand implements Pedersen’s DKG scheme, which, as explained in Section 6.3, is vulnerable to a
rogue-key attack. However, unlike in the previous application example, we assume a high trust relation
between nodes. In the case of drand, each new node goes through a selection process to ensure a adequate
level of trust and availability. In practice, this makes it extremely unlikely for a malicious node to gain a
sufficiently large subset of compromised nodes to execute the attack.

Multi-User Wallets. A multi-user wallet (e.g., [51, 56]) uses threshold signatures to split control over
multiple users. Rather than a single signature controlling the funds, we can require that at least t group
members agree on any given operation. The functionality is similar to the validators discussed in the case
of blockchain interoperability, without the expectation to validate transactions.

As in the case of the randomness beacon, we can assume a high level of trust between the signers.
All signing keys could, for example, be controlled by a single party that distributes them over multiple
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devices.

Other Applications. Other applications include e.g., multi-factor authentication [43, 55] and
DNSSEC [26]. Many more use cases are also envisioned for the future [50].
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