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Abstract. Private information retrieval (PIR) is a key component of
many privacy-preserving systems. Although numerous PIR protocols have
been proposed, designing a PIR scheme with communication overhead
independent of the database size N and computational cost practical for
real-world applications remains a challenge. In this paper, we propose
the NewtonPIR protocol, a communication efficient single-server PIR
scheme. NewtonPIR can directly generate query values for the entire
index without splitting the index and sending multiple query cipher-
texts. Specifically, NewtonPIR achieves communication overhead that is
7.5× better than the state-of-the-art PIR protocol and 35.9∼75× better
than the other protocols. In experiments, when the database size and
entry size increase, the communication overhead of NewtonPIR remains
stable. By utilizing the single-ciphertext fully homomorphic encryption
(FHE) scheme and the simple Newton interpolation polynomial, along
with precomputing coefficients in the offline phase, we reduce the com-
putational overhead of NewtonPIR from hours in previous schemes to
seconds. To the best of our knowledge, NewtonPIR is the first protocol
to achieve communication cost independent of N along with computa-
tional overhead comparable to ring learning with errors (RLWE)-based
PIR schemes. Additionally, we extend and introduce a private set inter-
section (PSI) protocol that balances computational and communication
overhead more effectively.

Keywords: Private Information Retrieval · Homomorphic Encryption ·
Private Set Intersection.

1 Introduction

Protecting personal privacy has become a major focus for cloud-based applica-
tions. A recent global survey [27] shows that 85% of adults want more measures
to protect their online identities, highlighting concerns about privacy leakage.
Private information retrieval (PIR) protocols [13] enable clients to access server
database entries without revealing the queried indices or keywords, as shown
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Client

Entry i ② PIR.Query DB[1]

DB[2]

DB[N]
DB[i]

Server③ PIR.Response

① PIR.Setup④ PIR.Extract

Fig. 1: Simple process description of PIR protocol. The server begins by executing
the setup phase ①. Next, the client generates and sends a query ②. Upon receiving the
query, the server generates and returns a response ③. Finally, the client extracts the
response to retrieve the requested database entry DB[i] ④. Throughout this process,
the server remains unaware of the query index i.

in Fig. 1. PIR is a fundamental component for various privacy-preserving ap-
plications, including anonymous communication [6], privacy-preserving media
streaming [25], private contact discovery [30], privacy-friendly advertising [24],
private blocklist lookups [32] and private navigation [43], among others.

PIR is primarily divided into two categories: single-server PIR [4,5,17,18,19]
and multi-server PIR [13,14]. Multi-server schemes, referred to as information-
theoretic PIR (or IT-PIR), are generally more efficient and offer guarantees
of information-theoretic security. However, IT-PIR schemes require a stronger
trust assumption, specifically that multiple servers do not collude. This need
for coordination across multiple parties makes them challenging to implement
in real-world scenarios. Single-server PIR, also known as computational PIR
(or C-PIR), guarantees computational security. However, although powerful, C-
PIR is prohibitively costly, and regrettably, this cost is intrinsic: C-PIR schemes
require the server to process all elements in the database to respond to a single
query [13]. Ultimately, if the server could exclude an element when responding
to a query, it would infer that the excluded element holds no interest to the
client. The central goal of this paper is to significantly enhance the efficiency of
single-server PIR schemes and make them viable for practical adoption.

In single-server PIR, there are two main performance metrics: computation
cost and communication overhead. There are often trade-offs between the two
measures. Since Aguilar-Melchor et al. [36] proposed the first practical single-
server PIR protocol, numerous PIR schemes [5,37,38,44,45] have been developed
to further reduce computational and communication costs. These single-server
PIR schemes can be broadly categorized into two groups: those based on the
Learning with Errors (LWE) or Ring Learning with Errors (RLWE) problems
[35], and those with simpler constructions.

The advantage of PIR schemes based on LWE or RLWE [5,37,38] lies in
their practical computational cost, making them suitable for real-world appli-
cations. To achieve sublinear communication overhead, these schemes first treat
the database as a multi-dimensional cube, then split the query index according
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to the dimensionality, and represent the split indices with different unit vectors.
Finally, the client encrypts the query vectors and sends multiple ciphertexts
to the server. However, it is worth noting that the communication overhead of
these PIR protocols still depends on the database size N . As N increases, the
communication efficiency decreases. Therefore, designing a PIR protocol whose
communication overhead is independent of the database size N remains a chal-
lenge to be addressed.

The second category of simple PIR schemes [44,45] generates query values
directly from the index, aiming to design communication overhead that is in-
dependent of N . These schemes use interpolation polynomials to compute the
response values. However, we observe that the complex construction of poly-
nomial bases in these schemes leads to response generation times reaching the
scale of hours, significantly diminishing their practicality. Therefore, the natural
question garners greater attention.

Can we design a communication efficient single-server PIR scheme with
the communication overhead independent of N and the corresponding
computational cost comparable to RLWE-based schemes besides?

1.1 Our Contributions

We answer the question above in a positive affirmation by constructing the
scheme using a combination of single-ciphertext FHE encryption and simple
polynomial interpolation techniques. Below, we conclude our main contributions
with high-level technique overviews.

