
Stealth Software Trojan: Amplifying Hidden RF
Side-Channels with Ultra High SNR and Data-Rate

Itamar Levy ∗ Gal Cohen ¶
∗Engineering Faculty, Computer Engineering, Bar-Ilan University, Ramat-Gan Israel.

Email: itamar.levi@biu.ac.il
¶Engineering Faculty, Computer Engineering, Bar-Ilan University, Ramat-Gan Israel.

Email: coheng15@biu.ac.il

Abstract—Interconnected devices enhance daily life but intro-
duce security vulnerabilities, new technologies enable malicious
activities such as information theft. This article combines radio
frequency (RF) side-channel attacks with software Trojans to
create a hard-to-detect, stealthy method for extracting kilobytes
of secret information per millisecond over record distances with
a single measurement in the RF spectrum. The technique exploits
Trojan-induced electrical disturbances in RF components origi-
nating from peripherals, buses, memories and CPUs to achieve
high SNR data leakage schemes. Experimental results show
negligible acquisition time and stealth. The research introduces
optimized modulation, demodulation schemes, and specialized
synchronization symbols to minimize error rates and maximize
data rates. It highlights the need for advanced detection and
defense mechanisms to ensure the security and privacy of
interconnected devices.

Index Terms—Modulation, Remote Attacks, Radio Frequency,
RF, Side Channel Analysis, SCA, Single Trace, Software, Spec-
trum, Trojans.

I. INTRODUCTION

A persistent and evolving threat to the integrity and security
of modern computing systems are malicious code injection
attacks and software Trojans. These sophisticated malware
infections are typically designed to infiltrate targeted systems,
often remaining undetected while compromising sensitive data,
disrupting operations, or creating backdoors for later exploita-
tion. Combined with side-channel analysis as an extraction
mechanism, such malware or memory-storage Trojans exploit-
ing this threat vector are quite dangerous.

Seminal work in the field, such as [1], [2], provided an
early framework for understanding code injection techniques
and malware behavior. Subsequent research has delved deeper
into specific attack vectors, including buffer overflows and
their exploitation mechanisms [3], return-oriented program-
ming, flush-reload and its exploitation through traditional side
channels [4], [5]. In addition, the increasing use of rootkit
malware for stealth and persistence attacks in combination
with side channels [6], [7].

Alongside academic research, numerous industry reports
and threat analyses have underscored the real-world impact
of code-injection attacks and software Trojans. This paper
highlights the need for continued investigation into these
threats within the specific context of Radio-Frequency Side-
Channel Analysis (RF-SCA).

Important advances in the recent years have demonstrated
that secret internal data can be modulated into the RF chan-
nel [8]–[10]. Our work make use of such observations, and
combined with sophisticated code injections, we demonstrate a
single-trace (measurement), ultra-high SNR extraction mech-
anism including specialized encoding and decoding for such
tailored malicious codes that are optimized for such channels
and can leak information over very long distances with supe-
rior error resilience and high SCA data rates (DR).

The primary objective of this article is to investigate,
optimize, and analyze methodologies for actively modulating
and controlling information leakage through RF side channels
using code injections, with the objective of exploiting (but not
limited to) Internet of Things (IoT) devices featuring radio
transmitter components. We demonstrate that, using embedded
components, entire memory chunks containing kilobytes of
data (e.g., images) can be leaked within milliseconds from
about 25 meters away (i.e., stealthily and difficult to detect).
These models, which access internal buffers in fingerprint
sensors, facial recognition cameras, or algorithmically com-
puted values stored in various memory-mapped addresses,
can easily leak information in a single trace, demonstrating
remarkable exploitation characteristics in the SCA context
(e.g., DR, SNR), and significantly advancing the state of the
art in methodology, experimentation, and knowledge.

Our approach involves identifying specific electrical per-
turbations, code structures and peripheral activities that leave
distinct signatures in the RF spectrum. By exploiting these
perturbations, we successfully generate a tailored modulation
by perturbing these signals, introducing harmonics into the
RF spectral map around the main RF component peak.The
proposed encoding and decoding mechanisms use different
constellations (FSK, Q-FSK 16-FSK etc.), which are enhanced
with special synchronization methods and equipped with so-
phisticated internal data alignment mechanisms. We illus-
trate powerful and sophisticated demodulation and decoding
schemes including various filters tailored to the RF channel
and the Trojan modulation. Finally, we also touch on theoret-
ical aspects such as minimizing error rates and maximizing
data rates with a packed model. All of this enhances the
understanding of RF-SCA, which enables the development of
either: protection against such intelligent extraction schemes
(covert data transmission), or on the contrary, the deliberate

use of such a scheme by the user and not covertly [11].

II. BACKGROUND AND CONTRIBUTION

Side-channel attacks (SCAs) exploit non-deliberate elec-
trical interference’s or imperfections that can collectively
generalize to significant (secret) information leakage from a
cryptographic system. Generally speaking, these attacks do
not target cryptographic algorithms mathematical hardness, but
rather exploit weaknesses in their implementation or physical
environment. By analyzing the side-channel information, ad-
versaries can deduce sensitive data. However, typically this
added information is outside the cryptographically assumed
model (e.g., Black-box), so there is no shock in breaking
the cryptographic algorithm’s security guarantees. . . There is a
flourishing literature and provided schemes that protect against
SCAs at various levels. Nevertheless, in this paper we discuss
parts of the system that are not conventionally protected, nor
can all be processed in protected environments (and it would
not always prevent the leakage), emphasizing the importance
of diving deeper into this field.

A computer-system Trojan is a type of malicious software
or hardware that disguises itself as a legitimate program or
file to deceive users into installing it. Once activated, a Trojan
can perform a variety of harmful actions without the user’s
knowledge, such as stealing sensitive information, creating
backdoors for unauthorized access, or damaging system files,
more related literature in this field can be found in [12]–[14].
RF (Radio Frequency) Side-Channel Attacks (SCA) exploit
unintentional emissions of electromagnetic signals from elec-
tronic devices to extract sensitive information, progress in this
field from [8], [13], [15], trying to achieve reduce number of
traces but none utilized Trojans and modulation aspects.

