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ABSTRACT

Despite the emergence of Large Language Models (LLMs) as poten-
tial tools for automating hardware design, the optimal programming
language to describe hardware functions remains unknown. Prior
works extensively explored optimizing Verilog-based HDL design,
which often overlooked the potential capabilities of alternative pro-
gramming languages for hardware designs. This paper investigates
the efficacy of C++ and Verilog as input languages in extensive ap-
plication space exploration, tasking an LLM to generate implemen-
tations for various System-on-chip functional blocks. We proposed
an automated Optimal Programming Language (OPL) framework
that leverages OpenAI's GPT-40 LLM to translate natural language
specifications into hardware descriptions using both high-level and
low-level programming paradigms. The OPL4GPT demonstration
initially employs a novel prompt engineering approach that decom-
poses design specifications into manageable submodules, presented
to the LLM to generate code in both C++ and Verilog. A closed-loop
feedback mechanism automatically incorporates error logs from
the LLM’s outputs, encompassing both syntax and functionality.
Finally, functionally correct outputs are synthesized using either
RTL (Register-Transfer Level) for Verilog or High-Level Synthesis
for C++ to assess area, power, and performance. Our findings il-
luminate the strengths and weaknesses of each language across
various application domains, empowering hardware designers to
select the most effective approach.
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1 INTRODUCTION

A System on Chip (SoC) comprises numerous functional blocks,
each representing an individual module, such as microprocessors,
memory, or control logic. These modules are typically defined using
hardware description languages (HDLs) like Verilog, VHDL, Sys-
temVerilog, or even C++/SystemC. Subsequently, these HDL codes,
along with the target specification and technology library, undergo
electronic design automation (EDA) processes such as elaboration,
technology mapping, synthesis, verification, floorplanning, place-
ment, routing, and optimization to be transformed into a GDSII
layout to be fabricated at the foundry. Automating the chip de-
sign process is paramount in the modern semiconductor industry.
The increasing complexity and scale of SoCs and shrinking time-
to-market windows necessitate the use of automated tools and
methodologies. Automation streamlines the design flow, reduces
human error, and accelerates the entire design cycle from concept
to silicon, enabling efficient design space exploration and leading
to optimized power, performance, and area (PPA) solutions.

Since SoCs have become increasingly capable and complex, arti-
ficial intelligence (AI) has been used in chip design workflows, par-
ticularly within EDA, to accelerate the design process significantly.
Aside from this, recent advances in natural language processing
(NLP) and large language models (LLMs) have demonstrated re-
markable success in a wide range of language-related tasks. The
similarities between NLP applications and specific tasks in EDA and
the success demonstrated by other AI models in EDA [1], have led
researchers to investigate the potential of LLMs across several EDA
aspects, including code generation [2-6], test bench writing [7],
design optimization [5, 8], scripting of EDA tools [9], resolving
errors [9-12], and analyzing reports [9]. Hardware design could be
significantly simplified under this new paradigm with enhanced pro-
ductivity, fast time-to-market, and bypassing the shortage in hard-
ware design expertise. Several prompting-based and fine-tuning
(FT)-based frameworks have been proposed to address these chal-
lenges. As summarized in Tab. 1, Researchers have investigated
Verilog RTL generation using LLMs [2-5, 9, 13] because of their
promising code generation abilities to reduce the manual burden
associated with designing. Apart from Verilog, researchers have ex-
plored Python [14] and high-level synthesis (HLS) [15] code genera-
tion for synthesizing Al hardware accelerators targeting FPGAs and
analog circuits [16]. However, existing LLMs have limited hardware-
related knowledge, and the fine-tuned ones under-performs the
commercial models [17] in terms of syntactical and functional cor-
rectness [4, 18]. Moreover, these commercial LLMs, being trained
by the codebases from GitHub, severely lack adequate knowledge
about hardware code generation due to the scarcity of open-source
hardware codes [19]. Due to the fundamental difference in code
execution pattern of general-purpose programming language and
Verilog, these generative Al models fail to produce robust RTL codes.
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Table 1: Comparison of Recent works on RTL Generation by LLM.