– We propose the NewtonPIR scheme, a communication efficient single-server
PIR protocol. Our NewtonPIR scheme leverages single-ciphertext FHE en-
cryption to directly generate query values based on the index, making the
communication overhead independent of the database size N . We conduct
experiments with different database and item sizes, comparing NewtonPIR
with the latest PIR schemes. Specifically, NewtonPIR’s communication over-
head is 7.5× better than the state-of-the-art PIR scheme [37] and 35.9∼75×
better than other schemes [3,4,5,38]. In the experiments, as the database
size and item size increase, the communication overhead of our NewtonPIR
scheme remains stable.

– We divide the NewtonPIR scheme into offline and online phases, using the
Newton interpolation polynomial with the simple basis construction. In the
offline phase, NewtonPIR preprocesses the database and precomputes the
interpolation coefficients. This optimization shifts the majority of compu-
tational overhead from the online phase to the offline process, significantly
enhancing the practicality of the scheme. Experiments show that, compared
to the hour-level time consumption of previous schemes, NewtonPIR reduces
the computational cost of generating responses by several orders of magni-
tude. To the best of our knowledge, NewtonPIR is the first protocol that
achieves communication cost independent of N while bringing computational
overhead close to that of RLWE-based schemes.
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– We also combine the single-ciphertext FHE scheme with private set intersec-
tion (PSI) to extend and construct a PSI protocol. The grouping optimiza-
tion proposed in [11] reduces computational complexity but increases com-
munication overhead. To address this issue, we use noiseless single-ciphertext
FHE encryption to achieve a balance between computational and communi-
cation costs.

1.2 Organization

The remainder of the paper is as follows: In section 2, we introduce related work.
Section 3 describes the definitions of the single-ciphertext FHE scheme, PIR,
and PSI protocols. Sections 4 and 5 present our NewtonPIR and PSI schemes
respectively. Theoretical analysis and experimental evaluation are provided in
section 6. Conclusions are in the section 7.

2 Related Work

2.1 Early Single-Server PIR Schemes

Numerous initial designs for single-server PIR systems [9,23] are based on the
Kushilevitz-Ostrovsky framework [33], which utilizes homomorphic encryption.
However, Sion and Carbunar [40] point out that when network bandwidth is lim-
ited to a few hundred Kbps, these methods often perform worse than download-
ing the entire database. The server’s inefficiency is largely due to the requirement
of performing at least N large integer modular multiplications or exponentia-
tions. The computational overhead of these operations can often outweigh the
simplicity of transmitting the data directly to the client. Recent advancements
in lattice cryptography have introduced post-quantum and parallel-friendly PIR
techniques, available in multiple variants.

2.2 Recent Single-Server PIR Schemes

Current practical single-server PIR schemes utilize lattice-based cryptographic
techniques, with a particular emphasis on somewhat homomorphic encryption
(SHE) algorithms. Aguilar-Melchor et al. [36] introduce the first practical method,
known as XPIR. While XPIR significantly reduces the computational cost com-
pared to earlier systems, its communication overhead remains prohibitively high.
Subsequent PIR approaches [4,5] have been developed to address these limita-
tions. SealPIR [5], for instance, employs query compression techniques to miti-
gate the issue of large request sizes, successfully reducing the request size to 64
KB. However, this improvement comes with a slight increase in computational
complexity. Despite this advancement, the response size in SealPIR remains sim-
ilar to that of XPIR, resulting in a total communication overhead approximately
2,360× the size of the desired retrieval item.
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MulPIR [4] improves upon SealPIR by optimizing the response size, reduc-
ing the communication overhead to approximately 932× that of a similar sce-
nario. The key innovation in MulPIR is the direct multiplication of ciphertexts in
the second and higher dimensions, rather than employing the chunking method
used by SealPIR. However, this technique leads to increased noise expansion,
necessitating the use of less efficient RLWE parameters, which in turn raises
computational cost. The OnionPIR scheme [38] offers a holistic approach by em-
ploying private batch sum retrieval, effectively reducing the computational load
and thereby lowering the online cost associated with performing PIR. Mean-
while, Spiral [37] introduces modulus switching and matrix RLWE ciphertext,
which dramatically reduces communication overhead by approximately 126× in
similar scenarios.

SimplePIR [26] and FrodoPIR [19] are distinct PIR solutions that share a
common insight: in LWE-based ciphertext, the majority of the server’s compu-
tations are independent of the client’s query and can therefore be performed
during the offline phase. However, this advantage comes with the trade-off that
the client must download a significant amount of data during the offline phase.
In PIR schemes with preprocessing [8] or doubly-efficient PIR [10], the server
can preprocess the database, enabling it to respond to online queries in sub-
linear time. Boyle et al. [8] and Canetti et al. [10] illustrate the construction of
doubly-efficient PIR schemes using virtual black box obfuscation, although these
constructions rely on very strong cryptographic assumptions.

