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Abstract

Impossible differential cryptanalysis is a crucial cryptanalytical method for sym-
metric ciphers. Given an impossible differential, the key recovery attack typically
proceeds in two steps: generating pairs of data and then identifying wrong
keys using the guess-and-filtering method. At CRYPTO 2023, Boura et al. first
proposed a new key recovery technique - the differential meet-in-the-middle
attack, which recovers the key in a meet-in-the-middle manner. Inspired by
this technique, we incorporate the meet-in-the-middle technique into impossible
cryptanalysis and propose a generic impossible differential meet-in-the-middle
attack (IDMA) framework. We apply IDMA to block ciphers SKINNY, SKINNYe-v2,
and ForkSKINNY and achieve remarkably efficient attacks. We improve the impos-
sible differential attack on SKINNY-n-3n by 2 rounds in the single-tweakey setting
and 1 round in the related-tweakey setting. For SKINNYe-v2, the impossible dif-
ferential attacks now can cover 2 more rounds in the related-tweakey setting
and the first 23/24/25-round attacks in the single-tweakey model are given. For
ForkSKINNY-n-3n, we improve the attacks by 2 rounds in the limited setting
specified by the designers and 1 round in relaxed settings. These results confirm
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that the meet-in-the-middle technique can result in more efficient key recovery,
reaching beyond what traditional methods can achieve on certain ciphers.

Keywords: Impossible differential cryptanalysis, Meet-in-the-middle, Key recovery,
SKINNY, ForkSKINNY

1 Introduction

Differential cryptanalysis [1] is one of the most powerful techniques in symmetric
cryptography, aimed at recovering the secret key by exploiting high-probability dif-
ferential characteristics that describe the propagation of input differences through a
cipher. Over the years, several variants of differential cryptanalysis have been devel-
oped, including boomerang attacks [2], higher-order differential cryptanalysis [3], and
impossible differential cryptanalysis, among others.

The impossible differential (ID) attack, introduced by Biham et al. [4] and Knudsen
[5], specifically exploits differentials that occur with a probability of zero. For a long
time, it was one of the most effective attacks against AES-128 [6, 7]. Differential-like
attacks generally involve two main steps. The first step is to identify a long characteris-
tic or distinguisher that spans as many rounds as possible. The search for (impossible)
differential characteristics has been thoroughly explored in the literature [8–13]. Once
a distinguisher is found, a key recovery attack is typically launched by adding several
rounds around the distinguisher.

In differential cryptanalysis, the objective is to identify the most probable key can-
didates. In contrast, impossible differential cryptanalysis focuses on eliminating key
candidates that would result in impossible differentials, thereby facilitating the recov-
ery of the master key. Despite their differences, these two cryptanalytic approaches
share many key recovery techniques, including the use of structures of data [14], the
early abort technique [15], and state test [16]. In [16], Boura et al. formalized impossible
differential cryptanalysis, where pairs of data that satisfy the plaintext and ciphertext
differences are first generated, and then key candidates that would allow any pair of
data to lead to the impossible differential characteristic are identified and discarded.
Generic complexity analysis formulas for executing such attacks were also derived in
[16]. Since then, this approach has become the standard framework for all impossible
differential attacks on block ciphers [7, 11, 12, 17, 18].

Recently, Boura et al. introduced a novel cryptanalysis technique known as the
differential meet-in-the-middle (MITM) attack [19]. This technique proposes to recover
the key in an MITM manner. In this approach, the conditions on plaintexts and
ciphertexts are considered separately at first and then combined later. Significantly
different from traditional differential key recovery attacks, this approach has yielded
favorable results on block ciphers SKINNY-128-384 and AES-256. Given that impossible
differential cryptanalysis is derived from differential cryptanalysis, one might wonder
if the MITM technique could be combined with impossible differential cryptanalysis.
This combination could potentially lead to more effective key recovery attacks for
certain block ciphers.
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Our contributions. In this paper, we incorporate the meet-in-the-middle technique
into the key recovery process of impossible differential attacks. Since the probability
of an impossible differential is zero, the MITM procedure of the differential meet-in-
the-middle attack, which is carried out on individual plaintext-ciphertext pairs, does
not apply in impossible differential attacks. To overcome this limitation, we proposed
implementing the MITM procedure for structures of plaintexts as in [20]. This gives
rise to the impossible differential meet-in-the-middle attack (IDMA).

In IDMA, in order to have efficient key recovery attacks, it is desirable to involve
balanced key bits before and after the impossible differential, as in standard MITM
attacks, e.g., [21, 22]. When the two sets of key bits around the impossible differential
are not balanced, inspired by the parallel partition technique as described in [19], we
propose an extended technique called isolate-and-unite. This technique is designed to
make the key bits balanced in the MITM procedure. It works by peeling off some
outer parts of the encryption that are isolated during the MITM procedure but will
be taken back into consideration during the matching process. This technique further
enhances the IDMA.

We apply the IDMA framework to three tweakable block ciphers, namely SKINNY,
SKINNYe-v2, and ForkSKINNY, in both the single-tweakey and related-tweakey settings.
In order to mount more effective ID attacks, we develop an integrated search model
that not only includes the distinguisher but also the extended parts. Our model of
IDMA is built upon an efficient CP-based tool recently proposed by Hadipour et al.
[11, 12]. As a result, we obtain significantly better attacks compared to traditional
impossible differential attacks for versions where the key size is more than twice the
block size. This confirms that the IDMA can outperform the traditional impossible
differential attacks on certain block ciphers. Our results are summarized as follows,
and the comparison with previous works is demonstrated in Table 1 and Table 2.

1. For SKINNY-n-3n in the single-tweakey setting, we not only improve the time com-
plexity of the impossible differential attack on 21-round SKINNY-n-3n, but also
successfully extend the attack by 2 rounds. At the same time, for SKINNY-n-3n in
the related-tweakey setting, we obtain an enhanced impossible differential attack
on 27 rounds and extend the attack by 1 round.

2. For SKINNYe-v2, for the first time, we present impossible differential attacks on
23/24/25-round SKINNYe-v2 in the single-tweakey setting. Additionally, we achieve
an improved impossible differential attack on 31 rounds in the related-tweakey
setting and further extend the attack by 2 rounds.

3. For ForkSKINNY, on the one hand, we not only provide improved related-tweakey
impossible differential attacks on 28-round ForkSKINNY-n-3n in the limited setting
but also successfully extend the attack by 2 rounds. On the other hand, we propose
enhanced related-tweakey impossible differential attacks on 32-round ForkSKINNY-
n-3n in the arbitrary setting and extend the attack by 1 round.

Organization. The rest of the paper is organized as follows. Some preliminaries of
impossible differential attacks and the differential meet-in-the-middle attack are given
in Section 2. Section 3 presents our generic impossible differential meet-in-the-middle
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Table 1: Summary of the cryptanalytic results of SKINNY-n-3n.

Cipher #R Attack Time Data Memory Setting Ref.

SKINNY-64-192

21 ID 2180.50 262 2170 STK [23]
21 ID 2174.42 262.43 2168 STK [11]
21 IDMA 2171.03 262.43 2168 STK App. A.1
22 IDMA 2188.99 261.03 2188 STK Sect. 4.5.1
23 Int 2155.60 273.20 2138 180,SK [24]
23 MITM 2188 228 24 STK [25]
23 Tr-Diff-MITM 2188 256 2104 STK [26]
23 IDMA 2188.99 261.03 2188 STK App. A.2
26 Int 2172 261 2172 180,SK [11]
26 Int 2166 262 2164 180,SK [12]

27 ID 2189 263.53 2184 RTK [27]
27 IB 2168.23 267.10 2160 RTK [28]
27 ID 2183.26 263.64 2172 RTK [11]
27 IDMA 2183.00 263.64 2172 RTK App. A.3
28 IB 2190.80 266.37 2184 RTK [28]
28 IDMA 2188.99 265.03 2188 RTK App. A.4
31 Rect. 2182.07 262.78 262.79 RTK [29]

SKINNY-128-384

21 ID 2347.35 2122.89 2336 STK [11]
21 IDMA 2344.33 2122.89 2336 STK App. A.1
22 IDMA 2378.22 2121.50 2376 STK Sect. 4.5.1
23 MITM 2376 2104 28 STK [30]
23 DS-MITM 2372 296 2352.46 STK [31]
23 Diff-MITM 2361.90 2117 2118.50 STK [19]
23 IDMA 2378.22 2121.50 2376 STK App. A.2
24 Diff-MITM 2361.90 2117 2183 STK [19]
24 Diff-MITM 2372.50 2122.30 2123.80 STK [19]
25 Diff-MITM 2372.50 2122.30 2188.30 STK [19]
25 Diff-MITM 2378.90 2177 2165 STK [26]
25 Diff-MITM 2366 2122.30 2188.30 STK [26]
26 Int 2344 2121 2340 360,SK [11]
26 Int 2331 2122 2328 360,SK [12]

27 ID 2378 2126.03 2368 RTK [27]
27 IB 2337 2131.30 2320 RTK [28]
27 ID 2362.61 2124.99 2344 RTK [11]
27 IDMA 2361.06 2124.99 2344 RTK App. A.3
28 IB 2382.80 2130.26 2368 RTK [28]
28 IDMA 2378.22 2129.50 2376 RTK App. A.4
32 Rect. 2344.78 2123.54 2129.54 RTK [32]

Int: Integral, IB: Impossible Boomerang, DS-MITM: Demirci-Selcuk MITM, Rect.: Rect-
angle, Diff-MITM: Differential MITM, Tr-Diff-MITM: Truncated Differential MITM,
IDMA: Impossible Differential MITM Attack, STK/RTK: single/related-tweakey, SK:
single-key with given keysize.

attack (IDMA) framework and a flexible key guessing strategy supported by the isolate-
and-unite technique. In Section 4, we apply the IDMA framework to SKINNY, SKINNYe-
v2, and ForkSKINNY and present a 22-round attack on SKINNY-n-3n in the single-
tweakey setting and a 30-round attack on ForkSKINNY-n-3n in the related-tweakey
setting. Other attacks are postponed to appendices. Finnaly, Section 5 concludes the
paper.
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Table 2: Summary of the cryptanalytic results of SKINNYe-v2 and
ForkSKINNY-n-3n.

