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Abstract. State-of-the-art garbling schemes for boolean circuits roughly
consist of two families, i.e., ideal model garbling that combines linear op-
erations and ideal blockciphers (aiming at maximizing performance), and
PRF-based garbling that insists on using theoretically sound assump-
tions. In the linear garbling framework introduced by Zahur, Rosulek,
and Evans (Eurocrypt 2015), it was established that garbling an AND
gate requires at least 2(κ + 1) bits of ciphertext, with κ as the security
parameter. Recent contributions from Lei Fan et al. and Chunghun Baek
et al. have provided a detailed model showing that, under the free-XOR
setting, which relies on a non-standard assumption, garbling an AND
gate requires at least 1.5κ+O(1) bits. In contrast, regarding PRF-based
garbling, the general model and efficiency bounds remain open questions.
In this paper, we present a comprehensive model for PRF-based garbled
circuits and establish both the communication and computation lower
bound. Specifically, we demonstrate that garbling an AND gate requires
at least 2κ + 2 bits communication and 6 PRF calls, while an XOR
gate requires a minimum of κ bits communication and 4 PRF calls.
Notably, the state-of-the-art garbling scheme (GLNP scheme) under the
PRF assumption, introduced by Shay, Yehuda, Ariel, and Benny (JOC
2018), uses 2κ+4 bits and 8 PRF calls for an AND gate, which exceeds
our established lower bound. We finally introduce an optimal garbling
scheme showing that our communication and computation lower bounds
are tight.

1 Introduction

Garbled circuits. Since proposed by Yao in 1980s [20], garbled circuits (GCs) have
became a leading technique for constant-round two-party computation, and have
attracted extensive attention. Virtually all existing garbling schemes for boolean
circuits are constructed by combining symmetric cryptographic primitives (i.e.,
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hash functions such as the SHA and blockciphers such as the AES) and sim-
ple operations (including XORs and finite field multiplications). Depending on
the symmetric cryptographic assumptions in use, such schemes consists of two
families, i.e., ideal model garbling and PRF-based garbling.

The first family, ideal model garbling, aims at optimizing the (communication
and computation) costs by using advanced assumptions. In particular, state-of-
the-art schemes [21,19] of this family are fully compatible with the Free-XOR
optimization proposed by Kolesnikov and Schneider [13], due to which the eval-
uation of an XOR gate is simply achieved by XORing two relevant wire labels.
This significantly improves efficiency because the computation and transmission
of XOR gates do not require any AES computation or communication. The short-
age of these schemes is the extensive use of strong non-standard cryptographic
assumptions, including related-key security [7, Sect. 5], (circular) correlation ro-
bustness [12,17,5,6,21,8,19] and even ideal model [3]. In theory, it remains open
if one-way functions imply these assumptions. In practice, these ideal models
lack secure instantiations in the real world, leading to a gap between theoretical
security proofs and the security of actual garbled circuit implementations. This
gap could potentially cause security issues[8,9].

The second family, PRF-based garbling, insists on using the most conservative
assumption that the underlying blockcipher is a pseudorandom function (PRF).
Examples include Yao [20,14], PSSW [17, Sect. 5], BHR [4], GLNP [7, Sect. 3 & 4]
and Rosulek [18]. As remarked in [7, Sect. 5], the labels of these garbled circuits
have to be independent and (pseudo)random, and this cannot be compatible
with the Free-XOR technique. Thus, this type of garbled circuit is slightly less
efficient compared to the first method. Still, as demonstrated by Gueron et al. [7],
this approach remains practical.

While state-of-the-art PRF-based garbling schemes are less efficient than the
first family, PRF assumption is the mostly well-understood. In cryptanalytic
community, it corresponds to the standard single-key attack scenario. In addi-
tion, PRF assumption is closer to NIST specification. In this respect, we remark
that NIST has shown some preference towards the standard PRF assumption. In
particular, the NIST FIPS 197 [16, Sect. 6.2] (specification of the AES) recom-
mends following NIST SP 800-133 [2] to generate AES keys, while the latter [2,
Sect. 3.1] states:

All keys shall be based directly or indirectly on the output of an approved
RBG (random bit generator).

Therefore, we believe PRF-based garbling has its position—and would offer im-
portant complementary to the upcoming NIST standardization of multi-party
threshold schemes [1].

Currently, the best-known ideal model garbling scheme is the TreGates [19],
whereas the best-known PRF-based scheme is GLNP [7]. All of them were built
upon a long series of improvements, which produces fruitful techniques including
point-and-permute [15], Free-XOR [13] and row reduction [15,11,17,21]. With the
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above in mind, it is tempting to ask whether it is possible to improve further the
state-of-the-art schemes in both ideal model and PRF-based garbled circuits.

In this respect, Zahur et al. [21] was the first that investigate these efficiency
bounds. In detail, they introduced a unified design framework called the linear
garbling model, aiming to capture all practical garbling schemes at that time. In
their model, the Garble and Eval algorithms are constructed via linear operations
and several non-adaptive calls to a random oracle. Zahur et al. then established
a lower bound for the linear model, stating that any garbling scheme fitting into
their linear model consumes at least two ciphertexts for garbling an AND gate
where the ciphertext is κ + 1 bits because of the point and permute technique.
The formulation of such a model and proving a lower bound are truly signif-
icant: to achieve a smaller ciphertext size, novel constructions must transcend
the boundaries of this model.

Recently, Fan et al. refined the linear model of garbled circuits by introduc-
ing a "column-wise" perspective, resulting in several extensions: Model-1 (linear
mappings), Model-2 (arbitrary mappings), Model-3 (introducing probabilis-
tic), and Model-3’ (slicing with multiple bases). They proved that the lower
bounds for Model-1, Model-2, and Model-3 are all 2κ+O(1), indicating that
the lower bound cannot be improved even with non-linear operations. Addition-
ally, the lower bound with linear operations and slicing techniques is 3/2κ+O(1),
which does not outperform TreGates.

Meanwhile, Baek et al. transformed the original linear model into an Al-
gebraic Perspective using Truth Tables and Boolean Functions, extending the
linear garbling model while maintaining oracle queries and linear operations.
They also proved a lower bound of 3/2κ + O(1), reinforcing that linear opera-
tions alone do not surpass TreGates.

The models above demonstrate that the state-of-the-art TreGates in first-
family garbled circuits is communication-optimal across a wide range of schemes.
However, similar models and lower bounds for PRF-based garbling remain un-
explored, as noted in [19] where this was identified as an open problem.

1.1 Our Contribution

Motivated by the above discussion, we initiate the model and lower bound of
PRF-based garble circuits.
New perspective and new model for PRF-based garbled circuits Recall-
ing the "column-wise" perspective from Fan et al., the garbler, with input labels
A0, A1, B0, B1 (where lsb(A0) and lsb(B0) represent the permute bits for wire
a and wire b, respectively), generates n sets of base values Mk

ij for i, j ∈ {0, 1}
and k ∈ [n] (if not use ”slicing” technique, n = 1.). The garbler then assigns
appropriate C0 and C1, and sets the output labels OL00,OL01,OL10,OL11 based
on the gate type and the permute bits. For example, if the gate is an AND gate
and the permute bits are πa = 0 and πb = 0, then OL00 = OL01 = OL10 = C0

and OL11 = C1. Next, the garbler divides the base values and output labels bit
by bit. Finally, it searches for the appropriate ciphertexts G1, · · · , Gm to sat-
isfy the mapping relation: MAPij(Mij(t), G̃ij(t)) = OLij(t), where i, j ∈ {0, 1},
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t ∈ (κ + 1), and G̃ij is computed from ciphertext G1, · · · , Gm. Here, OLij(t),
Mij(t), and G̃ij(t) represents the t-th bit of Mij , G̃ij , and OLij . The evaluator,
given Ai and Bj , can compute Mij(t) for t ∈ (κ+ 1) and use the corresponding
MAP function to derive the output labels.

Motivated by the "column-wise" perspective, we introduce the following view
for PRF-based garbled circuits. With independent (pseudo)random input labels
A0, A1, B0, B1, the garbler generates n sets of main and auxiliary keys MKn

ij

and AKn
ij (if the "slicing" technique is not used, then n = 1). The garbler as-

signs appropriate output labels C0, C1, and the permute bit πc, where C0, C1

and A0, A1 are independent and pseudorandom, as are C0, C1 and B0, B1. The
garbler then sets the output labels OL00,OL01,OL10,OL11 and output color bits
OC00,OC01,OC10,OC11 based on the gate type and the input permute bits. For
example, if the gate is an AND gate and the permute bits are πa = 0 and πb = 0,
then OL00 = OL01 = OL10 = C0, OL11 = C1, and OC00 = OC01 = OC10 = πc,
while OC11 = π̄c. Finally, the garbler searches for the appropriate main cipher-
texts MG1, . . . ,MGm and auxiliary ciphertexts AG1, . . . ,AGn to satisfy the fol-
lowing mapping relations: MAPij(MKij , M̃Gij) = OLij and M̂APij(AKij , ÃGij) =

OCij , where i, j ∈ {0, 1}, and M̃Gij and ÃGij are computed from the main and
auxiliary ciphertexts. The evaluator, given Ai and Bj , can compute MKij and
AKij , and use the corresponding MAP and M̂AP functions to derive the output
label and output color bit. Then, we propose a new PRF-based model based on
our perspective of PRF-based garbled circuits.

Overall, our model differs from the column-wise models in the following as-
pects:

1. To satisfy the PRF assumption, we require that the input wire labels of each
gate are independently random. We also require that the labels of any input
wire are independently random from the output labels. All current PRF-
based garbled circuits exhibit this characteristic, which appears essential
for the current proof framework of garbled circuits from Y. Lindell and B.
Pinkas [14] (we elaborate on this in Appendix A). Our model does not impose
restrictions on the specific circuit topology, meaning that any two wires could
potentially serve as input wires for a gate. Concretely, the labels of any input
and output wires must be independently random for each gate.

2. Reviewing all previous models, labels, and permute bits have been treated as
a single entity in the computation. However, labels and permute bits do not
necessarily need to be handled in the same way. For example, in the most
advanced PRF-based circuits, the GLNP-GRR2 scheme treats labels and
permute bits differently, which results in these schemes requiring the trans-
mission of 2κ + 4 bits. Therefore, we question whether PRF-based schemes
require extra bit transmission for handling permute bits rather than just 2
bits. In our model, we handle label processing and permute bit handling sep-
arately, analyzing each component independently to ensure clear and distinct
treatment of both operations.

3. We do not adopt a bit-by-bit analysis approach here, which enhances the
simplicity of both our perspective and model.
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Model Gate Communication
Lower Bound

Computation
Lower Bound Assumption

Linear Model AND gate 2κ+ 2 NO RO
Model 1,2,3 AND gate 2κ+O(1) NO RO

Model 3’ AND gate (w + 1)κ/w +O(1) NO RO
Linear Model 3’ AND gate 3/2κ+O(1) NO RO

Our Model AND gate 2κ+ 2 6 PRF calls PRF
Our Model XOR gate κ 4 PRF calls PRF

Table 1: Models and their lower bounds. Here, κ represents the security param-
eter. The term ’linear model 3’ refers to a variant of Model 3 where the map
function is restricted to linear operations. RO denotes the Random Oracle as-
sumption, while PRF refers to the Pseudorandom Function assumption.

Communication and Computation lower bound. Based on our model,
we establish both communication and computational lower bounds (we explain
various previously proposed models and their corresponding lower bounds in
table1.). Our results show that for any garbled circuit scheme that satisfies our
model, the communication complexity for an AND gate is at least 2κ + 2 bits,
and the computational complexity requires at least 6 PRF calls. For an XOR
gate, the communication complexity is at least κ bits, and the computational
complexity requires at least 4 PRF calls. Our conclusions lead to the following
two sub-conclusions:

1. The dicing technique does not further reduce the communication lower bound
of PRF-based garbled circuits.

2. Gueron et al. proposed the GLNP-GRR1 scheme for XOR gates [7], requiring
only 4 PRF calls and outputting a k-bit ciphertext, which is optimal in our
model. They later optimized the computational complexity, reducing it to 3
PRF calls, contradicting our lower bound. We point out that their 3 PRF
XOR gate scheme overlooks a special case in the security proof. We clarify
this overlooked case in Section 3.1 .

3. The current GLNP-GRR1 garbling scheme for the XOR gate is already
communication-optimal and computation-optimal. However, the state-of-
the-art GLNP-GRR2 for the AND gate is already communication-optimal
in label numbers. However, there may still be room for improvement in han-
dling permute bits, potentially reducing the communication complexity by
up to 1%, when κ = 127. In addition, the GLNP-GRR2 scheme has room
for computational improvement, with possible optimizations of up to 25%.