The PIR schemes discussed above are all based on the LWE or RLWE prob-
lems. Besides these, there are also simpler constructions of PIR. Yi et al. [45]
combine the DGHV encryption [42] over integers with PIR, where the commu-
nication complexity is related to the ciphertext length and the database size.
In another scheme, Xu et al. [44] use the Lagrange interpolation polynomial
to construct PIR. However, the computation and construction of the interpo-
lation polynomial are complex, significantly impacting the practicality of the
scheme. These types of PIR schemes have simpler constructions, but there are
many aspects of computation and communication overhead that require further
optimization.

3 Preliminaries

Notations. In this paper, we denote scalars in plain (e.g. x) and vectors in
bold (e.g. DB). For an N -element database DB, let DB[i]i∈[N ] denote its i-th
element. We use [N ] to represent the set {1, · · · , N}. All logarithms in this paper
have base 2.

The ring of polynomials over the integers, which consists of symbolic polyno-
mials with integer coefficients, is denoted by Z[x]. Given a polynomial f(x), the
ring Z[x]/ ⟨f(x)⟩ is the ring of all polynomials modulo f(x). The ring of poly-
nomials with coefficients in Zn is denoted by Zn[x] and Zn[x]/ ⟨f(x)⟩ is defined
analogously. And let Zn[x, y]/ ⟨f(x), g(y)⟩ denote bivariate truncated polynomial
ring [44].
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3.1 Single-Ciphertext FHE Scheme

FHE is an encryption scheme that enables arbitrary computations on encrypted
data [21,22]. In practical applications, FHE is often implemented in a leveled
manner, meaning that operations can only be performed a finite number of
times. Exceeding this limit results in failure of ciphertext decryption.

Single-ciphertext FHE differs from general FHE in two key aspects. First,
single-ciphertext FHE performs homomorphic computations on a single cipher-
text rather than on multiple ciphertexts. Second, homomorphic computations on
a single ciphertext generate no noises. Therefore, the proposed single-ciphertext
FHE is a specialized form of FHE that supports unlimited univariate computa-
tions on a single ciphertext without requiring access to the secret key.

A single-ciphertext FHE scheme consists of four probabilistic polynomial time
(PPT) algorithms: key generation, encryption, decryption, and homomorphic
evaluation. A specific scheme [44] is described as follows:

– (pk, sk, evk)← KeyGen(λ): The algorithm takes the security parameter λ as
an input and randomly generates two λ/2-bit large primes p and q such that
gcd(p − 1, 3) = 1 and gcd(q − 1, 3) = 1. It then computes n = pq, φ(n) =
(p−1)(q−1) and the inverse d of 3 modulo φ(n), namely, 3d = 1 (mod φ(n)).
The modulus n is defined as the public key pk = n, the evaluation key is set
as evk = n, and the integer d is assigned as the secret key, i.e., sk = d.

– c ← Enc(m, pk): The algorithm takes a plaintext m ∈ Zn as input and
randomly selects a, b ∈ Zn, then computes u = a3 (mod n) and v = b3

(mod n). It also chooses 9 random integers aij ∈ Zn for i, j ∈ {0, 1, 2}
to construct the polynomial f(x, y) =

∑2
i=0

∑2
j=0 aijx

iyj . The polynomial
F (x, y) is defined as F (x, y) = f(x, y)− f(a, b) (mod n), and the ciphertext
is calculated as c(x, y) = F (x, y) + m (mod n). The resulting ciphertext is
c = Enc(m,n) = (u, v, c(x, y)).

– m← Dec(c, sk): The algorithm takes a ciphertext c and the private key sk =
d as input, computes a = ud (mod n) and b = vd (mod n) and substitutes
a, b into c(x, y) to recover the plaintext m.

– Eval(h, c, evk): The algorithm takes the ciphertext c and a univariate poly-
nomial H(x) =

∑l
i=0 hix

i as input, and outputs the evaluation result. The
specific evaluation process is detailed in Algorithm 1, where the addition
and multiplication operations are performed over the truncated polynomial
ring Zn[x, y]/

〈
x3 − u, y3 − v

〉
.

Correctness. The correctness of decryption requires that the plaintext m can
be correctly decrypted from the ciphertext, i.e., Dec(c(x, y), d) = c(a, b) =
F (a, b) + m = m (mod n). Similarly, for homomorphic evaluation to be cor-
rect, the ciphertext cH(x, y) can be correctly decrypted to plaintext H(m), i.e.,
Dec(cH(x, y), d) = cH(a, b) = H(c(a, b)) = H(m) (mod n).
Security. Below, we provide the definition of the 3rd RSA problem. The one-
way security of the above single-ciphertext FHE scheme can be reduced to the
hardness of this problem [44].
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Algorithm 1: Evaluation algorithm
Input: The univariate polynomial H(x) =

∑l
i=0 hix

i, the ciphertext
c = (u, v, c(x, y)) and the evaluation key evk = n

Output: The evaluation result cH

1 cH(x, y) = H(c(x, y)) = 0
2 for i = 0 : l do
3 cH(x, y) = cH(x, y)c(x, y) + hl−i (mod n, x3 − u, y3 − v)
4 end
5 return cH = (u, v, cH(x, y))

Definition 1 (3rd RSA problem) The e-th RSA problem can be defined as
follows: given the RSA public key n = pq and e, along with a ciphertext c

′
, to

determine the corresponding plaintext m
′

that satisfies the equation c
′
= m

′e

(mod n). The 3rd RSA problem refers to this scenario when e is set to 3.