Fig. 1. Illustration of a the simplest FSK modulation technique utilized in
this paper (without advanced features).

A. Related-Work

In our work, we focused on far-field electromagnetic side-
channel emissions single trace SCA, the traditional SCA
paradigm (utilizing statistics) to extract information from
multiple SCA observations [8], [9], [15], [16]. This property
may limit the extent of such results (on which cryptographic
primitives operate), but it also introduces many other chal-
lenges, such as complicated synchronization of this plurality
of independent leakages and far increased noise. I.e., the
single trace paradigm targeted in this paper is of valuable
from several perspectives (Tab. I shows the different amount

TABLE I
RELATED PAPERS RESULTS. #MEAS., DIST. AND INST. DENOTES # OF

MEASUREMENTS, DISTANCE AND INSTRUCTIONS, RESPECTIVELY

Article #Meas. Dist.[m] DR [b/s] Trojan? Size

SCA [8] 50000 10 NA No NA
SCA [15] 10000 15 NA No NA
SCA [16] 341 15 NA No NA

[13] 1 NA 10 Yes 9.56µm2

[12] 1 200 up to 15 Yes 20+ lines.
[9] 1 few cm NA Yes 15 lines.

Our model 1 25 100k Yes 10 lines.

of measurements used). From a different angle, significant
research has investigated hardware Trojan attacks on RF
equipment in electronics to extract bits of information from
devices. Notable examples include in [13], [14]. Our work
differs from these in terms of Trojan structure (software vs.
hardware) and the amount of data being compromised, its
rate and physical characteristics such as the possible capture
distance. Fig. 2 illustrates the different structural properties
of these two distinct Trojan designs. It highlights how the
processor and the peripherals generate electrical disturbances,
which can subsequently leak into the RF module, moreover
it present the software Trojan advantages over the hardware
Trojan.Additionally, the related work surveyed in [11], [12]
explores similar electromagnetic phenomena to transmit infor-
mation from electronic devices. However, the context, depth,
and optimization of these studies differ from our works, both
studies did not create controlled interferences and did not
develop specialized modulation and demodulation schemes
tailored to the presented electrical phenomena reaching poor
results in terms of SNR and data rate as illustrated in Tab. I
(10-15 vs 100k b/s). Furthermore the context of these articles
is very different: [11] uses the electrical phenomena in order
to spare RF electronics and not in an attack scenario, while
Feng et-al [12] presents this vulnerability on a desktop and not
via a small chip, i.e., a different scale in terms of consumption
and electromagnetic footprint.

Our contribution represents the first successful integration
of these diverse ideas, resulting in a robust side-channel
Trojan attack that can compromise significantly (orders of
magnitude) more information than other schemes discussed
in this section, with stealth and ultra-high SNR from a
single trace. We present a comprehensive end-to-end system
that can encode, modulate, filter, demodulate, and extract
any kind of information from (e.g.) the device’s memory.
This includes an optimized and flexible injection model, a
transmission model, a custom modulation scheme tailored to
our scenario, a demodulation model, and a signal processing
scheme designed for minimal error rates and high signal-to-
noise ratio (SNR). Crucially, our injection method remains
both covert and effective throughout the operation, leaving
no physical fingerprint on the electronic device and requiring
no intervention in the manufacturing process, unlike previous
hardware Trojan models. Furthermore, our model is easier to
demodulate and analyze compared to other SCAs, reducing

capture time from hours or days to mere milliseconds.

Fig. 2. Visual illustration of various Trojans employed to extract information
from an embedded device.

B. Threat model

This threat model investigates the security risks associated
with the combination of radio frequency (RF) side-channel
attacks and software Trojans. It focuses on IoT devices
with radio transmitters, such as fingerprint sensors, facial
recognition systems, and medical devices. These embedded
systems are particularly vulnerable to advanced code injection
techniques [17]. While there are active detection tools, such
as antivirus software and secure boot systems [18], [19],
these methods are often energy inefficient, require dedicated
hardware [20], and can sometimes be bypassed. For example,
in some scenarios secure boot systems that rely on software
signatures during manufacturing may be compromised if an
insider injects malicious code. Key assets at risk include
internal memory data (such as Corneal or fingerprints photos,
secure keys, private medical information). Potential attackers
may seek to covertly exploit sensitive data over long distances
using RF signals with unauthorized and undetectable access to
sensitive data (35 [dB] difference between leaked data, around
random noise spurs, and original RF transmission amplitude,
see Fig. 3). The risk is amplified by current standards and reg-
ulations, such as MIL-STD-461, EN-55022, FCC guidelines,
and CISPR standards, which do not adequately prevent such
information leaks. The impact of successful attacks is severe,
potentially resulting in significant data breaches and loss of
sensitive information.

III. METRICS, EVALUATION TOOLS AND MEASUREMENT
SETUP

This section offers a concise review of the key metrics and
evaluation tools utilized in the analysis.

A. Metrics and Evaluation Tools

Using Photos as a Transmission Media: In this study,
photographs were used as a versatile medium for evaluating
transmission quality because of their multiple advantages.
First, photographs are a ubiquitous form of data, often stored
in the memory of many electronic devices. Second, they often

encapsulate sensitive or private information, such as biometric
identifiers like fingerprints or corneal images. Third, pho-
tographs lend themselves well to a variety of evaluation tools,
including statistical distance metrics of histograms, which
facilitate the assessment of error rates and data loss. Finally,
and most importantly, photographs provide a uniquely intuitive
visualization of data errors and data loss, a critical attribute
given the inherently noisy nature of the transmission medium
under investigation and the synchronization challenges inher-
ent in remote RF channels.