New Constructions Achieving Communication and Computation Lower
Bounds. Based on our design model, we have redesigned a new GRR2 scheme,
where we reconstructed the main keys only to require 6 PRF evaluations. Ad-
ditionally, we devised a new method for communicating the color bit, which
allows the color bit to be transmitted using just 2 bits. We then combined this
AND gate scheme with the GLNP-GRR1 scheme to create a solution that fully
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satisfies our lower computational and communication complexity bounds. Com-
pared to the GLNP scheme, the communication complexity of the AND gate
in our scheme increases by only about 1%, but its computational complexity is
improved by 25%. More importantly, the design of our scheme is based on our
perspective, offering an alternative approach to designing garbled circuits. Fur-
thermore, our scheme meets the lower bound, indicating that our computational
and communication lower bounds are tight.

2 Preliminaries

Notation. For a bit a, we use a to denote the negation of a. For a binary string
A, we use lsb(A) to denote the least significant bit of A. Vectors are shown
in bold, like A, while matrices are in calligraphic bold, such as PPP. The inner
product of two vectors is given by ⟨·, ·⟩, and matrix multiplication is indicated
by ×. pub refer to a public value.

2.1 Garbling schemes

Definition 1 (Garbling scheme). Following [4,7], a garbling scheme consists
of four algorithms:

– Garble(f) → (F, e, d) is an algorithm that takes as input a description of a
boolean circuit f and returns a triple (F, e, d), where F represents a garbled
circuit, e represents input encoding information (i.e., all the labels on the
input wires) and d represents output decoding information (i.e., all the labels
on the output wires). Following [8], we focus on concrete security and do not
use explicit security parameters.

– Encode(e, x)→ X is a function that computes the garbled input X of an input
x according to the input encoding e.

– Eval(F,X)→ Y is a function that computes the garbled output Y of a garbled
input X under a garbled circuit F .

– Decode(Y, d)→ y is a function that takes as input decoding information d and
garbled output Y and returns either the real output y of the circuit or ⊥.

Definition 2 (Garbled Circuit Security). A garbling scheme is secure if it
is correct and achieves privacy, obliviousness, and authenticity as follows: Cor-
rectness: For any circuit f and input x, after sampling (F, e, d)← Garble(1κ, f),
f(x) = Decode(d,Eval(Encode(e, x))) holds with all but negligible probability.
Privacy: There must be a simulator S such that for any circuit f and input x
the following distributions are indistinguishable.

(F, e, d)← Garble(1κ, f)
X := Encode(e, x)
return (F,X, d)

(F,X, d)← S(1κ, f, f(x))
return (F,X, d)

Obliviousness: There must be a simulator S such that for any circuit f and
input x the following distributions are indistinguishable.
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(F, e, d)← Garble(1κ, f)
X := Encode(e, x)

return (F,X)

(F,X)← S(1κ, f)
return (F,X)

Authenticity: For any circuit f and input x, no PPT adversary A can make
the following distribution output TRUE with non-negligible probability.

(F, e, d)← Garble(1κ, f)
X := Encode(e, x)
Y ← A(F,X)

return Decode(d, Y ) /∈ {f(x),⊥}

3 Our View of Garbling Schemes

Here, we consider all garbling schemes incorporating the point-and-permute op-
timization technique, so we will first review this optimization. In the point-
permute optimization, the garbler secretly selects two labels A0, A1 and a "per-
mute bit" πa for each wire a. Then, through Yao’s secure two-party computation
protocol, the evaluator receives a label A and a color bit λa for each wire a,
where the label A represents the logical bit va = πa ⊕ λa. Note that since the
evaluator does not know the value of πa, they also do not know the value of va.

This section focuses on a gate with input labels (A0, A1) and (B0, B1), and
output labels (C0, C1). All labels are κ-bit strings. The subscript indicates the
color bit for the input labels. For instance, for input wire a, the subscripts of
A0 and A1 denote the color bit known to the evaluator. In addition, for output
wire c, the subscripts of C0 and C1 correspond to the logical bit, which remains
unknown to the evaluator.

3.1 The Garbled Scheme under PRF assumption

This subsection examines the garbled circuits under the PRF assumption. We
consider a PRF {0, 1}κ × {0, 1}κ+1 → {0, 1}κ+1, which takes an κ-bit key and
has both input and output lengths of κ+ 1 bits.
Classic Yao Scheme. We first examine the classical Yao scheme with the point-
permute technique. For the garbler, given input labels A0, A1, B0, and B1, it
generates a set of main keys and auxiliary keys to garble a gate, ordered by the
input color bits.

main keys


MK00 = F (A0, 00)[1 · · ·n]⊕ F (B0, 00)[1 · · ·n]
MK01 = F (A0, 01)[1 · · ·n]⊕ F (B1, 01)[1 · · ·n]
MK10 = F (A1, 10)[1 · · ·n]⊕ F (B0, 10)[1 · · ·n]
MK11 = F (A1, 11)[1 · · ·n]⊕ F (B1, 11)[1 · · ·n]
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auxiliary keys


AK00 = lsb(F (A0, 00))⊕ lsb(F (B0, 00))

AK01 = lsb(F (A0, 01))⊕ lsb(F (B1, 01))

AK10 = lsb(F (A1, 10))⊕ lsb(F (B0, 10))

AK11 = lsb(F (A1, 11))⊕ lsb(F (B1, 11))

The main keys consist of four rows, each κ bits long, and auxiliary keys
consist of four rows, each 1 bit long. Next, the garbler randomly generates the
permute bit πc and two κ-bit output labels, C0 and C1, with C0 corresponding
to FALSE. We assume, without loss of generality, the input permute bit πa = 0
and πb = 0 (this convention persists in subsequent examples). Thus, for the AND
gate, the fouth row of the main keys (resp. auxiliary keys), where the color bits
are (1, 1), yields the output label C1 (resp. output color bit π̄c) and other rows
of main keys (resp. auxiliary keys) yields the output label C0 (resp. output color
bit πc). For the XOR gate, the second and third rows of the main keys (resp.
auxiliary keys) yield the output label C1 (resp. output color bit π̄c), and the first
and fourth rows of the main keys (resp. auxiliary keys) yield the output label
C0 (resp. output color bit πc). The garbler’s task is to map the main keys to the
output labels and map the auxiliary keys to the output color bits, as illustrated
below:

MK00 ⇒ C0 AK00 ⇒ c

MK01 ⇒ C0 AK01 ⇒ c

MK10 ⇒ C0 AK10 ⇒ c

MK11 ⇒ C1 AK11 ⇒ c̄︸ ︷︷ ︸
AND Gate

MK00 ⇒ C0 AK00 ⇒ c

MK01 ⇒ C1 AK01 ⇒ c̄

MK10 ⇒ C1 AK10 ⇒ c̄

MK11 ⇒ C0 AK11 ⇒ c︸ ︷︷ ︸
XOR Gate

We denote the main keys as the vector MK = (MK00,MK01,MK10,MK11)
and the auxiliary base as the vector AK = (AK00,AK01,AK10,AK11). The output
labels are represented by the vector OL = (OL00,OL01,OL10,OL11), where for
the AND gate, OL00 = OL01 = OL10 = C0 and OL11 = C1, and for the XOR
gate, OL00 = OL11 = C0 and OL01 = OL10 = C1. Similarly, the output color
bits are denoted by OC = (OC00,OC01,OC10,OC11), where for the AND gate,
OC00 = OC01 = OC10 = πc and OC11 = π̄c, and for the XOR gate, OC00 =
OC11 = πc and OC01 = OC10 = π̄c.

In the classical Yao scheme, the garbler uses four main ciphertexts, MG =
(MG00,MG01,MG10,MG11), and four auxiliary ciphertexts, AG = (AG00,AG01,AG10,AG11),
to achieve the mapping functions MAP and M̂AP, which are defined as follows:

MAP(MK,MG)⇒


MK00 ⊕MG00

MK01 ⊕MG01

MK10 ⊕MG10

MK11 ⊕MG11

 =


OL00
OL01
OL10
OL11

 = OL
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M̂AP(AK,AG)⇒


AK00 ⊕ AG00

AK01 ⊕ AG01

AK10 ⊕ AG10

AK11 ⊕ AG11

 =


OC00

OC01

OC10

OC11

 = OC

Since there are four main ciphertexts (each main ciphertext is κ bits) and
four auxiliary ciphertexts (each auxiliary ciphertext is 1 bit), the total ciphertext
length is 4(κ+ 1).

For the evaluator, given input labels Aλa and Bλb
, she can reconstruct the

(2λa+λb)-th row of the main key MK2λa+λb
and auxiliary key AK2λa+λb

. Then,
she computes the output labels by decrypting the (λa, λb)’s main ciphertexts, as
MKλaλb

⊕MGλaλb
and computes the output signal bit by decrypting the (i, j)’s

auxiliary ciphertexts, as AKλaλb
⊕ AGλaλb

.
Row Reduction to three rows (GRR3). In the classical garbled circuit
scheme, the garbler initially selects output labels for each wire, introducing two
degrees of freedom. GRR3 removes one, effectively reducing the ciphertext length
to 3(κ+ 1).

The garbler generates a set of main and auxiliary keys similar to Yao’s
scheme. In the GRR3 scheme, instead of randomly selecting C0 and the per-
mutation bit c, the garbler assigns the first row of the main base as C0 and the
first row of the auxiliary base as the permutation bit c. Then, the garbler gener-
ates the output labels OLij and output color bits OCij as previews. Finally, the
garbler constructs the main ciphertext MG = (0,MG1,MG2,MG3) to define the
mapping MAP, and the auxiliary ciphertext AG = (0,AG1,AG2,AG3) to define
the mapping M̂AP. The mappings MAP and M̂AP are as follows:

MAP(MK,MG)⇒


MK00 ⊕ 0

MK01 ⊕MG01

MK10 ⊕MG10

MK11 ⊕MG11

 =


OL00
OL01
OL10
OL11

 = OL

M̂AP(AK,AG)⇒


AK00 ⊕ 0

AK01 ⊕ AG01

AK10 ⊕ AG10

AK11 ⊕ AG11

 =


OC00

OC01

OC10

OC11

 = OC

Since the first main ciphertext MG00 and the first auxiliary ciphertext AG00 is
always 0, it need not be transmitted, reducing the ciphertext to 3(κ+ 1) bits.
Row Reduction to two rows (GLNP-GRR2)5. In the GRR3 scheme above,
the garbler set C0 = MK00 to remove one freedom. Here, GLNP-GRR2 scheme
removes another freedom by setting C1 = MK01 ⊕ MK10 ⊕ MK11. As for the
5 This technique can only applied for AND gate
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permutation bits, the garbler still chooses permutation bits randomly, which is
the same as the classic Yao scheme. Specifically, the garbler selects the main
ciphertext MG = (0,MG01,MG10,MG01 ⊕MG10) to finalize the mapping MAP
and selects the auxiliary AG = (AG00,AG01,AG10,AG11) to finalize the mapping
M̂AP. The mapping MAP and M̂AP are as follows:

MAP(MK,MG)⇒


MK00 ⊕ 0

MK01 ⊕MG01

MK10 ⊕MG10

MK11 ⊕MG01 ⊕MG10

 =


OL00
OL01
OL10
OL11

 = OL

M̂AP(AK,AG)⇒


AK00 ⊕ AG00

AK01 ⊕ AG01

AK10 ⊕ AG10

AK11 ⊕ AG11

 =


OC00

OC01

OC10

OC11

 = OC

Since there only need to be two main ciphertexts, every main ciphertext
is κ bits. In addition, there are four auxiliary ciphertexts, and every auxiliary
ciphertext is 1 bit. Thus, there are 2κ+ 4 bits.
Row Reduction to one row (GLNP-GRR1)6. The garbler generates a main
keys and auxiliary keys for garbling the XOR gate, order by input color bits:

MK00 = F (A0, 0)[1 · · ·n]⊕ F (B0, 0)[1 · · ·n]
MK01 = F (A0, 0)[1 · · ·n]⊕ F (B1, 1)[1 · · ·n]
MK10 = F (A1, 1)[1 · · ·n]⊕ F (B0, 0)[1 · · ·n]
MK11 = F (A1, 1)[1 · · ·n]⊕ F (B1, 1)[1 · · ·n]

AK00 = 0⊕ 0

AK01 = 0⊕ 1

AK10 = 1⊕ 0

AK11 = 1⊕ 1

Here, we still assume πa = 0 and πB = 0 such that the base’s second and
third row, where the color bits are (0, 1) and (1, 0), yields the output label
C1. The garbler set C0 = M00 and C1 = M10. Then, the garbler selects main
ciphertext MG = (0,MG1, 0,MG1) to finalize the mapping MAP as follows:

MAP(MK,MG)⇒


MK00 ⊕ 0

MK01 ⊕MG01

MK10 ⊕ 0
MK11 ⊕MG01

 =


OL00
OL01
OL10
OL11

 = OL

M̂AP(AK,AG)⇒


AK00 ⊕ 0
AK01 ⊕ 0
AK10 ⊕ 0
AK11 ⊕ 0

 =


OC00

OC01

OC10

OC11

 = OC

6 This technique can only applied for XOR gate
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Since there only needs to be one main ciphertext with κ bits. In addition,
there is no auxiliary ciphertext. Thus, there will be κ bits.
Discuss on GLNP-GRR1 Gueron et al. proposed that F (B0, 0) can be di-
rectly replaced by B0 for the main keys. In this case, Cπa⊕πb

= F1(A0, 0)⊕B0.
When the evaluator has A0 and B1, the evaluator can compute Cπa⊕πb

⊕B0 =
F1(A0, 0). If these keys are used in another gate, then an evaluator (attacker)
sees the XOR of two keys and the encryptions computed with each key sepa-
rately. This is once again a related-key type assumption. In fact, during Gueron
et al.’s proof, they did not consider the special case where the output label c and
input label b are used again as input wires for other gates. If this special case is
considered, when reducing to this gate, due to the two unknown labels having
a relationship, it cannot be reduced to their 2PRF experiment (where the two
PRF keys are independently random).
Observation and discuss. The above review found that these garble circuit
schemes conform to a unified framework process. When garbling a circuit, the
gates are processed in topological order. When a gate is processed, the labels
of its input wires have already been determined, but the output labels may be
determined due to garbing this gate. For each gate, the garbler calls the PRF to
generate a set of main and auxiliary keys. These keys encrypt the output labels
and color bits separately, generating the main and auxiliary ciphertext. This is
done such that for each main key, decrypting the corresponding combination of
main ciphers yields the correct output label, i.e., (MKij⊕ M̃Gij = OLij)for i, j ∈
{0, 1}, where M̃Gij is the linear combination of the main ciphers. Similarly, for
each auxiliary key, decrypting the associated auxiliary ciphertexts produces the
correct output signal bit, i.e., (AKij ⊕ ÃGij = OCij)for i, j ∈ {0, 1}, where ÃGij

is the linear combination of the auxiliary ciphers.
Then, we also observe the following properties common to existing garbling

techniques under PRF assumption:

1. For any two wires (two input wires or one input wire and one output wire),
the labels are independent and (pseudo)random to the evaluator.

2. For each gate, calls to the PRF are made statically. That is, neither Eval
nor Garble ever uses the result of a PRF function to determine a future PRF
function.

3. The Garble and Eval procedures only use linear operations apart from queries
to the PRF function.

3.2 TreGates Garbling Scheme.

Recall that Rosulek and Roy use two novel techniques "slicing" and "dicing7" to
move beyond the linear garbling model, and we wonder if these two techniques
can optimize the PRF-based garbled circuits. Thus, we review the new techniques
and analyze them from our perspective.
7 We remark that "dicing" was first proposed by Kempka, Kikuchi and Suzuki in [10].
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The slicing technique involves splitting wire labels into halves and using each
half to compute a portion of the output label. For instance, in their scheme,
the input labels and permute bits are written as A0∥0 = (AL

0 , A
R
0 ), A1∥1 =

(AL
1 , A

R
1 ), B0∥0 = (BL

0 , B
R
0 ), and B1∥1 = (BL

1 , B
R
1 ). The output labels are

written as C0∥πc = (CL
0 , C

R
0 ) and C1∥π̄c = (CL

1 , C
R
1 ), where each half consists

of (κ + 1)/2 bits. They also employ a hash function H whose output is a (κ +
1)/2-bit string, i.e., H : {0, 1}∗ → {0, 1}(κ+1)/2. Based on the permute bit, the
garbler parses the garbled circuit’s output labels into OLL00,OL

L
01,OL

L
10,OL

L
11 and

OLR00,OL
R
01,OL

R
10,OL

R
11. For i, j ∈ {0, 1}, the evaluator can compute the output

OLLij and OLRij using Ai, Bj , three κ+1-bit ciphertexts, and a linear function of
AL

i , A
R
i , B

L
j , and BR

j .
However, the ciphertexts in this scheme rely on the permute bit, meaning

that the generation of ciphertexts cannot be publicly determined as in previous
schemes. Moreover, the evaluators computation is tied to the ciphertext gen-
eration process. TreGates addresses this issue using the ”dicing” technique. In
simple terms, dicing involves transmitting a small, constant-size ciphertext to
guide the evaluator in computing the output label without revealing the garblers
circuit generation process or exposing the permute bit.

In our view, roughly speaking, the ”slicing” pertains to the introduction of
two sets of keys, as detailed below (Sv

ij denotes a specific combination derived
from the input labels AL

i , AR
i , BL

j and BR
j , where i, j ∈ {0, 1} and v ∈ {1, 2}):

the first set of keys︷ ︸︸ ︷
H(A0)⊕H(A0 ⊕B0)⊕ S1

00

H(A0)⊕H(A0 ⊕B1)⊕ S1
01

H(A1)⊕H(A1 ⊕B0)⊕ S1
10

H(A1)⊕H(A1 ⊕B1)⊕ S1
11

the second set of keys︷ ︸︸ ︷
H(B0)⊕H(A0 ⊕B0)⊕ S2

00

H(B1)⊕H(A0 ⊕B1)⊕ S2
01

H(B0)⊕H(A1 ⊕B0)⊕ S2
10

H(B1)⊕H(A1 ⊕B1)⊕ S2
11

In TreGates scheme, the garbler uses the first set of keys to generate the
first half of the output label and the second set of keys for the second half.
Specifically, these keys are combined using the three ciphertexts G1,G2,G3 to
produce both halves of the output label. As a result, the total ciphertext length
is 3(κ + 1)/2. The garbler selects the ciphertexts G1,G2,G3 and defines GL =
(0,G1,G1⊕G3,G3) and GR = (0,G1⊕G2,G1,G2) to finalize the mappings MAP1

and MAP2. These mappings, MAP1 and MAP2, are as follows:

MAP1(BKL,GL)⇒


KL
00 ⊕ 0

KL
01 ⊕ G1

KL
10 ⊕ G1 ⊕ G3

KL
11 ⊕ G3

 =


OLL00
OLL01
OLL10
OLL11

 = OLL
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MAP2(BKR,GR)⇒


KR
00 ⊕ 0

KR
01 ⊕ G1 ⊕ G2

KR
10 ⊕ G1

KR
11 ⊕ G2

 =


OLR00
OLR01
OLR10
OLR11

 = OLR

In the previous scheme, each group of main keys required two ciphertexts.
Now, let’s explore why switching to two sets of main keys reduces the requirement
to only three ciphertexts. The answer lies in the correlation between the two sets
of keys. For example, when suitable Sv

ij are identified such that the XOR of the
first and second rows of the left base matches the XOR of the first and third
rows of the right base, namely

H(A0)⊕H(A0 ⊕B0)⊕ S1
00 ⊕H(A0)⊕H(A0 ⊕B1)⊕ S1

01

= H(B0)⊕H(A0 ⊕B0)⊕ S1
00 ⊕H(B0)⊕H(A1 ⊕B0)⊕ S2

10

In simple terms, when the left and right groups of main keys are related, the
ciphertext on the right can be obtained by linearly combining the two ciphertexts
from the left. This reduces the overall number of ciphertexts needed.

However, the whole linear combination of input labels Sk
i,j (i, j, k ∈ {0, 1})

depends on the permute bits. Therefore, revealing all linear combinations to the
evaluator would compromise privacy. To address this, Rosulek and Roy employ a
technique termed ”dicing”. In this approach, the garbler generates some constant-
sized additional ciphertext. Given that the evaluator obtains input labels Aα and
Bβ , she can decrypt specific additional ciphertext through some random oracle
queries with Aα, Bβ and then obtain some control bits. Relying on these control
bits, the evaluator can only determine the values of S1

αβ and S2
αβ . This marginal

S1
αβ , S2

αβ view of the bases enables the evaluator to compute the output label
while ensuring privacy.
Observation and discuss. Due to TreGates’s use of slicing technology to com-
bine two 64-bit computational results into a 127-bit label and a 1-bit color bit, it
is impossible to directly separate the label and color bit for TreGates. Therefore,
when constructing the model, we have two basic approaches. One approach is
to apply the slicing technique only to the label while using a different method
to garble the color bit. The other approach is to treat the label and color bit
as a single entity and apply slicing to both. We adopt the first approach in our
model to ensure it captures previous schemes and slicing and dicing technol-
ogy as comprehensively as possible. We will also clarify in Appendix B that the
second approach would yield the same conclusion.

4 Formalizing a Garbling Model under PRF assumption

Based on the observation from the previous section, we formalize our new model
for garbling schemes under PRF assumption.
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– Garbling algorithm Gb:
Parameterized by integers s, m1, n0

A, n
1
A, n0

B , n
1
B , vectors {MKab,u

ij |i, j, a, b ∈
{0, 1}, u ∈ [s]}, PRF function F1(·, ·), and mapping function MAP and matrix
PPP. The length of each MKab,u

ij is ni
A+nj

B+2s where i, j ∈ {0, 1}, with entries
in GF(2κ/s). The PRF F1 is mapped as {0, 1}κ × {0, 1}κ+1+c → {0, 1}κ/s.
The MAP breaks down into two linear subfunction: (MAP1,MAP2) where
MAP1 performs matrix mutiplication in GF(2κ/s), while MAP2 carries out
a bit-wise XOR operation. The matrix PPP is 4s ×m1 in size with entries in
GF(2κ/s).
Also parameterized by integers m2, q, vectors {AKij |i, j ∈ {0, 1}}. PRF
function F2(·, ·) and mapping function M̂AP and matrix XXX . Vector AKij is
of length 4 + q with entries in GF(2). The PRF F2 is mapped as {0, 1}κ ×
{0, 1}κ+1+c → {0, 1}. The M̂AP breaks down into two linear sub-functions:
(M̂AP1, M̂AP2), where M̂AP1 performs matrix multiplication in GF(2), while
M̂AP2 carries out a bit-wise XOR operation.
In addition, also parameterized by integers c, s, g, vectors {Y ab|a, b ∈ {0, 1}},
matrix UUU , PRF F3(·, ·). The length of vector Y ab is s, with entries in GF(2c).
The matrix size is g × (s+ q), with entries in GF(2c). The PRF function is
mapped as {0, 1}κ × {0, 1}κ+1+c → {0, 1}c
1. Choose random permute bits πa, πb ← {0, 1} for the two input wires.
2. Choose the input labels (A0, A1, B0, B1)← GF(2κ) randomly where Aa

and Bb representing FALSE. Parse the labels Ai, Bi (where i ∈ {0, 1})
into Ai,1, . . . , Ai,s and Bi,1, . . . , Bi,s, where Ai,j , Bi,j ∈ GF(2k/s) and
j ∈ [s].

3. Make n0
A, n1

A, n0
B , and n1

B queries to the PRF F1, using A0, A1, B0, and
B1 as the respective keys, with public values as inputs. Let QA0

,QA1
,

QB0
, QB1

denote the corresponding responses to these queries. Define
SAi

:= (Ai,1, . . . , Ai,s, Q
1
Ai
, . . . , Q

ni
A

Ai
) and SBi

:= (Bi,1, . . . , Bi,s, Q
1
Bi
, . . . ,

Q
ni
B

Bi
) where i ∈ {0, 1}. Finally, let Sij = (SAi ,SBj ).

4. For u ∈ [s], i, j ∈ {0, 1}, compute MKu
ij = ⟨MKab,u

ij ,Sij⟩. Then MKu =

(MKu
00,MKu

01,MKu
10,MKu

11)
⊤.

5. (Generate the main ciphertext) Find m1 ciphertexts of length κ/s de-
noted by MG, such that the following four conditions are satisfied:
(a) MAP1(PPP,MG) = PPP × MGT = M̃G

T
. Note that M̃G

T
has a

size of 4s × 1, with entries in GF(2κ/s). We then split M̃G
T

into
M̃G

1
, . . . , M̃G

s
, where each has a size of 4× 1.

(b)

MAPu(MKu, M̃G
u
)⇒


MKu

00 ⊕ M̃G
u

00

MKu
01 ⊕ M̃G

u

01

MKu
10 ⊕ M̃G

u

10

MKu
11 ⊕ M̃G

u

11

 =


OLu00
OLu01
OLu10
OLu11

 = OLu
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(c) • If the gate is AND gate:
∗ OLuπaπb

= OLuπ̄aπb
= OLuπaπ̄b

∗ Let OLπaπb
as the output label C0 and OLπ̄aπ̄b

as the output
label C1.

• If the gate is XOR gate:
∗ OLuπaπb

= OLuπ̄aπ̄b
, OLuπ̄aπb

= OLuπaπ̄b

∗ Let OLπaπb
as the output label C0 and OLπ̄aπb

as the output
label C1.