Theorem 2 (see [44], Theorem 1). The one-way security of the proposed
single-ciphertext FHE scheme is polynomially equivalent to the 3rd RSA problem.

3.2 Newton’s interpolation

3.3 Private Information Retrieval (PIR)

A PIR protocol deals with a scenario where a server holds a database DB =
{d1, d2, · · · , dN} consisting of N elements, and a client possesses an input index
i. The objective of the protocol is to facilitate the client in learning DB[i] while
ensuring that the server learns nothing about i.

We work in a model where an initial setup algorithm outputs an internal
server state. A PIR scheme with server-independent preprocessing [7] consists of
the following four algorithms:

– dbp← PIR.Setup(1λ,DB). On input the security parameter λ and a database
DB, the setup algorithm outputs a set of database parameters dbp;

– (st,Q)← PIR.Query(i). On input an index i, the query algorithm outputs a
secret state st and a corresponding query Q;

– R ← PIR.Response(dbp,Q). On input the database parameters dbp, the
query Q, the answer algorithm outputs a response R;

– DB[i] ← PIR.Extract(st, R). On input the client secret state st and the
response R, the extract algorithm outputs a database record DB[i].

The algorithms should satisfy the following properties:



8 Pengfei Lu(�) and Hongyuan Qu

Correctness. We say that a PIR scheme has correctness error δ if, on database
size N , for all databases DB = {d1, d2, · · · , dN}, and for all indices i ∈ [N ], the
probability defined below is at least 1− δ:

Pr

DB[i] = DB
′
[i] :

dbp← PIR.Setup(1λ,DB)
(st,Q)← PIR.Query(i)

R← PIR.Response(dbp,Q)

DB
′
[i]← PIR.Extract(st, R)

. (1)

For the PIR scheme to be non-trivial, the total client-to-server communica-
tion should be significantly smaller than the bit length of the database. In other
words, it must satisfy the condition |Q|+ |R| ≪ |DB|.
Security. The query generated by the client should not leak any information
about the desired database record. That is, we say a PIR scheme is (T, ϵ)-secure
if, for all adversaries A running in time at most T , with a database size of N ,
and for any i, j ∈ [n],

|Pr(A(1N ,Qi) = 1 : (st,Qi)← PIR.Query(i))

− Pr(A(1N ,Qj) = 1 : (st,Qj)← PIR.Query(j))| ≤ ϵ.
(2)

Batch PIR. An extension of the standard PIR protocol is known as Batch PIR
or Multi-query PIR [29], where the client may want to retrieve a batch of entries
from the database at once. Currently, the Batch PIR schemes [6,34,39] mainly
use the batch framework from [5], which is composed of batch codes [29] and
cuckoo hashing. The cuckoo hashing is described as follows:
Cuckoo hashing. Given nb balls, b buckets, and ω independent hash functions
h0, h1, · · · , hω−1 that assign each ball to a random bucket, the algorithm de-
termines ω candidate buckets for each ball by applying the ω hash functions.
For each ball g, it is placed in any empty candidate bucket. If none of the ω
candidate buckets are empty, one is selected at random, and the ball currently
in that bucket (gold) is removed. Then, g is placed in the bucket, and (gold) is
re-inserted. If re-inserting (gold) causes another ball to be removed, this process
continues recursively for a maximum number of iterations.

3.4 Private Set Intersection (PSI)

Private set intersection (PSI) allows a sender and a receiver to compute the in-
tersection of their private sets X and Y . The receiver learns only the intersection
X∩Y , while the sender learns nothing. Most PSI protocols are balanced, assum-
ing that the set sizes are similar and that the communication cost depends on
the larger set. In contrast, unbalanced PSI protocols [11,12,16] focus on scenarios
where the receiver’s set is much smaller, with the goal of achieving communica-
tion complexity dependent on the size of the receiver’s set. Unbalanced PSI can
be viewed as Batch PIR with stronger security guarantees: it protects both the
receiver’s queries and the sender’s database.

Existing PSI protocols [11,12,16] operate by having the receiver encrypt the
elements in Y using FHE and send the ciphertexts to the sender. For each
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encrypted yi, the sender performs a homomorphic evaluation of a polynomial
that interpolates the entries and then returns the result to the receiver.
Oblivious pseudorandom function. However, simply executing this protocol
would expose information about the sender’s entries that do not belong to the
intersection. To address this, an oblivious pseudorandom function (OPRF) [20]
is employed to obscure the elements. In this approach, both the sender and the
receiver independently apply the OPRF to the elements in their respective sets
X and Y . The sender then uses the OPRF outputs to mask the corresponding
entries. The receiver retrieves these masked entries and utilizes its own OPRF
values to unmask the entries, thereby obtaining the intersection.
Optimizations. To effectively reduce the computational cost of polynomial in-
terpolation, the above scheme implements two optimizations: first, encrypting
additional powers of the receiver’s set elements, and second, partitioning the
sender’s set into multiple subsets. The second optimization increases the return
communication from the sender to the receiver due to the additional subsets,
which can be further optimized.

