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Abstract.
The concept of a decentralized computer is a powerful and transformative idea that
has proven its significance in enabling trustless, distributed computations. However,
its application has been severely constrained by an inability to handle private data
due to the inherent transparency of blockchain systems. This limitation restricts the
scope of use cases, particularly in domains where confidentiality is critical.
In this work, we introduce a model for a Fully Homomorphic Encryption (FHE)
decentralized computer. Our approach leverages recent advancements in FHE tech-
nology to enable secure computations on encrypted data while preserving privacy. By
integrating this model into the decentralized ecosystem, we address the long-standing
challenge of privacy in public blockchain environments. The proposed FHE computer
supports a wide range of use cases, is scalable, and offers a robust framework for
incentivizing developer contributions.
Keywords: fully homomorphic encryption, privacy-enhancing technologies, challenges,
cryptography, privacy, fhe-computer, co-processor
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1 Introduction
Decentralized technologies have transformed the landscape of computing, enabling trustless
systems, distributed ownership, and programmable value transfer. Web3, as a decentralized
internet paradigm, is at the forefront of this transformation, powering applications in
decentralized finance (DeFi), non-fungible tokens (NFTs), and governance. However, the
full potential of decentralized systems is constrained by a critical challenge: privacy. Public
blockchains like Ethereum [But15] operate transparently, where all transaction data is
visible to anyone. While this transparency ensures trust and verifiability, it simultaneously
limits the applicability of these systems for use cases requiring sensitive or confidential
data.

Privacy is essential for expanding decentralized technologies into domains such as
healthcare, finance, enterprise operations and others, where sensitive data must remain
confidential. For instance, securely sharing medical records, conducting private financial
transactions, or managing proprietary business data is infeasible on a fully transpar-
ent blockchain [GMGT16, Gro16]. Without robust privacy-preserving mechanisms, the
adoption of Web3 technologies in these areas remains limited.

1.1 Related Works
To address the challenge of privacy in decentralized systems, researchers have developed
various protocols based on Zero-Knowledge Proofs (ZKPs), Secure Multi-Party Compu-
tation (SMPC), and Trusted Execution Environments (TEEs). These protocols leverage
the strengths of cryptographic technologies to enable privacy-preserving computations in
decentralized environments.

Zero-Knowledge Proofs (ZKPs) allow the validation of statements without revealing
the underlying data. Protocols such as zk-SNARKs [Gro16] and zk-STARKs [BSBHR18]
have been successfully implemented in privacy-preserving systems like Zcash [GMGT16],
enabling secure transactions while maintaining confidentiality. These advancements have
facilitated efficient proof systems, yet ZKPs are inherently limited to specific computations
and lack support for general-purpose data processing.

Protocols based on Secure Multi-Party Computation (SMPC) enable multiple parties
to collaboratively compute a function without exposing their individual inputs [Yao82].
Frameworks like SPDZ [SV13] and ABY [DSZ15] have extended SMPC’s applicability
to practical scenarios, providing robust mechanisms for privacy-preserving computation.
However, despite significant progress, SMPC systems face scalability and latency challenges,
especially in high-throughput and real-time environments.

Trusted Execution Environments (TEEs) provide a hardware-based mechanism for
maintaining privacy. TEEs, such as Intel SGX [CD16], establish secure enclaves for
executing sensitive computations in a tamper-proof environment. Protocols like Ekiden
[CSPS18] have demonstrated how TEEs can be integrated into blockchain-based systems
to protect sensitive data. However, reliance on centralized hardware providers introduces
concerns about trust, availability, and the susceptibility to hardware vulnerabilities [KP20].

Among other approaches, solutions based on Fully Homomorphic Encryption (FHE) are
particularly promising. Unlike ZKPs, SMPC, or TEEs, FHE enables arbitrary computations
to be performed directly on encrypted data, preserving confidentiality throughout the
entire computation process [Gen09]. Recent advancements in FHE [AKP24] [BKSS24]
[DDD+24b] [LLW24] demonstrate its growing practicality for real-world applications. By
supporting general-purpose encrypted computation, FHE overcomes the limitations of other
privacy-preserving methods and holds the potential to transform decentralized systems by
enabling a wide range of new use cases.

Despite significant progress in the development of Fully Homomorphic Encryption
technologies, several critical challenges remain to be addressed [AKPP24]. These challenges
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include:

• Lack of FHE Components: The current ecosystem lacks a comprehensive library
of modular, reusable FHE components tailored for diverse application needs. This
gap limits the rapid development of complex FHE-based solutions.

• High Computational Requirements: FHE operations, while enabling compu-
tations on encrypted data, incur significant computational overhead compared to
traditional processing. This constraint hinders scalability and widespread adoption
for resource-intensive applications.

• FHE Standardization: The absence of standardized protocols, formats, and APIs
across FHE implementations complicates interoperability and the integration of FHE
into existing systems. Standardization efforts are crucial for unifying fragmented
approaches and fostering collaboration across the field.

Addressing these challenges will be pivotal in advancing FHE as a cornerstone technology
for privacy-preserving computation. Solving these issues will bring us closer to realizing
robust solutions for privacy in decentralized and data-sensitive domains.

In this work, we introduce a decentralized FHE computer designed to address privacy
limitations in both Web2 and Web3 spaces. Acting as a co-processor for Layer 1 and
Layer 2 blockchains, the FHE computer enables privacy-preserving computations that
complement the transparent nature of public blockchains.

With the FHE Computer and its surrounding ecosystem, we believe it will become
possible to unlock new use cases for Ethereum and the broader Web3 space, as well as for
Web2 applications.

1.2 Organization
In Section 2, we provide an overview of Fully Homomorphic Encryption and Blockchain
technologies, offering the necessary background to understand the concepts discussed in
later sections. Section 3 introduces the high-level architecture of the FHE Computer,
detailing its main components and their interactions within the system.

In Section 4, we describe the Instruction Set Architecture (ISA) model used by the
FHE Computer and explain the motivations behind adopting this design approach. Section
5 delves into the operating system that manages the FHE Computer, discussing its core
functionalities and role in orchestrating computations.

Section 6 focuses on the ecosystem surrounding the FHE Computer, examining its key
components and their importance in creating a robust and scalable environment. Finally,
in Section 7, we explore several potential use cases for the FHE Computer, demonstrating
its applicability in both Web2 and Web3 contexts.

2 Preliminaries
2.1 Fully Homomorphic Encryption
Fully Homomorphic Encryption (FHE) is a groundbreaking cryptographic technique that
allows arbitrary computations to be performed on encrypted data without requiring decryp-
tion. This capability ensures that sensitive data remains secure throughout computation,
addressing critical privacy concerns in data processing.

Formally, an FHE scheme is defined over a plaintext space P, a ciphertext space C,
and a key space K. It consists of the following components:

• Key Generation: KeyGen(λ) → (pk, sk), where λ is the security parameter, pk is
the public key, and sk is the secret key.
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• Encryption: Enc(pk, m) → c, where m ∈ P is the plaintext and c ∈ C is the
ciphertext.

• Decryption: Dec(sk, c) → m, where c ∈ C is the ciphertext and m ∈ P is the
decrypted plaintext.

• Evaluation: Eval(pk, f, c1, . . . , cn) → c′, where f is a computable function, c1, . . . , cn ∈
C are input ciphertexts, and c′ ∈ C is the ciphertext of the result f(m1, . . . , mn) with
mi = Dec(sk, ci).

The Turing completeness of FHE implies the ability to execute any computable function
on encrypted data. However, achieving this capability is constrained by the underlying
encryption scheme and computational efficiency.

Modern FHE schemes are broadly classified based on the data types they support:

• Modular Arithmetic over Finite Fields: Schemes like Brakerski-Gentry-Vaikuntanathan
(BGV) [BGV11] and Brakerski/Fan-Vercauteren (BFV) [FV12, Bra12] support com-
putations on vectors of integers modulo a prime or a prime power. These schemes
are ideal for applications involving exact integer arithmetic and small-integer compu-
tations.

• Boolean Circuits and Decision Diagrams: Schemes such as Ducas-Micciancio
(DM) [DM14] and Chillotti-Gama-Georgieva-Izabachene (CGGI) [CGGI16] are op-
timized for logical operations and binary decision-making. These schemes offer
fast bootstrapping but limited SIMD (Single Instruction, Multiple Data) packing
capabilities.

• Approximate Arithmetic over Real and Complex Numbers: The Cheon-
Kim-Kim-Song (CKKS) scheme [CKKS16] enables computations on real and complex
numbers with approximate precision. This class is particularly well-suited for machine
learning, signal processing, and applications involving continuous data.

Most FHE schemes rely on the hardness of the Learning With Errors (LWE) [Reg09]
problem or its Ring variant (RLWE) [LPR09] for security. Noise is added during encryption
to ensure security, but it grows with each operation. When the noise level becomes too
high, further computations become infeasible. A process called bootstrapping resets the
noise, enabling continued computation. While bootstrapping is computationally expensive,
advances in its efficiency have significantly expanded the practical applicability of FHE.

FHE schemes can also be categorized into two major types:

• Exact Arithmetic: Schemes like BGV and BFV perform computations with exact
results.

• Approximate Arithmetic: CKKS trades exactness for broader applicability by
allowing approximate computations.

FHE’s Turing completeness signifies its ability to perform any computable function on
encrypted data. However, this theoretical capability does not inherently provide practical
algorithms, making the development process complex and challenging. Performance
limitations often restrict feasible implementations to algorithms (or circuits) with a
multiplicative depth below a predefined threshold L. These constraints significantly
complicate application development, imposing limitations on developers and requiring
innovative approaches to overcome these challenges.
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2.2 Blockchain and Ethereum
Blockchain technology serves as the foundation for decentralized systems, providing a
secure, immutable, and distributed ledger. A blockchain is a sequence of blocks, each
containing a cryptographically linked list of transactions. This linkage ensures data
integrity and prevents tampering by leveraging hash functions and consensus mechanisms
[Nak08].

Ethereum [But15] extends the traditional blockchain architecture by introducing pro-
grammability through a Turing-complete virtual machine known as the Ethereum Virtual
Machine (EVM). Ethereum supports the deployment and execution of smart contracts,
which are self-contained, executable pieces of code stored on the blockchain. These con-
tracts enable decentralized applications (dApps), providing a framework for use cases such
as tokenization, decentralized finance (DeFi), and automated governance.

State Machine Model Ethereum operates as a state machine, where the global state
S represents the current status of all accounts and contracts on the network. The state
transition function γ modifies the state based on incoming transactions T , such that:

γ(S, T ) → S′

where S is the current state, T is a transaction, and S′ is the new state after applying T .
The state S includes:

• Account balances.

• Contract storage and code.

• Nonces and other metadata.

A transaction T is formally represented as:

T = (tsender, trecipient, tvalue, tdata, tgas, tsignature)

where tsender is the sender’s address, trecipient is the recipient’s address (or contract being
invoked), tvalue is the amount of ether transferred, tdata contains any input data, tgas
specifies computational resources, and tsignature authenticates the transaction.

Consensus and Execution Ethereum’s execution of transactions relies on consensus
mechanisms to ensure consistency and validity. Initially, Ethereum employed Proof of
Work (PoW) [Woo14], which required solving computationally intensive puzzles to validate
blocks. With the Ethereum 2.0 upgrade, the network transitioned to Proof of Stake (PoS)
[B+21], where validators stake cryptocurrency to propose and attest to blocks, significantly
reducing energy consumption and improving scalability.

Smart contract execution is deterministic, with all nodes independently executing the
same transactions to achieve state convergence. Gas fees are introduced as a mechanism
to incentivize validators and mitigate denial-of-service attacks by associating a cost with
computational operations.

Privacy and Challenges While Ethereum enables programmability and decentralization,
it operates transparently, with all transactions and states visible to the public. This
transparency introduces privacy concerns, limiting the adoption of blockchain technology
in sensitive domains such as healthcare, enterprise applications, and confidential financial
transactions [GMGT16, Gro16].