Probability Distance Measures: One of the main ques-
tions we are trying to address in the analysis below is the
differences between post-demodulation and decoded leakage
sequences that reflect memory contents. The leakage distri-
butions of the original versus the attacked data should be
evaluated across distances, system configurations, and mod-
ulation parameters to assess error rates, data loss, and related
metrics. Therefore, the most natural tool to use for evaluation
is a probability-distance measure. The relative entropy or the
Kullback–Leibler (KL) divergence [21] is one measure for the
probability distance between two distributions, though it is not
a metric and is not symmetric:

D(X∥Y) =
∑
z

Pr(X = z) log2

(
Pr(X = z)

Pr(Y = z)

)
where, X and Y represent two PDFs in question over the

shared support (z ∈ Z). The Jensen–Shannon divergence
(JSD) is a smoothed and symmetric transform of the KL
divergence: DJS(X∥Y) = D(X∥M) + D(Y∥M), where, M
is the arithmetic mean of X and Y, M=0.5(X+Y). As the
measure is weighted with probabilities it fits better for our
discussion than distance measures like the norm-1 distance
(or total variation distance) Note that, probability distance and
more generally, Statistical Distance are actually tightly related
to the MI ,MI(Y ;L) = D(Pr(y, l)∥Pr(y)Pr(l)). In this paper
we use the divergence and the visual representations of the
PDFs of the memory stored data as a visual proof of concept
and a tool for demonstration.

a) Signal-to-Noise Ratio (SNR): SNR is a key metric in
telecommunications and signal processing that quantifies the
ratio of signal strength to background noise, especially over
RF channels. Expressed in decibels (dB), it is calculated as:

SNR (dB) = 10 log10

(
Signal Power
Noise Power

)
A higher SNR indicates a stronger signal relative to noise,
resulting in clearer and more reliable communication or data
transmission. In our applications, maintaining a sufficient SNR
is essential for achieving accurate data transmission and sys-
tem performance, while utilizing only a single measurement
capture/trace. As can be seen in Fig. 3 which illustrates a
(clean) modulation example from our scheme, we obtain a
clear 22 dB signal above the noise-floor, allowing us to extract
information from the device with high capacity. Although the
side channel emission is apparent, the SNR difference between
the primary Bluetooth lobe and our modulation peak, which

appears next to our Bluetooth peak (up to 100 MHz), is
a substantial -35 dB lower than the Bluetooth signal. This
significant disparity in power implies that detecting the side-
channel emission requires specialized equipment and precise
knowledge of its location within the RF spectrum, as it is easily
indistinguishable among other spurs in the system. These facts
underscore the stealthy nature of injection.

Fig. 3. Illustration of the SNR differences between the primary Bluetooth
signal and the side channel transmission.

B. Measurement Environment

a) Measurement Process: To simplify the measurement
process only, we have synchronized the recorder with the
injection transmission and automated the data acquisition. I.e.,
it has no impact on the success of our attack or the significance
of the results, it only allows to perform consecutive, fast and
efficient experiments. While we have opted for automation, it
is not necessary. Furthermore, it is possible to develop a real-
time demodulation system based on our model that does not
require synchronization or automation. It’s worth noting that
we initially worked without such complexity, and manually
demodulated the data without using either of these approaches.
Our measurement setup involves several interconnected pro-
cesses. A central Python process initiates two parallel sub-
processes: the first sub-process is a C application responsible
for configuring the Software Defined Radio (SDR), setting
parameters such as bandwidth, sample rate, center frequency,
and recording time while starting the recording. Simultane-
ously, the second sub-process triggers an injection via UART
transmission to the infected device. The transmission contains
activation parameters (e.g., number of electrical disturbances
(ED) per symbol, synchronization method, etc.). Once the
capture, including the injected transmission, is complete, the
Python code proceeds with signal demodulation, decoding and
data reconstruction.

b) Measurement equipment: For all of the experiments
described in this article, our test bench consisted of several
essential components: PC: Handled the demodulation of the
recorded signal. Tektronix RSA306B Spectrum Analyzer:
Used to record the RF spectrum. PCA10040 Development
Board: Simulates an RF device equipped with a processor,
RF module, and electronic peripherals such as GPIOs, SPI,
and UART.

There were (mainly) two experimental setups used: High
Data Rates Measurement Setup- In these experiments, a
small whip antenna was placed directly over the Bluetooth

emitting component to maximize signal amplification. Noise
Distance Measurement Setup- for long range measurements,
we used a TL-ANT2424MD dish antenna. This setup required
two computers for synchronization between the recorder and
the transmitter. Instead of the original direct UART connection,
we used a long Ethernet cable to connect another computer.
The second computer transferred the parameters and activated
the injection, through the serial port, for rapid automation.
This setup provides comparable signal-to-noise ratio (SNR)
results to the high data rate setup at a distance of 5 meters.
Both configurations are depicted in Fig.17.

IV. TRANSMISSION SYSTEM

This section discusses how electrical interference leaking
into the RF module can be exploited to create modulations that
compromise (e.g.,) memory and steal data from a device. As
explained in the related work section, we did not originate the
concept that peripherals and CPUs create an electrical footprint
in the RF spectrum. In this article, we refine this notion,
achieving significant results. As demonstrated in [9], different
peripherals generate distinct RF signatures. To identify the
most effective peripheral disturbance, we measured several of
them, as shown in Fig 4, which illustrates different electrical
disturbances (or ED in the time domain) that can be used in
order to create modulations. The different curves in the figure
show interferences of the RAM access, the GPIO-register
set function and the UART transmission footprint. We have
chosen to work with memory writing only as a demonstration
as it provides nice results in terms of amplitude and signal
bandwidth, but the research is not limited to this RF electrical
disturbance mechanism.

It is important to note that a transmission system capable of
exploiting sensitive data could be created from any electrical
leakage into the RF spectrum. Therefore, when building any
embedded device, we must be careful and isolate the RF
module from other electrical disturbances in the system to
prevent such information leakage. In practice this is quite a
complex task, standards and regulations are not designed to
prevent such information leakage and devices that pass (e.g.).
MIL-STD-461, EN-55022 standard, Federal Communications
Commission (FCC) and CISPR standards [22] may still be
vulnerable for example Fig. 3 shows the SNR of our modulated
leakage can still pass the FCC and CISPR reliability and
electromagnetic interference (EMI) requirements.

Fig. 4. Abstraction of various Trojans which may be employed to extract
information from an embedded device.

A. Symbol Structure

The construction of a symbol with the proposed modulation
(as demonstrated in Fig. 5) relies on several key parameters:

1) Temporal duration of the Electrical Disturbance (ED):
represents the temporal magnitude of the electrical dis-
turbances used to create periodic patterns. These patterns
translate into a side-channel presence around our trans-
mitter’s main peak in the RF spectrum.