4 Our Communication Efficient PIR Protocol

4.1 Detailed Description

We use the single-ciphertext FHE scheme described in Section 2.1 and the New-
ton interpolation polynomials to construct our communication efficient single-
server PIR protocol. Below, we provide a full description of our NewtonPIR
protocol, which involves four phases: setup, query, response and extract. We
completely present it in the Fig. 2.

We describe our protocol by separating it into offline and online phases. Dur-
ing the offline phase, the server executes the setup algorithm, preprocessing the
database and precomputing interpolation coefficients as database parameters.
The PIR query and response generation, as well as the extraction process, are
carried out during the online phase. The client uses single-ciphertext FHE en-
cryption to generate the query value and the secret state, where the secret state
is kept by the client, and the query value is sent to the server. Upon receiving
the query, the server utilizes the precomputed database parameters and Newton
interpolation polynomial to generate the response value and sends it back. Using
the secret state, the client decrypts the response to obtain the desired database
entry.

Offline preprocessing.

– PIR.Setup(1λ,DB): On input the security parameter λ and a database
DB = {d1, d2, · · · , dN}, the setup algorithm proceeds as follows:
1. The server precomputes N divided differences according to the Al-

gorithm 2.
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Algorithm 2: Computing Newton interpolation coefficients
Input: A database DB = {d1, d2, · · · , dN}
Output: Newton interpolation coefficients R

1 for i = 1 : N do
2 Ri = di
3 end
4 for j = 1 : N − 1 do
5 for i = j : N − 1 do
6 Ri+1 = (Ri+1 −Ri)/(j)
7 end
8 end
9 return R = {R1, R2, · · · , RN}

2. Output the database parameters dbp = R.

Online processing.

– PIR.Query(i): On input an index i ∈ [N ], the query algorithm does the
following:
1. The client randomly generates two λ/2-bit prime numbers p and

q, ensuring that gcd(p − 1, 3) = 1 and gcd(q − 1, 3) = 1, and then
computes n = pq and the inverse d of 3 modulo φ(n). Set st = d.

2. Randomly choose aij ∈ Zn for i, j = 0, 1, 2 and construct f(x, y) =∑2
i=0

∑2
j=0 aijx

iyj . Randomly choose a, b ∈ Zn and compute u =

a3 (mod n), v = b3 (mod n).
3. Set F (x, y) = f(x, y)−f(a, b) (mod n), compute c(x, y) = F (x, y)+

i (mod n) and set Q = (n, u, v, c(x, y)).
4. Output (st,Q).

– PIR.Response(dbp,Q): On input the database parameters dbp =
{R1, R2, · · · , RN} and the query Q = (n, u, v, c(x, y)), the server re-
sponse algorithm proceeds as follows:
1. The server computes

N(x, y) = R1 +
N∑
l=2

Rl

l−1∏
j=1

(c(x, y)− j) (mod n, x3 − u, y3 − v).

2. Output the response R = N(x, y).
– PIR.Extract(st, R): On input the client secret state st = d and the re-

sponse R = N(x, y), the extraction algorithm first computes N(a, b)
with a = ud (mod n), b = vd (mod n) and outputs the result.

Fig. 2: The NewtonPIR protocol.
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4.2 Correctness and Security Analysis

Correctness. In the response generation phase, the response R = N(x, y) is
computed as an evaluation of the encrypted index i. Upon correctly decrypting
the response R, the client will obtain that

N(a, b) = R1 +

N∑
l=2

Rl

l−1∏
j=1

(c(a, b)− j)

= R1 +R2(c(a, b)− 1) + · · ·+RN

N−1∏
j=1

(c(a, b)− j)

= R1 +R2(i− 1) + · · ·+RN

N−1∏
j=1

(i− j) (mod n).

(3)

By the properties of Newton interpolation, we can obtain N(a, b) = di = DB[i]
(mod n) since c(a, b) = i (mod n). Therefore, the probability expression 1 is
satisfied:

Pr
(
DB[i] = DB

′
[i]
)
≥ 1− δ. (4)

Consequently, the correctness of our NewtonPIR protocol holds as expected.
Security. We know that the query index is encrypted using the single-ciphertext
FHE scheme, and only the querying user can obtain the index. According to
Theorem 2, the security of the single-ciphertext FHE scheme can be reduced
to the 3rd RSA problem, meaning that without knowledge of the private key,
no one can retrieve the query index. Therefore, in the single-server NewtonPIR
protocol, the query value does not leak any information about the index, thereby
ensuring privacy protection for the query index. Equation 2 is satisfied:

|Pr(A(1N ,Qi) = 1)− Pr(A(1N ,Qj) = 1)| ≤ ϵ. (5)

Consequently, the security of our NewtonPIR protocol holds as expected.