Cipher #R Attack Time Data Memory Setting Ref.

SKINNYe-v2

23 IDMA 2255.29 263.99 2240 STK App. B.1
23 IDMA 2243.00 268.17 2240 STK App. B.1
24 IDMA 2255.29 263.99 2252 STK App. B.2
25 IDMA 2255.29 263.99 2252 STK App. B.3
30 Int 2232 265 2228 240,SK [11]

31 ID 2251.14 263 2110 RTK [12]
31 IDMA 2250.22 263 2236 RTK App. B.4
32 IDMA 2252.99 265.03 2252 RTK App. B.5
33 IDMA 2252.99 265.03 2252 RTK App. B.6

ForkSKINNY-64-192

28∗ ID 2169.60 261 2104 RTK [12]
28∗ IDMA 2168.90 261 2156 RTK App. C.1
30∗ IDMA 2188.99 265.03 2188 RTK Sect. 4.5.2
32 ID 2186.27 263 2114 RTK [12]
32 IDMA 2186.22 263 2176 RTK App. C.2
33 IDMA 2188.99 265.03 2188 RTK App. C.3

ForkSKINNY-128-384

28∗ IDMA 2316.82 2118.54 2312 RTK App. C.1
30∗ IDMA 2378.22 2129.50 2376 RTK Sect. 4.5.2
32 IDMA 2356.14 2125.27 2352 RTK App. C.2
33 IDMA 2378.22 2129.50 2376 RTK App. C.3

* indicates the limit setting of ForkSKINNY specified by the designers.

2 Preliminaries

2.1 Impossible Differential Attacks

The impossible differential attack is a significant cryptanalysis of block ciphers, which
was independently introduced by Biham et al.[4] and Knudsen [5]. The core idea of
the attack lies in exploiting the impossible differentials, which are the differentials
that occur with zero probability. The common approach is to extend the impossible
differential by a specific number of rounds in both directions. Subsequently, guess the
key bits involved in those rounds and check whether a pair is partially encrypted and
decrypted to the impossible differential. If so, the key should be eliminated from the
space of candidate keys.

Key Recovery Attacks. Let E = Ef ◦Ed◦Eb be a block cipher with an impossible
differential ∆x ↛ ∆y over Ed, where Eb and Ef are the extended parts on both sides
of Ed, as shown in Figure 1.

Suppose the block size of the block cipher E is n bits and the key size is k bits. The
input difference ∆x (resp. ∆y) of Ed propagates over E−1

b (reps. Ef ) with probability
1 to ∆P (resp. ∆C). Let Vb (resp. Vf ) be the space spanned by all possible ∆P (resp.
∆C) where rb = log2 |Vb| (resp. rf = log2 |Vf |). Let kb be the subset of subkey bits
which are employed in Eb and kf be the subset of subkey bits which are employed
in Ef . Let |kb| and |kf | be the number of bits in kb and kf . Let cb be the number of
conditions that should be satisfied for ∆P → ∆x, that is, cb is the number of filtering
bits under the guessed key bits for Eb. Let cf be the number of conditions that should
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Fig. 1: A high-level description of the impossible differential attack

be satisfied for ∆C → ∆y, that is, cf is the number of filtering bits under the guessed
key bits for Ef .

The core idea for the key recovery attack based on an impossible differential is
to exploit the impossible differential in Ed to retrieve the key by discarding all key
candidates leading to ∆x ↛ ∆y over Ed. The number of all possible candidates for the
subkey involved in Eb and Ef is 2|kb∪kf |. Suppose the impossible differential attack
needs N pairs messages that satisfy the plaintext difference ∆P and the ciphertext
difference ∆C. For a given key, the probability that the key is retained is

Pr = (1− (2−(cb+cf )))N ≈ e−N2−(cb+cf )

.

Thus, after testing all the key candidates with N pairs, the number of the remaining
key candidates is 2|kb∪kf | · Pr.

Complexities. Let Pr = 2−x, i.e., x information bits of the key can be recovered

using N pairs of messages. Thus e−N2−(cb+cf )

= 2−x and N = 2cb+cfx ln 2 = 2cb+cf+z

if we let x ln 2 = 2z. We consider all possible ways of acquiring data, including multiple
structures and a partial structure.

• When y ≥ 1 structures of data is needed, let D = y ·2rb and N = y ·22rb−1 ·2−n+rf =
D · 2rb−1−n+rf . We get that D = 2cb+cf+z+n+1−rb−rf .

• When a partial structure is enough, D plaintexts will construct N = D2/2 · 2−n+rf

pairs by choosing the plaintexts and N = D2/2 · 2−n+rb pairs by choosing the

ciphertexts. We get D = minr∈{rb,rf}
√
2cb+cf+n+1−r+z.

Thus, the data complexity is

D = max{ min
r∈{rb,rf}

{
√
2cb+cf+n+1−r+z}, 2cb+cf+n+1−rb−rf+z}.

The time complexity is composed of three parts:

T = D + 2|kb∪kf |+z + 2k−x,
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where the first term is the time complexity of collecting data, the second term is
the time complexity of processing the key candidates, and the last one is the time
complexity of the exhaustive search. Note that, this formula of the time complexity
is a lower bound while the actual time complexity depends on the concrete situation.
The memory complexity is M = min{N, 2|kb∪kf |}.

2.2 Differential Meet-in-the-Middle Attacks

The differential meet-in-the-middle (MITM) attack was first proposed by Boura et
al. [19] at CRYPTO 2023, as depicted in Figure 1. Suppose the probability of the
differential ∆x→ ∆y over Ed is 2−p. The core idea of the attack is to randomly choose
a plaintext-ciphertext pair (P,C), prepare two separate sets, each for one side, and
find out the possible right key when the two sets are matched. This process repeats
about 2p times until the unique right key is found.

Detailed steps of the differential meet-in-the-middle attack are illustrated in Algo-
rithm 1. For the chosen pair (P,C), it generates a set of P̃ by traversing all possible

subkey kb involved in Eb so that (P, P̃ ) satisfies the input difference ∆x, generate a

set of Ĉ by traversing all possible subkey kf involved in Ef so that (C, Ĉ) satisfies the
output difference ∆y. If P belongs to one right pair, then the right kb and kf must

lead to a match between C̃ and Ĉ. In other words, we will get one right pair satisfying
Eb(P )⊕Eb(P̃ ) = ∆x and E−1

f (C)⊕E−1
f (Ĉ) = ∆y and the corresponding keys kb and

kf .

Algorithm 1 Differential Meet-in-the-Middle Attack [19]

1: Randomly choose 2p plaintext-ciphertext pairs (P,C).
2: for each one do
3: for each possible i for kb, do
4: Compute P̃ i that Eb(P )⊕ Eb(P̃

i) = ∆x.

5: Acquire C̃i = E(P̃ i) and store (C̃i, i) in a hash table H.
6: end for
7: for each possible j for kf , do

8: Compute Ĉj that E−1
f (C)⊕ E−1

f (Ĉj) = ∆y.

9: for each i ∈ H(Ĉj) do

10: Get (C̃i, Ĉj) and (i, j).
11: Test candidates (i, j) against extra data.
12: end for
13: end for
14: end for

Complexities. The data complexity of the attack can be roughly estimated as D =
min{2n, 2p+min(|kb|,|kf |)}. The time complexity of this attack can be estimated as

T = 2p ×
(
2|kb| + 2|kf |

)
+ 2|kb∪kf |−n+p + 2k−n+p,
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where the first term corresponds to the computations done in the upper part Eb

and the lower part Ef , the second one to the number of expected key candidates for
kb ∪ kf and the last one to the exhaustive search. The memory complexity is given
by M = 2min(|kb|,|kf |), but it can be improved to 2min(|kb|,|kf |)−|kb∩kf | by guessing the
common key material at the beginning.

3 New Generalized Impossible Differential Attack

3.1 Motivations and Obstacles

The differential meet-in-the-middle attack has demonstrated significantly better
results than traditional differential attacks in the analysis of certain block ciphers.
For instance, the differential meet-in-the-middle attack on SKINNY-128-384 [19] can
successfully cover 25 rounds in the single-key setting, a feat beyond the reach of con-
ventional differential key recovery attacks. This leads to an intriguing question: can
the meet-in-the-middle technique be combined with the impossible differential attack to
enhance its effectiveness against certain block ciphers?

In a differential meet-in-the-middle attack, if the underlying differential character-
istic has a probability of 2−p, then typically 2p plaintext-ciphertext pairs (P,C) are
chosen for the meet-in-the-middle procedure, as shown in Algorithm 1. However, in
an impossible differential attack, the probability of the differential is zero. How can
this obstacle be addressed?

Upon examining the differential meet-in-the-middle attack, it becomes clear that
it essentially involves storing data that satisfies the conditions on one side of the
differential characteristic in a table, generating data that satisfies the conditions on
the other side, and then combining data from both sides by looking up the table.
Notably, choosing plaintext-ciphertext pairs (P,C) is unnecessary before initiating the

MITM procedure. Instead, one potential solution is to store full pairs (C, C̃) that meet

the conditions on one side, rather than storing individual ciphertexts C̃. With this
adjustment, matching should occur based on both messages. Building on this idea,
we propose the generalized impossible differential attack framework that specifically
utilizes the meet-in-the-middle technique.