Efforts to enhance privacy in Ethereum include:
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• zkEVM: Layer 2 solutions such as zk-Rollups [W+18] and zkEVM [P+22] have been
proposed to enable privacy-preserving computations compatible with Ethereum’s
infrastructure.

• FHE Integration: Research on integrating Fully Homomorphic Encryption into the
Ethereum Virtual Machine is underway [DDD+24a], aiming to perform encrypted
computations while preserving privacy of user input .

Despite progress, challenges remain, including the computational overhead of crypto-
graphic operations and the lack of standardized solutions for privacy-preserving computa-
tion on Ethereum. These challenges highlight the need for continued innovation to unlock
Ethereum’s full potential in privacy-sensitive applications.

3 System Architecture
3.1 Overview
Fair Math Computer is a decentralized execution environment with heterogeneous execution
nodes (actors) designed to perform computations on encrypted data. Its architecture as
depicted on Figure 1 is structured into five primary layers:

• Application Layer

• Orchestration Layer

• Verification Layer

• Execution Layer

• Data Layer.
The first three layers form the Decentralized Operating System based on blockchain. The
Execution Layer serves as the hardware equivalent, comprising a scalable network of
computational nodes, while the Data Layer, implemented as IPFS-based storage, functions
as the system’s permanent repository for encrypted and plaintext data.

Our Operating System incorporates core concepts such as applications, processes,
threads, and virtual memory, drawing inspiration from UNIX-like systems. This system
provides the foundation for application management, resource allocation, and task schedul-
ing while maintaining the security and decentralization. We consider each layer in more
details in the following subsection.

3.2 Architectural Layers
3.2.1 Application Layer

The Application Layer is the highest level in our multi-layered architecture. This layer
acts as the primary interface for the interaction with the system.

Each application stored at the Application Layer is associated with a security policy
that governs its execution. These policies define the conditions under which applications
can be accessed and executed. For example, some applications may be publicly available
to all users, while others may restrict access to a predefined group of authorized users.

3.2.2 Orchestration Layer

The Orchestration Layer is a responsible for managing the execution workflow of appli-
cations deployed on the system. It coordinates task distribution among actors, creates
execution contexts, and ensures that applications are efficiently and securely executed.
The orchestration process involves several key phases:



Gurgen Arakelov, Sergey Gomenyuk and Hovsep Papoyan 9

Figure 1: FHE Computer Layers

Application Execution Graph In the first phase of execution, an application is analyzed
and transformed into an execution graph. Each application may define multiple entry
points (functions) as its potential starting points. During the application launch, the
specific entry point is selected and execution begins from that point.

The execution graph represents the logical flow of the application. The nodes of this
graph correspond to blocks of instructions (tasks), which are the fundamental units of
execution. Each block is designed to be assigned to actors for processing. A block contains
one or more instructions, which are categorized into two types:

• Atomic Instructions: These are indivisible operations within the system’s Instruc-
tion Set Architecture (ISA) that can be executed directly by actors without further
decomposition.

• Composite Instructions: These represent high-level operations that may be
expanded into a sequence of atomic instructions during the execution planning
phase. For instance, a composite instruction like a polynomial evaluation or ma-
trix multiplication might be unrolled into smaller, atomic operations to optimize
execution.

The orchestration layer is responsible for constructing the execution graph. It determines
dependencies between the blocks and ensures that the graph adheres to the logical flow of
the application. The edges in the graph define the dependencies between blocks, ensuring
that the execution proceeds in a consistent and orderly manner. This structure allows the
orchestration layer to distribute execution efficiently across available actors, optimizing
parallelism and resource utilization. Dependencies between blocks are also captured on
Orchestration Layer, enabling efficient scheduling and execution. Further details are
provided in Section 5.3.

Process Once the execution graph is constructed, the system creates a process for the
application, similar to traditional Operating systems. A process is an isolated execution
entity that encapsulates all orders (blocks of instructions), data and the associated execution
context. This approach ensures isolation between different application runs, providing
security and stability for the decentralized environment.
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The process serves as a container for managing the application’s lifecycle, including
task execution, resource management, and context handling. It maintains the state of the
execution and acts as a boundary for resource allocation and data flow.

Task Assignment and Actor Selection. The assignment of tasks to specific actors is
managed through a decentralized order book. This mechanism allows actors to compete
for tasks based on various factors, such as their capabilities, availability, performance
history and cost of the computation. The decentralized order book ensures fairness and
transparency in task management.

Execution and Result Aggregation. Once an actor is assigned an order, it retrieves the
associated execution context and begins processing the instructions within the block. Key
aspects of this phase include:

• Actors execute instructions based on the provided context, handling both atomic
and complex operations.

• Dependent orders in the execution graph are activated as their prerequisites are
completed, enabling parallelism and efficient resource utilization.

• The Orchestration Layer monitors task progress and ensures that results are correctly
propagated through the graph.

3.2.3 Verification Layer

In the security model we consider, both computational nodes (actors) and users can
potentially act maliciously. For instance, an actor might intentionally fail to execute
the assigned instructions and instead return a random ciphertext, falsely claiming it
as the computation result. Conversely, a user—after receiving the correct result—may
unjustifiably claim the output is invalid to avoid compensating the actor for their work.
In extreme cases, both parties may act as active adversaries, requiring robust mechanisms
to address such scenarios.

The problem is further complicated by the encrypted nature of the computational
results. Since the outputs remain encrypted, there is no direct way to verify the correctness
of the result against the expected output without revealing sensitive data. This limitation
necessitates the development of verification mechanisms that preserve privacy while ensuring
reliability.

• Static Circuit Requirements: Modern zk-proof systems, such as zk-SNARKs
[Gro16] and zk-STARKs [BSBHR18], rely on predefined circuits that explicitly
describe the computation to be verified. This static nature requires that for each
task assigned to an actor, an appropriate proof circuit must be constructed and
available in advance. This constraint reduces flexibility and adaptability, particularly
in dynamic environments where computational tasks may evolve unpredictably.

• Lack of Flexibility in Execution Methods: zk-based verification inherently
requires the algorithm being verified to be entirely disclosed and structured in
advance, as highlighted in [P+22]. This limitation conflicts with execution models
that encourage actors to use their own innovative and potentially proprietary methods
to execute instructions, provided the input-output behavior aligns with specifications.
For instance, an actor performing matrix multiplication could optimize the operation
with a novel algorithm; however, zk-proof systems would require this algorithm to
be explicitly included in the verification circuit, deterring proprietary or innovative
approaches.
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In addition to zk-based approaches, there exists an alternative methodology known as
Verifiable FHE (vFHE) [VKH23]. This technique leverages properties of the computation’s
output to verify correctness without compromising data confidentiality. While vFHE offers
promising possibilities, it is still a developing field and currently lacks the universality and
practicality needed for broad adoption. Given the absence of a universal protocol suitable
for all scenarios, our model emphasizes flexibility. Different verification mechanisms must
be supported to accommodate the diverse requirements of various applications. At this
layer, the system is designed to enable the integration of multiple verification approaches,
allowing developers to tailor solutions to their specific use cases while maintaining the
integrity, security, and flexibility that define the Fair Math Computer.

3.2.4 Execution Layer

The Execution Layer is composed of a heterogeneous network of computational nodes,
referred to as actors, which are capable of executing instructions defined by the virtual
machine. Each actor may support a subset of the available instructions. For example,
some actors may specialize in instructions related to a specific encryption scheme, while
others may support a single operation, such as ciphertext multiplication.

When registering as an actor, the node specifies the list of instructions it can execute,
along with metadata describing its performance characteristics. This information is crucial
for task allocation and ensures that actors are matched to tasks that align with their
capabilities. Actors also have the flexibility to modify their supported instruction set at
any time, enabling them to adapt to changing workloads or optimize for specific tasks.

As described in Section 5.5, during the assignment of an actor to a task(block of
instructions), the system considers the actor’s declared capabilities. It ensures that actors
are only assigned blocks consisting of instructions they explicitly support. This guarantees
efficient and reliable execution, even in a heterogeneous environment with actors of varying
specializations.

We discuss actors in more details in section 5.8

3.2.5 Data Layer

Given the strict limitations and high costs of data storage in blockchain networks like
Ethereum, and considering that the volume of ciphertexts and keys for Fully Homomorphic
Encryption can reach several gigabytes, we have adopted a strategy to avoid placing
such large amounts of data directly on the blockchain. Instead, we utilize IPFS-based
external data storage to manage the data. This approach not only addresses the storage
limitations and cost inefficiencies but also ensures efficient, scalable, and decentralized
data management. On the on-chain side, instead of storing the ciphertexts and keys
themselves, we only place commitments and meta-data corresponding to the files located
on the external storage. The blockchain serves as a form of a hash table, pointing to the
location of the data and ensuring their integrity and authenticity through a system of data
commitments. This allows us to optimize the costs of using the blockchain while providing
a reliable and scalable infrastructure for working with encrypted data of arbitrary scale.
This data storage model makes our platform ideally suited for a wide range of applications
requiring high data confidentiality and security.

4 Instruction Set Architecture (ISA)
In the Fair Math FHE Computer, the Execution Layer functions as a multiprocessor
system, where the computational cores are represented by heterogeneous nodes, referred to
as actors. These actors are heterogeneous because they may vary in two key aspects: the
subset of instructions they support and the specific implementations they use for those
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instructions. This design provides the flexibility to accommodate a wide range of actors
with diverse computational capabilities, enabling scalability and specialization.

The Instruction Set Architecture (ISA) of the FHE Computer defines a canonical
set of instructions supported by Execution Layer. The instructions are the part of an
executable program, stored on Application layer and executed on Execution Layer. Actors
in the FHE Computer can implement arbitrary subset of instructions. This approach
allows specialization; for instance, some actors may focus exclusively on specific operations,
such as encrypted arithmetic for a particular FHE scheme, while others may implement
more general-purpose functionality. Importantly, the system guarantees that, for every
instruction in the canonical instruction set, there is at least one actor capable of executing
it at any given time.

To support this heterogeneous and extensible model, the ISA adopts a declarative
approach. Inspired by the MLIR framework, instructions are organized into logical
groups called dialects, which categorize operations based on their purpose and domain.
Each instruction specifies its required inputs and expected outputs but does not prescribe
the exact implementation. This abstraction allows actors to optimize execution based on
their capabilities while adhering to a standardized interface.

Hierarchy of Operations
The instruction set is modularly organized into dialects, ensuring clarity, extensibility, and
specialization. Each dialect groups a set of related instructions, facilitating straightforward
management and seamless extension. Dialects are hierarchically structured, allowing
sub-dialects to be nested within parent dialects. This approach supports fine-grained
categorization and flexibility in defining operations across various computational domains.

For instance, the top level fhe dialect includes sub-dialects such as fhe.bgv and
fhe.ckks, which define instructions specific to the BGV and CKKS encryption schemes,
respectively. At the meantime the fhe dialect defines unified data types, such as
RLWECiphertext, RLWEPlaintext that shared across sub-dialects. While different en-
cryption schemes may utilize different encoding techniques, we would like to provide
some universal layer for FHE schemes based on the same math problem, like (R)LWE.
This design usefull for adding support for new scheme, scheme switching, and DM based
bootstrapping approaches.

In the initial version of the FHE Computer, the following four top-level dialects are
defined:

1. Arithmetic Dialect (arith) The arith dialect provides foundational operations for
working with basic types. It includes instructions for basic arithmetic, logical operations,
and comparisons. This dialect is flat, with no subgroups, and focuses entirely on non-
encrypted types.

• Examples:

– %sum = arith.add %a, %b : (i32) -> i32 Adds two integers and returns
an integer result.

– %eq = arith.eq %x, %y : (i64) -> bool Compares two 64-bit integers for
equality, returning a Boolean result.

2. Tensor Dialect (tensor) The tensor dialect supports operations on multidimensional
arrays, commonly used in machine learning and linear algebra computations. While the
initial implementation is flat, future versions may include subgroups for specialized tensor
operations (e.g., sparse tensors).
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• Examples:

– %tensor = tensor.create %shape : (i32) -> tensor<[n]> Creates a 1-
dimensional tensor of size n.