(d) For any i, j ∈ {0, 1}, let S1 ⊆ QAi
, S2 ⊆ QBj

, S3 ⊆ {A1
i , B

1
j , C

1
k ,

· · · , As
i , B

s
j , C

s
k,MG1, · · · ,MGm1

} and S4 ∈ {A1
ī
, B1

j̄
, C1

k̄
, . . . , As

ī
,

Bs
j̄
, Cs

k̄
}, where Ck = OLij S4 is non-empty. Then, the following

holds: 8 ∑
QA∈S1

QA ⊕
∑

QB∈S2

QB ⊕
∑
u∈S3

u⊕
∑
v∈S4

v ̸= 0

6. Make q1 distinct queries to the PRF F2, where the queries are determined
by the input labels (used as the key for the PRF) and some additional
public numbers (used as the input to the PRF). Let Q′

1, . . . , Q
′
q denote

the responses to these queries, and define S1 := (0, 1, Q′
1, . . . , Q

′
q)

9.
7. (Generate the auxiliary key). For i, j ∈ {0, 1}, compute AKij = ⟨AKij ,S1⟩.

Then AKu = (AKu
00,AK

u
01,AK

u
10,AK

u
11)

⊤.
8. (Generate the auxiliary ciphertext). Find m2 auxiliary ciphertexts such

that the following three conditions are satisfied:
(a) MAP1(XXX ,AG) = XXX ×AG⊤ = ÃG

⊤
;

(b)

MAP(AK, ÃG)⇒


AK00 ⊕ ÃG

AK01 ⊕ ÃG

AK10 ⊕ ÃG

AK11 ⊕ ÃG

 =


OC00

OC01

OC10

OC11

 = OC;

(c) • If the gate is AND gates:
∗ OCab = OCāb = OCab̄ ̸= OCāb̄

∗ Let OCab as the output permute bit c

• If the gate is XOR gate:
∗ OCab = OCāb̄ ̸= OC2ā+b = OC2a+b̄.
∗ Let OLab as the output permute bit c.

8 In fact, this requirement indicates that for an evaluator with Ai and Bj , the evaluator
cannot obtain the linear relationship between its unknown input label and the output
label. This requirement is based on our observation that the labels on any two wires
are independent and (pseudo)random to the evaluator.

9 The values 0 and 1 are the color bits, which the evaluator may also use during the
computation. Therefore, these two bits are included in S1.
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9. Make q2 distinct queries to the PRF F3, which can be determined based
on the input labels (as the key of PRF) and some additional public
numbers (as the input of PRF). Let Q′′

1 , · · · , Q′′
q denote the responses to

these queries and define S3 := (0, 1, Q′′
1 , · · · , Q′′

q ).
10. (Generate of the additional ciphertext) Compute E := XXX × (Yab∥S3) as

additional ciphertext.
Then G and E constitute the whole ciphertext, with a total length of
κ/s ·m1 +m2 + g · v.

– Encoding algorithm Encode:
1. Given input xa, xb ∈ {0, 1}, compute α := xa⊕ a and β := xb⊕ b, where

a and b are previously selected permute bits. Then, output Aα∥α and
Bβ∥β.

– Evaluation algorithm Eval:
Parameterized by integers q1, q2, q3, s, v, g, vector {Vu

αβ |α, β ∈ {0, 1}, u ∈
[s]}, {Yαβ |α, β ∈ {0, 1}}, {Kαβ |α, β ∈ {0, 1}}, matrix PPP and XXX ,PRF func-
tion F1(·, ·), F2(·, ·), F3(·, ·) and mapping function MAP, M̂AP. The vector
Vu

αβ has length 2s + q1 with entries in GF(2κ/s), the vector Y has length
2 + q2 with entries in GF(2), and the vector K has length q3 with entries in
GF(2v). The matrix PPP has size 4s ×m1 with entries in GF(2k/s), and the
matrix XXX has size 4×m2 with entries in GF(2). The
MAP breaks down into two linear subfunction: (MAP1,MAP2) where MAP1

performs matrix mutiplication in GF(2κ/s), while MAP2 carries out a bit-
wise XOR operation and the M̂AP breaks down into two linear sub-functions:
(M̂AP1, M̂AP2), where M̂AP1 performs matrix multiplication in GF(2), while
M̂AP2 carries out a bit-wise XOR operation.
1. The inputs are wire labels Aα, Bβ , color bits α, β, the main ciphertext

MG, the auxiliary ciphertext AG and the additional ciphertext E.
2. Make q1, q2, and q3 distinct queries to the PRF functions F1, F2, and

F3, respectively, using keys Aα or Bβ and public inputs. Let Q1, Q2,
and Q3 denote the responses.

3. Parse Aα, Bβ as A1
α, . . . , A

s
α and B1

α, . . . , Bs
α. Let T1 = A1

α, . . . , A
s
α, B

1
α,

. . . , Bs
α, Q

1
1, . . . , Q

q1
1 , T2 = 0, 1, Q1

1, . . . , Q
q1
1 , T3 = Q1

1, . . . , Q
q1
1

4. Compute Kαβ = ⟨Kαβ , (E∥T3)⟩ and parse it into w vectors, each with a
length of 2s+q and entries in GF(2k/s), denote these vectors as {V̂

u

αβ |u ∈
[s]}.

5. For u ∈ [s], compute MKu
αβ = ⟨V u

αβ + V̂ u
αβ ,T1⟩ and compute AKαβ =

⟨Yαβ ,T2⟩.
6. Compute M̃G

T
= MAP1(PPP,MG), and parse M̃G

T
into M̃G

1
, . . . , M̃G

s

where M̃G
i
= {M̃G

i

00, M̃G
i

01, M̃G
i

10, M̃G
i

11}, then use OLuαβ = MKu
αβ ⊕

M̃G
u

αβ .
7. Compute (ÃG00, ÃG01, ÃG10, ÃG10) = MAP1(XXX ,AG), then use OCαβ =

AKαβ ⊕ M̃G
u

αβ .
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Definition 3. Let {x1, x2, . . . , xn} be n Boolean string variables, where each
xi ∈ {0, 1}k, meaning each xi is a Boolean string of length k. These n variables
are said to be linearly independent if there does not exist a non-empty subset
S = {xi1 , xi2 , . . . , xim} such that:

xi1 ⊕ xi2 ⊕ · · · ⊕ xim = v

where v ∈ {0, 1}k is a public fixed Boolean string (e.g., the all-zero string 0k

or another public value). If such a subset exists, these variables are said to be
linearly dependent.

Definition 4. Let {x1, x2, . . . , xm} be a set of m Boolean string variables, where
each xi ∈ {0, 1}k, meaning each xi is a Boolean string of length k. The set is
said to have a dimension of n if there exist n Boolean strings that are linearly
independent, but any subset of n− 1 Boolean strings is linearly dependent.

Definition 5. We say that a garbling scheme has ideal security10 if no adver-
sary (computationally unbounded, with bounded queries to a PRF/RF) has an
advantage better than poly(κ)/2κ (rather than negligible) in the security games,
where κ is the security parameter and key length of the PRF function.

Lemma 1. For any u ∈ [s], the dimension of the u-th set of main keys MKu

is at least 3.

Proof. Due to space limitations, this proof is provided in the Appendix C.1.

Lemma 2. For any u ∈ [s], the dimension of the u-th set of main keys MKu

for the AND gate is at least 4.

Proof. Using a proof by contradiction, we show that if the dimension of the u-th
set of main keys is not 4, the privacy of the garbled circuit will be compromised.

If the dimension of each set of main keys for the AND gate is not 4 (recall
from Lemma 1 that it is at least 3), then it must hold that MKu

00 ⊕ MKu
01 ⊕

MKu
10 ⊕MKu

11 = 0. Review garble model step 8b) AKij ⊕ ÃGij = OCij , then the
evaluator can compute

Cu
0 ⊕ Cu

1

= OLu00 ⊕ OLu01 ⊕ OLu10 ⊕ OLu11

= MKu
00 ⊕ M̃G

u

00 ⊕MKu
01 ⊕ M̃G

u

01 ⊕MKu
10 ⊕ M̃G

u

10 ⊕MKu
11 ⊕ M̃G

u

11

= M̃G
u

00 ⊕ M̃G
u

01 ⊕ M̃G
u

10 ⊕ M̃G
u

11

This violate the privacy.
10 This definition is adapted from Zahur, Rosulek, and Evans [21]. Consider setting

the security parameter to k − log k, which still satisfies the ideal security condition.
However, when selecting a security parameter value for implementing a garbled cir-
cuit, such artificial reductions in the security parameter will inevitably weaken the
concrete security of the scheme. Therefore, to prevent such reductions, we restrict
the length of the labels (excluding the permute bit) and the PRF key to κ bits.
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Lemma 3. If the main keys MK1, . . . ,MKs are linearly dependent, the gar-
bling scheme for an AND gate cannot achieve ideal security.

Proof. This proof is in Appendix C.2.

Lemma 4. If the main keys MK1, · · · ,MKs are linearly independent, any pri-
vacy garbling scheme for an AND gate conforming to our Model must satisfy
|MG| ≥ 2k.

Proof. Recall the step 6(b), for u ∈ [s]:

MKu
00 ⊕ M̃G

u

00 = OLu00

MKu
01 ⊕ M̃G

u

01 = OLu00

MKu
10 ⊕ M̃G

u

10 = OLu00

MKu
11 ⊕ M̃G

u

11 = OLu00

We change the equations as

OL100
OL101
OL110
OL111

...
OLs00
OLs01
OLs10
OLs11


⊕ (PPP ×MG) =



MK1
00

MK1
01

MK1
10

MK1
11

...
MKs

00

MKs
01

MKs
10

MKs
11


We change the equations as

T ×



OL10
OL11

...
OLs0
OLs1
MG0

...
MGm


= I4s ×



MK1
00

MK1
01

MK1
10

MK1
11

...
MKs

00

MKs
01

MKs
10

MKs
11


For the equation to be solvable, Col(T ) ⊇ Col(I4s). This implies that matrix

T must have at least 4s columns. Therefore, the number of variables OL10,OL
1
1, . . . ,

OLs0,OL
s
1,MG1, . . . ,MGm must be at least 4s, which gives m ≥ 2s. Since the

length of each ciphertext is κ/s, the total length of all ciphertexts is at least
2s× (κ/s) = 2κ.
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Lemma 5. The auxiliary ciphertext AG consists of at least 2 bits for the AND
gate.

Proof. Point and permute enforces that the permute and color bit have a rela-
tionship λc = πc ⊕ vc, which indicates that three of the output color bits OC00,
OC01, OC10, OC11 is equal to πc and the other one is equal to π̄c.

First, we claim that the dimension of the auxiliary keys is at least 3. In
other words, at least three auxiliary keys are linearly independent. Without
loss of generality, assume that AK00, AK01, and AK11 are linearly independent.
Additionally, suppose pa = pb = 0, then OC00 = OC01 = OC11 = πc. Recall step
8(b):

AK00 ⊕ ÃG00 = OC00,

AK01 ⊕ ÃG00 = OC01,

AK11 ⊕ ÃG00 = OC11.

Rearranging the above equations, we have:

ÃG00 = πc ⊕ AK00,

ÃG01 = πc ⊕ AK01,

ÃG11 = πc ⊕ AK11.

Thus, ÃG00, ÃG01, and ÃG11 must be linearly independent. If AG consists
of only one element AG (1 bit), then each ÃGij would either be AG or 0, which
contradicts the fact that ÃG00, ÃG01, and ÃG11 are linearly independent. There-
fore, the auxiliary ciphertext AG must consist of at least 2 bits for the AND
gate.

Next, we prove our claim by assuming the dimension of the auxiliary keys is
less than 3, meaning any three auxiliary keys are linearly dependent. This leads
to two possible cases:

– Case 1: Two auxiliary keys have an XOR result equal to a public value (either
0 or 1).

– Case 2:Any three auxiliary keys have an XOR result equal to a public value.

For Case 1, without loss of generality, suppose AK00 ⊕ AK01 = pub. In this
scenario, when the evaluator possesses A0 and B0, they can compute not only
OC00, but also OC01, thereby compromising privacy.

For Case 2, recall the equations:

AK00 ⊕ AK01 ⊕ AK10 = pub1,

AK00 ⊕ AK01 ⊕ AK11 = pub2.

By adding these two equations, we get:

AK10 ⊕ AK11 = pub1 ⊕ pub2.
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This results in Case 1, which is impossible.
Thus, both cases are impossible, confirming that our claim is true.

Theorem 1. Any ideally secure garbling scheme for an AND gate conforming
to our model must satisfy |G| ≥ 2k + 2.