3.2 Impossible Differential Meet-in-the-Middle Attack (IDMA)

In the following, we describe our algorithm for the impossible differential attack that
utilizes the meet-in-the-middle technique. Suppose an impossible differential ∆x ↛ ∆y
over Ed is used in the attack. Other parameters for the key recovery are the same
as introduced in Section 2.1 and Figure 1. The specific steps of our algorithm are as
follows when multiple structures of data are used. When a partial structure is enough,
the steps of the attack are similar.

1. Initialize a vector L of flags for all possible kb ∪ kf .
2. Phase of data collection. Collect and store y structures of 2rb plaintexts and the

corresponding ciphertexts, from which there will be N = y22rb−1+rf−n pairs of
messages having an input difference in ∆P and an output difference in ∆C.

3. Phase of MITM. For each of the y structure, guess the subkey k∩ = kb ∩ kf :
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(a) Generate the first set. For each data (P,C) in the structure, guess the subkey
kb \ k∩ and partially encrypt P . Store the data in a hash table indexed by the
n−rf +cb filtering bits and one can get N

y 2
|kb|−cb pairs with the fixed difference

on the filtering bits. Further, store the corresponding (C, C̃) together with the
guessed kb in a hash table H.
The time complexity of this step is 2|kb|D partial encryption and N2|kb|−cb

memory accesses.
(b) Generate the second set. For each data (P,C) in the structure, guess the subkey

kf \ k∩ and partially decrypt C. Store the data in a hash table indexed by the

n− rf + cf filtering bits and one can get N
y 2

|kf |−cf pairs (C, C̃) with the fixed
difference on the filtering bits.
The time complexity of this step is 2|kf |D partial decryption and N2|kf |−cf

memory accesses.
(c) Match two sets. Look up the hash table H by using the pairs from the second

set as the index. There will be N2|kb∪kf |−cb−cf matched pairs (C, C̃).

(d) Discard wrong key candidates. For each matched pair (C, C̃), extract the asso-
ciated key candidates for kb ∪ kf and discard these key candidates by updating
the key flags.
The time complexity of this step is N2|kb∪kf |−cb−cf memory accesses.

4. Phase of exhaustive search. For the left key candidates, guess the remaining key bits
and exhaustively search over them to recover the right key. The time complexity
of this step is 2k−x where 2−x = (1− 2−(cb+cf ))N .

Note that, in Step 3(a), pairs of messages are stored. Analyzing how many matched
pairs can be obtained in Step 3(c) is crucial. We divide it into two sub-cases.

• When multiple structures are used. Given two random pairs from the same structure,
they will match with probability 2−2rb+1 as there are 22rb−1 pairs in a struc-
ture. Therefore, there will be y · 2|kb∪kf | · 22rb−1−cb · 22rb−1+rf−n−cf · 2−2rb+1 =
N2|kb∪kf |−cb−cf pairs in Step 3(c).

• When a partial structure is used. Given two random pairs from a partial structure
of D =

√
N2n+1−rf plaintexts, they will match with probability 2/D2, result-

ing N2|kb∪kf |−cb−cf pairs in Step 3(c) as well due to 2|kb∪kf | · D2 · 2−1−cb · D2 ·
2−1+rf−n−c′f · 2/D2 = N2|kb∪kf |−cb−cf .

Therefore, there are N2|kb∪kf |−cb−cf matched pairs in either cases. The complexities
of the differential meet-in-the-middle attack are as follows.

Data complexity. Taken all possible ways of acquiring data, the data complexity is

D = max{ min
r∈{rb,rf}

{
√
2cb+cf+n+1−r+z}, 2cb+cf+n+1−rb−rf+z}, (1)

where 2z = x ln 2.

Memory complexity. Memory consumption consists of three components: storage
for data, storage for pairs, and storage for key flags. Therefore, the memory complexity
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is

M = max{D/max{1, y},min{N2|kb|−cb , N2|kf |−cf }/max{1, y}, 2|kb∪kf |}.

Time complexity. The time complexity of collecting data is T0 = D, the time
complexity of doing partial encryption and decryption under the guessed key bis is

T1 = (2|kb| + 2|kf |) ·D,

the time complexity of getting pairs of data that satisfy the conditions of the input
difference and the ouput difference is

T2 = N2|kb|−cb +N2|kf |−cf ,

the time complexity of extracting the wrong key candidates is

T3 = 2|kb∪kf |+z,

and the time complexity for the exhaustive search is T4 = 2k−x. The overall time
complexity is equivalent to

T = T0 + T1 · CE + (T2 + T3) · CM + T4

times of encryption, where CE is the ratio of the cost of partial encryption to the full
encryption and CM is the ratio of the cost of memory access to the full encryption.

3.3 A Flexible Key Guessing Strategy

In the impossible differential meet-in-the-middle attack described in Section 3.2, all
possible values for kb and kf are exhaustively guessed to get the two sets during
the meet-in-the-middle procedure (Step 3(a) and 3(b)). However, in scenarios where
2|kb| ·D and 2|kf | ·D are not close, it may be advantageous to guess fewer bits of kb or
kf . To address this, we propose a method called the isolate-and-unite technique that
allows skipping some outer key bits on one side in the meet-in-the-middle procedure.

Isolate-and-unite: outer key bits unguessed. Inspired by the techniques in
meet-in-the-middle attacks like the initial structure [33], an improvement called paral-
lel partition was proposed for the differential meet-in-the-middle attack [19, 34]. This
technique allows to increase the number of rounds attacked in certain situations.

Building on the same idea of parallel partition, we formalize the isolate-and-unite
technique for IDMA which allows to leave some outer key bits unguessed. These outer
key bits are used at the beginning or end of the encryption process. This approach
involves peeling off a portion of the outer encryption and then applying the meet-
in-the-middle procedure to the remaining part. The isolated portion is accounted for
during the matching process.

To illustrate this concept, we showcase the technique on a toy cipher as depicted in
Figure 2. The cipher E = Ef ◦Ed◦Eb has block size n = 6c, where Eb begins with a key
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addition (AK). Suppose the key recovery attack is mounted based on an impossible
differential ∆x ↛ ∆y over Ed. The parameters are: rb = 5c, rf = 4c, |kb| = 8c and
|kf | = 6c. Suppose the attack requires y > 1 structures of plaintexts, so D = y · 2rb .
Then computing the two sets in the MITM procedure takes a time complexity T1 =
2|kb| ·D + 2|kf | ·D ≈ 28c ·D.
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Fig. 2: An illustration of the isolate-and-unite method

As the sizes of kb and kf are not balanced, we consider peeling off a portion at
the beginning of the encryption to reduce kb. For example, we peel off P [0, 1]⊕ k∗b =
P ′[0, 1], as illustrated in Figure 2. Note that the map from P [0, 1] to P ′[0, 1] is a keyed
permutation within the active part of Eb, so each structure of P is also a structure of
P ′[0, 1]||P [2 ∼ 5] after the keyed permutation. We can then carry the MITM procedure
for P ′[0, 1]||P [2 ∼ 5] and the ciphertext C with the 6c-cell k′b involved and the 2c-
cell k∗b is isolated. Therefore, computing the two sets now takes a time complexity

T2 = 2|k
′
b| ·D + 2|kf | ·D ≈ 26c ·D, which is lower than before.

During the matching process, the relation P [0, 1]⊕k∗b = P ′[0, 1] can be considered.
For the data in the first set, P ′[0, 1] is known; for the data in the second set, C
is known and thus P is known according to the data set. If k∗b can be computed
with k∗b = gb(k

′
b) ⊕ gf (kf ) for some functions gb, gf , the data of the two sets can be

matched by P [0, 1]⊕gf (kf ) = P ′[0, 1]⊕gb(k′b), meaning the matching can be performed
effectively with no extra computational cost. Consequently, the time complexities T1 =
(2|k

′
b| + 2|kf |) ·D, T2 = N2|k

′
b|−cb +N2|kf |−cf , and T3 = 2|kb∪kf |+z can be achieved,

thereby potentially reducing the overall time complexity of the attack.
In this case, we call k∗b cost-free isolable. When k∗b shares no common information

with k′b ∪ kf , k
∗
b is also cost-free isolable, and each combination of P [0, 1] and P ′[0, 1]

suggests a candidate for k∗b . We formalize the definition of the cost-free isolable key
bits as follows.
Definition 1. (Cost-free isolable key bits) Let k∗b be the key involved in the isolated
function from P [I] to P ′[I] where I is an index set for cells and f1(P

′[I]) = k∗b ⊕
f2(P [I]) for some reversible functions f1, f2. If matching can be performed and k∗b
determined with the time complexity equivalent to the number of values of kb ∪ kf to
be discarded, then k∗b is referred to as cost-free isolable key bits. Specifically, this
is the case if:
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- k∗b ⊂ kb \ (kb ∩ kf ) or
- k∗b ⊂ (kb ∩ kf ) can be derived from k′b and kf such that k∗b = gb(k

′
b) ⊕ gf (kf ) for

some functions gb, gf ,

then k∗b is cost-free isolable. The same definition applies to the key bits in the forward
extension Ef .

Note the isolated function should be located within the active part of Eb or Ef .
Since structures of messages can only be constructed on one side at a time, this method
applies to either the plaintext or ciphertext side. An example application can be found
in the attacks on ForkSKINNY-n-3n discussed in Section 4.5.2.