– %result = tensor.add %t1, %t2 : (tensor<[4]x[4]>, tensor<[4]x[4]>)
-> tensor<[4]x[4]> Performs element-wise addition on two 4x4 tensors.

3. FHE Dialect (fhe) The fhe dialect includes operations for encrypted data compu-
tations. This dialect is further divided into subgroups based on the encryption scheme,
such as fhe.bgv and fhe.ckks, allowing tailored operations for each scheme. Within each
subgroup, operations like addition, multiplication, and rotations are defined.

• Examples:

– %result = fhe.bgv.add %lhs, %rhs, %ctx : (RLWECiphertext, RLWECiphertext,
BGVCryptoContext) -> RLWECiphertext Adds two ciphertexts using the BGV
scheme.

– %rot = fhe.ckks.rotate %ciphertext, %offset, %ctx, %key : (RLWECiphertext,
i32, CKKSCryptoContext, RLWEGaloisKey) -> RLWECiphertext Rotates co-
efficients of a CKKS ciphertext by the specified offset.

4. Polycircuit Dialect (polycircuit) The polycircuit dialect provides high-level
operations mapped to reusable FHE components, enabling complex computations such
as neural network activations and polynomial evaluations. These operations often work
across multiple ciphertexts and contexts.

• Examples:

– %relu_out = polycircuit.RELU %ciphertext, %ctx : (RLWECiphertext,
Context) -> RLWECiphertext Applies the ReLU activation function to an en-
crypted input.

– %eval = polycircuit.poly_eval %coeffs, %ciphertext, %ctx : (tensor<[n]>,
RLWECiphertext, Context) -> RLWECiphertext Evaluates a polynomial de-
fined by the coefficients on an encrypted input.

We provide the complete list of instructions in Appendix B and compiled code example for
CIFAR10 recognitiona app in Appendix C.

5 Operating System Design
The operating system of the Fair Math FHE Computer is built on a blockchain infrastruc-
ture, providing a decentralized framework for resource management and task allocation. It
functions as a distributed scheduler, orchestrating workloads across heterogeneous actors
based on their computational capabilities and supported instruction subsets. Leveraging
blockchain technology, the system ensures deterministic resource allocation, verifiable exe-
cution, and secure state transitions. This approach enables transparent interaction between
actors, immutability of task assignments, and seamless integration of new computational
nodes into the network.
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5.1 Computer State

The computer can be conceptualized as a state machine, with its state evolving determin-
istically based on transactions recorded on the chain. At any given moment, the computer
resides in a well-defined state, characterized by multiple parameters and factors such as:

• Resource Availability: The allocation and utilization of computational, memory,
and network resources across the decentralized network of actors.

• Task Queue: The current set of tasks awaiting execution, their priority levels, and
the mapping of tasks to specific actors.

• Actor States: The operational status of each actor, including supported instructions,
current workloads, and performance metrics.

• Deployed Applications: Metadata and configurations for applications running
on the computer, including active jobs, required cryptographic keys, and runtime
dependencies.

• Transaction History: Immutable records of task submissions, resource allocations,
and interactions between system components.

The blockchain acts as the single source of truth, ensuring that the state of the computer
evolves in a transparent and tamper-proof manner. Transactions on the chain serve as
the triggers for state transitions, which may include deploying new applications, assigning
tasks to actors, or reallocating resources.

5.2 Application

An application in the Fair Math Computer is formally defined as a tuple:

A = (F , V),

where:

• F is a set of external functions f : (X → Y), where X and Y are the input
and output spaces, respectively. Each function f serves as an entry point and
encapsulates a specific sequence of instructions. Importantly, functions in F do not
support direct invocation of other functions within the same application.

• V is a set of global variables v ∈ V, each defined as v : T , where T is the domain of
the variable’s type (e.g., integers, arrays, ciphertexts).

Execution of an application starts by default with the main function. The main function
serves as the default entry point and is executed unless a different function is explicitly
specified during invocation.

When an application is launched, a process is created. This process persists until the
application explicitly calls the exit function (or killed by Operating System), providing
a termination code. The process manages the application’s state, resources, and execu-
tion flow throughout its lifecycle. Details about processes are discussed in Section 5.4.
Application deploy process is depicted on the Figure 2
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Figure 2: Application Deploy Process

5.2.1 Application Invocation

Applications are invoked through transactions, which can perform two types of operations:

1. Launching a New Application: A transaction initiates a new application by
specifying its identifier Aid and any required input arguments. This creates a new
process P, associated with the application, that starts executing from the specified
entry point or main function by default.

2. Invoking a Specific Function: A transaction can directly invoke an external
function fname ∈ F in a running application by specifying:

• The application ID Aid, uniquely identifying the target application.
• The function name fname, indicating the entry point to invoke.
• The associated process ID Pid, linking the invocation to the relevant application

process.

Input arguments are passed dynamically, allowing flexible interaction with the running
application.

5.2.2 External Functions

Functions in F are strictly external, meaning they can only be invoked through trans-
actions from outside the application or by the orchestration layer. Direct function calls
from one function to another within the same application are not supported. This design
ensures:

• Clear separation of entry points, simplifying execution flow.

• Modular interaction with the application, as each function operates independently.

• Improved transparency and security by explicitly restricting internal function calls.

5.2.3 Interactive Applications

The application model inherently supports the development of interactive applications.
By defining multiple external entry points and supporting dynamic invocation of functions,
developers can implement applications that:
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• Trigger new computations in response to external events.

• Maintain shared state across invocations through global variables V.

• Respond to user input or other asynchronous triggers, enabling dynamic and stateful
workflows.

5.3 Execution Graph and Tasks
In the Fair Math Computer, a task is the smallest unit of execution that is managed by
the orchestration layer. Formally, a task is defined as:

T = ⟨I, V, M⟩,

where:

• I = {I1, I2, . . . , In} is a non-empty, ordered set of instructions associated with the
task.

• V = {v1, v2, . . . , vp} is the set of variables used or produced by the instructions in I.

• M is a set of metadata associated with the task, which includes:

– Resource requirements (e.g., memory, compute capacity).
– Estimated complexity.
– Execution constraints (e.g., deadlines, actor capabilities).

A task is considered valid if I ̸= ∅ and all instructions Ik ∈ I are consistent with the
dependencies of the application.

5.3.1 Atomic and Composite Instructions

Instructions in I are categorized as either atomic or composite operations:

• Atomic Instruction: An instruction is atomic if it represents a single, indivisible
operation within the system’s Instruction Set Architecture (ISA). For example:

arith.mul (multiplication of two ciphertexts).

Atomic instructions are directly executable by actors without further decomposition.

• Composite Instruction: An instruction is composite if it represents a high-level
operation that can be expressed as a sequence of atomic instructions. For example:

polycircuit.relu (non-linear activation function).

A composite instruction like RELU might be implemented as a sequence of operations
involving comparisons, multiplications, and additions.

During execution planning, the orchestration layer can dynamically unroll composite
instructions into their constituent atomic instructions to optimize scheduling. Formally,
let:

Icomposite → {Iatomic,1, Iatomic,2, . . . , Iatomic,k},

where Icomposite is a composite instruction, and Iatomic,i are the atomic instructions that
implement it. The orchestration layer may replace composite instructions in I with their
expanded atomic sequences if:
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Figure 3: Execution graph example

• No suitable actor is available to execute the composite instruction directly.

• A finer-grained decomposition enables better parallelism or resource utilization.

This process is referred to as instruction unrolling and allows the orchestration layer
to dynamically adjust the granularity of tasks.

Dependencies between tasks are defined by the relationships between their variables.
Formally, given two tasks Ti = ⟨Ii, Vi, Mi⟩ and Tj = ⟨Ij , Vj , Mj⟩, we say Tj depends on
Ti, denoted Ti → Tj , if:

• j > i (i.e., Ti precedes Tj in the sequence of tasks), and

• Tj uses one or more variables whose values are modified by Ti.

Formally, let:
Out(Ti) = {v | v is a variable modified by Ti},

In(Tj) = {v | v is a variable used by Tj}.

Then (Ti, Tj) ∈ E if and only if:

j > i and Out(Ti) ∩ In(Tj) ̸= ∅.

5.3.2 Execution Graph

The decomposition of an function into tasks is represented as a directed acyclic graph
(DAG) called the execution graph, G = (V, E), where:

• V = {T1, T2, . . . , Tm} is the set of tasks.

• E ⊆ V × V is the set of directed edges, where (Ti, Tj) ∈ E represents a dependency
between tasks.

During execution, the orchestration layer may:

• Dynamically refine tasks into subtasks if finer granularity is required for scheduling.

• Expand composite instructions within tasks to their atomic equivalents, enabling
execution by available actors.

This dynamic refinement ensures that the system can adapt to varying resource
availability and workload requirements while respecting task dependencies. Example of
the execution graph is depicted on Figure 3.
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5.4 Process
In the Fair Math Computer, a process represents an instance of an application in execution.
Processes are ephemeral entities that encapsulate the state, resources, and execution context
required to perform computations. They serve as the primary abstraction for managing
the execution lifecycle of applications, ensuring isolated, secure, and efficient operations in
a decentralized environment.

5.4.1 Lifecycle of a Process

The lifecycle of a process in the Fair Math Computer includes the following key stages:

1. Initialization: A process is created when a user or actor invokes an application.
During initialization, the process is assigned a unique identifier and its initial state
is constructed based on the application’s configuration file and input arguments.

2. Execution: The process executes the instructions defined in the application. Exe-
cution is distributed across the network, leveraging the computational resources of
heterogeneous actors. The system ensures the correctness and integrity of execution
through cryptographic guarantees.

3. Suspension and Resume: In cases where a process requires external input or
encounters resource constraints, it can be suspended. The process state is serialized
and stored securely on the blockchain, allowing it to be resumed later without loss
of progress.

4. Termination: Once the execution completes, the process is terminated. The final
state, including any results, is recorded on the blockchain, and all associated resources
are released.

5.4.2 Resource Allocation and Isolation

Each process operates in a sandboxed environment, ensuring that it cannot interfere with
other processes or access unauthorized resources. Resource allocation is managed by the
blockchain-based operating system, which dynamically assigns actors and computational
capacity to processes based on workload, priority, and availability.

The concept of processes in the Fair Math Computer ensures that applications ex-
ecute reliably, securely, and efficiently, forming a robust foundation for decentralized
computations.

5.5 Order Book
In the system, the fundamental unit of planning is a task. A task is defined as a set of
one or more instructions from the Instruction Set Architecture (ISA). The allocation of
tasks to actors is managed at the Orchestration Layer through the order book.

Each task that requires execution is transformed into an order. An order encapsulates
the task along with its associated metadata, which specifies the requirements for execution.
This metadata includes:

• Deadline: The maximum allowable time for task completion.

• Maximum Reward: The upper limit of compensation for completing the task.

• Complexity: A quantitative measure of the computational resources required for
execution.
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5.5.1 Order Matching Mechanism

Orders are matched with bids from actors through the order book, which operates on
the principles of a classic order matching system. Actors submit offers to take on tasks
based on their available resources and capabilities. The order book facilitates the following
processes:

• Task Assignment: Matching tasks to actors that propose acceptable bids.

• Execution Monitoring: Ensuring tasks are executed within the specified parame-
ters, including deadline and complexity constraints.

• Incentive Structuring: Rewarding actors for successful task completion and
enforcing penalties for unmet deadlines.

This mechanism ensures a decentralized, efficient, and scalable distribution of work-
loads, while maintaining a transparent framework for actor participation and performance
evaluation.

Each task in the system is associated with a complexity metric, which quantifies the
computational resources required for its execution. The complexity of a task, denoted as
Ctask, is defined as the sum of the complexities of all instructions it contains:

Ctask =
n∑

i=1
Cinstr,i,

where n is the number of instructions in the task, and Cinstr,i represents the complexity
of the i-th instruction.

5.5.2 Instruction Complexity and Input-Dependent Parameters

The complexity of an instruction Cinstr is determined by the specific instruction type and
its input arguments, as well as cryptographic parameters that affect its execution. For
operations involving encrypted data, the same instruction can exhibit different complexities
depending on the parameters of the input ciphertexts and the associated cryptographic
context.