4.3 Optimizations and Extensions

A variant of the single-ciphertext FHE scheme. In our NewtonPIR pro-
tocol, the client can encrypt the index using the single ciphertext FHE scheme
and then send the ciphertext to the server. For efficiency reasons, we can instead
directly use a symmetric encryption scheme to encrypt the index. The parame-
ters a and b link the partial ciphertext c(x, y) with its corresponding plaintext.
Specifically, the parameters a and b call a polynomial that is used to encrypt
the query index. Meanwhile, the polynomial ciphertext c(x, y) can be decrypted
using the parameters a and b directly, bypassing the auxiliary information u
and v. The server then outputs a function of the i-th data DB[i] related to
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the polynomial ciphertext. At this point, the user uses the parameters a and b
to decrypt the function and accurately obtain the DB[i] corresponding to the
index i. Throughout this process, the server provides some computational and
storage space but cannot access information about the index i. Therefore, our
NewtonPIR protocol still meets the security requirements.
By using this optimization, the need to compute modular inverses during the
query generation process is eliminated, and the time-consuming exponentiation
operations during the extraction process are no longer required, greatly improv-
ing computational efficiency. We will apply this optimization in the experiments
later.
Preventing the semi-malicious server. An important security enhancement
for PIR is the need to prevent the semi-malicious server from forging and tamper-
ing with data [15,28,31]. To prevent a semi-malicious server from forging entries
in the database as a response, we can add a verifiable process. Here is an ideal
approach: we use a hash function h to process the data because it is one-way.
We require the server to replace dj with dj ||h(dj) to compute the coefficients
and send the correct result to the client in the response R. Undoubtedly, the
length of dj ||h(dj) is less than n. The client can verify whether the server has
forged the entry. After decrypting the response R to obtain dj , the client can
compute the hash value h

′
(dj). If it matches the value h(dj) sent by the server,

then the entry dj corresponds exactly to index i, with no errors. If not, the server
is semi-malicious. We omit the details here.
Supporting databases with larger entries. We propose an extension to han-
dle this situation efficiently with large database elements in practical scenarios.
To handle entries larger than λ bits, the server divides each entry into λ-bit seg-
ments, effectively creating multiple sub-databases (DB1,DB2, · · · ,DBk), where
DBj corresponds to the j-th segment of all entries. The server applies the same
client query to all sub-databases. By performing multiple online queries and
combining the returned results, the client can retrieve any record of its choice.
Batching client queries (Batch PIR). In many applications [6,34,39], a client
wishes to retrieve k records from a PIR server. If the client runs the NewtonPIR
protocol k times on a database of size N , the total time for the server would be
approximately kN . We can apply the Batch PIR framework from [5], allowing
the client to retrieve k records at a cost much lower than kN for the server.
Specifically, the server uses batch codes [29] to add each entry to all candidate
buckets, and the client uses cuckoo hashing to assign each index to one of the
candidate buckets. Therefore, if a specific index i is assigned to bucket j on the
client side, bucket j on the server side is guaranteed to contain the i-th entry
of the database. The client and server perform a NewtonPIR instance for each
bucket to retrieve all the desired entries.
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5 Description of the PSI Protocol

We combine the single-ciphertext FHE encryption scheme with the framework
from [11] for the first time to construct the PSI protocol. The brief description
is as follows:

– Perform hashing. The receiver constructs a cuckoo hash table for its set
Y . Specifically, the receiver uses three hash functions h1, h2, h3 and a vector
{MR[0], · · · ,MR[m]} of O(|Y |) bins, where m is the size of the cuckoo hash
table. For each y ∈ Y , the receiver places y into bin MR[hi(y)] for some i,
ensuring that no bin contains more than one item. For all x ∈ X and all i ∈
{1, 2, 3}, the sender places x into bin MS [hi(x)]. Note that when |X| is larger
than m, each bin on the sender’s side will likely contain O(|X|/m) items.
The intersection X ∩ Y is then maintained as the union of the intersections
across all corresponding bins. In other words,

X ∩ Y =
⋃
j

MR[j] ∩MS [j] =
⋃
j

{yj} ∩MS [j],

where yj is the unique item in bin MR[j].
– Encrypt Y . The receiver encrypts y with the single-ciphertext FHE scheme

and sends the ciphertext c to the sender.
– Intersect. The sender randomizes the encoding using a uniformly sampled

element r and computes

ẑ = r
∏

x∈MS [j]

(c− x).

The sender then returns ẑ to the receiver.
– Decrypt and get result. When y ∈ MS [j], one term in the product be-

comes zero, so ẑ will be an encryption of zero. The receiver concludes that if
z = 0, then y ∈ X. In the case where y ̸∈MS [j], the product will be a non-
zero value. Therefore, z = 0 if and only if y ∈ X; otherwise, z is uniformly
distributed and independent of the set X.

To prevent the leakage of information about elements in the sender’s set that
are not in the intersection, we use the OPRF introduced in Section 3.3 to mask
the elements. The following describes the optimizations applied in our protocol.
Windowing and partitioning. For M ≈ |X|/m, the multiplication depth for
directly computing z is O(logM). Using the windowing technique, this can be
reduced to O(log(logM)). It is observed that z can be expressed as a polynomial
g(y) = gMyM + · · ·+ g1y+ g0, where the coefficients gi are determined by r and
MS [j]. The receiver sends encryptions of y, y2

1

, · · · , y2log M

, and the sender can
use these terms to compute all necessary powers of y with a multiplication depth
of O(log(logM)).
Using the partitioning technique, the sender’s bins are divided into t subsets. The
sender can then process these subsets independently, further reducing the multi-
plication depth to O(log(log(M/t))). As mentioned in Section 3.3, the drawback
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of this technique is that for each y, the response ciphertexts ẑ1, ẑ2, · · · , ẑt must
be sent back to the receiver, increasing the response size by a factor of t. To re-
duce the communication overhead, our protocol uses the single-ciphertext FHE
encryption.