Comparison with the parallel partition. When the parallel partition technique
is employed, the differential meet-in-the-middle attack can extend by one or two extra
rounds without increasing complexity, provided that the subkey used in the extra
round(s) can be deduced from kb and kf . In the context of impossible differential
attacks, the isolate-and-unite technique serves as a counterpart to the parallel partition
method. It is important to note that in an impossible differential attack, the condition
|kb ∪kf | < k must hold, whereas this restriction does not apply in differential attacks.
The parallel partition technique typically allows for covering an entire round at no
additional cost in a differential meet-in-the-middle attack. However, adding a full
round is often infeasible in an impossible differential attack due to this restriction. In
our work, the isolate-and-unite technique extends the parallel partition approach by
applying isolation at a more granular level, such as S-boxes, rather than full rounds.
Additionally, the conditions for employing this technique are more flexible, as it can
be utilized even when the isolated subkey k∗b cannot be directly derived. As a result,
the isolate-and-unite technique not only aligns more effectively with the impossible
differential attacks but also generalizes and enhances the parallel partition technique.

3.4 Comparison of the IDA, DMA and IDMA

As variants of differential cryptanalysis, the Impossible Differential Attack (IDA),
the Differential MITM Attack (DMA), and the Impossible Differential MIMT Attack
(IDMA) share similarities in the key recovery process. They all involve a distinguisher
and several outer rounds, with the potential keys for the outer rounds determined
using the distinguisher as a sieve. However, these approaches differ in how data pairs
are generated and how filtering techniques are applied.

The IDA generally uses the data structure to generate pairs and then employs
the guess-and-determine technique to verify whether the distinguisher is satisfied. The
DMA generates data pairs by traversing the keys and then verifies whether the dis-
tinguisher is satisfied by matching a single ciphertext through the meet-in-the-middle
technique. The IDMA makes use of the data structure to generate pairs, combines the
flexible guessing strategy with the meet-in-the-middle technique, and finally verifies
whether the distinguisher is satisfied by matching on the plaintext-ciphertext pairs.
We present the comparisons in Table 3.

12



Table 3: Comparisons of three related attacks

Attacks
Structure technique MITM technique Flexible key
for pair generation for key recovery guessing strategy

IDA ✓ × ×

DMA × ✓ ×
on one ciphertext

IDMA ✓
✓

✓on a pair of
ciphertexts

4 Applications to SKINNY and ForkSKINNY

In this section, we analyze two block ciphers, SKINNY and ForkSKINNY, using the
impossible differential meet-in-the-middle attack framework described in Section 3.2.

We begin with a brief overview of SKINNY and ForkSKINNY, followed by the devel-
opment of a constraint programming (CP) model. This model is designed to search for
efficient impossible differential meet-in-the-middle attacks on these ciphers by mini-
mizing the complexities of the attack. Both the single-tweakey and related-tweakey
settings are considered. In the related-tweakey setting, multiple impossible differen-
tial characteristics may share the same activeness pattern. We formalize the use of
these multiple characteristics to effectively reduce the data complexity. The appli-
cation of the IDMA framework to SKINNY and ForkSKINNY demonstrates that when
k = 3n or k = 4n, our approach achieves more effective attacks compared to traditional
impossible differential attacks.

4.1 The Description of SKINNY and ForkSKINNY

4.1.1 Description of SKINNY

SKINNY is a family of lightweight block ciphers proposed by Beierle et al. at CRYPTO
2016 [35], which employs the TWEAKEY framework from [36]. SKINNY has two block
sizes, n ∈ {64, 128}, and for each block size, it provides three main tweakey size
versions, t ∈ {n, 2n, 3n}. SKINNY-n-t represents SKINNY with n-bit block size and t-bit
tweakey size. The internal state of SKINNY is a 4× 4 array of cells arranged in a row-
major order, where each cell is a nibble (in the n = 64 case) or a byte (in the n = 128
case). For simplicity, we use c to denote the cell size. The tweakey state of SKINNY
is viewed as a collection of z 4 × 4 square arrays of cells, where z = t/n ∈ {1, 2, 3}
denotes the tweakey size to block size ratio. These arrays are denoted as TK1 when
z = 1, TK1 and Tk2 when z = 2, and finally TK1, TK2 and TK3 when z = 3.

As shown in Figure 3, the round function of SKINNY is composed of five
transformations as follows.

1. SubCells (SC) - A 4-bit (resp. 8-bit) S-box is applied to every cells of the cipher
internal state when n is 64 (resp. n is 128).

2. AddConstants (AC) - This step adds constants to the internal state using the bitwise
exclusive-or (XOR).

13



0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

Fig. 3: The ordering of state cells and the SKINNY round function [35].

3. AddRoundTweakey (ART) - The first two rows of the internal state absorb the first
two rows of STK, where STK =

⊕z
i=1 TKi.

4. ShiftRows (SR) - Each cell in row j is rotated to the right by j cells.
5. MixColumns (MC) - Each column of the internal state is multiplied by the matrix

M . The matrix M and its inverse are as follows.

M =




1 0 1 1
1 0 0 0
0 1 1 0
1 0 1 0


 ,M−1 =




0 1 0 0
0 1 1 1
0 1 0 1
1 0 0 1




Tweakey schedule of SKINNY. The master tweakey state of SKINNY is split into
z 4 × 4 square arrays of cells, denoted as (TK1, ..., TKz), where z ∈ {1, 2, 3}.
The tweakey arrays in round r ≥ 0 are represented as (TK1r, ..., TKzr), and the
subtweakey STKr =

⊕z
i=1 TKir. For r ≥ 1, TKir is generated in two steps:

- First, apply the permutation P = [9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7] to each
tweakey array: TKjr[i]← TKj(r−1)[P [i]], where 1 ≤ j ≤ z, 0 ≤ i ≤ 15;

- Then, apply an LFSR to update each cell of the first and second rows of TKjr for
j = 2, 3.

For more detailed information about SKINNY, please refer to [35].

SKINNYe-v2. At EUROCRYPT 2020, Naito et al. extended SKINNY-64 to create
SKINNYe-64-256 [37]. Due to security concerns raised by Thomas Peyrin, an updated
version, SKINNYe-v2, was proposed in 2020 [38], which had the same round functions
as SKINNY. SKINNYe-v2 employs the same TWEAKEY framework as SKINNY but has a
256-bit tweakey state. The tweakey schedule of SKINNYe-v2 splits the master tweakey
into 4 tweakey arrays, denoted as TK1, TK2, TK3, and TK4. The tweakey state
is updated as follows. First, the same permutation P of SKINNY is applied to each
tweakey array. Then, every nibble of the first two rows of TK2, TK3 and TK4 is indi-
vidually updated with the corresponding LFSR. For more detailed information about
SKINNYe-v2, please refer to [38].

4.1.2 Description of ForkSKINNY

ForkSKINNY is a tweakable block cipher proposed by Andreeva et al. [39] at ASI-
ACRYPT 2019, which follows the Forkcipher design strategy and employs SKINNY as
its underlying primitive. As shown in Figure 4, ForkSKINNY takes n-bit plaintext as
input and generates 2n-bit ciphertext. We use the same notation as in [18], with ri
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denoting the number of rounds before the fork point, and r0 and r1 representing the
number of rounds in the C0 and C1 branches, respectively. According to the underly-
ing SKINNY variant and the parameters (ri, r0, r1), ForkSKINNY has five variants. We
focus on two variants of it, as listed in Table 4. Each ForkSKINNY was designed to have
a 128-bit key. However, we allow the key size as large as the tweakey size. Extending
the key to more than 128 bits definitely leads to a variant that differs from the original
one. However, the security analysis of the variant with a longer key may help define
the upper bounds for the original cipher. For ForkSKINNY, it has been analyzed with
its key extended to 192 bits or 256 bits in [12, 18].

TKS

RF RF

TKS TKS TKS

RF

RF

RF

RF

TKS TKS

Fig. 4: The Forkcipher framework

Table 4: The two ForkSKINNY variants investigated in this work.

Variant Block size Tweakey size ri r0 r1

ForkSKINNY-64-192 64 192 17 23 23
ForkSKINNY-128-384 128 384 25 31 31

According to the designers, a reduced-round instance of ForkSKINNY should
decrease the number of rounds equally from all three branches. This configuration is
referred to as the limited setting, whereas the arbitrary setting does not impose this
requirement. For more detailed information about ForkSKINNY, please refer to [39].

4.2 Searching for Attacks on SKINNY and ForkSKINNY

Key recovery attacks based on the meet-in-the-middle technique are typically advan-
tageous when the key size is at least twice the block size. In this section, we aim to
apply the impossible differential meet-in-the-middle attack framework (IDMA) to vari-
ants of SKINNY and ForkSKINNY with large tweakey sizes and try to find more efficient
attacks than those achieved through traditional key recovery methods. To accomplish
this, we build Constraint Programming (CP) models specifically designed for searching
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impossible differential attacks. These models not only specify the underlying impossi-
ble differential distinguisher but also optimize the time complexity of the key recovery
attack.

4.2.1 Model for Searching Impossible Differential
Meet-in-the-Middle Attacks

Goal. According to our IDMA framework and the formula for the time complexity,
the core parameters that directly influence the complexities of impossible differential
attacks are cb, cf , |kb|, |kf |, and |kb∪kf |. First, it is crucial that |kb∪kf | remains smaller
than k, as T3 is bounded by |kb ∪ kf |. Additionally, we have observed that balancing
|kb| and |kf | as evenly as possible leads to more efficient impossible differential attacks
using the meet-in-the-middle technique. This also implies that the number of rounds
extended on both sides of the impossible differential distinguisher needs to be balanced.
Specifically, the goal of the model is to identify the impossible differential attacks that
either cover more rounds or have lower time complexity by maintaining a balance
between |kb| and |kf | while ensuring |kb ∪ kf | < k.

Model. The impossible differential attack typically involves two main steps: first,
identifying an impossible distinguisher over a set of rounds, and second, extending
additional rounds around the distinguisher to perform a key recovery attack. However,
the best impossible differential distinguisher does not always result in a key recovery
attack with optimal complexities, as demonstrated in many previous studies [27, 40].
To address this issue, it is more effective to integrate the impossible differential dis-
tinguisher and the extended parts into a unified approach, enabling the search for the
most efficient key recovery attacks.