2) Electrical disturbance loop structure (LS): temporal
extent of the loop code structure,which contains a some
additional processor instructions that facilitate the cyclic
behavior of the electrical disturbances.

3) Number of electrical disturbances (N): number of
electrical disturbances constituting each period within
the symbol. This parameter significantly influences the
model’s disturbances frequency as can be observed from
(Eq. 2) .

4) Number of transmission Blocks (NB): number of
periodic disorders transitioned per symbol, exerting a
substantial impact on symbol duration within the model.
Notably, its significance lies in its flexibility as a modifi-
able variable, devoid of any influence on the underlying
frequency. This parameter is the most significant factor
in determining the data-rate, as the mathematical model
developed in Section VI (Eq. 4) reveals.

Fig. 5. Illustration of a symbol temporal parameters.

Symbol’s relative frequency equation:

FHz(N) =
1

N ∗ ED + LS
(2)

B. Symbol Encoding

For symbol encoding, we select a subset from the set of all
frequencies FHz. The size of the subset depends on the modula-
tion we want to use (FSK, QFSK,...). We will denote this sub-
set as Fg = {FHz(N1), FHz(N2) . . . , FHz(Nn)} when N ∈ N,
for simplicity and ease of notation we denote this subgroup
by {f1 . . . fN}, respectively. Assuming that NB > 1, and
|Fg| = 2m = n, where m represents the modulation factor or
the number of bits encoded into each symbol. Subsequently,
each frequency within the subset Fg is assigned a numerical
identifier. Conventionally, the highest frequency, often denoted
as f1, corresponds to the value 0, while the lowest frequency,
represented by fn, is assigned the value 2m − 1.

C. Symbol Duration balancing

One of the fundamental requirements for our modulated
signal is to maintain a consistent temporal duration per
symbol. This is crucial for ensuring the synchronization of
our sampler and thus preventing any loss of synchronization.

However, as discussed in the preceding section, the temporal
duration of our symbols depends on various computational
and architectural parameters. For example, factors such as
branch prediction, speculative execution, and varying cycles
for memory fetches, as well as software or hardware code
payloads and constants used for initialization in our gadget, are
not always deterministic in duration. These small perturbations
are challenging to predict and balance. However, gross differ-
ences in symbol duration can be easily maintained by selecting
a frequency set in which all element periods nicely divide
the symbol duration. Achieving a state where all symbols
have exact same lengths becomes impractical, and it would
be limiting trying to achieve so. However, to eliminate such
gross differences and achieve a balanced set of symbols, we
select NB1 and N1 for our initial symbol, and then compute
the NB of the remaining symbols as follows (∀ N > N1):

NB(N) = round
(
NB1 ·

LS +N1 · ED

LS +N · ED

)
(3)

This normalization adjusts all symbol lengths relative to the
highest frequency symbol, as shown in Fig. 6.

Fig. 6. illustration of symbol alignment process.

This approach is not perfect, because as the temporal
magnitude of the symbols decreases (in an attempt to achieve
higher data rates), the number of blocks (NB) decreases,
making it more difficult to correct the rounding error (this
effect is represented in Eq. 4).

Max. Symbol Deviation (%) = 0.5 · LS +N · ED

NB1 · (LS +N · ED)
(4)

D. Synchronisation

One of the most challenging problems we faced in ac-
curately demodulating the signal was synchronization. As
discussed in section 7, the symbols temporal duration is
dependent on computational and architectural parameters, ad-
justing NB per symbol roughly compensates for this effect,
though it is not hermetic. For signal synchronization, our initial
approach was to detect the beginning of the transmission and
attempt to synchronize with the first signal rise. However,
synchronization loss occurred rapidly in this scenario, resulting
in high error rates. To address this, we adopted three primary
methods for signal synchronization.

a) Differential Synchronisation: stands out as the most
efficient method of synchronization, as it does not necessitate
any additional symbols. In this method, we identify changes
in frequency that arise between symbols. Once we located
the changes we determine the number of symbols with the
same frequency transmitted within two changes of frequency,
we do it by dividing the distance between them by the
average symbol length thus determining how many symbols
of the same frequency was transmitted between two distinct
frequencies, this method maintain good performance when the
signal is not constant and contain a lot of information or
entropy, although it is not stable and can lose synchronization
when there are long sequences of the same symbol, we used
it only to acquire small packets.

b) Symbol Synchronization: In symbol synchronization,
the f1, . . . , fn frequencies used for transmission are shifted by
one, with f1 dedicated to synchronization. A synchronization
distance (SD) is defined, and for every SD data symbols
transmitted, one synchronization symbol is sent. As shown
in Fig. 7, f1, which no longer carries data and is a bit lower
than the rest of the frequencies, indicating a synchronization
point for the sampler. In this method, f2 becomes the new
zero value. This approach increases the transmission duration,
requires more bandwidth, and introduces an additional symbol
for each synchronization distance, resulting in slower trans-
mission speeds. However, it provides improved stability and
re-synchronization capability in synchronization loss event.

c) UART Synchronisation: In UART-like synchronization,
we utilize the structured communication protocol of UART.
However, rather than transmitting individual bits, symbols are
transmitted using f1 as the frequency for the start symbol, and
the subsequent highest frequency for the stop symbol. Fur-
thermore, we adjust the quantity of data transmitted between
the start and stop bits to correspond with the synchronization
distance (SD). It is important to note that in this synchro-
nization method, the frequencies used remain unchanged,
although the synchronization requires the transmission of two
symbols for each synchronization distance, which slows down
the transmission speed. Fig. 7 illustrates the synchronization
structure, the start and stop synchronization symbols are part
of the transmission set Fg , unlike symbol synchronization.

For the remainder of this paper, we will focus on symbol
and UART synchronization as they provide optimal results in
terms of system stability and data rate. However, all synchro-
nization methods (symbol, UART, differential) are available
in our repository GitHub link,, accompanied by a simple
user interface for adjusting basic system parameters such as
NB (for different data rates), synch.-method, synch.-distance,
and modulation factor (m), which may be useful for future
research.