6 Performance Evaluation

The performance of our NewtonPIR is contingent upon the selection of RSA
parameters. To identify the optimal choices, we conduct tests with varying pa-
rameters. We set the length of the module n to 2048 bits. In NewtonPIR, poly-
nomial multiplications are executed using the number-theoretic transformation
(NTT). To further optimize the computation, we utilize NFLlib [1], an efficient
library known for its arithmetic optimizations and AVX2 specialization tailored
for polynomial arithmetic operations.

6.1 Theoretical Analysis

Communication cost. In the NewtonPIR protocol, we use the single-ciphertext
FHE scheme to encrypt the index. On one hand, during the query generation
process, the index value can be directly encrypted without first splitting it into
multiple sub-indices according to the database dimensions, representing them
with multiple unit vectors, and then encrypting each of those unit vectors. On
the other hand, the generated query is sent to the server as a single cipher-
text, eliminating the need to send multiple ciphertexts based on the database
dimensions. These two aspects reduce both the dimensionality and the number
of ciphertexts sent, effectively lowering communication cost.
Below, we compare the communication complexity of NewtonPIR with different
PIR schemes. Among them, the Spiral scheme is currently the state-of-the-art
PIR scheme in terms of communication cost. The underlying encryption systems
of the compared schemes are based on the Learning with Errors (LWE) or Ring
Learning with Errors (RLWE) problems [35]. Additionally, we included a PIR
scheme based on the DGHV encryption scheme [42] as a comparison group. The
specific comparison is shown in Table 1, where the second column indicates the
underlying hard problem, and the third column indicates whether the scheme is
batched.
As shown in Table 1, the communication complexity of the FastPIR scheme is
linear with respect to the database size N , while other schemes based on the
LWE or RLWE problems exhibit sublinear complexity with N . In contrast, the
communication complexity of our NewtonPIR scheme is independent of N .
Computational cost. We analyze the computational complexity of our New-
tonPIR scheme from both the client and server perspectives. On the client side,
the encryption optimization introduced in Section 4.3 effectively reduces the
number of modular multiplications required during query generation. Specif-
ically, computing the polynomial F (x, y) involves 18 modular multiplications
and some modular additions, as each monomial aijxiyj in F (x, y) requires i+ j
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Table 1: Comparison of communication complexity between NewtonPIR and
existing schemes

Hardness Communication Batch
SealPIR [5] RLWE O(

√
N) ✗

MulPIR [4] RLWE O(
√
N) ✗

FastPIR [3] RLWE O(N) ✗

OnionPIR [38] RLWE O(logN) ✓

Spiral [37] RLWE O(logN) ✗

SimplePIR [26] LWE O(
√
N) ✗

Yi et al. [45] Approximate-GCD O(logN) ✗

NewtonPIR RSA O(1) ✓

modular multiplications. The time cost of modular additions is negligible com-
pared to that of modular multiplications. Therefore, the query generation phase
involves a total of 18 modular multiplications and some negligible modular ad-
ditions.
The server primarily uses the Newton interpolation polynomial to generate the
response value. In contrast to Scheme [44], which uses the Lagrange interpolation
with the computational complexity linear in N2, Newton interpolation allows for
simpler construction of the basis, leading to linear complexity with respect to
N . Additionally, with offline precomputation of interpolation coefficients and
the capability to process N bivariate polynomials in parallel, the computational
complexity for the server is significantly reduced.

6.2 Experimental Evaluations

Experimental setup. We conducted our experiments on a server equipped with
a 13th Gen Intel(R) Core(TM) i7-13700K processor, 16 cores, 64 GB of RAM,
enabled with AVX, running Ubuntu 22.04. In contrast with previous work, our
execution is single-threaded. We ran each experiment 10 times and reported
averages from those 10 trials. Standard deviations are less than 10% of the
reported means. NewtonPIR is implemented using C++ with the NTL Library
and the crypto++ library [41]. For details of our experiments, we refer to https:
//github.com/pflu/NewtonPIR.
We also provide an overview of the server’s monetary expenses, comprising the
combined costs of CPU usage for server computations and the expenses associ-
ated with server-side network traffic. These calculations are based on established
rates sourced from Amazon EC2 Instance prices [2], which currently stand at
one cent per CPU-hour and nine cents per GB of Internet traffic at the time of
writing.
Baselines. [5] provides a publicly available implementation of SealPIR, but it
lacks certain functionalities. We can only evaluate the computation and commu-
nication costs using the data points presented in their paper [5]. For FastPIR,

https://github.com/pflu/NewtonPIR
https://github.com/pflu/NewtonPIR
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Table 2: Performance of NewtonPIR scheme for different database sizes
N 212 213 214 215 216 217 218