Formally, the complexity of an instruction can be expressed as a function:

Cinstr = finstr(inputs, crypto_params),

where:

• inputs refers to the arguments passed to the instruction, such as ciphertexts.

• crypto_params represents parameters from the cryptographic context that define
the operational environment.

Consider the instruction fhe.bgv.mult, which performs a multiplication of encrypted
values. The input arguments for this instruction include:

• Ciphertexts: The encrypted operands, each characterized by properties such as:

– Multiplicative Depth (D): The current depth of operations performed on
the ciphertext. Larger depths increase computational complexity due to the
need for relinearization and modulus switching.

• CryptoContext Parameters: Contextual cryptographic parameters, including:

– Ring Dimension (N): The size of the polynomial ring, impacting the cost of
polynomial arithmetic.
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– Scaling Factor (∆): Defines the precision of computations.
– Security Level: Specifies the cryptographic strength.

The complexity Cinstr for bgv.mult can be expressed as:

Cinstr = fmult(N, ∆, D, . . .),
where fmult models the cost of underlying cryptographic operations, including polyno-

mial multiplications, relinearizations, and modulus switching. Thus, for each instruction,
a cost function is defined that determines the complexity of the specific instruction for the
given input.

5.5.3 Role of Complexity Metrics in Task Execution

The task complexity metric plays a critical role in the system by:
• Resource Estimation: Allowing actors to evaluate the computational effort required

for a given task.

• Load Balancing: Enabling efficient distribution of tasks among actors based on
their capabilities.

• Cost Modeling: Providing a foundation for determining the rewards and penalties
associated with task execution.

By accounting for both instruction-level complexity and input-dependent parameters,
the system provides a detailed and accurate representation of the resources required for
task execution, especially in cryptographic computations where performance is heavily
influenced by ciphertext properties and cryptographic settings.

Each task in the order book is characterized by two critical parameters:

1. Deadline — the maximum time within which the task must be completed.

2. Maximum cost — the upper limit of compensation for completing the task.

3. Complexity — a quantitative measure of the computational resources required to
execute the task, based on the complexities of its constituent instructions.

Actors that take tasks from the order book are obligated to complete them within the
specified deadlines. Failure to meet the deadline results in penalties, encouraging efficient
resource allocation and timely task completion.

5.5.4 Task re-Delegation

Actors can re-delegate tasks or parts of tasks back to the order book. This introduces a
dynamic and scalable approach to task execution.

For instance, an actor may take on a complex task consisting of several components.
During execution, the actor can decide:

• To execute the components locally if it is efficient in terms of time and resources.

• To place some instructions back into the order book if delegation is deemed more
cost-effective.

This capability transforms actors into local, partial orchestrators capable of dynamically
adapting to changing conditions. If, during task execution, an actor determines that
delegating specific instructions to other actors will result in faster or cheaper execution,
it can initiate this process. The delegated instructions are returned to the order book,
becoming available to other actors.

The detailed process of Application running is depicted on the Figure 4
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Figure 4: App running

5.6 Context
The Context is a concept in our Computer model, representing the state of the process.
It acts as a container for all relevant data, including variables, their current values, and
additional parameters required for executing assigned tasks.

When an actor is assigned a task, the associated context is passed to it. This context
includes the current state of all accessible variables and any necessary cryptographic infor-
mation, such as keys or the cryptographic context. As the actor executes the instructions,
it generates a new context that reflects the updated state. This new context is then
submitted to the blockchain, where it updates the global state of the relevant process.

The context serves as the medium through which actors communicate the results of their
computations, including intermediate results. Throughout the execution of the application,
the context evolves, and a final context is formed and saved once the application completes.
While the context itself is stored on the blockchain, it is designed to be lightweight. Large
objects, such as arrays and ciphertexts, are stored on external data layers, with the context
containing only references (e.g., hashes) to these objects. This design ensures efficiency
and scalability.

5.6.1 Structure of the Context

The context is represented as a JSON-like object with the following sections:

• fhe: Holds cryptographic data such as:

– Public keys.
– Rotation keys.
– Cryptographic contexts.
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• args: Represents the command-line-style arguments provided to the application.

• vars: Describes all variables used in the process. Each variable entry contains:

– id: The identifier of the variable.
– basetype: The base type of the variable (e.g., i32).
– is_secret: Boolean indicating if the variable is encrypted.
– is_array: Boolean indicating if the variable is an array.
– storage: Location where the variable’s value is stored (e.g., local or ipfs).
– value: The current value of the variable, either directly or as a reference (e.g.,

an IPFS hash).

5.6.2 Example Context File

Below is an example of a context file:

{
"vars": {

"%arg0": {
"basetype": "",
"is_array": false,
"is_secret": false,
"storage": "ipfs",
"value": "ipfs.QmXR5FDSupU6ZKxxkU95WcywhmAvykLZbNEqtcu2P3M43a"

},
"%arg2": {

"basetype": "i32",
"is_array": true,
"is_secret": false,
"storage": "ipfs",
"value": "ipfs.QmfZhqPFDZmyK4rAxwDH5FTHeQGrJjDFbRJ1WDzW4qpF1P"

},
"%mul_key": {

"basetype": "CKKSMulKey",
"is_array": false,
"is_secret": false,
"storage": "ipfs",
"value": "ipfs.QmT4xPQnAkZXR6PGDySaVZ4kBPbHdkVi2TqZgUZdREhfa7"

},
"pk": {

"basetype": "CKKSPublicKey",
"is_array": false,
"is_secret": false,
"storage": "ipfs",
"value": "ipfs.QmeA4jDooaoR4G2amHtnQKGpRD4eEdfVZSLjARDFF5HJq4"

}
}

}

5.7 Component Repository and Component based App
We utilize a Component Repository which is a dynamic library of FHE components
that act as modular building blocks for applications. Each component is implemented as
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a function composed of ISA instructions and represents a high-level abstraction, such as
ReLU, Sign, or polynomial evaluation.

These components are analogous to intrinsics in traditional computing systems and
matched 1:1 to polycircuit instruction dialect. Just as intrinsics provide optimized,
low-level access to hardware instructions while maintaining a high-level programming
interface, FHE components encapsulate specialized cryptographic computations in a
reusable, standardized format. This abstraction enables developers to use sophisticated
functionality without dealing with the underlying complexity of the implementation.

Components in the repository dynamically form the polycircuit dialect within the
ISA. The ISA includes instructions specifically designed for invoking components from this
dialect. These instructions provide a seamless interface for integrating components into
the computational pipeline, ensuring both flexibility and efficiency.

Components are composable, meaning they can use other components within their
implementation. For example, a neural network component may internally invoke other
components, such as activation functions (ReLU, Sigmoid) or pooling operations, making
it easier to construct and maintain complex algorithms.

To encourage upgradability developers are incentivized to contribute to the repository.
When a component is utilized in an application, its creator receives a proportional share of
the rewards generated from the application’s execution. This incentive mechanism fosters
a vibrant ecosystem of high-quality, reusable components.

The repository is managed through the FHERMA1 challenges and benchmarking
platform. This platform validates, benchmarks, and version-controls submitted components,
ensuring security, compatibility, and optimal performance.

5.8 Fair Math Actors
The execution layer of Fair Math relies on actors, entities responsible for carrying out
tasks. When an application is executed, it is decomposed into a set of independent tasks
T1, T2, . . . , Tn. Each task Ti is assigned a actor Am,i, responsible for executing the task.

At the blockchain level, directly monitoring the state S(A) of an actor A during task
execution introduces significant complexity. Ensuring that an actor remains alive and
will completes its task is non-trivial. To simplify the blockchain’s role, we delegate state
tracking responsibilities to the actors themselves.

To achieve this, we introduce the concept of Execution Pairs,which consist of a main
actor Am,i and a fallback actor Af,i.

An execution pair Pi = {Am,i, Af,i} is defined as follows:

• Main Actor Am,i: Executes the assigned task Ti and monitors the state of its fallback
actor Af,i.

• Fallback Actor Af,i: Monitors the state of the main actor Am,i. If the main actor
fails (S(Am,i) = failed), the fallback actor assumes responsibility for executing Ti

and notifies the orchestration layer to assign a new fallback actor.

The state of an actor A is defined as S(A), where:

S(A) ∈ {active, failed}.

The state of an execution pair Pi is considered operational if at least one actor in the
pair is active:

S(Pi) = operational ⇐⇒ S(Am,i) = active ∨ S(Af,i) = active.

1https://fherma.io
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Figure 5: App running scheme

If both S(Am,i) = failed and S(Af,i) = failed, the orchestration layer intervenes to
reassign both roles in the execution pair Pi.

At the blockchain level, task monitoring is simplified. Instead of continuously tracking
the execution status, the blockchain verifies the completion of tasks only upon the expiration
of their deadlines. If a deadline is reached and the task Ti remains incomplete, the
orchestration layer resolves the issue by reassigning the task or penalizing the responsible
actors(Pair). This reduces computational overhead and ensures scalability.

For each task Ti, the reward Ri and penalty Pi are distributed between the main actor
Am,i and fallback actor Af,i:

The general scheme is depicted on figure 5

5.9 Universal Encrypted Data Format
Most modern FHE schemes are based on a shared mathematical foundation: the Ring
Learning with Errors (RLWE) problem. While these schemes differ in their inter-
nal representations and computational processes, their common foundation allows for a
universal format for encrypted data representation.

This universal format abstracts encrypted data into a structure compatible with all
RLWE-based schemes. At its core, the format represents any ciphertext as a collection
of LWE ciphertexts, serving as the building blocks of RLWE systems. This abstraction
bridges differences between specific FHE schemes, such as BGV, CKKS, or TFHE, and
provides a common ground for computations.

This approach is important for extensibility. Adding support for new encryption
schemes based on the same problem requires only defining their mapping to and from the
universal format. This eliminates the need for extensive updates to existing components
and ensures that the system remains adaptable to emerging technologies. Furthermore,
this abstraction facilitates interoperability among actors using different FHE libraries.
By relying on a shared data format, actors can collaborate seamlessly, regardless of the
libraries they utilize.

The universal representation also simplifies the instruction set architecture (ISA).
Instead of tailoring instructions to the intricacies of individual schemes, operations like
addition, multiplication, and rotations can be uniformly applied to ciphertexts in the
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Figure 6: Ecosystem

universal format. This reduces complexity and enhances consistency across the system.
The implementation of this approach organizes ciphertexts into standardized compo-

nents that actors can interpret using their preferred FHE library. For example: The details
on the format is presented in Appendix 3.

6 Ecosystem
Our ecosystem is structured around several key elements, each contributing to the overall
goal of fostering innovation and simplifying the development of FHE applications. The
ecosystem is designed to ensure openness, modularity, and continuous evolution, addressing
the challenges of privacy-preserving computations in both Web2 and Web3 domains.

6.1 FHE Computer
At the heart of the ecosystem is the FHE Computer, which serves as the primary platform
for executing privacy-preserving computations. The computer provides a decentralized
infrastructure capable of securely processing encrypted data, ensuring the confidentiality
of sensitive information while enabling complex computations.

6.2 Polycircuit
The Polycircuit2 repository is a collection of modular, reusable components designed to
simplify the development of FHE applications. These components represent high-level FHE
operations and functionalities, allowing developers to focus on application logic without
needing to implement low-level cryptographic details. Polycircuit provides an extensible
library that evolves with the needs of the community.

6.3 FHERMA
The FHERMA3 platform supports the continuous improvement and expansion of the
Polycircuit repository. Through challenges hosted on FHERMA, developers can propose
new components or optimize existing ones. Submitted components are benchmarked in

2https://github.com/fairmath/polycircuit
3https://fherma.io
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a fair and transparent environment, and top-performing solutions are integrated into
Polycircuit. This approach incentivizes innovation and ensures that only the most efficient
and reliable components are added to the ecosystem.