V. INJECTION MODULATION AND FIELD EXPERIMENTS

Before delving into the demodulation process, decoding
mechanisms, and mathematical optimization, we assess the
practical applicability of our attack in real-world conditions.

Fig. 7. The structure of the two distinct synchronisation methods used

We evaluate error rates and signal-to-noise ratios (SNR) at dif-
ferent distances to assess performance across various ranges.
To emphasize the attack’s effectiveness and simplicity, we used
only a dish antenna, a software-defined radio (SDR), and a
standard PC, avoiding amplifiers or specialized equipment.The
experiments used QFSK modulation at 6.25 KB/s and symbol
synchronization, which, although below the maximum capabil-
ity of the system, ensured reliable, error-free data acquisition
in a laboratory environment. Another significant aspect of
this experiment was our deliberate decision not to operate in
the sterile environment typical of other experiments in this
article (Sec. VI-D), and in the field. Instead, we conducted our
work in ordinary university rooms and noisy LABs corridors,
naturally exposing our setup to ambient noise, including Blue-
tooth frequencies emitting from student headphones, private
cellphones, and other Bluetooth emitting devices, and EM
laboratory interference. (Experiments conducted with the same
setup in a 25-meter open field, free of electromagnetic noise,
yielded clear results).

A. Field experiments

In the initial experimental, we examined the susceptibility
of a device to eavesdropping in a long Corridor, as shown
in Fig. 8 our measurement setup was positioned in one side
of the corridor, and on the other side we placed our emit-
ting embedded device, listening to the injection transmitting
images over the side channel. We measured both the Signal-
to-Noise Ratio (SNR) and the statistical distance between
the histograms of the reconstructed and original photos. For
each measurement, we moved the transmitting device 2.5
meters away from the receiving antenna until the transmitted
photo became unrecognizable. Fig 8 shows two intersecting
lines: one for Signal-to-Noise Ratio (SNR) and the other for
statistical distance (or KL divergence, see Sec. III-A), plotted
against the distance between the transmitting and receiving
antennas. As the distance increases, the SNR decreases and
the statistical distance between the original and reconstructed
photos increases. The figure visually presents reconstructed
photos at each step, emphasizing this effect. the experiment
highlights the model’s ability to extract information from
devices in noisy environments and over long distances (17.5
meters), showcasing the practicality of such attacks.

https://github.com/gl9544/rf_code_injection

Fig. 8. A diagram illustrating the SNR and the statistical distance as a function
of distance in a noisy corridor.

In another experiment, we aimed to collect information from
an adjacent room by recording side-channel emissions through
a wall. Our objective was to extract data from Bluetooth
devices located in the neighboring space, as illustrated in
Fig. 9 , Similar to our previous experiments, we measured
the statistical distance and the signal-to-noise ratio (SNR) at
varying distances, The wall absorbed part of the transmission,
resulting in SNR values that were 5 dB lower compared to the
previous experiment. Despite this attenuation, the transmission
was still effective, Fig. 9 shows clear photos captured even
from a distance of 10 meters. This suggests that an adversary
doesn’t need to be in the same room or even on the same floor
to steal information, facilitating a more covert process.

Fig. 9. illustration of the SNR and statistical distance as a function of distance
through a wall in a separate room.

B. Injection structure

In this article, we designed various code injections with dif-
fering levels of complexity to illustrate the trade-off between a
robust, easily demodulated injection with synchronization and
activation schemes, and a smaller, more compact and simplistic
injection mechanism. The next section explains the different
code layers represented in Fig. 10.

Injection base: This model employs a fundamental injection
scheme to demonstrate information leakage from the device

Algorithm 1 Most Basic Injection Model
1: function BASICTRANSMISSION(A)
2: Constants:
3: TML← MemoryLocation ▷ Targeted memory start

location
4: TMS ← SectionLength ▷ Targeted memory size
5: nf1 ← SystemConst ▷ Modulation frequencies
6: NB ← SystemConst ▷ Symbol temporal magnitude
7: for i← 0 to TMS − 1 do
8: for j ← 0 to ByteSizeInBits− 1 do
9: N ← value(TML+ i)&(1 << j) +N1 ▷

Frequency for the next bit
10: for k ← 0 to NB − 1 do
11: for m← 0 to N − 1 do
12: ElectricalDisturbance() ▷ Generate

peripheral disturbance
13: end for
14: end for
15: end for
16: end for
17: end function

(see Alg. 1). The leakage mechanism is constructed using four
nested loops, each serving a distinct purpose. The first loop
iterates over memory bytes, while the second loop processes
the memory bits. Subsequently, the transmission frequency is
derived from the bit value. Lines 10,11,12 outline the symbol
construction process. The first line specifies the number of
blocks (NB), and the second line details the frequency and
the number of electrical Disturbances per period. The Electri-
cal Disturbance(·) function generates disturbances, which are
created by a peripheral device and subtly leak to the RF-FE
further amplifying it.

Symbol alignment: For the symbol alignment process ex-
plained in Sec. IV-C, we employed a lookup table to map
the current symbol to the normalized number of blocks (NB).
Incorporating this lookup table into the injection scheme
slightly increases the memory cost, which depends on the
number of different symbols used in the modulation (e.g., FSK
with 2 symbols, QFSK with 4 symbols, etc.).

Synchronization: Incorporating synchronization requires the
transmission to pause for 1 or 2 symbols at every synchroniza-
tion interval (d), as detailed in Section IV-D. This modification
alters the structure of the injection process, necessitating the
tracking of both synchronization bits and data bits. Conse-
quently, this slightly increases the complexity of the injection,
adding additional lines of code and increasing memory usage.

Initial Transmission: A stream of bits with a constant sig-
nature and transmission parameters that is transmitted before
the actual data stream. By reading this signature, one can
synchronize to the upcoming data stream. In our model,
this initial transmission is also used to convey information
about the transmission for automation purposes only, such
as the data size (to determine where to stop processing) and
the number of transmission blocks (to evaluate symbol sizes

during extensive experiments), although this is not necessary
in a scenario where the transmission parameters are constant.