Proof. The result is easy to see from Lemma 3, Lemma 4 and Lemma 5.

Lemma 6. The dimension of the main keys MKab,u
ij is at least 3s.

Proof. Due to space limitations, this proof is provided in the Appendix C.3.

Theorem 2. Any ideally secure garbling scheme for an XOR gate conforming
to Model 2 must satisfy |G| ≥ k.

Proof. Recall the step 6(b), for u ∈ [s]:

MKu
00 ⊕ M̃G

u

00 = OLu00

MKu
01 ⊕ M̃G

u

01 = OLu00

MKu
10 ⊕ M̃G

u

10 = OLu00

We change the equations as

OL100
OL101
OL110

...
OLs00
OLs01
OLs10


⊕ (PPP ×MG) =



MK1
00

MK1
01

MK1
10

...
MKs

00

MKs
01

MKs
10


We change the equations as

T ×



OL10
OL11

...
OLs0
OLs1
MG0

...
MGm


= I3s ×



MK1
00

MK1
01

MK1
10

MK1
11

...
MKs

00

MKs
01

MKs
10

MKs
11


For the equation to be solvable, Col(T ) ⊇ Col(I3s). This implies that matrix

T must have at least 3s columns. Therefore, the number of variables OL10,OL
1
1, . . . ,

OLs0,OL
s
1,MG1, . . . ,MGm must be at least 3s, which gives m ≥ s. Since the

length of each ciphertext is k/s, the total length of all ciphertexts is at least
s× (k/s) = k.
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Theorem 3. Any ideally secure garbling scheme for an AND gate that follows
our model must invoke the PRF F1 at least six times.

Proof. Proof outline: We first present two claims, and then prove the correctness
of the theorem based on these two claims. Finally, we prove the correctness of
the two claims.

Recall that

MKij = ⟨MKab,u
ij ,Sij⟩

= ⟨MKab,u,A
ij ,SAi⟩ ⊕ ⟨MKab,u,B

ij ,SBj ⟩

Recall that

MKij = ⟨MKab,u
ij ,Sij⟩

= ⟨MKab,u,A
ij ,SAi

⟩ ⊕ ⟨MKab,u,B
ij ,SBj

⟩

Then, we claim that

1. The computation of MKij includes at least two PRF calls, and the keys for
these two PRF calls are Ai and Bj , respectively.

2. MK00 ⊕MK01 ⊕MK10 ⊕MK11 includes at least two PRF calls, and the keys
for these PRF calls are either A0, A1 or B0, B1.

From claim 2, without loss of generality, we assume that the PRF calls involved
in MK00 ⊕MK01 ⊕MK10 ⊕MK11 use the keys A0, A1. From claim 1, we know
that both MK00 and MK01 invoke F1(A0, ·), and both MK10 and MK11 invoke
F1(A1, ·). Since the PRF calls in MK00 ⊕ MK01 ⊕ MK10 ⊕ MK11 use the keys
A0, A1, the inputs to F1(A0, ·) in MK00 and MK01 must differ, and similarly, the
inputs to F1(A1, ·) in MK10 and MK11 must differ as well. Therefore, at least
two calls to F1(A0, ·) and two calls to F1(A1, ·) are made. Additionally, there is
at least one call to F1(B0, ·) and one call to F1(B1, ·). Thus, at least six PRF
calls to F1 are made in total.

Due to page limits, the correctness of the two claims is refered to Ap-
pendix C.4

Theorem 4. Any ideally secure garbling scheme for an XOR gate conforming
to Model-1 calls PRF F1 at least four times.

Proof. Recalling Claim 1 in the proof of Theorem 3, the computation of MKij

includes at least two PRF calls, and the keys for these two PRF calls are Ai

and Bj , respectively. Therefore, the scheme includes at least the following PRF
calls: F1(A0, pub1), F1(A1, pub2), F1(B0, pub3), and F1(B1, pub4).

5 Our scheme under PRF assumption

The state-of-the-art PRF-based garbling scheme is due to Gueron et al. [7], where
AND gate costs 8 PRF calls and 2κ+4 bits communication, and XOR gate costs
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3 PRF calls and κ bits communication. While the XOR gate’s computation and
communication have already reached the lower bound of our model, the AND
gate’s computation and communication complexity have not yet achieved our
model’s lower bound. Here, we consider improving the AND gate further.

Firstly, we reconsider the construction of the main keys to improve the com-
putation cost. Reviewing our proof of Theorem 3, we established the following
two claims:

1. The equation consists of at least two PRF outputs.
2. The result of MK00 ⊕MK01 ⊕MK10 ⊕MK11 consists of at least the key of

these two PRF outputs are A0, A1 or B0, B1.

Based on these two claims, we construct the main keys as follows. The main
keys need only 6 PRF calls and meet our computation lower bound.

MK00 = F (A0, 0)[1 · · ·n]⊕ F (B0, 0)[1 · · ·n]
MK01 = F (A0, 0)[1 · · ·n]⊕ F (B1, 0)[1 · · ·n]⊕ F (A0, 1)[1 · · ·n]
MK10 = F (A1, 0)[1 · · ·n]⊕ F (B0, 0)[1 · · ·n]
MK11 = F (A1, 0)[1 · · ·n]⊕ F (B1, 0)[1 · · ·n]⊕ F (A1, 1)[1 · · ·n]

Without loss of generality, we consider πa = πb = 0, and we will consider
the general scheme next subsection. Similar to GLNP-GRR2, we set C0 = MK00

and C1 = MK01 ⊕MK10 ⊕MK11 and set MG = (0,MG01,MG10,MG01 ⊕MG10).
Then, we can compute

MG01 = MK00 ⊕MK01

MG10 = MK00 ⊕MK10

We can check for λa = λb = 1, the evaluator compute

MK11 ⊕MG01 ⊕MG10

= MK11 ⊕MK00 ⊕MK01 ⊕MK00 ⊕MK10

= MK11 ⊕MK01 ⊕MK01

= C1

Then, we reconsider the construction of the auxiliary keys and ciphertext to
improve the communication cost. Recall that we want to obtain the scheme that
needs only two auxiliary ciphertexts. We set AG = (0,AG01,AG10,AG01⊕AG10).
Recall that OCij = AKij ⊕ ÃGij . Thus,

OC00 ⊕ OC01 ⊕ OC10 ⊕ OC11

= AK00 ⊕ AK01 ⊕ AK10 ⊕ AK11 ⊕ ÃG00 ⊕ ÃG01 ⊕ ÃG10 ⊕ ÃG11

= AK00 ⊕ AK01 ⊕ AK10 ⊕ AK11
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Since three of OCij = πc and one of OCij = π̄c, thus OC00⊕OC01⊕OC10⊕OC11 =
1, Thus, AK00 ⊕ AK01 ⊕ AK10 ⊕ AK11 = 1. Then, we set auxiliary keys as

AK00 = lsb(F (A0, 0))⊕ lsb(F (B0, 0))

AK01 = lsb(F (A0, 0))⊕ lsb(F (B1, 0))

AK10 = lsb(F (A1, 0))⊕ lsb(F (B0, 0))

AK11 = lsb(F (A1, 0))⊕ lsb(F (B1, 0))⊕ 1

Then, set πc = AK00. We can compute auxiliary ciphertext as follows:

AG01 = AK01 ⊕ AK00

AG10 = AK10 ⊕ AK00

We can check for λa = λb = 1, the evaluator compute output color bit as

AK11 ⊕ AG01 ⊕ AG10

= AK11 ⊕ AK01 ⊕AB00 ⊕ AK10 ⊕ AK00

= AK00 ⊕ 1

= π̄c

5.1 Details of our scheme

notation. For wire i, w0
i and w1

i represent the labels, where w0
i corresponds to

FALSE and w1
i to TRUE, while πi denotes the permute bit and λi denotes the

color bit.
In this section, we provide a full specification of our garbling scheme. This

description uses our row reduction to two rows technique for the AND gate and
the GLNP XOR gate for the XOR gate and GLNP NOR gate scheme. Our
garbling scheme uses a pseudorandom function that takes an κ-bit key with
input and output of length κ + 1. That is, F : {0, 1}κ × {0, 1}κ+1 → {0, 1}κ+1

(formally, we consider a family of functions, where for every κ ∈ N the function is
of this type). We denote by Fk(x)[1 . . . κ] the first κ bits of the output of Fk(x),
and we denote by x∥y the concatenation of x with y. We define the method
for garbling AND and XOR gates in Fig. 1 and Figs. 2 (for simplicity, we only
consider XOR, AND, and NOT gates; the AND gate method can be extended
to any odd gate type) and then proceed to the high-level garbling algorithm in
Fig. 3. Finally, we describe the encoding, evaluation, and decoding algorithms
in Fig. 4, Fig. 5, and Fig. 6.

5.2 Security of our scheme

In this section, we explain the security of our scheme. First, we demonstrate the
correctness of our scheme, then we provide an intuitive explanation of why our
scheme is secure, and finally, we present a detailed security proof.
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Procedure GbAND(w0
a, w

1
a, w

0
b , w

1
b , πa, πb):

1. Compute the PRF:

w̃πa
a = Fw

πa
a

(g∥0), w̃π̄a
a = Fw

π̄a
a

(g∥0)

w̃
πb
b = Fw

πb
b
(g∥0), w̃π̄b

b = F
w

π̄b
b
(g∥0)

ŵπa
a = Fw

πa
a

(g∥1), ŵπ̄a
a = Fw

π̄a
a

(g∥1)

2. Compute the main keys

MK00 = (w̃πa
a ⊕ w̃

πb
b )[1 · · ·κ]

MK01 = (w̃πa
a ⊕ w̃

π̄b
b ⊕ ŵπa

a )[1 · · ·κ]
MK10 = (w̃π̄a

a ⊕ w̃
πb
b )[1 · · ·κ]

MK11 = (w̃π̄a
a ⊕ w̃

π̄b
b ⊕ ŵπ̄a

a )[1 · · ·κ]

3. Compute the location of ’1’ in the truth table: s = 2πi + πj

4. Compute the output labels
(a) If s = 0: w0

c = MK00 and w1
c = MK01 ⊕MK10 ⊕MK11.

(b) Else: w1
c = MK00 and w0

c = MK01 ⊕MK10 ⊕MK11.
5. Compute MG1 and MG2:

(a) If s = 0: MG1 = MK10 ⊕MK11, MG2 = MK01 ⊕MK11

(b) If s = 1: MG1 = MK10 ⊕MK11, MG2 = MK00 ⊕MK10

(c) If s = 2: MG1 = MK00 ⊕MK01, MG2 = MK01 ⊕MK11

(d) If s = 3: MG1 = MK00 ⊕MK01, MG2 = MK00 ⊕MK10

6. Compute the auxiliary keys:

AK00 = lsb(w̃πa
a )⊕ lsb(w̃πb

b )

AK01 = lsb(w̃πa
a )⊕ lsb(w̃π̄b

b )

AK10 = lsb(w̃π̄a
a )⊕ lsb(w̃πb

b )

AK11 = lsb(w̃π̄a
a )⊕ lsb(w̃π̄b

b )⊕ 1

7. Compute the output permute bit :
– If s = 0: πc = AK00; Else: πc = AK00 ⊕ 1.

8. Compute the auxiliary ciphertexts:
(a) If s = 0: AG1 = AK10 ⊕ AK11, AG2 = AK01 ⊕ AK11

(b) If s = 1: AG1 = AK10 ⊕ AK11, AG2 = AK00 ⊕ AK10

(c) If s = 2: AG1 = AK00 ⊕ AK01, AG2 = AK01 ⊕ AK11

(d) If s = 3: AG1 = AK00 ⊕ AK01, AG2 = AK00 ⊕ AK10

9. Return w0
c , w

1
c , πc,MG1,MG2,AG1,AG2

Fig. 1: Garbling AND gate

Correctness. We begin by demonstrating correctness. The XOR and NOT
gates follow the GLNP scheme, so we only need to prove the correctness of the
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Procedure GbXOR(w0
a, w

1
a, w

0
b , w

1
b , πa, πb):

1. Compute the main keys:

MK00 = Fw
πa
a

(g∥0)[1 · · ·κ]⊕ Fw
πb
b
(g∥0)[1 · · ·κ]

MK01 = Fw
πa
a

(g∥0)[1 · · ·κ]⊕ F
w

π̄b
b
(g∥1)[1 · · ·κ]

MK10 = Fw
π̄a
a

(g∥1)[1 · · ·κ]⊕ Fw
πb
b
(g∥0)[1 · · ·κ]

MK11 = Fw
π̄a
a

(g∥1)[1 · · ·κ]⊕ F
w

π̄b
b
(g∥1)[1 · · ·κ]

2. Compute the output labels:
(a) If πa ⊕ πb = 0: w0

c = MK00, w1
c = MK00 ⊕ Fw

πa
a

(g∥0)[1 · · ·κ] ⊕
Fw

π̄a
a

(g∥1)[1 · · ·κ].
(b) Else: w1

c = MK00, w0
c = MK01 ⊕MK10 ⊕MK11.