Setup 1.84 s 7.41 s 15.72 s 57.55 s 126.16 s 238.48 s 323.48 s
Query Generation 3.6 µs 3.8 µs 4.7 µs 5.9 µs 6.3 µs 6.4 µs 6.7 µs
Response Generation 1.03 s 1.96 s 2.46 s 5.35 s 9.67 s 13.29 s 19.12 s
Extraction Process 1.56 ms 2.12 ms 3.56 ms 3.66 ms 4.53 ms 4.75 ms 4.59 ms
Server Cost (US cents) 0.00033 0.00059 0.00073 0.00153 0.00273 0.00374 0.00536

Table 3: Performance of Xu et al. scheme for different database sizes
N 212 213 214 215 216 217

Response Generation 9.87 h 19.74 h 39.48 h 78.97 h 157.94 h 315.88 h
Server Cost (US cents) 9.87004 19.74005 39.48005 78.97005 157.94005 315.88004

OnionPIR, and Spiral schemes, we use publicly available source codes [3,38,37]
and integrate them into our testing framework.
Computational cost. For the number of database entries ranging from 212 to
218, Table 2 shows the offline precomputation time, the computational cost of the
three processes during the online phase, and the server cost for the NewtonPIR
scheme. In Table 3, we separately list the response generation time and server
costs for Xu et al. scheme [44] to facilitate comparison between the two schemes.
In both tables, the size of the database entries used in the experiments is 1024
bits.
The Spiral scheme [37], based on the RLWE problem, takes an average of 2.46
seconds to generate response values when the database size is 218. As shown
in Table 2, our NewtonPIR scheme has a higher response generation time com-
pared to the Spiral scheme. However, the computational cost for query generation
and extraction in NewtonPIR are in the microsecond and millisecond range, re-
spectively, which is significantly better than RLWE-based schemes like SealPIR,
OnionPIR, and Spiral. Next, we compare NewtonPIR with non-RLWE-based
schemes. The response time in Table 3 reaches an hourly level, greatly impact-
ing the practicality of the scheme. With the precomputation in the offline phase,
NewtonPIR reduces the computational cost of response generation by several
orders of magnitude. In summary, the computational cost of our NewtonPIR
scheme is close to that of RLWE-based schemes, significantly enhancing its prac-
ticality.
Communication cost. Table 4 compares the communication cost of Newton-
PIR with recent PIR schemes. The “Rate” represents the ratio of the retrieved
record size to the response size and a higher ratio indicates a smaller response.
The experimental database contains 220 entries, with each entry being 256 bytes
in size. Green represents better performance.
As shown in Table 4, our NewtonPIR scheme has the highest rate, with commu-
nication cost 7.5× better than the state-of-the-art Spiral scheme. Compared to
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Table 4: Comparison of communication overhead between NewtonPIR and ex-
isting schemes

SealPIR[5] MulPIR[4] FastPIR[3] OnionPIR[38] Spiral[37] NewtonPIR
Query Size 67.7 KB 123.5 KB 33.5 MB 64.2 KB 15.9 KB 3.1 KB
Response Size 329.8 KB 120.8 KB 66.6 KB 126.1 KB 23.4 KB 2.2 KB
Rate 0.00076 0.00207 0.00375 0.00198 0.01068 0.11364
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NewtonPIR and existing schemes
across different database sizes
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Fig. 4: Communication comparison of
NewtonPIR and existing schemes for
varying entry size

other PIR schemes, NewtonPIR achieves a reduction in communication overhead
by 35.9∼75×.
Figures 3 and 4 respectively compare the communication overhead of NewtonPIR
with SealPIR, OnionPIR, and Spiral schemes under different database sizes and
entry sizes. In Figure 3, the number of database entries ranges from 216 to 224,
with each entry being 256 bytes in size. In Figure 4, the database size is set as
220.
As shown in Figure 3, the communication overhead of the SealPIR scheme in-
creases with the size of the database. In contrast, the communication overhead of
NewtonPIR, OnionPIR, and Spiral remains relatively stable, with NewtonPIR
demonstrating significantly lower communication cost compared to the other two
schemes. In Figure 4, as the entry size increases, the communication overhead
of the SealPIR scheme increases significantly. The overhead of NewtonPIR and
Spiral shows a slight rise, with NewtonPIR’s communication volume starting
to increase after the entry size exceeds 256 bytes. Although OnionPIR main-
tains a relatively steady overhead, its communication volume is higher than
that of NewtonPIR. Overall, as the database and entry sizes increase, Newton-
PIR’s communication overhead remains stable and outperforms the other three
schemes.
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7 Conclusion

In this paper, we introduce the NewtonPIR protocol, a communication efficient
single-server PIR scheme. The communication overhead of our scheme is indepen-
dent of the database size N . Specifically, NewtonPIR’s communication overhead
is 7.5× better than that of state-of-the-art PIR scheme and 35.9 to 75× better
than the other schemes. By leveraging the simplicity of constructing Newton
interpolation polynomial bases and precomputing coefficients during the offline
phase, NewtonPIR’s computational overhead is comparable to that of RLWE-
based PIR schemes. Additionally, we extend and construct a PSI protocol.
Our future work will focus on further improving the computational efficiency of
PIR protocols and exploring how to support database updates within PIR.
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