Packets construction: This is a crucial concept that helps re-
organize the code into two distinct parts. The first part involves
calculating an array of symbols, which is then added to the
initial transmission. The second part consists of the modified
transmission function, which, unlike before, no longer has
to calculate the next symbol. This reorganization has several
significant advantages: first, the transmission function itself
no longer includes any calculations, synchronization and the
transformation from bits to symbols are already integrated
into the provided symbol array. This results in a transmission
function that is much faster, has a smaller spectral footprint,
and requires less acquisition time by the demodulator; sec-
ond, minimizing calculations within the transmission function
results in a less noisy RF transmission that is easier to
demodulate. Finally, breaking the data into smaller chunks
that can be transmitted independently prepares the ground
for an intelligent activation scheme. For instance, capable of
detecting CPU loads and transmitting small packets during
periods of low CPU usage. In addition, avoiding processor
overloading greatly reduces the complexity of detection.

Smart activation: In the context of code injection, it is
essential to implement a sophisticated activation scheme in
order to evade detection. In this study, our approach focused
on activating the code via a UART command, without delving
deeply into more advanced activation methods (which may
even be remote and passive). However, future iterations could
leverage our model to initiate transmissions during periods of
low processor load or through commands sent via other pe-
ripherals, such as a Bluetooth receiver. This approach enhances
stealth and operational efficiency, ensuring the injected code
remains undetected and effectively operational.

Fig. 10. Top down illustration of the different code layers.

C. Demodulation Process

Here we delve into the demodulation process using photos
as our primary example, although the channel can carry any
type of information. Our objective is to extract the signal
from the side channel and reconstruct the original image
from the sampled data using a systematic approach. In our
initial demodulation scheme, we adopted a simple yet effective

strategy. We partitioned the sampled data points into win-
dows and applied the Fast Fourier Transform (FFT) to each
window. From these transformed data sets, we identified the
dominant symbol within each window. Next, synchronization
is found, and the image is reconstructed, as shown in Fig.11.
However, as we delved into higher transmission frequencies
during our experiments, challenges began to emerge: First,
as bit rates increase (reducing NB1), the number of samples
per symbol decreases. This reduction in samples results in
decreased frequency resolution and lower SNR, complicating
the differentiation of transmission symbols in the frequency
domain. Moreover, another complicating factor to our ability
to demodulate the signal, is that as (NB1) decreases, it
becomes increasingly challenging to standardize symbol sizes,
demanding more effort to maintain synchronization of our
sampler (as can be deduced for Eq. 3), all filters used are
visually represented in Fig. 11.

Bandpass Filter: the bandpass filter helps us tune to on a
small part of the spectrum where the change from one symbol
to the next is most noticeable.

Frequencies response alignment H−1(F): Symbols of dif-
ferent frequencies have different responses in the frequency
domain, which affects our ability to discriminate dominant
symbol frequencies within a given window, especially if our
window sees two different frequencies with different time
spaces. This leads to uneven symbol durations, becuse symbols
with higher frequency responses may be favoured over those
with a more dominant time representation in the window. To
mitigate these effects, we identify the frequency response H
and apply its inverse, H−1, to the FFT result. This alignment
procedure ensures that all frequency responses are aligned,
thereby promoting clearer classification.

Noise level threshold filter: This filter helps us differentiate
between periods of active transmission and periods of no
transmission, such as the idle time between packets when
the CPU is constructing new packets but the channel is idle.
We achieve this by filtering out data points lacking a strong
frequency response in the measured bandwidth, as illustrated
by the time domain illustration (blue curve) Fig. 11.

Gradient filter: This filter proves useful in scenarios where
noise levels are high, and the conventional filter fails to
adequately distinguish non-transmission areas. While it may
not be effective for all data types, it particularly shines in
image processing tasks. In images, consecutive pixels typically
exhibit lower gradients compared to random noise pixels. By
calculating the average gradient across an area of pixels, we
can effectively identify regions containing information.

VI. ENHANCING DATA THROUGHPUT AND MINIMIZING
ERROR RATE

In the next section, we delve into the design’s mathematical
model, optimizing and predicting ideal system configurations.

A. Data Rate Equation

Several methods are used to optimise data throughput. The
first method involves selecting N1 to maximize the symbol

Fig. 11. Sequenced illustration of the demodulation process.

output frequency. In an ideal scenario, N1 would be set to 1
to minimize electrical disturbances per symbol (N) and conse-
quently reduce the transmission block duration. However, our
choice is constrained as higher symbol frequencies necessi-
tate higher SDR sampling rate. Another consideration is the
number of transmission blocks, a lower NB1 results in shorter
symbol duration but sacrifices statistical data. Additional factor
is the number of data bits encoded in each symbol (m), which
determines the modulation used, and finally synchronisation
can introduce additional symbols into the data stream, thereby
reducing the effective data rate (as discussed in subsequent
sections).
We can sum all the bit rates parameters in the next equation:

BR =
SD

SD +AS
· 1

NB1 · (N1 · ED + LS)
·m (4)

SD , AS - synchronisation distance, synchronisation symbols

B. Available Frequencies Distribution

As described in latter chapters, in practice the model cannot
choose the frequencies of transmission and the available trans-
mission options are discrete, we can formulate the distance
between two subsequent frequencies as follow:

∆f = FHz(n− 1)− FHz(n)

=
ED

((n− 1) · ED + LS) · (n · ED + LS)

(5)

An important note is that the higher n is, the harder it is to
differentiate between two consecutive frequencies.

Fig. 12. illustrates the dispersion of available frequencies.

C. Unlocking Efficiency: Finding the Optimal Bit Allocation
for Symbol Encoding

At first glance, the question seems simple. One might
think that optimizing encoding frequencies to fit the most bits
per symbol is the best solution. To simplify our model, we

examined the group Fg = {f(N1), f(N1 + 1), . . . , f(N1 +
n − 1)}. As can be deduced from the analysis of frequency
distribution in prior sections, it becomes apparent that lower
frequencies pose a bigger challenges in differentiation from
adjacent counterparts. Consequently, the two least frequencies
within the group Fg are particularly challenging to distinguish
between. Therefore, in establishing constraints for our model,
it becomes imperative to ensure that this frequency disparity
exceeds the resolution of the Fast Fourier Transform (FFT),
Fres, i.e., constraint:

Fres =
Sampling Freq.