Works Language LLMs Goal
Thakur et al. [2, 3] Verilog GPT-3.5,4, Llama2 | RTL Generation
Chang et al. [5] Verilog GPT-3.5 RTL Generation
Lu et al. [4] Verilog GPT-3.5,4 RTL Generation
Liu et al. [6] Verilog GPT-3.5+SFT RTL Generation
DeLorenzo et al. [13] Verilog VeriGen+MCTS RTL Generation
Fu et al. [15] HLS GPT-4 AT Accelerator
Leon et al. [14] Python GPT-4 CNN Architecture
This work Verilog/C++ GPT-40 Optimal HDL

This work finally addresses these challenges by answering the
following research questions - (i) Considering the diverse appli-
cation of numerous functional blocks in a typical SoC, between
C++ and Verilog which one is the appropriate language to generate
optimal HDL using LLM?, (ii) Given the hierarchical bottom-up
nature of modern SoC design, what is the effective way (flat vs
modular) of interacting with LLM?, and (iii) How to develop an
end-to-end automated flow to generate compilation error-free and
synthesizable HDL codes generated by commercial LLMs? This
paper makes the following contributions to answer these questions.

e We perform a comprehensive investigation to assess the capa-
bility of commercial LLM (GPT-40) in generating HDL codes of
various functional blocks present in an SoC (e.g., microprocessors,
digital signal processors, cryptographic primitives, hardware ac-
celerators, and peripherals) using both Verilog and C++.

e Unlike existing works, we follow an LLM-based bottom-up ap-
proach to design complex functional blocks by first defining
the sub-modules and later instantiating/integrating those child
modules in the top-level to realize the complete function.

o For each functional block, we automatically generate verification
testbenches using LLM for both Verilog and C++ to evaluate their
syntactical, and functional correctness.

o Based on the comprehensive case study, we propose an OPL4GPT
framework using either RTL synthesis (Verilog) or high-level
synthesis (C++) based on the target functionality by utilizing a
bottom-up fashion followed in IC design flow.

The rest of the paper is organized as - Sec. 2 presents the back-
ground and motivation of this work. Details of the application-
specific hardware code generation by LLM using Verilog and C/C++
along with the novel OPL4GPT framework is presented in Sec. 3.
Experimental are showcased in Sec. 4 before concluding the paper
in Sec. 5.

2 BACKGROUND AND RELATED WORKS

With the emergence of LLMs, researchers explored innovative ways
to advance automated HDL generation. This section first provides
an overview of the existing methods, their limitations, and the mo-
tivation behind application-specific optimal language generation.

2.1 LLM for RTL Generation

A fine-tuned open-source LLM has been proposed by Thakur et al.
to generate Verilog code for the given hardware specification [3].
Chip-GPT [5] performs RTL design using ChatGPT, indicating su-
perior performance over open-sourced LLMs. Due to their limited
capabilities, early works relied on human experts to interact with
LLM. Advanced LLMs such as GPT-4 enable the researchers to ex-
plore the fully automated generation of HDL [2, 4]. Alternatively,
generative Discriminators [8] or Monte Carlo Tree Search [13] have
been employed to enhance Verilog code generation using existing
design data [6]. VerilogEval [18] and RTLLM [4] are open-source
datasets researchers have developed to assess the Verilog Code
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Figure 1: Threefold motivation behind this work - (a) scarcity of open-source
hardware data in GitHub, (b) challenges with continual simulation with Verilog,
and (c) exploiting the benefits of both Verilog and HLS.

capabilities of LLM. RTLFixer [10] focuses on automatically fixing
syntax errors with LLM. However, these approaches remain appli-
cable solely to Verilog code generation, leaving the benefits of other
languages unexplored. A comparative survey of these models in
terms of the leveraged LLM, target goal, and language is presented
in Tab. 1. GPT4AIGCHIP [15] utilized decoupled HLS for generat-
ing AT hardware accelerators for FPGAs. Similarly, Leon et al. [14]
proposed a methodology to develop a python-based convolutional
neural network (CNN) architecture using GPT-4 by leveraging HLS.

2.2 Limitations of Existing Works

Despite their promising results, LLMs still face challenges in RTL
generation due to the following reasons: () The lack of adequate
open-source hardware data for training and fine-tuning [4, 5, 17] is
the biggest challenges for LLMs. Due to proprietary concerns, the
hardware community and industries are resistant to publicly shar-
ing design data. 2) Due to their training process, LLM-generated
programs remain PPA-agnostic [17]. Few prior works focused on
generating RTL codes using LLM with functional correctness and
PPA optimization in mind [13]. Current work cannot navigate the
design space in a way that leads to optimal implementations. 3
Another concern is the lack of creativity when designing a novel
program [20]. @ The IC design industry follows a bottom-up hierar-
chical approach to achieving scalability, while LLM-generated codes
lag far behind. In the existing works, modular design, instantiation,
and design reuse are impossible [16]. 3 Similarly, LLM-generated
RTL codes suffer from poor test benches lacking adequate coverage
and test cases for functional verification [5, 10]. (6) Nonetheless, all
the existing LLM-based RTL generation approaches are static in
nature and either generate a Verilog, Python, or HLS code irrespec-
tive of the target application. They cannot dynamically choose the
appropriate language based on the target hardware application.