Next, we outline how to build our models for searching impossible differential
attacks dedicated to IDMA. The model not only covers the distinguisher but also the
extended parts, which contribute to the core parameters cb, cf , |kb|, |kf | and |kb∪kf |.
While this might initially appear complex, it is made more manageable by leveraging
an efficient CP-based tool recently proposed by Hadipour et al. [11, 12]. Their tool
exploits Minizinc [41] and is designed for traditional key recovery, focusing primarily
on the size of |kb ∪ kf | and other related parameters. However, in our attacks, the
individual sizes of kb and kf are also of significant importance.

To address these concerns, we change Hadipour et al.’s model and replace the key
recovery part with a new one that captures kb and kf and reflects the time complexities
unique to our new attack strategy, as shown below. To ensure compatibility with
MiniZinc, the complexities are evaluated by their exponents. This results in a model
that is fully aligned with our impossible differential attack framework. The source
codes of our model can be accessed via this link. By running this updated model, we
can achieve key recovery attacks that are optimized for the new impossible differential
attack methodology.
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D0 := cb + cf + z + n+ 1− rb − rf , 2
z = x ln 2,

D1 := min
r∈{rb,rf}

{(cb + cf + z + n− r + 1)/2},

T0 := max{D0, D1},
T1 := max{|kb|, |kf |}+ T0,

T2 := max{cf + z + |kb|, cb + z + |kf |},
T3 := |kb ∪ kf |+ z, |kb ∪ kf | < k,

T4 := k − x,

T := max{T0, T1, T2, T3, T4}.

4.3 Multiple Impossible Differential Characteristics in the
Related-Tweakey Setting

In the related-tweakey setting, an impossible differential characteristic of SKINNY and
ForkSKINNY is identified by its input/output activeness pattern and the tweakey
activeness pattern, where the tweakey difference typically determines the specific input
difference and output difference of the impossible differential characteristic. When the
tweakey difference varies, this results in a set of impossible differential characteristics.
Note in a key recovery attack, the same kb and kf are involved for any impossible
differential characteristic in this set due to the same input/output activeness pattern.
Such multiple impossible differential characteristics are different from those in the
single-key setting as discussed in [16]. Suppose that the number of possible tweakey
differences is 2rk . What advantages can we gain from utilizing such a set of impossible
differential characteristics?

4.3.1 How to Use Multiple Impossible Differential Characteristics

Plaintext structures are a common technique in differential-like cryptanalysis, enabling
an efficient generation of plaintext pairs by enjoying the birthday effect. In the key
recovery attack illustrated in Figure 1, rb bits of the plaintext are activated, which
directly determines the size of the plaintext structures. With a set of 2rk impossible
differential characteristics, the allowable size for a structure can be expanded from 2rb

to 2rb+rk if the tweakey difference is considered as part of the input. This expansion
can result in a reduction in data complexity.

4.3.2 Improvement on the Data Complexity

Recall that N = 2cb+cf+z. In the related-tweakey setting where impossible differential
characteristics are employed, we have cb = rb and cf = rf , leading to N = 2rb+rf+z.
Let N0 = 22rb+rf−n be the number of pairs from two original structures (under two
related tweakeys) that satisfy both the plaintext and ciphertext differences. Similarly,
let N1 = 22r

′
b−1+rf−n be the number of pairs from an expanded structure that meet

both the plaintext and ciphertext differences. It is evident that N0 < N .

• When N > N1, multiple expanded structures are required and D = N · 2n+1−r′b−rf ;
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• When N ≤ N1, a partial structure of size D between 2rb and 2r
′
b is needed with

D =
√
N · 2n+1−rf .

Without the expansion, it would require N/N0 pairs of original structures, i.e.,

D = N
N0
· 2rb+1 = N · 2n+1−rb−rf , which is greater than

√
N · 2n+1−rf 1.

Therefore, the data complexity of the attack, when multiple impossible difference
characteristics with the same activeness pattern are used, is given by

D = max{N · 2n+1−r′b−rf ,
√
N · 2n+1−rf }.

Example 1 illustrates the use of multiple impossible differential characteristics.
Concrete applications can be found in attacks on SKINNY, SKINNYe-v2, and ForkSKINNY
in the the related-tweakey setting.
Example 1. Suppose cb = 12c, cf = 15c, rk = 2c, rb = 12c, rf = 15c, where c
denotes the cell size, and n denotes the block size. Then, the data complexity of the
key recovery attack is

r′b = rb + rk, N = 2cb+cf · x · ln 2,

D = max{N · 2n+1−r′b−rf ,
√
N · 2n+1−rf } = 2n+1−rk · x ln 2,

instead of D = max{N · 2n+1−rb−rf ,
√
N · 2n+1−rf } = 2n+1 · x ln 2.

4.4 Requirements for Successful Attacks

Beyond codebook attacks. In impossible differential attacks where a single char-
acteristic is used, rb = cb, rf = cf and thus the data complexity is beyond 2n according
to Equation (1). Even if multiple characteristics are used to reduce data, the required
data may still exceed 2n. While one could argue about the applicability of attacks
with D > 2n, such attacks may still play an important role in the security analysis,
especially for tweakable block ciphers. For example, such attacks have shown to be
powerful and realistic against real-world tweakable block cipher FPE [42].

The time complexity for the pure exhaustive search. In the single-key setting,
if the required data exceeds 2n, we need to turn some key bits, say t bits, into tweak
bits so the time complexity of the exhaustive search becomes 2k−t.

In the related-tweakey attacks on SKINNY, SKINNYe-v2, and ForkSKINNY, there is
a freedom to choose a key difference of rk bits. If (P , K ⊕∆K) is different, we treat
it as new data. Where multiple related keys are used, the time complexity should be
compared to the exhaustive search of the secret key in the same scenario, as pointed
out in [43]. If 2r

′
k (r′k ≤ rk) related keys are used, the time complexity of the exhaustive

search is 2k−r′k as we can test 2r
′
k keys at once. This is true if the cost of checking the

equality of two messages 2r
′
k times is negligible when compared to one encryption.

• When the data complexity is 2n+r′k (0 < r′k ≤ rk), the complexity of the exhaustive

attack is 2k−⌈r′k⌉.

1N · 2n+1−rb−rf /
√

N · 2n+1−rf = 2(n+1+z−rb)/2 > 1.
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• When the required data exceeds 2n+rk , we have to set some key bits as tweak bits,
say t bits, to get sufficient data. The complexity of an exhaustive search in this case
is 2k−t−rk .

A successful attack should have a time complexity lower than that of the pure
exhaustive search.

4.5 Improved Impossible Differential Attacks

We apply the IDMA to SKINNY, SKINNYe-v2 and ForkSKINNY. Furthermore, we employ
the isolate-and-unite technique to skip some outer key bits in the meet-in-the-middle
procedure to make some attacks that are invalid by just using the IDMA still work. To
be specific, it is applied to the attacks on 23-round SKINNY-n-3n, 28-round SKINNY-n-
3n, 33-round SKINNYe-v2, 30-round ForkSKINNY-n-3n and 33-round ForkSKINNY-n-3n.
The main results are summarized as follows.

• For SKINNY-n-3n, we obtain enhanced impossible differential attacks on 21 rounds
in the single-tweakey setting and successfully extend the attack to 22/23 rounds.
Meanwhile, we improve impossible differential attacks on 27-round SKINNY-n-3n in
the related-tweakey setting and extend the attack to 28 rounds.

• For SKINNYe-v2, we achieve, for the first time, impossible differential attacks on 23,
24 and 25 rounds in the single-tweakey setting, while in the related-tweakey setting,
we obtain an improved impossible differential attack on 31 rounds and extend the
attack to 33 rounds.

• Since ForkSKINNY shares the same result as SKINNY in the single-tweakey set-
ting, our focus shifts to impossible differential attacks on ForkSKINNY-n-3n in the
related-tweakey setting. We provide improved related-tweakey impossible differen-
tial attacks on 28-round ForkSKINNY-n-3n and successfully extend the attack to 30
rounds in the limited setting. We also present improved related-tweakey impossi-
ble differential attacks on 32-round ForkSKINNY-n-3n in the arbitrary setting and
extend the impossible differential attack by 1 round.

Next, we describe in detail the impossible differential attacks on 22-round SKINNY-
n-3n in the single-tweakey setting and 30-round ForkSKINNY-64-192 with a 192-bit key
(ri = 12, r0 = 18, r1 = 18) in the related-tweakey setting. Also, we discuss the appli-
cation of IDMA to SKINNY and ForkSKINNY when k = 2n. Other impossible differential
attacks on SKINNY and ForkSKINNY are postponed to Appendices A, B and C.

4.5.1 A 22-round ID Attack on SKINNY-n-3n in the Single-Tweakey
Setting

In this subsection, we present the impossible differential attacks on 22-round SKINNY-
n-3n that take an 11-round truncated impossible differential characteristic and extend
it by five rounds in the backward direction and six rounds in the forward direction, as
shown in Figure 5. For the impossible differential, the white cell and pink cell denote
zero difference and nonzero difference, respectively. The state cell X11[13] from the
forward direction and the state cell X11[13] from the backward direction will produce
a contradiction, as illustrated in Figure 5.