6.4 fhelang
The fhelang4 compiler is built on the MLIR stack and is specifically tailored to the concept
of high-level FHE components. It enables developers to describe applications in terms
of modular FHE operations, which are then translated into optimized instructions for
execution on the FHE Computer. By abstracting the complexity of FHE implementation,
fhelang reduces barriers for developers and ensures that applications are both performant
and secure.

7 Usecases
Our model is designed to support a broad range of use cases. Below, we outline several
potential applications that can be executed on the FHE Computer.

7.1 Collaborative AI
Collaborative AI allows multiple parties to securely and privately collaborate on AI models
without exposing their individual data. Each party encrypts their data and submits it to
the decentralized network. The FHE computer performs computations on the encrypted
data, ensuring privacy and security throughout the process. The results are then decrypted
and shared with the participants, allowing them to benefit from collective insights while
maintaining data confidentiality. This approach leverages the strengths of decentralized
architecture and FHE to facilitate secure, collaborative AI development and deployment.

7.2 Private Finance
Private finance enables secure and confidential financial services, such as lending, without
revealing sensitive data. In a lending scenario, borrowers and lenders encrypt their finan-
cial information using Fully Homomorphic Encryption and submit it to the decentralized
network. The FHE computer processes the encrypted data to assess creditworthiness, cal-
culate loan terms, and perform other necessary computations while keeping the underlying
data private. The results are then decrypted and provided to the participants, allowing
them to make informed decisions without compromising their financial privacy. This
approach ensures secure, transparent, and efficient financial transactions in a decentralized
environment.

7.3 Peer-to-peer private transactions
In this example we would like to build blockchain where user balances are encrypted with the
only corresponding user key, and it is possible to send tokens from one wallet to other keeping
in secret the amount of tokens. Here’s how it might work: Let alice_encrypted_balance
and bob_encrypted_balance two ciphertexts represented the current balances of Alice and
Bob respectively. Alice wants to send X tokens to Bob, but in such a way that no one
except Bob can know how many tokens were sent. In order to do this, Alice generate two
ciphertexts e1 = Encalicepk(X) e2 = Encbobpk(X). To send tokens from Alice to Bob it is
needed to update the Alice and Bob balances with:

alice_encrypted_balance = alice_encrypted_balance1 − e1

4ETA: Q4 2024
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bob_encrypted_balance = bob_encrypted_balance + e2

But we don’t just do it. We need to prove a few statements:

1. Alice has enough tokens

2. e1 and e2 are store the same value.

To prove second statement we just use the Proof of Ciphertext Equality protocol.
To prove the first statement we will use the sign function, defined as follows:

sign(x) =
{

−1 if x < 0,

1 if x ≥ 0.

Alice should prove that alice_encrypted_balance−e1 >= 0, which is equal to sign(alice_encrypted_balance−
e1) = 1. let e12 = alice_encrypted_balance − e1 Now can use the Proof of Ciphertext
Content protocol and prove that ciphertext e12 is equal to 1, which will be the proof that
Alice has enough tokens. At the last stage, after confirming transaction on-chain the user
balances will be updated.

7.4 Privacy-Preserving Transactions (general case)
Web3 emphasizes user privacy and security. With the platform one can ensure that a
transaction or an operation on a blockchain network meets specific criteria (like a minimum
transaction value) without revealing the exact details of the transaction. This is crucial in
scenarios like private or anonymous transactions on decentralized platforms.

7.5 Decentralized Identity Verification
In Web3, users control their own identity without relying on a central authority. On the
platform with PoCC and PoCE protocols it is possible to prove certain attributes or
credentials in a user’s identity (like age or membership) without revealing the actual data
or other sensitive information tied to their identity.

7.6 Voting Systems
On the platform we can organize decentralized voting systems, and based on the PoCC
protocol it is possible to prove that a vote has been cast for a particular option without
revealing the voter’s identity or how others have voted. This maintains the secrecy of the
ballot while ensuring the vote’s validity.

7.7 Compliance and Auditing
Polycircuit Ecosystem can be used to demonstrate compliance with regulatory requirements
or internal rules within decentralized organizations, without exposing sensitive data. For
example, proving that funds are being used for a specific purpose without revealing the
details of all transactions.

A key part of our design is the choice of a security model. The protocol assumes that
each computing node (Fair Math Node) could be malicious. To address security concerns,
we have developed a Verification Framework that enables verifiable FHE computations.
Our monetization model is designed to align with the interests of all participants, including
developers who contribute to the platform’s technological advancement.

We consider nodes in the network as malicious actors in an untrusted environment.
There are two main reasons for this approach:
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• In reality, many nodes act maliciously, and we must accept this as a fact.

• Low trust requirements towards computation providers make it easier to scale the
protocol since adding new nodes does not require extensive verification.

This approach requires designing the system with the idea that the environment may
be hostile, where nodes might try to commit fraud, collude, or intentionally breach data
confidentiality.

Accepting this assumption influences all aspects of the platform’s design and operation:

1. Develop Security Protocols: Security strategies and mechanisms must be designed
to counter potential attacks, ensuring data and process protection.

2. Verification and Auditing: Methods are needed to verify that nodes perform
computations correctly and to audit their actions to detect and prevent unauthorized
or malicious behaviour.

3. Decentralization and Risk Sharing: Without a single trusted environment, it is
important to distribute tasks and data across multiple nodes to minimize the risk of
centralized attacks.

4. Development of Attack-Resistant Protocols: Communication and data process-
ing protocols must be resistant to various types of attacks, including those targeting
data confidentiality and integrity.

8 Conclusion
We have introduced a model for a decentralized FHE Computer. Our model is designed to
support a wide range of use cases, addressing the diverse needs of both Web2 and Web3
applications. By leveraging the power of FHE, it provides a scalable and privacy-preserving
framework for secure computations on encrypted data.

A key strength of our approach lies in its open and extensible ecosystem, which not only
facilitates the development of advanced applications but also incentivizes contributions
from the global developer community. Through mechanisms like the Polycircuit component
repository, FHERMA benchmarking and challenge platform, and the fhelang compiler, our
system fosters innovation while maintaining a fair and transparent revenue-sharing model
for developers.
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The execution file format defines how applications for the Fair Math FHE Computer are
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• The compiler provides dependency information between blocks, enabling correct task
orchestration.

• Each block contains instructions interpretable by actors using the FHE interpreter.

A.2 Structure of the Execution File
The execution file consists of three primary sections:

Table 1: Structure of the Execution File

Size Offset Purpose
4 bytes 0x00 Magic number: [70 72 69 76] ("FHEL" in ASCII)
2 bytes 0x04 Version: 16-bit file format version
Variable 0x06 Version-specific payload of the executable file

A.3 Version 0.1 Format
For version 0.1, represented as [0x01 0x00] in little-endian, the payload uses a marshaled
JSON format.

A.3.1 Payload Structure

The payload consists of blocks. Each block contains the following fields:

Table 2: Payload Format for Version 0.1

N Size Offset (in payload) Purpose
1 4 bytes 0x00 Number of blocks (little-endian)
2 4 bytes 0x04 Block ID (little-endian)
3 4 bytes 0x08 Length of dependent blocks array in elements (N)
4 4 bytes 0x0C First element of dependent blocks array
5 4 bytes 0x10 Second element of dependent blocks array
...

...
...

...
6 8 bytes 12 + N * 4 Component ID*
7 4 bytes 20 + N * 4 Length of block code (M) in bytes
8 M bytes 24 + N * 4 Block code

A.3.2 Component ID

If a block contains a single component call, the Component ID field specifies the compo-
nent. Blocks containing custom code set the Component ID to 0xFFFFFFFFFFFFFFFF.
For blocks with a single component call, the Block Code Length is 0, and the code
section is absent. If the length is non-zero, the code section is ignored during execution.

B Instruction Sets
B.1 arith
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Operation Format Description
arith.constant %arg = arith.constant

<value> : <Type>
Assigns a constant value
to a variable. Example:
%arg = arith.constant
4 : i32.

arith.add arith.add %lhs, %rhs :
Type -> Type

Adds two operands %lhs
and %rhs, producing a re-
sult of the same type.

arith.sub arith.sub %lhs, %rhs :
Type -> Type

Subtracts %rhs from %lhs,
producing a result of the
same type.

arith.mul arith.mul %lhs, %rhs :
Type -> Type

Multiplies %lhs and %rhs,
returning a result of the
same type.

arith.div arith.div %lhs, %rhs :
Type -> Type

Divides %lhs by %rhs, pro-
ducing a result of the same
type. For integers, it per-
forms floor division.

arith.eq arith.eq %lhs, %rhs : Type
-> bool

Checks if %lhs is equal to
%rhs, returning a Boolean
result.

arith.lt arith.lt %lhs, %rhs : Type
-> bool

Checks if %lhs is less than
%rhs, returning a Boolean
result.

arith.gt arith.gt %lhs, %rhs : Type
-> bool

Checks if %lhs is greater
than %rhs, returning a
Boolean result.

arith.abs arith.abs %input : Type ->
Type

Computes the absolute
value of %input, returning
a result of the same type.

arith.and arith.and %lhs, %rhs :
IntegerType -> IntegerType

Performs a bitwise AND
operation on two integer
operands %lhs and %rhs.

arith.or arith.or %lhs, %rhs :
IntegerType -> IntegerType

Performs a bitwise OR
operation on two integer
operands %lhs and %rhs.

arith.xor arith.xor %lhs, %rhs :
IntegerType -> IntegerType

Performs a bitwise XOR
operation on two integer
operands %lhs and %rhs.

arith.shl arith.shl %input, %amount :
IntegerType, IntegerType ->
IntegerType

Shifts %input left by
%amount bits, producing
an integer result.

arith.shr arith.shr %input, %amount :
IntegerType, IntegerType ->
IntegerType

Shifts %input right by
%amount bits, preserving
the sign for signed integers.

arith.select arith.select %cond,
%true_val, %false_val :
bool, Type, Type -> Type

Selects between
%true_val and
%false_val based on
Boolean condition %cond.
Returns %true_val if
%cond is true, otherwise
returns %false_val.
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B.2 fhe
B.2.1 fhe.bgv

Operation Format Description
fhe.bgv.add fhe.bgv.add %lhs,

%rhs, %crypto_context
: RLWECiphertext,
RLWECiphertext,
BGVCryptoContext ->
RLWECiphertext

Adds two ciphertexts %lhs
and %rhs within the spec-
ified %crypto_context,
producing an
RLWECiphertext result.

fhe.bgv.add_plain fhe.bgv.add_plain
%ciphertextInput,
%plaintextInput,
%crypto_context
: RLWECiphertext,
RLWEPlaintext,
BGVCryptoContext ->
RLWECiphertext

Adds a ciphertext
%ciphertextInput
to a plaintext
%plaintextInput within
%crypto_context, pro-
ducing RLWECiphertext.

fhe.bgv.sub fhe.bgv.sub %lhs,
%rhs, %crypto_context
: RLWECiphertext,
RLWECiphertext,
BGVCryptoContext ->
RLWECiphertext

Subtracts %rhs from %lhs
within %crypto_context,
producing an
RLWECiphertext result.

fhe.bgv.sub_plain fhe.bgv.sub_plain
%ciphertextInput,
%plaintextInput,
%crypto_context
: RLWECiphertext,
RLWEPlaintext,
BGVCryptoContext ->
RLWECiphertext

Subtracts a plaintext
%plaintextInput
from a ciphertext
%ciphertextInput within
%crypto_context, pro-
ducing RLWECiphertext.

fhe.bgv.mul fhe.bgv.mul %lhs, %rhs,
%crypto_context, %relin_key
: RLWECiphertext,
RLWECiphertext,
BGVCryptoContext,
RLWERelinearizationKey
-> RLWECiphertext

Multiplies two ciphertexts
%lhs and %rhs within
%crypto_context, using
relin_key for relin-
earization, and produces
RLWECiphertext.

fhe.bgv.mul_plain fhe.bgv.mul_plain
%ciphertextInput,
%plaintextInput,
%crypto_context
: RLWECiphertext,
RLWEPlaintext,
BGVCryptoContext ->
RLWECiphertext