2.3 Motivation

Training Data: Commercial LLMs are trained with publicly avail-
able codes from GitHub [21, 22] of which only 0.3% belongs to HDLs,
i.e., Verilog, VHDL, and SystemVerilog compared to 80% general-
purpose (GP) programs, i.e., C, C++, Java, and others [19] as shown
in Fig. 1(a). Hence, these generative models possess a stronger
bias towards GP programming languages. Moreover, GP program-
ming languages follow a sequential execution pattern, while HDLs
follow a concurrent execution. Hence, we cannot expect LLMs
to generate high quality Verilog codes for diverse applications.
Iteration and Verification: Zero-shot Verilog codes by LLM are hardly
correct syntactically and functionally [5, 17]. In order to generate
error-free RTL codes, as shown in fig. 1(b), most existing works pro-
vide error logs from functional simulation as feedback to the LLM.
In C/C++/SystemC, designing simulation models while developing
algorithms is more convenient than functionally simulating all cor-
ner cases of a Verilog implementation [23]. Leveraging Benefits:
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C1-Processors (MIPS Core)

C3 - Peripherals C4 — Accelerator

C2 - Crypto
(RSA)

Figure 2: A hypothetical SoC with five categories of functional blocks.

Both RT-level and High-level synthesis offer unique benefits as high-
lighted in Fig. 1(c). Defining hardware at higher abstraction levels
(C/C++) followed by HLS allows faster prototyping and implementa-
tion. Moreover, HLS outperforms RTL synthesis for several complex
and data intensive applications, e.g., cryptographic algorithms, Al
accelerators, and DSP blocks (details in Sec. 3). On contrary, RTL
synthesis is highly suitable for fine-grained critical applications,
and custom circuits. Hence, in the next section, we perform a com-
prehensive application space exploration of GPT-4o0 in generating
Verilog and C++. We propose OPLAGPT that can dynamically choose
the most optimal language (C++/Verilog) for hardware design by
LLM, followed by the corresponding synthesis flow.

3 APPLICATION SPACE EXPLORATION AND
OPL4GPT FRAMEWORK

This section introduces the application specific optimal hardware
code generation capability of LLM by discussing the design envi-
ronment, exploration framework, prompt engineering approach,
practical case studies, and finally present the OPL4GPT framework.

3.1 Designing an SoC with LLM

We designed an SoC with various functional blocks to understand
the scope of LLM in generating both Verilog and C++ codes. Details
of the exploration setup and environment are discussed below.

3.1.1 Design Environment. System-on-chips (SoC) are revolu-
tionizing the electronic industry by combining all the necessary
functional blocks onto a single chip, e.g., processors, memory, in-
put/output interfaces, and sometimes even specialized components
like graphics processing units (GPUs) or application-specific hard-
ware accelerators. To perform a comprehensive investigation of
LLM’s capability in generating Verilog and C++ codes across a di-
verse range of applications, we consider a simplified SoC as shown
in Fig. 2 with the following categories of functional blocks - (C1)
Processors - 16-bit MIPS, (C2) Crypto primitives - RSA, (C3) Pe-
ripherals - SPL 12C, and UART, (C4) Hardware Accelerators - Al,
and CNN, and (C5) DSP - filters. In the following subsections, we
discuss the exploration flow, prompting, and evaluation criteria for
designing these functional blocks using LLM by Verilog and C++.

3.1.2 Exploration Framework. The foundation of this work lies
in investigating the capability of commercial LLM in designing
hardware for diverse applications. Fig. 3 presents a conversational
framework followed in this work to implement the functional blocks
of various categories from Fig. 2 using Verilog and C++.

(D The investigation starts with defining the application’s required
design specifications, e.g., functionality, language (Verilog/C++),
constraints, system spec, sub-module, and input/output definitions.
Please note that these specifications may vary from Verilog to C++,
e.g., sub-module definitions are replaced by function calls in C++.
@ Next, we decompose the design specifications into sub-modules
based on the application’s architectural documentation. For exam-
ple, we split the RSA functional block into three sub-modules - text
to ASCII conversion, key generation, and encryption/decryption
operation. Each sub-module is designed individually by following
the flow of Fig. 3 and later integrated within the top module RSA.