19



X0

SC
AC

Y0 STK0

0 1 2 3
4 5 6 7

Z0

≫1

≫2

≫3

W0 X1

SC
AC

Y1 STK1

9 f 8 d
a e c b

Z1

≫1

≫2

≫3

W1 X2

X2

SC
AC

Y2 STK2

1 7 0 5
2 6 4 3

Z2

≫1

≫2

≫3

W2 X3

SC
AC

Y3 STK3

f b 9 e
8 c a d

Z3

≫1

≫2

≫3

W3 X4

X4

SC
AC

Y4 STK4

7 3 1 6
0 4 2 5

Z4

≫1

≫2

≫3

W4 X5

SC
AC

Y5 STK5

b d f c
9 a 8 e

Z5

≫1

≫2

≫3

W5 X6

X6

SC
AC

Y6 STK6

3 5 7 4
1 2 0 6

Z6

≫1

≫2

≫3

W6 X7

SC
AC

Y7 STK7

d e b a
f 8 9 c

Z7

≫1

≫2

≫3

W7 X8

X8

SC
AC

Y8 STK8

5 6 3 2
7 0 1 4

Z8

≫1

≫2

≫3

W8 X9

SC
AC

Y9 STK9

e c d 8
b 9 f a

Z9

≫1

≫2

≫3

W9 X10

X10

SC
AC

Y10 STK10

6 4 5 0
3 1 7 2

Z10

≫1

≫2

≫3

W10 X11

�
X11

SC
AC

Y11 STK11

c a e 9
d f b 8

Z11

≫1

≫2

≫3

W11 X12

X12

SC
AC

Y12 STK12

4 2 6 1
5 7 3 0

Z12

≫1

≫2

≫3

W12 X13

SC
AC

Y13 STK13

a 8 c f
e b d 9

Z13

≫1

≫2

≫3

W13 X14

X14

SC
AC

Y14 STK14

2 0 4 7
6 3 5 1

Z14

≫1

≫2

≫3

W14 X15

SC
AC

Y15 STK15

8 9 a b
c d e f

Z15

≫1

≫2

≫3

W15 X16

X16

SC
AC

Y16 STK16

0 1 2 3
4 5 6 7

Z16

≫1

≫2

≫3

W16 X17

SC
AC

Y17 STK17

9 f 8 d
a e c b

Z17

≫1

≫2

≫3

W17 X18

X18

SC
AC

Y18 STK18

1 7 0 5
2 6 4 3

Z18

≫1

≫2

≫3

W18 X19

SC
AC

Y19 STK19

f b 9 e
8 c a d

Z19

≫1

≫2

≫3

W19 X20

X20

SC
AC

Y20 STK20

7 3 1 6
0 4 2 5

Z20

≫1

≫2

≫3

W20 X21

SC
AC

Y21 STK21

b d f c
9 a 8 e

Z21

≫1

≫2

≫3

W21 X22

nonzero any involved in key-recovery diff. value is needed value is needed

Fig. 5: ID attacks on 22-round SKINNY-n-3n. cb = 15c, cf = 15c, rb = 16c, rf =
16c, |kb ∪ kf | = 47c, |kb| = 26c, |kf | = 30c.

Based on the IDMA framework, we need to produce enough message pairs that
satisfy the input difference and output difference to mount impossible differential
attacks. According to the parameters illustrated in Figure 5 and the complexity anal-
ysis described in Section 3.2, the number of required message pairs is N = 2cb+cf+z =
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230c+z. Thus, the data complexity is as follows.

D = max{
√
N · 2n+1−rf , N · 2n+1−rb−rf } =

√
N · 2n+1−rf =

√
230c+1+z

With the number of message pairs N , the data complexity D and other parameters
shown in Figure 5, the complexities of the impossible differential attacks on 22-round
SKINNY-n-3n are as follows.

• The data complexity is D =
√
230c+1+z.

• The time complexity:

T0 = D =
√
230c+1+z,

T1 = D · (2|kb| · 5/22 + 2|kf | · 6/22) =
√
230c+1+z · (226c · 5/22 + 230c · 6/22),

T2 = N · {2|kb|−cb + 2|kf |−cf } = 241c+z + 245c+z,

T3 = 2|kb∪kf |+z = 247c+z,

T4 = 2k−x = 248c−x.

• The memory complexity is M = max{D,N2|kb|−cb , 2|kb∪kf |}.

Specifically, for the impossible differential attack on 22-round SKINNY-64-192, we select
(x, z) = (3.01, 1.06) to optimize the complexity. Thus, the data and memory complex-
ities are 261.03 and 2188; the time complexity includes 2189.06 memory accesses and
2188.99 encryptions.

Additionally, for the impossible differential attack on 22-round SKINNY-128-384,
choosing (x, z) = (5.78, 2) leads to the data and memory complexities of 2121.5 and 2376

respectively, and the time complexity of 2378 memory accesses and 2378.22 encryptions.

4.5.2 A 30-Round ID Attack on ForkSKINNY-n-3n in the
Related-Tweakey Setting

We present an impossible differential attack on 30-round ForkSKINNY-n-3n in the
related-key setting, as shown in Figure 6, where a cluster of 19-round impossible
differential characteristics is used and six and five rounds are extended in backward
and forward directions, respectively.

As illustrated in Figure 6, denotes the forward direction of the difference prop-
agation while represents the backward direction of the difference propagation. The
pink cell and white cell denote the nonzero difference and zero difference, respectively.
Indeed, a valid impossible differential distinguisher needs to ensure at least one incon-
sistency occurs between the two propagations. Both pink and white occur in a state
cell means an inconsistency happens in the impossible differential distinguisher, such
as the state cell Z16[15].

This attack follows the limited setting with ri = 12 and r0 = r1 = 18, reducing
the number of rounds from three branches by the same amount. Since the subtweakey
difference ∆STK6[1] can be any nonzero value, there are 2rk = 2c − 1 impossible
differential characteristics of the same active pattern. Other parameters of our attack
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Fig. 6: ID attack on 30-round ForkSKINNY-n-3n. cb = 16c, cf = 16c, r′b = 17c(rb =
16c), rf = 16c, |kb ∪ kf | = 47c, |kb| = 34c, |kf | = 29c
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are as follows:

cb = 16c, cf = 16c, rb = 16c, r′b = 17c, rf = 16c, |kb ∪ kf | = 47c, |kb| = 34c, |kf | = 29c.

According to the complexity analysis described in Section 3.2, the number of required
message pairs that satisfy both the plaintext and ciphertext difference is N =
2cb+cf+z = 232c+z; the data complexity is

D = max{N · 2n+1−r′b−rf ,
√
N · 2n+1−rf } =

√
N · 2n+1−rf =

√
232c+1+z.

The time complexity of partial encryption and decryption is

T1 = D · 2|kb| · 6
30

+D · 2|kf | · 5
30
≈ D · 234c · 6

30
> 249c > 2k.

Unfortunately, the time complexity is larger than that of an exhaustive search,
making the attack invalid. However, employing a flexible key guessing strategy, the
impossible differential attacks on 30-round ForkSKINNY-n-3n can still work under the
IDMA framework.

Utilizing the isolate-and-unite technique. We peel off ART ◦ AC ◦ SC of the first
round on the cells at the positions {0, 1, 2, 3, 6}, which involves k∗b = STK0[0, 1, 2, 3, 6].
The meet-in-the-middle procedure is then performed on the remaining part of the
encryption. In Figure 6, each subtweakey cell is labeled with a hex number from 0x0 to
0xf , and all subtweakey cells with the same label are computed from three individual
cells of the master tweakey with a linear function, according to the tweakey schedule
of SKINNY. Thus, if three cells with the same label in the subtweakeys are guessed,
then the other cells with the same label can be derived. Therefore, it can be seen from
Table 5 that k∗b can be fully derived from k′b and kf , i.e., k

∗
b = g1(k

′
b) ⊕ g2(kf ) are

cost-free isolable key bits with certain linear functions g1, g2 that can be derived from
the tweakey schedule.

Table 5: The isolable key cells of the attack on
30-round ForkSKINNY-n-3n

k∗b k′b kf
STK0[0] STK2[2] STK28[1], STK26[7]
STK0[1] STK2[0], STK4[2] STK28[7]
STK0[2] STK2[4], STK4[6] STK28[0], STK26[1]
STK0[3] STK2[1], STK4[1] STK28[5], STK26[6]
STK0[6] STK2[5] STK28[4], STK26[2]

· · · · · ·

As a result, only k′b = kb \ k∗b and kf are involved in the MITM procedure and k∗b
is taken into account in the matching process. Then the parameters of our impossible
differential attack on 30-round ForkSKINNY-n-3n are as follows:

cb = 16c, cf = 16c, rb = 16c, r′b = 17c, rf = 16c, |k′b ∪ kf | = 47c, |k′b| = 29c, |kf | = 29c.
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Thus, the time complexity is as follows.

T0 = D = 216c+
1+z
2 ,

T1 = (2|k
′
b| · 6/30 + 2|kf | · 5/30) ·D = 245c+

1+z
2 · (2/5),

T2 = N(2|k
′
b|−cb + 2|kf |−cf ) = 245c+z+1,

T3 = 2|kb∪kf |+z = 247c+z,

T4 = 2k−x = 248c−x,

M = max{D,N2|kf |−cf , 2|kb∪kf |} = 2|kb∪kf |.

For ForkSKINNY-64-192 with a 192-bit key, c = 4 and we choose (x, z) =
(3.01, 1.06). The data and memory complexities are 265.03 and 2188; the time
complexity consists of 2188.99 encryption and 2189.06 memory accesses.

As described in Section 4.4, if 2r
′
k (r′k ≤ rk) related keys are used, the time com-

plexity of the exhaustive search is 2k−r′k as we can test 2r
′
k keys at once. We need to

use 22 related keys to generate more data as the data complexity 265.03 exceeds 264.
Thus, in this case, the complexity of the exhaustive attack is reduced from 2192 to
2190. Our attack is valid since its time complexity 2188.99 is lower than 2190.

For ForkSKINNY-128-384 with a 384-bit key, c = 8 and we choose (x, z) = (5.78, 2).
The data and memory complexities are 2129.5 and 2376; the time complexity consists
of 2378.22 encryption and 2378 memory accesses.