3. Compute the output permute bit πc = πa ⊕ πb

4. Compute the main ciphertexts:
– MG = w0

c ⊕ w1
c ⊕MK00 ⊕MK01

5. Return w0
c , w

1
c , πc,MG

Fig. 2: Garbling XOR gates

AND gate. We will demonstrate its correctness in two parts: first, by showing
the correctness of the output label, and second, by showing the correctness of
the output color bit.

Recall that OL00 = MK00, MG01 = MK01 ⊕ OL01, MG10 = MK10 ⊕ OL10.
This is immediate for the correctness of the output label when (λa, λb) =
(0, 0), (0, 1), (1, 0). In addition, Recall that

OL00 ⊕ OL01 ⊕ OL10 ⊕ OL11

= w0
c ⊕ w1

c

= MK00 ⊕MK01 ⊕MK10 ⊕MK11

Thus, OL01 ⊕ OL10 ⊕ OL11 = MK01 ⊕ MK10 ⊕ MK11. In addition, When λa =
λb = 1, the evaluator compute

MK11 ⊕MG01 ⊕MG10

= MK11 ⊕MK01 ⊕ OL01 ⊕MK10 ⊕ OL10

= MK01 ⊕MK10 ⊕MK11 ⊕ OL01 ⊕ OL10

= OL01 ⊕ OL10 ⊕ OL11 ⊕ OL01 ⊕ OL10

= OL11

Thus, the output label is computation correctly.
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The garbling algorithm Garble(1n, c):

1. For each input wire j in c:
(a) Choose two random keys: w0

j , w
1
j ← {0, 1}κ

(b) Choose a permutation bit for the bit ’0’: πj ← {0, 1}
(c) Prepare the encoding information: e[j, 0] := w0

j ∥ πj and e[j, 1] := w1
j ∥ πj

2. In topological order, for each gate g in circuit f :
(a) If g is a XOR gate with input wires a, b and output wire c:

i. (w0
c , w

1
c , πc,MG)← GbXOR(w0

a, w
1
a, w

0
b , w

1
b , πa, πb)

ii. Set the keys on the output wire c to be w0
c , w

1
c and the permutation

bit to be πc

iii. Set the garbled table for the gate: G[g] := MG
(b) If g is an AND gate with input wires a, b and output wire c:

i. (w0
c , w

1
c , πc,MG0,MG1,AG0,AG1)← GbAND(k0

i , k
1
i , k

0
j , k

1
j , πi, πj)

ii. Set the keys on the output wire c to be w0
c , w

1
c and the permutation

bit to be πc

iii. Set the garbled table for the gate: C[g] := (MG0,MG1,AG0,AG1)
(c) If g is a NOT gate with input wire a and output wire c:

i. Set w0
c = w1

a and w1
c = w0

a, and set πc = πi

ii. There is no garbled table
3. For each circuit-output wire j in c, prepare the decoding information: d[j, 0] :=

F
w

πj
j

(out∥πj) and d[j, 1] := F
w

πj
j

(out∥πj)

4. Return (F, e, d)

Fig. 3: Full garbling algorithm

Procedure Encode(e, x):

1. For i = 1 to |x|: X[i] := e[i, xi]
2. Return X

Fig. 4: Encoding algorithm

Then, we show the correctness of the output color bit. Recall that OC00 =
AK00, AG01 = AK01⊕OC01, AG10 = AK10⊕OC10. This is immediate for the cor-
rectness of the output color bit when (λa, λb) = (0, 0), (0, 1), (1, 0). In addition,
Recall that

OC00 ⊕ OC01 ⊕ OC10 ⊕ OC11

= πc ⊕ π̄c

= MK00 ⊕MK01 ⊕MK10 ⊕MK11
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Procedure Eval(F,X):

1. For every input wire j in f , set wj∥λj := X[j]
2. For each gate g in c, in topological order:

(a) If g is a XOR gate with input wires i, j and output wire ℓ:
i. Compute the main keys: MK = Fwa(g∥λa)[1 . . . κ]⊕Fwb(g∥λb)[1 . . . κ]

ii. Compute the output label: wc = MK⊕ λbMGλaλb

iii. Compute the output wire signal bit: λc := λa ⊕ λb

(b) If g is an AND gate with input wires a, b and output wire c:
i. Compute the main keys: MK = Fwa(g∥0)[1 . . . κ]⊕Fwb(g∥0)[1 . . . κ]⊕

λbFwa(g∥1)[1 . . . κ]
ii. Compute the output label: wc = λaMK1 ⊕ λbMK2 ⊕ λbMGλaλb

iii. Compute the auxiliary keys: AK = lsb(Fwa(g∥0)) ⊕ lsb(Fwb(g∥0)) ⊕
λaλb.

iv. Compute the output color bit: λc = AK⊕ λaAG1 ⊕ λbAG2.
(c) If g is a NOT gate with input wire a and output wire c, then set kc := ka

and λc = λa

3. For each output wire j in f , set Y [j] := Fwj (out}λj)
4. Return Y

Fig. 5: Evaluation algorithm

Procedure Decode(Y, d):

1. For i = 1 to |Y |:
(a) If Y [i] = d[i, 0], then y[i] := 0
(b) Else, if Y [i] = d[i, 1], then y[i] := 1
(c) Else, return ⊥

2. Return y

Fig. 6: Decoding algorithm

Thus, OC01 ⊕OC10 ⊕OC11 = AK01 ⊕ AK10 ⊕ AK11. In addition, When λa =
λb = 1, the evaluator compute

AK11 ⊕ AG01 ⊕ AG10

= AK11 ⊕ AK01 ⊕ OC01 ⊕ AK10 ⊕ OC10

= AK01 ⊕ AK10 ⊕ AK11 ⊕ OC01 ⊕ OC10

= OC01 ⊕ OC10 ⊕ OC11 ⊕ OC01 ⊕ OC10

= OC11

Thus, the output color bit is computation correctly.
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Intuition for Security. The XOR and NOT gates follow the GLNP scheme, so
we only need to prove the security of the AND gate. For any main key MKij(resp.
auxiliary key AKij) of AND gate, this main key (resp. auxiliary key) can only
be computed using wire labels wi

a and wj
b , and independent of other main keys

(resp. auxiliary key). Thus, the scheme is security intuitively.

Theorem 5. Our garbling scheme is secure (achieving privacy, obliviousness,
and authenticity) if F is a family of pseudorandom functions.

Proof. Due to page limits, the full proof is deferred to Appendix D.
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A Independence and Pseudorandomness of Wire Labels

In the proof framework of Y. Lindell and B. Pinkas, the simulator needs to forge
the truth table of the garbled circuit such that the evaluator "sees" the correct
row of the truth table. In contrast, the other three rows appear as indepen-
dent random values. The approach involves using a real PRF to generate the
row the evaluator "sees," while a truly random function f generates the other
three rows. In the reduction proof, the indistinguishability between the "real
truth table" and the "forged truth table" is reduced to the indistinguishability
between a pseudorandom function and a truly random function. However, in the
indistinguishability game between a pseudorandom function and a truly random
function, the pseudorandom function must be selected independently from the
key space. Therefore, to complete this reduction proof, the labels unknown to
the evaluator must be independent and random relative to those known to the
evaluator.

B Equivalence of Alternative Model

Recalling the proof of Theorem 1: if the main keys of different groups are cor-
related, privacy is leaked; if they are uncorrelated, at least 2s ciphertexts are
needed, each with a length of κ/s. Thus, transmitting the labels requires at
least 2κ bits of ciphertext. Additionally, it has been shown that transmitting the
color bit requires at least 2 bits of ciphertext, so a total of at least 2κ+2 bits of
ciphertext are needed. If the label and permute bit are treated as a single entity,
each ciphertext needs to be of length κ/s. If the keys from different groups are
correlated, privacy is leaked; if they are uncorrelated, at least 2s ciphertexts are
needed, each with a length of (κ+1)/s, meaning the communication cost remains
at least 2κ+2 bits of ciphertext (and there’s no need to separately transmit the
color bit in this case).

C Supplemental Materials for Section 4

C.1 Proof of Lemma 1

Proof. Recall that the vector MKab,u
ij has length ni

A + nj
B + 2s, with elements

in GF(2k/s). We parse it into two parts: the first part consists of the first ni
A+ s

elements and is denoted by MKab,u,A
ij , while the second part consists of the

remaining nj
B + s elements and is denoted by MKab,u,B

ij .

https://doi.org/10.1007/978-3-662-46803-6_8
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Recall that

MKu
ij = ⟨MKab,u

ij ,Sij⟩

= ⟨MKab,u,A
ij ,SAi

⟩ ⊕ ⟨MKab,u,B
ij ,SBj

⟩

First, we claim that neither MKab,u,A
ij nor MKab,u,B

ij can be zero vectors. Then,
based on this claim, we can verify that any three main keys are linearly inde-
pendent. That is, the XOR of any one element, any two elements, or any three
elements cannot result in a publicly fixed value. Here, we demonstrate that the
XOR of any three elements cannot result in a publicly fixed value. Similarly, the
cases of any two elements and any single element can be derived in the same
way. Without loss of generality, we choose the three elements as MKu

00, MKu
01,

and MKu
10. Then

MKu
00 ⊕MKu

00 ⊕MKu
00

= ⟨MKab,u,A
00 ,SAi

⟩ ⊕ ⟨MKab,u,B
00 ,SBj

⟩ ⊕ ⟨MKab,u,A
01 ,SAi

⟩ ⊕ ⟨MKab,u,B
01 ,SBj

⟩

⊕ ⟨MKab,u,A
10 ,SAi

⟩ ⊕ ⟨MKab,u,B
10 ,SBj

⟩

= ⟨MKab,u,A
00 + MKab,u,A

01 ,SA0
⟩ ⊕ ⟨MKab,u,B

00 + MKab,u,B
10 ,SB0

⟩

⊕ ⟨MKab,u,A
10 ,SA1

⟩ ⊕ ⟨MKab,u,B
10 ,SB1

⟩

Note that SA0
and SA1

, SB0
and SB1

are mutually independent and random.
Since both MKab,u,A

10 and MKab,u,B
10 are non-zero vectors, the expression cannot

result in a publicly fixed value.
Then, we demonstrate the intuitive correctness of our claim. Without loss of

generality, we assume MKab,u,A
ij are zero vectors. In this case, MKu

ij could be
computed using only Bj without involving Ai.

Note that MKab,u,A
ij̄

only depends on the secret values of the permutation
bits πa and πb. Therefore, the evaluator has a 1/4 chance of correctly guessing
MKab,u,A

ij . If the evaluator possesses Ai and Bj̄ , they would have a 1/4 chance of
successfully guessing MKab,u,A

ij and subsequently computing MKu
ij , which would

compromise the security of the garbled circuit.

C.2 Proof of Lemma 3

Before proving this lemma, we first establish the following Lemma:

Lemma 7. For any S ⊆ {C1
0 , C

1
1 , . . . , C

s
0 , C

s
1} and S ̸= ∅,

⊕
x∈S x ̸= pub

Proof. We divide S into two subsets. S0 consists of all elements in S with a
subscript of 0, i.e., S0 = {Ci

0 | Ci
0 ∈ S}, and S1 consists of all elements in S with

a subscript of 1, i.e., S1 = {Ci
1 | Ci

1 ∈ S}.

⊕
x∈S

x =
⊕
x∈S1

x⊕
⊕
x∈S2

x
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Recall that the evaluator has one label for every wire. We denote the evaluator
has label Cv on wire c. If

⊕
x∈S x = pub, then the evaluator can compute

⊕
x∈Sv̄

x =
⊕
x∈Sv

x⊕ pub

Because the evaluator has label Cv, the evaluator has all the values in Sv. Then,⊕
x∈Sc̄

x = pub′ for evaluator. Assume Sc̄ has n elements. Then, the evaluator
can guess the first n−1 element and compute the last element. Then, the evalua-
tor can guess the Cv̄ with probability poly(κ)/(2(s−1)κ/s) rather than poly(k)/2κ.

Proof. Then, we prove Lemma 3 by contradiction. If the main keys are linearly
dependent, then for some S ⊆ {(i, j, u) | i, j ∈ {0, 1}, u ∈ [s]},

⊕
(i,j,c)∈S MKc

ij =
0.