Multiplies a cipher-
text %ciphertextInput
by a plaintext
%plaintextInput within
%crypto_context, pro-
ducing RLWECiphertext.
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Operation Format Description
fhe.bgv.rotate fhe.bgv.rotate %input,

%offset, %crypto_context,
%galois_key :
RLWECiphertext,
Builtin_IntegerAttr,
BGVCryptoContext,
RLWEGaloisKey ->
RLWECiphertext

Rotates the coefficients
of %input by an in-
teger %offset using
galois_key within
%crypto_context, pro-
ducing RLWECiphertext.

fhe.bgv.extract fhe.bgv.extract %input,
%offset, %crypto_context
: RLWECiphertext,
AnySignlessIntegerOrIndex,
BGVCryptoContext ->
RLWECiphertext

Extracts the element
at position %offset
from %input within
%crypto_context, pro-
ducing RLWECiphertext.

fhe.bgv.negate fhe.bgv.negate %input,
%crypto_context
: RLWECiphertext,
BGVCryptoContext ->
RLWECiphertext

Negates the coeffi-
cients of %input within
%crypto_context, pro-
ducing RLWECiphertext.

fhe.bgv.relinearize fhe.bgv.relinearize %input,
%from_basis, %to_basis,
%crypto_context, %relin_key
: RLWECiphertext,
DenseI32ArrayAttr,
DenseI32ArrayAttr,
BGVCryptoContext,
RLWERelinearizationKey
-> RLWECiphertext

Relinearizes %input
from basis %from_basis
to %to_basis within
%crypto_context using
relin_key, producing
RLWECiphertext.

fhe.bgv.modulus_switch fhe.bgv.modulus_switch
%input, %to_ring,
%crypto_context
: RLWECiphertext,
Polynomial_RingAttr,
BGVCryptoContext ->
RLWECiphertext

Lowers the modu-
lus level of %input
to %to_ring within
%crypto_context, pro-
ducing RLWECiphertext.

BGV Instruction Set Operations

B.2.2 fhe.ckks

Operation Format Description
fhe.ckks.add fhe.ckks.add %lhs,

%rhs, %crypto_context
: RLWECiphertext,
RLWECiphertext,
CKKSCryptoContext ->
RLWECiphertext

Adds two ciphertexts %lhs
and %rhs within the spec-
ified %crypto_context,
producing an
RLWECiphertext result.
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Operation Format Description
fhe.ckks.add_plain fhe.ckks.add_plain

%ciphertextInput,
%plaintextInput,
%crypto_context
: RLWECiphertext,
RLWEPlaintext,
CKKSCryptoContext ->
RLWECiphertext

Adds a ciphertext
%ciphertextInput
to a plaintext
%plaintextInput within
%crypto_context, pro-
ducing RLWECiphertext.

fhe.ckks.sub fhe.ckks.sub %lhs,
%rhs, %crypto_context
: RLWECiphertext,
RLWECiphertext,
CKKSCryptoContext ->
RLWECiphertext

Subtracts %rhs from %lhs
within %crypto_context,
producing an
RLWECiphertext result.

fhe.ckks.sub_plain fhe.ckks.sub_plain
%ciphertextInput,
%plaintextInput,
%crypto_context
: RLWECiphertext,
RLWEPlaintext,
CKKSCryptoContext ->
RLWECiphertext

Subtracts a plaintext
%plaintextInput
from a ciphertext
%ciphertextInput within
%crypto_context, pro-
ducing RLWECiphertext.

fhe.ckks.mul fhe.ckks.mul %lhs,
%rhs, %crypto_context
: RLWECiphertext,
RLWECiphertext,
CKKSCryptoContext ->
RLWECiphertext

Multiplies two ciphertexts
%lhs and %rhs within
%crypto_context, pro-
ducing RLWECiphertext.

fhe.ckks.mul_plain fhe.ckks.mul_plain
%ciphertextInput,
%plaintextInput,
%crypto_context
: RLWECiphertext,
RLWEPlaintext,
CKKSCryptoContext ->
RLWECiphertext

Multiplies a cipher-
text %ciphertextInput
by a plaintext
%plaintextInput within
%crypto_context, pro-
ducing RLWECiphertext.

fhe.ckks.rotate fhe.ckks.rotate %input,
%offset, %crypto_context,
%galois_key :
RLWECiphertext, i32,
CKKSCryptoContext,
RLWEGaloisKey ->
RLWECiphertext

Rotates the coefficients
of %input by an in-
teger %offset using
galois_key within
%crypto_context, pro-
ducing RLWECiphertext.

fhe.ckks.extract fhe.ckks.extract %input,
%offset, %crypto_context
: RLWECiphertext,
AnySignlessIntegerOrIndex,
CKKSCryptoContext ->
RLWECiphertext

Extracts the element
at position %offset
from %input within
%crypto_context, pro-
ducing RLWECiphertext.
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Operation Format Description
fhe.ckks.negate fhe.ckks.negate

%input, %crypto_context
: RLWECiphertext,
CKKSCryptoContext ->
RLWECiphertext

Negates the coeffi-
cients of %input within
%crypto_context, pro-
ducing RLWECiphertext.

fhe.ckks.relinearize fhe.ckks.relinearize
%input, %crypto_context,
%relin_key :
RLWECiphertext,
CKKSCryptoContext,
RLWERelinearizationKey
-> RLWECiphertext

Applies relineariza-
tion to %input within
%crypto_context using
%relin_key, producing
RLWECiphertext.

fhe.ckks.modulus_switch fhe.ckks.modulus_switch
%input, %to_ring,
%crypto_context
: RLWECiphertext,
Polynomial_RingAttr,
CKKSCryptoContext ->
RLWECiphertext

Lowers the modu-
lus level of %input
to %to_ring within
%crypto_context, pro-
ducing RLWECiphertext.

fhe.ckks.encode fhe.ckks.encode
%input_array,
%crypto_context
: memref<Nxf64>,
CKKSCryptoContext ->
RLWEPlaintext

Encodes an array of
plaintext values into
RLWEPlaintext within
%crypto_context.

fhe.ckks.decode fhe.ckks.decode
%input, %crypto_context
: RLWEPlaintext,
CKKSCryptoContext ->
memref<Nxf64>

Decodes %input from
RLWEPlaintext into a
plaintext array within
%crypto_context.

fhe.ckks.encrypt fhe.ckks.encrypt
%plaintextInput,
%crypto_context, %publicKey
: RLWEPlaintext,
CKKSCryptoContext,
CKKSPrivateKey ->
RLWECiphertext

Encrypts
%plaintextInput us-
ing %crypto_context and
%publicKey, producing
RLWECiphertext.

fhe.ckks.decrypt fhe.ckks.decrypt
%ciphertextInput,
%crypto_context, %secretKey
: RLWECiphertext,
CKKSCryptoContext,
CKKSPrivateKey ->
RLWEPlaintext

Decrypts
%ciphertextInput using
%crypto_context and
%secretKey, producing
RLWEPlaintext.

CKKS Instruction Set Operations

B.3 cggi
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Operation Format Description
cggi.and cggi.and %lhs, %rhs :

lwe.ciphertext
Logical AND of two cipher-
texts.

cggi.nand cggi.nand %lhs, %rhs :
lwe.ciphertext

Logical NAND of two ci-
phertexts.

cggi.nor cggi.nor %lhs, %rhs :
lwe.ciphertext

Logical NOR of two cipher-
texts.

cggi.or cggi.or %lhs, %rhs :
lwe.ciphertext

Logical OR of two cipher-
texts.

cggi.xor cggi.xor %lhs, %rhs :
lwe.ciphertext

Logical XOR of two cipher-
texts.

cggi.xnor cggi.xnor %lhs, %rhs :
lwe.ciphertext

Logical XNOR of two ci-
phertexts.

cggi.not cggi.not %input :
lwe.ciphertext

Logical NOT on a cipher-
text.

cggi.packed_gates cggi.packed_gates %lhs,
%rhs {gates = ...} :
lwe.ciphertext

Performs multiple gate op-
erations on ciphertexts.

cggi.lut2 cggi.lut2 %a, %b,
%lookup_table :
lwe.ciphertext

Lookup table operation on
two inputs.

cggi.lut3 cggi.lut3 %a, %b,
%c, %lookup_table :
lwe.ciphertext

Lookup table operation on
three inputs.

cggi.lut_lincomb cggi.lut_lincomb %inputs
{coefficients = [...],
lookup_table = ...} :
lwe.ciphertext

Variadic lookup table with
linear combination of in-
puts.

cggi.multi_lut_lincomb cggi.multi_lut_lincomb
%inputs {coefficients =
[...], lookup_tables =
[...]} : (lwe.ciphertext,
...) -> (lwe.ciphertext,
...)

Multi-output lookup ta-
ble operation with shared
linear combination across
multiple LUTs.

B.4 polycircuit

Operation Format Description
polycircuit.poly_eval polycircuit.poly_eval

%poly_tensor,
%input_ciphertext,
%relin_key, %context
: (<memref..>,
RLWECiphertext,
RelinearizationKey,
Context) -> RLWECiphertext

Evaluates a polynomial
defined by %poly_tensor
on %input_ciphertext
using %relin_key within
%context, producing a
ciphertext result.
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Operation Format Description
polycircuit.RELU polycircuit.RELU

%input_ciphertext, %context
: (RLWECiphertext,
Context) -> RLWECiphertext

Applies the ReLU (Rec-
tified Linear Unit)
activation function on
%input_ciphertext
within the specified
%context, producing an
encrypted result.

polycircuit.SIGN polycircuit.SIGN
%input_ciphertext, %context
: (RLWECiphertext,
Context) -> RLWECiphertext

Applies a sign function on
%input_ciphertext, pro-
ducing +1 for positive in-
puts and -1 for negative
inputs, in encrypted form
within %context.

polycircuit.MatrixMul polycircuit.MatrixMul
%matrixA, %matrixB,
N, %context :
(RLWECiphertext,
RLWECiphertext, u32,
Context) -> RLWECiphertext

Multiplies two matrices
%matrixA and %matrixB
of size N within %context,
producing an encrypted re-
sult.

polycircuit.MatrixMulPlainpolycircuit.MatrixMulPlain
%matrix_tensor,
%vector_ciphertext,
%context :
(tensor<[rows]x[cols]x<Type»,
RLWECiphertext, Context) ->
RLWECiphertext

Multiplies a matrix de-
fined by %matrix_tensor
with a vector in
%vector_ciphertext
within %context, produc-
ing a single ciphertext
result.

polycircuit.poly_mul_addpolycircuit.poly_mul_add
%coeffs, %ciphertext,
%const_val, %context :
(memref..., RLWECiphertext,
ConstantType, Context) ->
RLWECiphertext

Multiplies %ciphertext
by polynomial coefficients
in %coeffs and adds a
constant %const_val in
%context, resulting in an
RLWECiphertext.

polycircuit.poly_sum polycircuit.poly_sum
%ciphertexts..., %context
: (RLWECiphertext, ...),
Context -> RLWECiphertext

Sums multiple cipher-
texts within a specified
%context, producing a sin-
gle aggregated ciphertext
result.