FFT Size

=
Sampling Freq.

Sampling Freq. · (NB1(ED ·N1 + LS))

=
1

(NB1(ED ·N1 + LS))

≤ ED

((N1 + n− 2) · ED + LS)(ED(N1 + n− 1) + LS)
(6)

In an optimal scenario, we aim to minimize the temporal
magnitude of the symbol and equate these two expressions, in
which case we can separate NB1:

NB1 =
(LS + ED(N1 + n− 2))(LS + ED(N1 + n− 1))

ED(N1 · ED + LS)
(7)

We will now employ the substitution of NB1 into Eq. (1) to
derive the Bit Rate for each modulation scheme, disregarding
the supplementary influence of synchronization due to its
irrelevance to the present calculation:

BR(n) =
log2(n)

NB1 · (N1 · ED + LS)

=
log2(n)

(ED(N1 + n− 1) + LS)(ED(N1 + n− 2) + LS)
(8)

Fig. 13. This graph illustrates bit rate for different fsk modulation and
different starting frequencies N1

In an optimal scenario, where noise, sample rate and syn-
chronization considerations are disregarded (N1 = 1), the
model reveals that Frequency Shift Keying (FSK) outperforms
other modulation schemes, contrary to our initial assumption.

However, as discussed in the introductory chapter, not all
devices can achieve the necessary sampling frequency to ac-
curately discern all frequencies. In such circumstances, opting
for a higher initial frequency (N1) becomes imperative. In
this case and as illustrated in Fig. 13, alternative modulations
QFSK (N1 = 4) or 8-Level-FSK may offer greater suitability
and improved bit rate performance. Another advantage of
employing n > 2 frequencies lies in the increased separation
between adjacent frequencies, beyond fn−1 and fn−2. This
enhanced separation plays a crucial role in reducing error
rates, particularly in environments characterized by high levels
of noise. Notably f1 and f2 are expected to exhibit minimal
error rates due to their significant frequency separation, as
elaborated in subsequent sections. Synchronization within the
channel relies heavily on these two frequencies, a higher
quality of f1 and f2 ensures stable synchronization.

D. Results and discussion

To evaluate the maximum data rate achievable by the
system, we created an optimal measurement environment. In
this environment, the receiving antenna was placed in close
proximity to the transmitting antenna, and the device was
operated in an area free from electrical disturbances within
the relevant frequency ranges, we chose N1 = 1, meaning
we used the highest subsequent frequencies set our model
facilitate. We assessed the transmission capabilities of various
modulation schemes, including Frequency Shift Keying (FSK),
Quadrature Frequency Shift Keying (QFSK), 8-level FSK, and
16-level FSK. Each modulation type was tested under varying
of electrical disturbances (ED) per symbol we controlled this
parameter by changing the number of transmission blocks
(NB), thus reducing the symbol temporal duration and in-
creasing the data rate. This reduction in symbol duration also
resulted in lower FFT resolution due to fewer data points per
symbol, reducing the signal-to-noise ratio (SNR) and making
it more difficult to distinguish between symbols.

Fig. 14. results illustrating different modulations settings.

In Fig. 14 we present two sub-figures that illustrate the
relationship between the statistical distance from the original
image and the number of electrical disturbances (ED) per
symbol in two different synchronization schemes (in practice
we calculated and changed NB according to the chosen

number of electrical disturbances, ED). Comparing these sub-
figures reveals that the symbol synchronization plot is slightly
shifted to the left, indicating a higher error rate or statistical
distance for the same parameters compared to the UART
synchronization plot. This shift occurs because symbol syn-
chronization is based on a larger set of frequencies (Sec. IV-D)
A larger frequency set means that the lowest frequencies are
closer together, making differentiation more challenging, as
shown in (Fig. 12). The difference in data rates between the
models results is due to the varying number of synchronization
bits used in the two schemes (Fig. 7). Upon delving into
the graphs, a notable trend emerges: the error rates increase
as the symbol duration decreases. Moreover, in accordance
with the predictions of our mathematical model, selecting
f1 = 1 reveals that regular FSK yields superior results
in term of data rates compared to error rates or statistical
distance in our case. In Fig. 14,15, the numbers (1) to (4)
on the reconstructed images and corresponding data points
on the UART synchronization plot denote the least reasonable
reconstructed image in terms of error rate for each modulation.
The red lines in the figures indicate modulation settings that
result in reconstructed images of such poor quality that they
are unsuitable for use in high-end systems.

VII. CONCLUSIONS

In this work, we combine the concepts of RF side-channel
attacks and software-code Trojans for the first time, creating
a hard-to-detect and stealthy method to extract information
over considerable distances using a single measurement. This
technique leverages Trojan-induced electrical disturbances in
peripherals, buses, memory, and the CPU, which leak into RF
components and enable signals modulation across various con-
stellation types. Our goal is to achieve a high signal-to-noise
ratio (SNR), high data transmission rates (DR), and negligible
capture time.In the preceding sections, we demonstrate how to
optimize modulation and demodulation schemes and construct
specialized synchronization symbols to further minimize errors
and maximize DR. The next table summarizes our results:

TABLE II
SAMPLE DATA FOR DIFFERENT SETUPS

Setup Noisy Area Cap. Time[s] Dist.[m] DR[Kb/s]
High Data Rates × 0.032 5 100

Open Space × 0.512 25 6.25
Wall ✓ 0.512 10 6.25

Corridor ✓ 0.512 17.5 6.25

REFERENCES

[1] P. Szor, Art of Computer Virus Research and Defense, The, Portable
Documents. Pearson Education, 2005.

[2] N. K. Dixit, L. Mishra, M. S. Charan, and B. K. Dey, “The new age of
computer virus and their detection,” International Journal of Network
Security & Its Applications, vol. 4, no. 3, p. 79, 2012.

[3] C. Cowan, F. Wagle, C. Pu, S. Beattie, and J. Walpole, “Buffer overflows:
Attacks and defenses for the vulnerability of the decade,” in Pro-
ceedings DARPA Information Survivability Conference and Exposition.
DISCEX’00, vol. 2. IEEE, 2000, pp. 119–129.