Similarly, we need to use 22 related keys to generate more data since the data
complexity 2129.5 is larger than 2128. Thus, the complexity of the exhaustive attack
changes from 2384 to 2382. Our attack is valid, as its time complexity 2378.22 is lower
than 2382.

4.5.3 Impossible Differential Attacks on SKINNY-n-2n and
ForkSKINNY-n-2n

We also searched for impossible differential attacks on SKINNY-n-2n and ForkSKINNY-
n-2n, but failed to find more efficient attacks than using the traditional key recovery
method. For example, for SKINNY-n-2n, we can find an impossible differential attack
on 19 rounds in the single-tweakey setting, where both four rounds are added before
and after an 11-round truncated impossible differential. The parameters are as follows

cb = 11c, cf = 11c, rb = 12c, rf = 12c, |kb ∪ kf | = 28c, |kb| = 18c, |kf | = 14c.

For SKINNY-64-128, a key recovery attack on 19 rounds can be obtained with data and
time complexities 259.93 and 2118.38. However, the best previous impossible differential
attack on 19-round SKINNY-64-128 [11] has data and time complexities 260.86 and
2110.34. That is, the IDMA framework is unable to reduce the time complexity.

In impossible differential attacks, the time complexity is bounded by 2|kb∪kf |+z

regardless of the methods for key recovery. In the IDMA framework, balanced kb and kf
are desirable. However, balancing kb and kf typically leads to a large |kb∪kf | when the
ratio of the key size to the block size is 2. On the contrary, if no restriction is imposed
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on the size of kb and kf , |kb ∪ kf | is usually smaller. Particularly, for SKINNY-n-2n,
traditional impossible differential attacks can be found with |kb∪kf | = 26c < 28c. That
is why the IDMA framework does not outperform the traditional impossible differential
attack on SKINNY-n-2n and ForkSKINNY-n-2n.

5 Conclusion

In this paper, we propose a new impossible differential meet-in-the-middle attack
framework, denoted as IDMA. We apply our new key recovery framework to the block
ciphers SKINNY, SKINNYe, and ForkSKINNY, obtaining better results. For SKINNY-n-3n,
we present 23-round attacks in the single-tweakey setting and 28-round attacks in the
related-tweakey setting, which are respectively 2 and 1 rounds more than those of pre-
vious works. For SKINNYe-v2, we obtain a 33-round impossible differential attack with
related tweakeys and a 25-round impossible differential attack with a single tweakey.
For ForkSKINNY-64-192, we improve by 2 rounds in the limited setting and give 30-
round impossible differential attacks. In another situation, we improve by 1 round
and give 33-round impossible differential attacks. For ForkSKINNY-128-384, we achieve
the first 30-round related-tweakey impossible differential attack with a limit setting
and the first 33-round related-tweakey impossible differential attack without the limit
setting.
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A Other ID Attacks on SKINNY-n-3n

A.1 ID Attacks on 21-round SKINNY-n-3n in the
Single-Tweakey Setting

For the impossible differential attack on 21-round SKINNY-64-192, we select (x, z) =
(20.97, 3.86) for c = 4. The data and memory complexities of the impossible differential
attack on 21-round SKINNY-64-192 are 262.43 and 2168; the time complexity includes
2171.86 memory accesses and 2171.03 encryptions.

Similarly, for the impossible differential attack on 21-round SKINNY-128-384, we
select (x, z) = (39.67, 4.78) for the case of c = 8 to optimize the complexities. As a
result, the data and memory complexities are 2122.89 and 2336; the time complexity
consists of 2340.78 memory accesses and 2344.33 encryptions.

A.2 ID Attacks on 23-round SKINNY-n-3n in the
Single-Tweakey Setting

According to the parameters shown in Figure 8, the time complexity is larger than that
of an exhaustive search. However, the attack can still work by employing the method
described in Section 4.5.2. Specifically, all the involved subtweakey cells are guessed
except STK0[0, 1, 2, 3]. Then, STK0[0, 1, 2, 3] can be deduced since the subtweakey
cells labeled as {0, 1, 2, 3} appear at least three times in the guessed subtweakey cells.
As a result, the actual parameters of our impossible differential attacks on 23-round
SKINNY-n-3n are as follows:

cb = 15c, cf = 15c, rb = 16c, rf = 16c, |k′b ∪ kf | = 47c, |k′b| = 30c, |kf | = 30c

For the impossible differential attack on 23-round SKINNY-64-192, we select (x, z) =
(3.01, 1.06) for the case of c = 4, resulting in the data and memory complexities of
261.03 and 2188 respectively, and time complexity of 2189.06 memory accesses and 2188.99

encryptions.
For the impossible differential attack on 23-round SKINNY-128-384, selecting

(x, z) = (5.78, 2) for the case of c = 8 leads to the data and memory complexities of
2121.50 and 2376 respectively, and time complexity of 2378.22 memory accesses and 2376

encryptions.

A.3 ID Attacks on 27-round SKINNY-n-3n in the
Related-Tweakey Setting

For the impossible differential attack on 27-round SKINNY-64-192, selecting (x, z) =
(9, 3.17) for the case of c = 4 leads to the data and memory complexities of 263.64

and 2172 respectively, and time complexity of 2174.64 memory accesses and 2183.00

encryptions.
The data complexity 263.64 does not exceed 264, but at least 2 related keys are

required for the related key attack. Thus, we use 2 related keys. As a result, the
complexity of the exhaustive attack decreases from 2192 to 2191 in this case. Our attack
is valid since its time complexity 2183.00 is less than 2191.
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Additionally, for the impossible differential attack on 27-round SKINNY-128-384, we
select (x, z) = (22.94, 3.99) for c = 8. The data and memory complexities are 2124.99

and 2344; the time complexity includes 2347.99 memory accesses and 2361.06 encryptions.
Similarly, the complexity of the exhaustive attack is reduced from 2384 to 2383 in

this case. Since the time complexity of our attack 2361.06 is lower than 2383, our attack
is valid.

A.4 ID Attacks on 28-round SKINNY-n-3n in the
Related-Tweakey Setting

We guess all the involved subtweakey cells except STK27[1, 2, 7]. Similar to the method
described in Section 4.5.2, in the guessed subtweakey cells, the subtweakey cells labeled
as {8, a, e} appear more than or equal to 3 times, thus STK27[1, 2, 7] can be deduced.
As a result, the actual parameters of our impossible differential attacks on 28-round
SKINNY-n-3n are as follows:

cb = 16c, cf = 16c, r′b = 17c(rb = 16c), rf = 16c, |kb ∪ k′f | = 47c, |kb| = 29c, |k′f | = 29c

For the impossible differential attack on 28-round SKINNY-64-192, we choose (x, z) =
(3.01, 1.06) for c = 4. Thus, the data and memory complexities are 265.03 and 2188,
respectively; the time complexity is 2189.06 memory accesses and 2188.99 encryptions.

22 related keys are required to generate more data as the data complexity 265.03

exceeds 264. Thus, the complexity of the exhaustive attack is reduced from 2192 to
2190 in this case. Our attack is valid since the time complexity of our attack 2188.99 is
lower than 2190.

Similarly, for the ID attack on 28-round SKINNY-128-384, we select (x, z) = (5.78, 2)
for the case of c = 8. The data and memory complexities are 2129.50 and 2376

respectively; time complexity includes 2378 memory accesses and 2378.22 encryptions.
Similar to the ID attack on 28-round SKINNY-64-192, the complexity of the exhaus-

tive attack is reduced from 2384 to 2382 in this case. Our attack is valid, as its time
complexity 2378.22 is lower than 2382.
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Fig. 7: ID attack on 21-round SKINNY-n-3n. cb = 15c, cf = 15c, rb = 16c, rf =
16c, |kb ∪ kf | = 42c, |kb| = 26c, |kf | = 22c
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Fig. 8: ID attack on 23-round SKINNY-n-3n. cb = 15c, cf = 15c, rb = 16c, rf =
16c, |kb ∪ kf | = 47c, |kb| = 34c, |kf | = 30c
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Fig. 9: ID attack on 27-round SKINNY-n-3n. cb = 13c, cf = 16c, r′b = 14c(rb =
13c), rf = 16c, |kb ∪ kf | = 43c, |kb| = 26c, |kf | = 27c
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Fig. 10: ID attack on 28-round SKINNY-n-3n. cb = 16c, cf = 16c, r′b = 17c(rb =
16c), rf = 16c, |kb ∪ kf | = 47c, |kb| = 29c, |kf | = 32c
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B ID Attacks on SKINNYe-v2

B.1 ID Attack on 23-round SKINNYe-v2 in the Single-Tweakey
Setting

For the impossible differential attack on 23-round SKINNYe-v2, we select (x, z) =
(13, 3.17) to optimize the complexities. Thus, the data and memory complexities of the
impossible differential attack on 23-round SKINNYe-v2 are 268.17 and 2240 respectively;
the time complexity consists of 2243.17 memory accesses and 2243 encryptions. Notable,
the data complexity 268.17 exceeds the codebook 264, so at least 5 bits of key are
required for data expansion. Since the time complexity of the attack is 2243, which
is smaller than the remaining key space 2251, the impossible differential attack on
23-round SKINNYe-v2 is valid.

Meanwhile, if we choose (x, z) = (0.71,−1.03) for the attack on 23-round SKINNYe-
v2, the data and memory complexities are 263.99 and 2240, respectively, with a time
complexity of 2238.97 memory accesses and 2255.29 encryptions.

B.2 ID Attack on 24-round SKINNYe-v2 in the Single-Tweakey
Setting

For the impossible differential attack on 24-round SKINNYe-v2, choosing (x, z) =
(0.71,−1.03) leads to the data and memory complexities of 263.99 and 2252, respec-
tively, with a time complexity of 2250.97 memory accesses and 2255.29 encryptions.