C CIFAR10 compiled code for FHE Computer

%w1 = fhe.ckks. encode %ctx , % w1_array : (lwe. ckks_crypto_context , memref <4096 xf64 >) -> lwe. rlwe_plaintext
%w2 = fhe.ckks. encode %ctx , % w2_array : (lwe. ckks_crypto_context , memref <4096 xf64 >) -> lwe. rlwe_plaintext
%w3 = fhe.ckks. encode %ctx , % w3_array : (lwe. ckks_crypto_context , memref <4096 xf64 >) -> lwe. rlwe_plaintext
%w4 = fhe.ckks. encode %ctx , % w4_array : (lwe. ckks_crypto_context , memref <4096 xf64 >) -> lwe. rlwe_plaintext
%w5 = fhe.ckks. encode %ctx , % w5_array : (lwe. ckks_crypto_context , memref <4096 xf64 >) -> lwe. rlwe_plaintext
%w6 = fhe.ckks. encode %ctx , % w6_array : (lwe. ckks_crypto_context , memref <4096 xf64 >) -> lwe. rlwe_plaintext
%w7 = fhe.ckks. encode %ctx , % w7_array : (lwe. ckks_crypto_context , memref <4096 xf64 >) -> lwe. rlwe_plaintext
%w8 = fhe.ckks. encode %ctx , % w8_array : (lwe. ckks_crypto_context , memref <4096 xf64 >) -> lwe. rlwe_plaintext
%w9 = fhe.ckks. encode %ctx , % w9_array : (lwe. ckks_crypto_context , memref <4096 xf64 >) -> lwe. rlwe_plaintext
%w10 = fhe.ckks. encode %ctx , % w10_array : (lwe. ckks_crypto_context , memref <4096 xf64 >) -> lwe. rlwe_plaintext
%w11 = fhe.ckks. encode %ctx , % w11_array : (lwe. ckks_crypto_context , memref <4096 xf64 >) -> lwe. rlwe_plaintext
%w12 = fhe.ckks. encode %ctx , % w12_array : (lwe. ckks_crypto_context , memref <4096 xf64 >) -> lwe. rlwe_plaintext
%w13 = fhe.ckks. encode %ctx , % w13_array : (lwe. ckks_crypto_context , memref <4096 xf64 >) -> lwe. rlwe_plaintext
%w14 = fhe.ckks. encode %ctx , % w14_array : (lwe. ckks_crypto_context , memref <4096 xf64 >) -> lwe. rlwe_plaintext
%w15 = fhe.ckks. encode %ctx , % w15_array : (lwe. ckks_crypto_context , memref <4096 xf64 >) -> lwe. rlwe_plaintext
%w16 = fhe.ckks. encode %ctx , % w16_array : (lwe. ckks_crypto_context , memref <4096 xf64 >) -> lwe. rlwe_plaintext
%w17 = fhe.ckks. encode %ctx , % w17_array : (lwe. ckks_crypto_context , memref <4096 xf64 >) -> lwe. rlwe_plaintext
%w18 = fhe.ckks. encode %ctx , % w18_array : (lwe. ckks_crypto_context , memref <4096 xf64 >) -> lwe. rlwe_plaintext
%w19 = fhe.ckks. encode %ctx , % w19_array : (lwe. ckks_crypto_context , memref <4096 xf64 >) -> lwe. rlwe_plaintext
%w20 = fhe.ckks. encode %ctx , % w20_array : (lwe. ckks_crypto_context , memref <4096 xf64 >) -> lwe. rlwe_plaintext
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%w21 = fhe.ckks. encode %ctx , % w21_array : (lwe. ckks_crypto_context , memref <4096 xf64 >) -> lwe. rlwe_plaintext
%w22 = fhe.ckks. encode %ctx , % w22_array : (lwe. ckks_crypto_context , memref <4096 xf64 >) -> lwe. rlwe_plaintext
%w23 = fhe.ckks. encode %ctx , % w23_array : (lwe. ckks_crypto_context , memref <4096 xf64 >) -> lwe. rlwe_plaintext
%w24 = fhe.ckks. encode %ctx , % w24_array : (lwe. ckks_crypto_context , memref <4096 xf64 >) -> lwe. rlwe_plaintext
%w25 = fhe.ckks. encode %ctx , % w25_array : (lwe. ckks_crypto_context , memref <4096 xf64 >) -> lwe. rlwe_plaintext
%w26 = fhe.ckks. encode %ctx , % w26_array : (lwe. ckks_crypto_context , memref <4096 xf64 >) -> lwe. rlwe_plaintext
%w27 = fhe.ckks. encode %ctx , % w27_array : (lwe. ckks_crypto_context , memref <4096 xf64 >) -> lwe. rlwe_plaintext
%w28 = fhe.ckks. encode %ctx , % w28_array : (lwe. ckks_crypto_context , memref <4096 xf64 >) -> lwe. rlwe_plaintext
%w29 = fhe.ckks. encode %ctx , % w29_array : (lwe. ckks_crypto_context , memref <4096 xf64 >) -> lwe. rlwe_plaintext
%w30 = fhe.ckks. encode %ctx , % w30_array : (lwe. ckks_crypto_context , memref <4096 xf64 >) -> lwe. rlwe_plaintext
%w31 = fhe.ckks. encode %ctx , % w31_array : (lwe. ckks_crypto_context , memref <4096 xf64 >) -> lwe. rlwe_plaintext
%w32 = fhe.ckks. encode %ctx , % w32_array : (lwe. ckks_crypto_context , memref <4096 xf64 >) -> lwe. rlwe_plaintext
%w33 = fhe.ckks. encode %ctx , % w33_array : (lwe. ckks_crypto_context , memref <4096 xf64 >) -> lwe. rlwe_plaintext
%w34 = fhe.ckks. encode %ctx , % w34_array : (lwe. ckks_crypto_context , memref <4096 xf64 >) -> lwe. rlwe_plaintext
%w35 = fhe.ckks. encode %ctx , % w35_array : (lwe. ckks_crypto_context , memref <4096 xf64 >) -> lwe. rlwe_plaintext
% input_vec = fhe.ckks.add %ctx , %input_vec , %w1 : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_plaintext ) ->

lwe. rlwe_ciphertext
% input_vec = fhe.ckks.mul %ctx , %input_vec , %w2 : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_plaintext ) ->

lwe. rlwe_ciphertext
%tmp = fhe.ckks.mul %ctx , %input_vec , %w3 : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_plaintext ) -> lwe.

rlwe_ciphertext
% enc_out = fhe.ckks.add %ctx , %tmp , %w4 : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_plaintext ) -> lwe.

rlwe_ciphertext
%tmp = fhe.ckks.mul %ctx , %input_vec , %w5 : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_plaintext ) -> lwe.

rlwe_ciphertext
%tmp = fhe.ckks. rotate %ctx , %tmp , -1, % r_key : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , i32 , rotation_key ) -> lwe.

rlwe_ciphertext
% enc_out = fhe.ckks.add %ctx , %tmp , % enc_out : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_ciphertext ) -> lwe

. rlwe_ciphertext
%tmp = fhe.ckks.mul %ctx , %input_vec , %w6 : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_plaintext ) -> lwe.

rlwe_ciphertext
%tmp = fhe.ckks. rotate %ctx , %tmp , -2, % r_key : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , i32 , rotation_key ) -> lwe.

rlwe_ciphertext
% enc_out = fhe.ckks.add %ctx , %tmp , % enc_out : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_ciphertext ) -> lwe

. rlwe_ciphertext
%tmp = fhe.ckks.mul %ctx , %input_vec , %w7 : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_plaintext ) -> lwe.

rlwe_ciphertext
%tmp = fhe.ckks. rotate %ctx , %tmp , -3, % r_key : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , i32 , rotation_key ) -> lwe.

rlwe_ciphertext
% enc_out = fhe.ckks.add %ctx , %tmp , % enc_out : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_ciphertext ) -> lwe

. rlwe_ciphertext
%t0 = fhe.ckks.mul %ctx , %input_vec , %input_vec , % m_key : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe.

rlwe_ciphertext , mult_key ) -> lwe. rlwe_ciphertext
%t0 = fhe.ckks.add %ctx , %t0 , %t0 : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_ciphertext ) -> lwe.

rlwe_ciphertext
%t0 = fhe.ckks.sub %ctx , %t0 , 1 : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , f64) -> lwe. rlwe_ciphertext
%tmp = fhe.ckks.mul %ctx , %t0 , %w8 : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_plaintext ) -> lwe.

rlwe_ciphertext
% enc_out = fhe.ckks.add %ctx , %tmp , % enc_out : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_ciphertext ) -> lwe

. rlwe_ciphertext
%tmp = fhe.ckks.mul %ctx , %t0 , %w9 : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_plaintext ) -> lwe.

rlwe_ciphertext
%tmp = fhe.ckks. rotate %ctx , %tmp , -1, % r_key : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , i32 , rotation_key ) -> lwe.

rlwe_ciphertext
% enc_out = fhe.ckks.add %ctx , %tmp , % enc_out : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_ciphertext ) -> lwe

. rlwe_ciphertext
%tmp = fhe.ckks.mul %ctx , %t0 , %w10 : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_plaintext ) -> lwe.

rlwe_ciphertext
%tmp = fhe.ckks. rotate %ctx , %tmp , -2, % r_key : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , i32 , rotation_key ) -> lwe.

rlwe_ciphertext
% enc_out = fhe.ckks.add %ctx , %tmp , % enc_out : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_ciphertext ) -> lwe

. rlwe_ciphertext
%tmp = fhe.ckks.mul %ctx , %t0 , %w11 : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_plaintext ) -> lwe.

rlwe_ciphertext
%tmp = fhe.ckks. rotate %ctx , %tmp , -3, % r_key : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , i32 , rotation_key ) -> lwe.

rlwe_ciphertext
% enc_out = fhe.ckks.add %ctx , %tmp , % enc_out : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_ciphertext ) -> lwe

. rlwe_ciphertext
%t1 = fhe.ckks.mul %ctx , %t0 , %input_vec , % m_key : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_ciphertext ,

mult_key ) -> lwe. rlwe_ciphertext
%t1 = fhe.ckks.add %ctx , %t1 , %t1 : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_ciphertext ) -> lwe.

rlwe_ciphertext
%t1 = fhe.ckks.sub %ctx , %t1 , % input_vec : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_ciphertext ) -> lwe.

rlwe_ciphertext
%tmp = fhe.ckks.mul %ctx , %t1 , %w12 : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_plaintext ) -> lwe.

rlwe_ciphertext
% enc_out = fhe.ckks.add %ctx , %tmp , % enc_out : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_ciphertext ) -> lwe

. rlwe_ciphertext
%tmp = fhe.ckks.mul %ctx , %t1 , %w13 : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_plaintext ) -> lwe.

rlwe_ciphertext
%tmp = fhe.ckks. rotate %ctx , %tmp , -1, % r_key : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , i32 , rotation_key ) -> lwe.

rlwe_ciphertext
% enc_out = fhe.ckks.add %ctx , %tmp , % enc_out : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_ciphertext ) -> lwe

. rlwe_ciphertext
%tmp = fhe.ckks.mul %ctx , %t1 , %w14 : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_plaintext ) -> lwe.

rlwe_ciphertext
%tmp = fhe.ckks. rotate %ctx , %tmp , -2, % r_key : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , i32 , rotation_key ) -> lwe.

rlwe_ciphertext
% enc_out = fhe.ckks.add %ctx , %tmp , % enc_out : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_ciphertext ) -> lwe

. rlwe_ciphertext
%tmp = fhe.ckks.mul %ctx , %t1 , %w15 : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_plaintext ) -> lwe.

rlwe_ciphertext
%tmp = fhe.ckks. rotate %ctx , %tmp , -3, % r_key : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , i32 , rotation_key ) -> lwe.

rlwe_ciphertext
% enc_out = fhe.ckks.add %ctx , %tmp , % enc_out : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_ciphertext ) -> lwe

. rlwe_ciphertext
%t2 = fhe.ckks.mul %ctx , %t0 , %t0 , % m_key : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_ciphertext , mult_key )

-> lwe. rlwe_ciphertext
%t2 = fhe.ckks.add %ctx , %t2 , %t2 : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_ciphertext ) -> lwe.

rlwe_ciphertext
%t2 = fhe.ckks.sub %ctx , %t2 , 1 : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , f64) -> lwe. rlwe_ciphertext
%tmp = fhe.ckks.mul %ctx , %t2 , %w16 : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_plaintext ) -> lwe.

rlwe_ciphertext
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% enc_out = fhe.ckks.add %ctx , %tmp , % enc_out : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_ciphertext ) -> lwe
. rlwe_ciphertext

%tmp = fhe.ckks.mul %ctx , %t2 , %w17 : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_plaintext ) -> lwe.
rlwe_ciphertext

%tmp = fhe.ckks. rotate %ctx , %tmp , -1, % r_key : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , i32 , rotation_key ) -> lwe.
rlwe_ciphertext

% enc_out = fhe.ckks.add %ctx , %tmp , % enc_out : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_ciphertext ) -> lwe
. rlwe_ciphertext