[4] X. Zhang, Y. Xiao, and Y. Zhang, “Return-oriented flush-reload side
channels on arm and their implications for android devices,” in Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, 2016, pp. 858–870.

[5] J. Lee, J. Jang, Y. Jang, N. Kwak, Y. Choi, C. Choi, T. Kim, M. Peinado,
and B. B. Kang, “Hacking in darkness: Return-oriented programming
against secure enclaves,” in 26th USENIX Security Symposium (USENIX
Security 17), 2017, pp. 523–539.

[6] L. Yin, C. Wang, J. Li, R. Yin, Y. Jiao, and H. Jiang, “When side channel
becomes good: Kernel malware attack investigation,” in Artificial Intel-
ligence and Security: 5th International Conference, ICAIS 2019, New
York, NY, USA, July 26-28, 2019, Proceedings, Part II 5. Springer,
2019, pp. 571–583.

[7] B. Singh, D. Evtyushkin, J. Elwell, R. Riley, and I. Cervesato, “On the
detection of kernel-level rootkits using hardware performance counters,”
in Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security, 2017, pp. 483–493.

[8] G. Camurati, S. Poeplau, M. Muench, T. Hayes, and A. Francillon,
“Screaming channels: When electromagnetic side channels meet radio
transceivers,” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, 2018, pp. 163–177.

[9] E. Danieli, M. Goldzweig, M. Avital, and I. Levi, “Revealing the secrets
of radio embedded systems: Extraction of raw information via rf,” IEEE
Transactions on Information Forensics and Security, 2023.

[10] R. A. Riley, J. T. Graham, R. M. Fuller, R. O. Baldwin, and A. Fisher,
“A new way to detect cyberattacks: Extracting changes in register values
from radio-frequency side channels,” IEEE Signal Processing Magazine,
vol. 36, no. 2, pp. 49–58, 2019.

[11] J. Feng, T. Jacques, O. Abari, and N. Sehatbakhsh, “Everything has its
bad side and good side: Turning processors to low overhead radios using
side-channels,” in Proceedings of the 22nd International Conference on
Information Processing in Sensor Networks, 2023, pp. 288–301.

[12] C. Shen, T. Liu, J. Huang, and R. Tan, “When lora meets emr:
Electromagnetic covert channels can be super resilient,” in 2021 IEEE
Symposium on Security and Privacy (SP). IEEE, 2021, pp. 1304–1317.

[13] K. S. Subramani, N. Helal, A. Antonopoulos, A. Nosratinia, and
Y. Makris, “Amplitude-modulating analog/rf hardware trojans in wireless
networks: Risks and remedies,” IEEE Transactions on Information
Forensics and Security, vol. 15, pp. 3497–3510, 2020.

[14] N. Miguélez-Gómez and E. A. Rojas-Nastrucci, “Rf fingerprinting:
hardware-trustworthiness enhancement in the hardware trojan era:
Rf fingerprinting-based countermeasures,” IEEE Microwave Magazine,
vol. 24, no. 11, pp. 35–52, 2023.

[15] R. Wang, H. Wang, and E. Dubrova, “Far field em side-channel attack
on aes using deep learning,” in Proceedings of the 4th ACM Workshop
on Attacks and Solutions in Hardware Security, 2020, pp. 35–44.

[16] R. Wang, H. Wang, E. Dubrova, and M. Brisfors, “Advanced far field em
side-channel attack on aes,” in Proceedings of the 7th ACM on Cyber-
Physical System Security Workshop, 2021, pp. 29–39.

[17] H. A. Noman and O. M. Abu-Sharkh, “Code injection attacks in
wireless-based internet of things (iot): A comprehensive review and
practical implementations,” Sensors, vol. 23, no. 13, p. 6067, 2023.

[18] N. Sehatbakhsh, M. Alam, A. Nazari, A. Zajic, and M. Prvulovic,
“Syndrome: Spectral analysis for anomaly detection on medical iot
and embedded devices,” in 2018 IEEE International Symposium on
Hardware Oriented Security and Trust (HOST), 2018, pp. 1–8.

[19] Z. Ling, H. Yan, X. Shao, J. Luo, Y. Xu, B. Pearson, and
X. Fu, “Secure boot, trusted boot and remote attestation for arm
trustzone-based iot nodes,” Journal of Systems Architecture, vol. 119,
p. 102240, 2021. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S1383762121001661

[20] G. Dar, G. Di Natale, and O. Keren, “Nonlinear code-based low-
overhead fine-grained control flow checking,” IEEE Transactions on
Computers, vol. 71, no. 3, pp. 658–669, 2021.

[21] S. Kullback and R. A. Leibler, “On information and sufficiency,” The
annals of mathematical statistics, vol. 22, no. 1, pp. 79–86, 1951.

[22] CISPR22, “International standard EN 55022:2010,” http://http://www.
rfemcdevelopment.eu/en/en-55022-2010, 2010, [Online;].

VIII. APPENDIX

Fig. 15. pictures presenting different UART synchronisation modulations
settings.

Fig. 16. pictures presenting different Symbol synchronisation modulations
settings.

Fig. 17. pictures presenting different modulations settings.

https://www.sciencedirect.com/science/article/pii/S1383762121001661
https://www.sciencedirect.com/science/article/pii/S1383762121001661
http://http://www.rfemcdevelopment.eu/en/en-55022-2010
http://http://www.rfemcdevelopment.eu/en/en-55022-2010

	Introduction
	Background and Contribution
	Related-Work
	Threat model

	Metrics, Evaluation tools and Measurement Setup
	Metrics and Evaluation Tools
	Measurement Environment

	Transmission System
	Symbol Structure
	Symbol Encoding
	Symbol Duration balancing
	Synchronisation

	Injection modulation and field experiments
	Field experiments
	Injection structure
	Demodulation Process

	Enhancing Data Throughput and Minimizing Error Rate
	Data Rate Equation
	Available Frequencies Distribution
	Unlocking Efficiency: Finding the Optimal Bit Allocation for Symbol Encoding
	Results and discussion

	Conclusions
	References
	Appendix