We divide S into s smaller sets Sc, where each Sc = {(i, j, c) ∈ S}.
Recall that

OLcij = MKc
ij ⊕ M̃G

c

ij

Thus

⊕
(i,j,c)∈Si,c∈[s]

OLcij =
⊕

(i,j,c)∈S

OLcij

=
⊕

(i,j,c)∈S

(MKc
ij ⊕ M̃G

c

ij)

=
⊕

(i,j,c)∈S

MKc
ij ⊕

⊕
(i,j,c)∈S

M̃G
c

ij

=
⊕

(i,j,c)∈S

M̃G
c

ij

Recall that OLcij is either Cc
0 or Cc

1. Thus,
⊕

(i,j,c)∈Si,c∈[s] OL
c
ij = 0 according to

Lemma 7. In other words, for any Si, Si is either empty or contains exactly two
elements, both of which correspond to Ci

0.
Next, we prove that any Si must be empty. Therefore, there are no main keys

that are linearly independent.
Assume there exist some sets Si that contain two elements, both of which

correspond to Ci
0. Note that for the sets OL00,OL01,OL10,OL11, there is one

that equals Ci
1 and three that equal Ci

0. Without loss of generality, we as-
sume OL11 corresponds to Ci

1. Thus, Si can only include two elements from
MK00,MK01,MK10.
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⊕
(i,j,c)∈S

MKc
ij

=
⊕
c∈S00

MKc
00 ⊕

⊕
c∈S01

MKc
01 ⊕

⊕
c∈S10

MKc
10

=
⊕
c∈S00

⟨MKab,c
00 , S00⟩ ⊕

⊕
c∈S01

⟨MKab,c
01 , S01⟩ ⊕

⊕
c∈S10

⟨MKab,c
10 , S10⟩

=
⊕
c∈S00

⟨MKab,c,A
00 , SA0

⟩ ⊕
⊕
c∈S00

⟨MKab,c,B
00 , SB0

⟩

⊕
⊕
c∈S01

⟨MKab,c,A
01 , SA0

⟩ ⊕
⊕
c∈S01

⟨MKab,c,B
01 , SB1

⟩

⊕
⊕
c∈S10

⟨MKab,c,A
10 , SA1

⟩ ⊕
⊕
c∈S10

⟨MKab,c,B
10 , SB0

⟩

= ⟨
⊕
c∈S00

MKab,c,A
00 ⊕

⊕
c∈S01

MKab,c,A
01 , SA0⟩ ⊕ ⟨

⊕
c∈S10

MKab,c,A
10 , SA1⟩

⊕ ⟨
⊕
c∈S00

MKab,c,B
00 ⊕

⊕
c∈S01

MKab,c,B
10 , SB0⟩ ⊕ ⟨

⊕
c∈S01

MKab,c,B
01 , SB1⟩

Since SA0 , SA1 , SB0 , and SB1 are mutually independent,
⊕

c∈S00
MKab,c,A

00 ⊕⊕
c∈S01

MKab,c,A
01 ,

⊕
c∈S00

MKab,c,B
00 ⊕

⊕
c∈S10

MKab,c,B
10 ,

⊕
c∈S01

MKab,c,A
10 and⊕

c∈S01
MKab,c,B

01 must all be 0.
Then, we prove S00, S01, S10, S11 are all empty.

⊕
c∈S01

MKc
10

=
⊕
c∈S01

⟨MKab,c,A
10 , A1⟩ ⊕

⊕
c∈S01

⟨MKab,c,B
10 , B0⟩

=
⊕
c∈S01

⟨MKab,c,B
10 , A1⟩

Then, if evaluator has A1 and B1, then he can have relationship on MK10,
which can help evauator guess MK10, violating privacy. Similarly, S10 is also
empty.

⊕
c∈S00

MKab,c,A
00 ⊕

⊕
c∈S01

MKab,c,A
10

=
⊕
c∈S00

MKab,c,A
00

Thus, S00 is also empty. Thus, S is empty, too. Thus, the main keys are not
linearly dependent.
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C.3 Proof of Lemma 6

Proof. For every u, the dimension of MKu
ij is 3 from Lemma 1, Then, we denote

MKu
00, MKu

01, MKu
10 as the base of u-th main keys. If these bases are linearly

independent, then the dimension of the main keys MKu
ij is 3s.

Then, we show these bases are linearly independent by contradiction. Sup-
pose these bases are linearly dependent, then for some S ∈ {(i, j, u)|i, j ∈
{(0, 0), (0, 1), (1, 0)}, u ∈ [s]}, such that

⊕
(i,j,c)∈S MKc

ij = 0. Recall that

MKc
ij ⊕ M̃G

c

ij = OLcij

Thus ⊕
(i,j,c)∈Si,c∈[s]

OLcij =
⊕

(i,j,c)∈S

OLcij

=
⊕

(i,j,c)∈S

(MKc
ij ⊕ M̃G

c

ij)

=
⊕

(i,j,c)∈S

MKc
ij ⊕

⊕
(i,j,c)∈S

M̃G
c

ij

=
⊕

(i,j,c)∈S

M̃G
c

ij

Recall that OLcij is either Cc
0 or Cc

1. Thus,
⊕

(i,j,c)∈Si,c∈[s] OL
c
ij = 0 according

to Lemma 5. In other words, for any Si, Si is either empty or contains exactly
both OL01 and OL01

Next, we prove that any Si must be empty. Therefore, there are no main keys
that are correlated.⊕

(i,j,c)∈S

MKc
ij

=
⊕
c∈S01

MKc
ij ⊕

⊕
c∈S10

MKc
ij

=
⊕
c∈S01

⟨MKab,c
01 , S01⟩ ⊕

⊕
c∈S10

⟨MKab,c
10 , S10⟩

=
⊕
c∈S01

⟨MKab,c,A
01 , SA0

⟩ ⊕
⊕
c∈S01

⟨MKab,c,B
01 , SB1

⟩

⊕
⊕
c∈S10

⟨MKab,c,A
10 , SA1

⟩ ⊕
⊕
c∈S10

⟨MKab,c,B
10 , SB0

⟩

Since SA0 , SA1 , SB0 , and SB1 are mutually independent. Then, S01, S10 are all
empty.

C.4 The correctness of claims in Theorem 3

These are the two claims that need to be proven.



Towards Optimal Garbled Circuits in the Standard Model 35

1. The computation of MKij includes at least two PRF calls, and the keys for
these two PRF calls are Ai and Bj , respectively.

2. MK00 ⊕MK01 ⊕MK10 ⊕MK11 includes at least two PRF calls, and the keys
for these PRF calls are either A0, A1 or B0, B1.

First, we prove claim 1 using a proof by contradiction. Assume there exists
MKij where its computation involves only one PRF call. Without loss of gen-
erality, we assume the key for this PRF is Ai. Recalling the proof of Lemma 1,
MKab,u,B

ij cannot be the zero vector. Thus, MKu
ij = ⟨MKab,u,A

ij , SAi
⟩⊕⊕x∈SB

x
j

where S ⊆ {1, · · · , s} and S ̸= ∅. Additionally, let us consider the relationship
between OLuij and OLuij̄ . There are two cases to consider.

– Case 1: OLuij = OLuij̄ = Cu
0 . In this case, an evaluator with Ai and Bj

can compute AAAAA. Since the evaluator also possesses Ai and Bj̄ , it can
compute MKu

ij . Moreover, MKab,u,A
ij depends on the permute bits πa and πb,

meaning the evaluator has a 1/4 chance of guessing MKab,u,A
ij correctly. In

other words, the evaluator has a 1/4 probability of obtaining a linear relation
of B1

i , · · · , Bs
i . This would result in a loss of perfect security for the scheme.

– Case 2: If OLuij ̸= OLuij̄ , then OLuīj = OLuīj̄ = Cu
0 . From the analysis in Case

1, it follows that both MKu
īj and MKu

īj̄ must involve at least two PRF calls,
which would lead to the evaluator’s computation leaking information about
the output label. For example, if the evaluator knows that MKij only involves
one PRF call, they would infer that OLuīj = OLuīj̄ = Cu

0 . This would result in
compromising privacy.

Next, we show the correctness of claim 2. Recall that OLuij = MKu
ij ⊕ M̃G

u

ij ,
thus

Cu
0 ⊕ Cu

1

= OLu00 ⊕ OLu01 ⊕ OLu10 ⊕ OLu11

= MKu
00 ⊕ M̃G

u

00 ⊕MKu
01 ⊕ M̃G

u

01 ⊕MKu
10 ⊕ M̃G

u

10 ⊕MKu
11 ⊕ M̃G

u

11

= MKu
00 ⊕MKu

01 ⊕MKu
10 ⊕MKu

11 ⊕ M̃G
u

00 ⊕ M̃G
u

01 ⊕ M̃G
u

10 ⊕ M̃G
u

11

If MK00 ⊕MK01 ⊕MK10 ⊕MK11 only consist of one PRF calls. Then, it violate
the requirement in step 5(d). Thus claim 2 is correct.

D Security Proof of Our Garbling Scheme

Our proof follows the high-level structure of Gueron et al. [7], with modifications
as needed for our garbling scheme.

At first, we overview the experiment, called 2PRF defined in [7]. In this
experiment, the distinguisher/adversary is given access to four oracles divided
into two pairs. The second and fourth oracles are always pseudorandom functions
Fk1

and Fk2
, respectively. In contrast, the first and third oracles are either the

same pseudorandom functions Fk1
and Fk2

, respectively, or independent truly
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Exptment Expt2PRFF,A (n, σ)

1. Choose random keys k1, k2 ← {0, 1}n for the pseudorandom function, and
choose two truly random functions f1, f2. If σ = 0, set (O1,O2,O3,O4) =
(Fk1 , Fk1 , Fk2 , Fk2); else set (O1,O2,O3,O4) = (f1, Fk1 , f

2, Fk2)
2. The adversary A is invoked upon input 1n

3. WhenAmakes a query j, x to its oracles with j ∈ {1, 2, 3, 4} and x ∈ {0, 1}n+1,
answer as follows:

– if j ∈ {1, 2} and x was already queried to {1, 2}\{j}, return ⊥.
– if j ∈ {3, 4} and x was already queried to {3, 4}\{j}, return ⊥.
– Otherwise, return Oj(x)

4. A outputs a bit σ′, and this is the output of the experiment.

Fig. 7: 2PRF experiment

random functions f1 and f3. If A can make the same query to the first and
second oracle or the third and fourth oracle, then it can easily distinguish the
cases. The security requirement is that it cannot distinguish the cases as long as
it does not make such queries. The experiment is formally defined in Fig. 7, and
2PRF security is formalized in Definition 6.

Definition 6. Let F = {Fn}n∈{N} be an efficient family of functions where for
every n, Fn : {0, 1}n × {0, 1}n+1 → {0, 1}n+1. Family F is a 2PRF if for every
probabilistic polynomial time adversary A, there exists a negligible function aa
such that for every n∣∣Pr[Expt2PRFF,A (n, 1) = 1]− Pr[Expt2PRFF,A (n, 0) = 1]

∣∣ ≤ u

The following lemma of Shay et al. [7] shows that the pseudorandomness of
Fk is sufficient for it to be 2PRF as well.

Lemma 8. If F is a family of pseudorandom functions, then it is a 2PRF.

We begin by proving that our garbling scheme achieves privacy. Let G de-
note our garbling scheme. Our proof follows the high-level structure of [7], with
modifications as needed for our garbling scheme.

Theorem 6. If F is a family of pseudorandom functions, then the garbling
scheme G achieves privacy.

Proof. We begin by describing a simulator S for the privacy experiment. S is
invoked with input (1n, f, f(x)) and works as follows. As we will show, S will
define an active label on every wire. This label will be the one that is obtained in
the evaluation procedure. The other label is not active and is actually never ex-
plicitly defined. Rather, all the ciphertexts in the gates that are not ”decrypted”
in the evaluation are chosen at random.
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1. For each input wire j in circuit f :
(a) Choose an active label: wj

$← {0, 1}n

(b) Choose an active signal bit λj
$← {0, 1}

(c) Prepare the garbled input data: X[j] = wj∥λj

2. In topological order, for each gate g in c:
(a) If g is a XOR gate with input wires a, b and output wire c:

i. Compute the active output wire signal bit: λc = λa ⊕ λb

ii. Compute a translated new label for wire a: w̃a = Fwa
(g∥λa)

iii. Compute a translated new label for wire b, set the garbled table and
compute the output label:

– w̃b = wb, set C[g]← {0, 1}n and set wc = wa ⊕ wb ⊕ λbT .
(b) If g is a AND gate with input wires a, b and output wire c:

i. Choose the main ciphertext MG1
$← {0, 1}κ, MG2

$← {0, 1}κ.
ii. Compute the main key MK = Fwa(g∥0)[1 . . . κ]⊕ Fwb

(g∥0)[1 . . . κ]⊕
λbFwa(g∥1)[1 . . . κ].

iii. Compute the output labels wc = MK⊕ λaMG1 ⊕ λbMG2

iv. Compute the auxiliary keys: AK = lsb(Fwa
(g∥0)) ⊕ lsb(Fwb

(g∥0)) ⊕
(λaλ̇b)

v. Compute the output color bit λc = AK⊕ (λa · AG1)⊕ (λb · AG2).
3. For each output wire j in c:

(a) Prepare the decoding information: d[j, f(x)j ] = Fwj
(out∥λj) and d[j, f(x)j ]

$←
{0, 1}n.