%tmp = fhe.ckks.mul %ctx , %t2 , %w18 : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_plaintext ) -> lwe.
rlwe_ciphertext

%tmp = fhe.ckks. rotate %ctx , %tmp , -2, % r_key : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , i32 , rotation_key ) -> lwe.
rlwe_ciphertext

% enc_out = fhe.ckks.add %ctx , %tmp , % enc_out : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_ciphertext ) -> lwe
. rlwe_ciphertext

%tmp = fhe.ckks.mul %ctx , %t2 , %w19 : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_plaintext ) -> lwe.
rlwe_ciphertext

%tmp = fhe.ckks. rotate %ctx , %tmp , -3, % r_key : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , i32 , rotation_key ) -> lwe.
rlwe_ciphertext

% enc_out = fhe.ckks.add %ctx , %tmp , % enc_out : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_ciphertext ) -> lwe
. rlwe_ciphertext

%t3 = fhe.ckks.mul %ctx , %t2 , %input_vec , % m_key : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_ciphertext ,
mult_key ) -> lwe. rlwe_ciphertext

%t3 = fhe.ckks.add %ctx , %t3 , %t3 : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_ciphertext ) -> lwe.
rlwe_ciphertext

%t3 = fhe.ckks.sub %ctx , %t3 , %t1 : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_ciphertext ) -> lwe.
rlwe_ciphertext

%tmp = fhe.ckks.mul %ctx , %t3 , %w20 : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_plaintext ) -> lwe.
rlwe_ciphertext

% enc_out = fhe.ckks.add %ctx , %tmp , % enc_out : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_ciphertext ) -> lwe
. rlwe_ciphertext

%tmp = fhe.ckks.mul %ctx , %t3 , %w21 : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_plaintext ) -> lwe.
rlwe_ciphertext

%tmp = fhe.ckks. rotate %ctx , %tmp , -1, % r_key : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , i32 , rotation_key ) -> lwe.
rlwe_ciphertext

% enc_out = fhe.ckks.add %ctx , %tmp , % enc_out : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_ciphertext ) -> lwe
. rlwe_ciphertext

%tmp = fhe.ckks.mul %ctx , %t3 , %w22 : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_plaintext ) -> lwe.
rlwe_ciphertext

%tmp = fhe.ckks. rotate %ctx , %tmp , -2, % r_key : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , i32 , rotation_key ) -> lwe.
rlwe_ciphertext

% enc_out = fhe.ckks.add %ctx , %tmp , % enc_out : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_ciphertext ) -> lwe
. rlwe_ciphertext

%tmp = fhe.ckks.mul %ctx , %t3 , %w23 : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_plaintext ) -> lwe.
rlwe_ciphertext

%tmp = fhe.ckks. rotate %ctx , %tmp , -3, % r_key : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , i32 , rotation_key ) -> lwe.
rlwe_ciphertext

% enc_out = fhe.ckks.add %ctx , %tmp , % enc_out : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_ciphertext ) -> lwe
. rlwe_ciphertext

%t4 = fhe.ckks.mul %ctx , %t2 , %t0 , % m_key : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_ciphertext , mult_key )
-> lwe. rlwe_ciphertext

%t4 = fhe.ckks.add %ctx , %t4 , %t4 : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_ciphertext ) -> lwe.
rlwe_ciphertext

%t4 = fhe.ckks.sub %ctx , %t4 , %t0 : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_ciphertext ) -> lwe.
rlwe_ciphertext

%tmp = fhe.ckks.mul %ctx , %t4 , %w24 : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_plaintext ) -> lwe.
rlwe_ciphertext

% enc_out = fhe.ckks.add %ctx , %tmp , % enc_out : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_ciphertext ) -> lwe
. rlwe_ciphertext

%tmp = fhe.ckks.mul %ctx , %t4 , %w25 : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_plaintext ) -> lwe.
rlwe_ciphertext

%tmp = fhe.ckks. rotate %ctx , %tmp , -1, % r_key : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , i32 , rotation_key ) -> lwe.
rlwe_ciphertext

% enc_out = fhe.ckks.add %ctx , %tmp , % enc_out : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_ciphertext ) -> lwe
. rlwe_ciphertext

%tmp = fhe.ckks.mul %ctx , %t4 , %w26 : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_plaintext ) -> lwe.
rlwe_ciphertext

%tmp = fhe.ckks. rotate %ctx , %tmp , -2, % r_key : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , i32 , rotation_key ) -> lwe.
rlwe_ciphertext

% enc_out = fhe.ckks.add %ctx , %tmp , % enc_out : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_ciphertext ) -> lwe
. rlwe_ciphertext

%tmp = fhe.ckks.mul %ctx , %t4 , %w27 : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_plaintext ) -> lwe.
rlwe_ciphertext

%tmp = fhe.ckks. rotate %ctx , %tmp , -3, % r_key : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , i32 , rotation_key ) -> lwe.
rlwe_ciphertext

% enc_out = fhe.ckks.add %ctx , %tmp , % enc_out : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_ciphertext ) -> lwe
. rlwe_ciphertext

%t0 = fhe.ckks.mul %ctx , %t2 , %t1 , % m_key : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_ciphertext , mult_key )
-> lwe. rlwe_ciphertext

%t0 = fhe.ckks.add %ctx , %t0 , %t0 : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_ciphertext ) -> lwe.
rlwe_ciphertext

%t0 = fhe.ckks.sub %ctx , %t0 , % input_vec : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_ciphertext ) -> lwe.
rlwe_ciphertext

%tmp = fhe.ckks.mul %ctx , %t0 , %w28 : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_plaintext ) -> lwe.
rlwe_ciphertext

% enc_out = fhe.ckks.add %ctx , %tmp , % enc_out : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_ciphertext ) -> lwe
. rlwe_ciphertext

%tmp = fhe.ckks.mul %ctx , %t0 , %w29 : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_plaintext ) -> lwe.
rlwe_ciphertext

%tmp = fhe.ckks. rotate %ctx , %tmp , -1, % r_key : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , i32 , rotation_key ) -> lwe.
rlwe_ciphertext

% enc_out = fhe.ckks.add %ctx , %tmp , % enc_out : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_ciphertext ) -> lwe
. rlwe_ciphertext

%tmp = fhe.ckks.mul %ctx , %t0 , %w30 : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_plaintext ) -> lwe.
rlwe_ciphertext

%tmp = fhe.ckks. rotate %ctx , %tmp , -2, % r_key : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , i32 , rotation_key ) -> lwe.
rlwe_ciphertext

% enc_out = fhe.ckks.add %ctx , %tmp , % enc_out : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_ciphertext ) -> lwe
. rlwe_ciphertext

%tmp = fhe.ckks.mul %ctx , %t0 , %w31 : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_plaintext ) -> lwe.
rlwe_ciphertext

%tmp = fhe.ckks. rotate %ctx , %tmp , -3, % r_key : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , i32 , rotation_key ) -> lwe.
rlwe_ciphertext

% enc_out = fhe.ckks.add %ctx , %tmp , % enc_out : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_ciphertext ) -> lwe
. rlwe_ciphertext
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%t1 = fhe.ckks.mul %ctx , %t2 , %t2 , % m_key : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_ciphertext , mult_key )
-> lwe. rlwe_ciphertext

%t1 = fhe.ckks.add %ctx , %t1 , %t1 : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_ciphertext ) -> lwe.
rlwe_ciphertext

%t1 = fhe.ckks.sub %ctx , %t1 , 1 : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , f64) -> lwe. rlwe_ciphertext
%tmp = fhe.ckks.mul %ctx , %t1 , %w32 : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_plaintext ) -> lwe.

rlwe_ciphertext
% enc_out = fhe.ckks.add %ctx , %tmp , % enc_out : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_ciphertext ) -> lwe

. rlwe_ciphertext
%tmp = fhe.ckks.mul %ctx , %t1 , %w33 : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_plaintext ) -> lwe.

rlwe_ciphertext
%tmp = fhe.ckks. rotate %ctx , %tmp , -1, % r_key : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , i32 , rotation_key ) -> lwe.

rlwe_ciphertext
% enc_out = fhe.ckks.add %ctx , %tmp , % enc_out : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_ciphertext ) -> lwe

. rlwe_ciphertext
%tmp = fhe.ckks.mul %ctx , %t1 , %w34 : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_plaintext ) -> lwe.

rlwe_ciphertext
%tmp = fhe.ckks. rotate %ctx , %tmp , -2, % r_key : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , i32 , rotation_key ) -> lwe.

rlwe_ciphertext
% enc_out = fhe.ckks.add %ctx , %tmp , % enc_out : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_ciphertext ) -> lwe

. rlwe_ciphertext
%tmp = fhe.ckks.mul %ctx , %t1 , %w35 : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_plaintext ) -> lwe.

rlwe_ciphertext
%tmp = fhe.ckks. rotate %ctx , %tmp , -3, % r_key : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , i32 , rotation_key ) -> lwe.

rlwe_ciphertext
% enc_out = fhe.ckks.add %ctx , %tmp , % enc_out : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_ciphertext ) -> lwe

. rlwe_ciphertext
%tmp = fhe.ckks. rotate %ctx , %enc_out , 1600 , % r_key : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , i32 , rotation_key )

-> lwe. rlwe_ciphertext
% enc_out = fhe.ckks.add %ctx , %enc_out , %tmp : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_ciphertext ) -> lwe

. rlwe_ciphertext
%tmp = fhe.ckks. rotate %ctx , %enc_out , 800 , % r_key : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , i32 , rotation_key ) ->

lwe. rlwe_ciphertext
% enc_out = fhe.ckks.add %ctx , %enc_out , %tmp : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_ciphertext ) -> lwe

. rlwe_ciphertext
%tmp = fhe.ckks. rotate %ctx , %enc_out , 400 , % r_key : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , i32 , rotation_key ) ->

lwe. rlwe_ciphertext
% enc_out = fhe.ckks.add %ctx , %enc_out , %tmp : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_ciphertext ) -> lwe

. rlwe_ciphertext
%tmp = fhe.ckks. rotate %ctx , %enc_out , 200 , % r_key : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , i32 , rotation_key ) ->

lwe. rlwe_ciphertext
% enc_out = fhe.ckks.add %ctx , %enc_out , %tmp : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_ciphertext ) -> lwe

. rlwe_ciphertext
%tmp = fhe.ckks. rotate %ctx , %enc_out , 100 , % r_key : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , i32 , rotation_key ) ->

lwe. rlwe_ciphertext
% enc_out = fhe.ckks.add %ctx , %enc_out , %tmp : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_ciphertext ) -> lwe

. rlwe_ciphertext
%tmp = fhe.ckks. rotate %ctx , %enc_out , 50, % r_key : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , i32 , rotation_key ) ->

lwe. rlwe_ciphertext
% enc_out = fhe.ckks.add %ctx , %enc_out , %tmp : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_ciphertext ) -> lwe

. rlwe_ciphertext
% enc_out1 = fhe.ckks. rotate %ctx , %enc_out , 40, % r_key : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , i32 , rotation_key

) -> lwe. rlwe_ciphertext
%tmp = fhe.ckks. rotate %ctx , %enc_out , 20, % r_key : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , i32 , rotation_key ) ->

lwe. rlwe_ciphertext
% enc_out = fhe.ckks.add %ctx , %enc_out , %tmp : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_ciphertext ) -> lwe

. rlwe_ciphertext
%tmp = fhe.ckks. rotate %ctx , %enc_out , 10, % r_key : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , i32 , rotation_key ) ->

lwe. rlwe_ciphertext
% enc_out = fhe.ckks.add %ctx , %enc_out , %tmp : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_ciphertext ) -> lwe

. rlwe_ciphertext
% enc_out = fhe.ckks.add %ctx , %enc_out , % enc_out1 : (lwe. ckks_crypto_context , lwe. rlwe_ciphertext , lwe. rlwe_ciphertext )

-> lwe. rlwe_ciphertext
% enc_out = return % enc_out : (lwe. rlwe_ciphertext ) -> lwe. rlwe_ciphertext
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