B.3 ID Attack on 25-round SKINNYe-v2 in the Single-Tweakey
Setting

For the impossible differential attack on 25-round SKINNYe-v2, selecting (x, z) =
(0.71,−1.03) results in the data and memory complexities of 263.99 and 2252, respec-
tively, and the time complexity of 2251.06 memory accesses and 2255.29 encryptions.

According to Equation 1, when (x, z) is set to (0.71,−1.03), the data complexities
of the ID attacks on the 23-round, 24-round, and 25-round SKINNYe-v2 are D = 263.99,
which is lower than 264. The dominant term in the time complexities of all three attacks
is 2|k|−x, and the effect of different kb and kf on the time complexity is negligible.
Thus, the time complexities of all three attacks are identical. Selecting different x will
result in different time complexities.

B.4 ID Attack on 31-round SKINNYe-v2 in the Related-Tweakey
Setting

For the impossible differential attack on 31-round SKINNYe-v2, choosing (x, z) =
(5.78, 2) leads to the data and memory complexities of 263 and 2236 respectively, and
the time complexity of 2238 memory accesses and 2250.22 encryptions.

At least 2 related keys are required for the related key attack although the data
complexity does not exceed 264, thus we use 2 related keys. As a result, the complexity
of the exhaustive attack decreases from 2256 to 2255. Our attack is valid since the time
complexity of our attack 2250.22 is lower than 2255.
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B.5 ID Attack on 32-round SKINNYe-v2 in the Related-Tweakey
Setting

For the impossible differential attack on 32-round SKINNYe-v2, the data and memory
complexities are 265.03 and 2252 respectively, and the time complexity is 2253.06 memory
accesses and 2252.99 encryptions when (x, z) is set as (3.01, 1.06).

We need to use 22 related keys to generate more data as the data complexity 265.03

exceeds 264. Thus, in this case, the complexity of the exhaustive attack is reduced
from 2256 to 2254. Our attack is valid since the time complexity of our attack 2252.99

is lower than 2254.

B.6 ID Attack on 33-round SKINNYe-v2 in the Related-Tweakey
Setting

For the impossible differential attack on 33-round SKINNYe-v2, the time complexity is
larger than that of the exhaustive search according to the parameters. However, our
impossible differential attack on 33-round SKINNYe-v2 can still work by employing the
method described in Section 4.5.2. Specifically, all the involved subtweakey cells are
guessed except STK32[0, 1, 2, 3, 4, 5, 6, 7]. STK32[0, 1, 2, 3, 4, 5, 6, 7] can be deduced by
any four groups of the guessed subtweakey cells labeled as {0, 1, 2, 3, 4, 5, 6, 7}. Thus,
the actual parameters of our impossible differential attack on 33-round SKINNYe-v2
are as follows:

cb = 16c, cf = 16c, rb = 16c, rf = 16c, |kb ∪ k′f | = 63c, |kb| = 34c, |k′f | = 40c.

For the impossible differential attack on 33-round SKINNYe-v2, selecting (x, z) =
(3.01, 1.06) leads to the data and memory complexities of 265.03 and 2252 respectively,
and the time complexity of 2253.06 memory accesses and 2252.99 encryptions.

Similarly, 22 related keys are required to generate more data as the data complexity
265.03 exceeds 264. Thus, the complexity of the exhaustive attack decreases from 2256

to 2254 in this case. Our attack is valid, as its time complexity 2252.99 is lower than
2254.
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Fig. 11: ID attack on 23-round SKINNYe-v2. cb = 16c, cf = 16c, rb = 16c, rf =
16c, |kb ∪ kf | = 60c, |kb| = 34c, |kf | = 30c
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Fig. 12: ID attack on 24-round SKINNYe-v2. cb = 16c, cf = 16c, rb = 16c, rf =
16c, |kb ∪ kf | = 63c, |kb| = 34c, |kf | = 38c
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Fig. 13: ID attack on 25-round SKINNYe-v2. cb = 16c, cf = 16c, rb = 16c, rf =
16c, |kb ∪ kf | = 63c, |kb| = 34c, |kf | = 46c
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Fig. 14: ID attack on 31-round SKINNYe-v2. cb = 13c, cf = 16c, rb = 13c, rf =
16c, |kb ∪ kf | = 59c, |kb| = 26c, |kf | = 41c
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Fig. 15: ID attack on 32-round SKINNYe-v2. cb = 16c, cf = 16c, rb = 16c, rf =
16c, |kb ∪ kf | = 63c, |kb| = 34c, |kf | = 40c
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Fig. 16: ID attack on 33-round SKINNYe-v2. cb = 16c, cf = 16c, rb = 16c, rf =
16c, |kb ∪ kf | = 63c, |kb| = 34c, |kf | = 48c
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C Other ID Attacks on ForkSKINNY-n-3n

For the impossible differential attack on ForkSKINNY-n-3n, we allow the key size as
large as the tweakey size.

C.1 ID Attacks on 28-round ForkSKINNY-n-3n in the
Related-Tweakey Setting

We select (x, z) = (23.10, 4) to optimize the complexities for the impossible differential
attack on 28-round ForkSKINNY-64-192. Thus, the data and memory complexities are
261 and 2156 respectively; the time complexity is 2160 memory accesses and 2168.90

encryptions.
The data complexity 261 does not exceed 264, but at least 2 related keys are required

for the related key attack. The complexity of the exhaustive attack is reduced from
2192 to 2191 since we use 2 related keys. Our attack is valid, as its time complexity
2168.90 is lower than 2191.

Additionally, for the impossible differential attack on 28-round ForkSKINNY-128-
384, selecting (x, z) = (67.18, 5.54) leads to the data and memory complexities of
2118.54 and 2312 respectively, and the time complexity of 2317.54 memory accesses and
2316.82 encryptions.

Similarly, we use 2 related keys for the ID attack on 28-round ForkSKINNY-128-
384. Thus, the complexity of the exhaustive attack decreases from 2384 to 2383 in this
case. Our attack is valid since its time complexity 2316.82 is lower than 2383.

C.2 ID Attacks on 32-round ForkSKINNY-n-3n in the
Related-Tweakey setting

For the impossible differential attack on 32-round ForkSKINNY-64-192, choosing
(x, z) = (5.78, 2) leads to the data and memory complexities of 263 and 2176

respectively, and the time complexity of 2178 memory accesses and 2186.22 encryptions.
At least 2 related keys are required for the related key attack although the data

complexity 263 does not exceed 264. Thus, the complexity of the exhaustive attack
decreases from 2192 to 2191 since we use 2 related keys. Our attack is valid, as its time
complexity 2186.22 is lower than 2191.

Additionally, for the impossible differential attack on 32-round ForkSKINNY-128-
384, the data and memory complexities are 2125.27 and 2352 respectively, and the time
complexity is 2356.27 memory accesses and 2356.14 encryptions when (x, z) is set as
(27.86, 4.27).

Similarly, the complexity of the exhaustive attack decreases from 2384 to 2383 as
we use 2 related keys for the ID attack on 32-round ForkSKINNY-128-384. Our attack
is valid, as its time complexity 2356.14 is lower than 2383.

C.3 ID Attacks on 33-round ForkSKINNY-n-3n in the
Related-Tweakey Setting

Specifically, all the involved subtweakey cells are guessed except STK0[0, 1, 2, 3, 6].
Similar to the method described in Section 4.5.2, STK0[0, 1, 2, 3, 6] can be deduced by
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any three groups of the guessed subtweakey cells labeled as {0, 1, 2, 3, 6}. As a result,
the actual parameters of our impossible differential attack on 33-round ForkSKINNY-
n-3n are as follows:

cb = 16c, cf = 16c, r′b = 17c(rb = 16c), rf = 16c, |k′b ∪ kf | = 47c, |k′b| = 29c, |kf | = 29c

For the impossible differential attack on 33-round ForkSKINNY-64-192, we select
(x, z) = (3.01, 1.06) to optimize the complexities. Thus, the data and memory com-
plexities are 265.03 and 2188 respectively, and the time complexity is 2189.06 memory
accesses and 2188.99 encryptions.

We need to use 22 related keys to generate more data as the data complexity 265.03

exceeds 264. Thus, the complexity of the exhaustive attack is reduced from 2192 to 2190

in this case. Our attack is valid since its time complexity 2188.99 is lower than 2190.
Similarly, for the impossible differential attack on 33-round ForkSKINNY-128-384,

the data and memory complexities are 2129.50 and 2376 respectively, and the time
complexity is 2378 memory accesses and 2378.22 encryptions when (x, z) is set as
(5.78, 2).

Similarly, the complexity of the exhaustive attack is reduced from 2384 to 2382 in
this case. Our attack is valid, as its time complexity 2378.22 is lower than 2382.
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Fig. 17: ID attacks on 28-round ForkSKINNY-n-3n (ri = 11, r0 = 17, r1 = 17). cb =
12c, cf = 15c, r′b = 14c(rb = 12c), rf = 15c, |kb ∪ kf | = 39c, |kb| = 22c, |kf | = 20c
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Fig. 18: ID attacks on 32-round ForkSKINNY-n-3n (ri = 11, r0 = 15, r1 = 21). cb =
14c, cf = 16c, r′b = 15c(rb = 14c), rf = 16c, |kb ∪ kf | = 44c, |kb| = 27c, |kf | = 25c
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Fig. 19: ID attacks on 33-round ForkSKINNY-n-3n (ri = 12, r0 = 15, r1 = 21). cb =
16c, cf = 16c, r′b = 17c(rb = 16c), rf = 16c, |kb ∪ kf | = 47c, |kb| = 34c, |kf | = 29c
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