4. return (C,X, d).

We now show that the simulated garbled circuit is indistinguishable from a
real garbled circuit by reduction to the 2PRF experiment, which by Lemma 8
follows merely from the fact that F is a pseudorandom function. Let A be a
probabilistic polynomial time adversary for privacy, and let g denote the number
of gates in the circuit. We define a hybrid distribution Hi(f, x) with 0 ≤ i ≤ g
as the triple (F,X, d) generated in the following way (note that the procedure
for generating Hi(f, x) is given the circuit f and the real input x):

– Garbling of gates: The garbled circuit F is generated by garbling the first i
gates in the topological order using the simulator garbling procedure, while
gates i + 1, · · · , g are garbled using the real garbling scheme. Observe that
the simulator generates only a single label per wire; specifically, it generates
the active label wvj

j . Therefore, the first step in the hybrid is to choose an
additional label wvj

j for every wire j, which is the input wire of a gate that
is garbled according to the real scheme.

– Encoding information X : For each circuit input wire j that enters a gate g,
if g is garbled using the real scheme (i.e., the gate’s index > i), then X[j] is
the garbled value that was chosen to represent the jth bit of the input (recall
that in experiment Exptpriv, the adversary knows the input string x and so
can choose the correct encoding for x). Otherwise, if g is garbled using the
simulator procedure (i.e., the gates index ≤ i), then X[j] is the garbled value
chosen for that wire’s active label.
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– Decoding information d: For each output wire j that exits from a gate g, if
g was garbled using the real scheme, then there are two garbled values on a
wire j, and d[j, ·] is generated exactly as in the Garble procedure. Otherwise,
if g is garbled using the simulator instructions, then there is only one garbled
value on j and d[j, ] is generated exactly as in the simulator procedure.

Note that the hybrid H0(x) is a real garbled circuit (and is distributed as
(C,X, d) in ExptprivG,A,S in the case that β = 0), while Hℓ(x) is the output of
the simulator S (and is distributed as (C,X, d) in ExptprivG,A,S in the case that
β = 1). Next, for each 0 ≤ i ≤ ℓ, we define Ai to be a probabilistic polynomial
time adversary for Expt2PRFF,Ai

(n, σ) experiment. Ai is given access to four oracles:

(O1(·),O2(·),O3(·),O4(·)) = (f1(·) or Fw1(·), Fw1(·), f2(·) or Fw2(·), Fw2(·))

Adversary Ai runs Exptpriv with adversary A. First, it invokes A and receives
(f, x). Then, as we will see, it constructs a garbled circuit, which will either
be distributed according to Hi−1 or Hi, depending on the oracles it received.
Thus, as we will show, if A can succeed in Exptpriv with the probability that is
non-negligibly greater than 1/2, then Ai will distinguish in the 2PRF experiment
with non-negligible probability.

Formally, adversary Ai constructs a garbled circuit by generating the first
i−1 gates in topological order using the simulator procedure and generating the
gates indexed by i+1, · · · ,m using the real Garble instructions (with subroutines
GbXOR and GbAND). However, for the ith gate,Ai will use its oracles to generate
a garbled table that is garbled as in the real scheme or as in the simulator code,
depending on whether it received an oracle access to pseudorandom or to random
functions. Assume the input wires of the ith gate are a, b, and the output wire
is c. In addition, assume that the active labels on the input wires are associated
with the bits va, vb (recall that Ai knows the input to the circuit and thus va,
vb are known to it). Knowing wv

a and wv
b , adversary A will (implicitly) use the

secrets k1, k2 that were chosen for the pseudorandom function in Expt2PRF as wva
a

and wvb

b , respectively. Thus, whenever Ai needs to compute Fwva
a
(x) or F

w
vb
b

(x)

for some x, it will send x to its oracles O1 or O3, respectively. (recall that these
are either also Fw1

, Fw2
, or are random functions f1, f2). We remark that O2

and O4 are used to garble gates ℓ > i that use wires a, b as well; this will be
described after we present the method for garbling the i th gate. Since the XOR
gate follows the GLNP-GRR1 scheme, we only need to consider the case where
the i-th gate is an AND gate.

As before, for wire a and b, Ai has two labels wv
a, wv

b , two signal bits λa, λb

and the bits va, vb that are on the wires. Then, it does the following:

1. Compute the values w̃va
a = Fwva

a
(g∥0λa), w̃va

a = O1(g∥0λa), w̃vb
b = Fw

vb
b
(g∥0λb),

w̃vb

b = O3(g∥0λb), ŵva
a = Fwva

a
(g∥1λa)[1 · · ·n]∥λa, ŵva

a = O1(g∥1λa)[1 · · ·n]∥λa.
2. Compute the offset R = ŵva

a ⊕ ŵva
a .

3. TG = w̃va
a ⊕ w̃va

a ⊕ (vb ⊕ λb) ·R, TE = w̃vb
b ⊕ w̃vb

b ⊕ vaŵ
va
a ⊕ vaŵ

va
a
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4. W 0
G = W̃ 0

a ⊕ (va ⊕ λa)TG, W 0
E = W̃ 0

b ⊕ (λb ⊕ vb)(TE ⊕ Ŵ 0
a )

5. w0
c∥πc = W 0

G ⊕W 0
E , w1

c = w0
c ⊕R[1 · · ·n]

1. Compute the permute bit πa = va ⊕ λa, πb = vb ⊕ λb.
2. Compute the PRF:

w̃va
a = Fwva

a
(g∥0), w̃v̄a

a = f(g∥0)
w̃vb

b = Fw
vb
b
(g∥0), w̃v̄b

b = f(g∥0)

ŵva
a = Fwva

a
(g∥1), ŵv̄a

a = f(g∥1)

3. Set w̃πa
a , w̃π̄a

a , ŵπa
a , ŵπ̄a

a

– If λa = 0: w̃πa
a = w̃va

a , w̃π̄a
a = w̃v̄a

a , ŵπa
a = ŵπa

a , ŵπ̄a
a = ŵv̄a

a .
– Else: w̃πa

a = w̃v̄a
a , w̃π̄a

a = w̃va
a , ŵπa

a = ŵπ̄a
a , ŵπ̄a

a = ŵva
a .

4. Set w̃πb

b , w̃π̄b

b

– If λb = 0: w̃πb

b = w̃vb
b , w̃π̄b

b = w̃v̄b

b .
– Else: w̃πb

b = w̃v̄b
b , w̃π̄b

b = w̃vb
b .

5. Compute the main keys

MK00 = (w̃πa
a ⊕ w̃πb

b )[1 · · ·n]
MK01 = (w̃πa

a ⊕ w̃π̄b

b ⊕ ŵπa
a )[1 · · ·n]

MK10 = (w̃π̄a
a ⊕ w̃πb

b )[1 · · ·n]
MK11 = (w̃π̄a

a ⊕ w̃π̄b

b ⊕ ŵπ̄a
a )[1 · · ·n]

6. Compute the location of ’1’ in the truth table: s = 2πi + πj

7. Compute the output labels
(a) If s = 0: w0

c = MK00 and w1
c = MK01 ⊕MK10 ⊕MK11.

(b) Else: w1
c = MK00 and w0

c = MK01 ⊕MK10 ⊕MK11.
8. Compute MG1 and MG2:

(a) If s = 0: MG1 = MK10 ⊕MK11, MG2 = MK01 ⊕MK11

(b) If s = 1: MG1 = MK10 ⊕MK11, MG2 = MK00 ⊕MK10

(c) If s = 2: MG1 = MK00 ⊕MK01, MG2 = MK01 ⊕MK11

(d) If s = 3: MG1 = MK00 ⊕MK01, MG2 = MK00 ⊕MK10

9. Compute the auxiliary keys:

AK00 = lsb(w̃πa
a )⊕ lsb(w̃πb

b )

AK01 = lsb(w̃πa
a )⊕ lsb(w̃π̄b

b )

AK10 = lsb(w̃π̄a
a )⊕ lsb(w̃πb

b )

AK11 = lsb(w̃π̄a
a )⊕ lsb(w̃π̄b

b )⊕ 1

10. Compute the output permute bit :
– If s = 0: πc = AK00; Else: πc = AK00 ⊕ 1.

11. Compute the auxiliary ciphertexts:
(a) If s = 0: AG1 = AK10 ⊕ AK11, AG2 = AK01 ⊕ AK11

(b) If s = 1: AG1 = AK10 ⊕ AK11, AG2 = AK00 ⊕ AK10

(c) If s = 2: AG1 = AK00 ⊕ AK01, AG2 = AK01 ⊕ AK11
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(d) If s = 3: AG1 = AK00 ⊕ AK01, AG2 = AK00 ⊕ AK10

As in the previous case, when σ = 0, it’s easy to see that the code is identical
to the real garbling scheme. In step 2, compute the offset R = ŵ0

a ⊕ ŵ1
a. In step

3, compute the TG = w̃0
a ⊕ w̃1

a ⊕ (πb · R) and TE = w̃0
b ⊕ w̃1

b ⊕ ŵ0
a. In step 4,

compute the
When σ = 1, the answers of the oracles are random strings, and therefore,

all the rows in the garbled table are random as well. Additionally, apart from
replacing Fwva

a
and Fw

vb
b

with random functions, the rest of the code remains
unchanged. Therefore, the evaluation function of the real scheme is still valid.
Moreover, since the simulator is simulated based on the evaluator, it can be
verified that the code and the simulator are consistent when σ = 1.

We conclude that when σ = 0, the ith gate is garbled as in the real garbling
scheme, while when σ = 1, the ith gate is garbled as in the simulator procedure.
However, to complete the garbled circuit construction, Ai needs to construct all
the gates ℓ > i. For a gate ℓ > i, with input wires that are output from the
ith gate and greater, Ai has both labels on the wires and can compute the gate
just like in the real garbling procedure. If a gate ℓ > i has an input wire that
is output from a gate j < i that does not equal a or b, then Ai chooses the
(inactive) label at random, like in the hybrid definition.

If a gate ℓ > i has an input wire that is a, then Ai just computes the gate
just like in the real garbling procedure but using oracle O2 when Fwva

a
is needed.

If a gate ℓ > i has an input wire that is b, then Ai just computes the gate just
like in the real garbling procedure but using oracle O2 when Fwva

a
is needed if

ith gate is an AND gate or ith gate is an XOR gate and λb = 0. If a gate ℓ > i
has an input wire that is b and ith gate is an XOR gate and λb = 0, Ai has both
labels on the wires (w̃vb

b is chosen) and can compute the gate just like in the real
garbling procedure.

Concluding the proof, when σ = 0, Ai construct the hybrid Hi−1(x), while
when σ = 1, Ai constructs the hybrid Hi(x). We, therefore, construct a single
adversary A′ for 2PRF who chooses a random i and then runs Ai with adversary
A. By a standard hybrid argument, if A succeeds with non-negligible probability
in Exptpriv then A′ distinguishs between Expt2PRFF,A (n, 0) and Expt2PRFF,A (n, 1), with
non-negiliable probability. This contradicts the assumption that F is a family of
pseudorandom functions.

D.1 Obliviousness and Authenticity

The proofs of obliviousness and authenticity are similar to those of Gueron et
al. [7]. For completeness, we present them here.

To satisfy the obliviousness requirement, we construct a simulator that out-
puts (F,X) given only circuit f as an input. Note that the simulator S completed
above for the privacy requirement outputs the triple (F,X, d). However, S uses
circuit f only for generating (F,X), particularly the output f(x), used only
for generating d. Thus, we can remove the generation of the decoding informa-
tion from S’s instruction and obtain a simulator that produces only (F,X) as
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required. Proving that this simulator’s output is indistinguishable from (F,X)
generated by the real scheme is the same as in the proof of privacy.

Regarding authenticity, we need to show that an adversary A that is given
(F,X) as input can output Ỹ such that Decode (Ỹ , d ̸= {f(x),⊥}) with at
negligible probability. If we give A the pair (F,X) generated by our simulator, it
can succeed only with probability at most 2−n. This is because in the simulated
garbled circuit, for each output wire j corresponding to the jth output bit,
d[j, f(x)j ] is a random string. Now, if given the real (F,X), the adversary can
output such a Ỹ with non-negligible probability, then it could be used by an
adversary given (F,X, d) to break the privacy property. Observe that since the
adversary in the privacy experiment is given all of the decoding information d,
it can efficiently verify if A output a Ỹ with the property that Decode(Ỹ , d) /∈
{f(x),⊥}.
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