Split to Generate LM Code + tb Simulate : RTL/HL
Sub-module Prompts / | | Synthesis|
= > ook ] — | :: C
= 2s i WS
CEEE | @ @ ® !
Update. |
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Figure 3: Conversational flow that explores the optimal language for hardware
design by LLM. The flow keeps iterating until an error-free code (Verilog/C++)
is generated. The extended right-side belong to the OPL4GPT framework.

® Here, we generate prompts for code and testbench generation,
leveraging a novel modular approach by designing individual sub-
modules and later integrating foolproof modules to build the top.
Moreover, we allow LLM to implement each specification accurately
by feeding specs one at a time, iteratively rather than all at once.
Details of the prompt engineering are discussed in Sec. 3.1.3.

@ This work considers OpenAI’s GPT-4o as the commercial LLM
due to its superior performance to the fine-tuned ones [18]. We
employ the vanilla GPT-4o to assess the efficacy of commercially
available LLMs in generating Verilog and C++ hardware codes.

(® At this step, we receive Verilog/C++ code and testbench of the
given sub-module as a response from LLM. We always task LLM
to generate the testbench so that we can simulate the code for
correctness and feed the error (if any) log in the following iteration.
(® We simulate the generated C++ or Verilog code utilizing the
corresponding testbench using GCC compiler [24] or iVerilog [25]
respectively. Each sub-module is simulated iteratively until a precise
code is generated by the LLM and the flow moves to the next-level.
(D Here, we assess the simulation results from the previous step for
syntactical and functional correctness of the LLM-generated code
based on the given design specs. Given any compilation/simulation
errors, we feed the logs to GPT-4o in the next iteration, which allows
us to eliminate manual debugging/review from this framework.
The flow keeps iterating until GPT-4o provides us with error-free
code when it is evaluated for syntax, functionality, performance
(power, area, and delay), and synthesizability. This evaluation out-
come serves as a guideline for future code generation using LLM to
select Verilog or C++ for the given application (details in Sec. 4.1.1).

3.1.3 Prompt Engineering. This work hinges on the conversa-
tional flow with the commercial LLM for precise code generation.
Combining prior knowledge of the design hierarchy with the speci-
fications discussed in Sec. 3.1.2 begins the process. Our approach
to prompt engineering encompasses three main aspects: (PI) pro-
gramming language selection, (P2) splitting specifications, and (P3)
modular design. Despite the capability of LLMs to generate code
in various programming languages, they perform better in GP lan-
guages. Moreover, many prominent code-generating LLMs (e.g.,
CodeLLama [26]) are fine-tuned on C++ datasets, indicating a bias
towards it. Moreover, the training datasets for most LLMs, namely
GitHub, lack sufficient data on HDL codes as pointed out in Sec. 2.3.
We, therefore, allow the designer to select the optimal language
(Verilog/C++) while instructing the LLM to generate hardware code.
Chip logic design specifications typically contain module, test, area,
power, delay, interface, and many other descriptions that provide
the necessary information for translating into target hardware im-
plementations. To allow LLM to understand these specifications
precisely, we iteratively provide the specs individually rather than
feed them all at once. Finally, to achieve scalability while maintain-
ing accuracy, we first task LLM to generate sub-module codes and
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later integrate those codes to realize the top-level. Outcome of the
prompt engineering is presented in Sec. 4 with practical designs.

3.2 Case Studies

Now we walk the readers through the exploration flow discussed
in Sec. 3.1 for two practical designs - RSA, and CNN architecture.

3.2.1 RSA(Rivest-Shamir-Adleman). We utilized the GPT-4o-
driven conversational flow of Fig. 3 to design an RSA module, an
asymmetric cryptography that utilizes a public key for encryption
and a private key for decryption.

Sub-module 1 - Text to ASCII Conversion: According to the
proposed modular prompting, the LLM needs to implement a mod-
ule that can convert the plain text, numbers, and special characters
to be encrypted to its corresponding ASCII format. Next, it will
generate public and private keys to encrypt/decrypt the message.

Sub-module 2 - Generating Public and Private Keys: This sub-
module generates public and private cryptographically random
keys for RSA. We provide GPT-4o with the prompt specifying the
RSA key generation algorithms involving the following operations.
Step1: Choose two large prime numbers p and g. To make factoring

complex, p and g should be large, random, possess large difference.

n=pq 1)
A(n) =lem(p-1,9 - 1) @
Step2: Choose an integer e such that,
1<e<A(n) (3)
ged(e, A(n)) = 1; 4

that is, e and A(n) are coprime.
Step3: Determine d as-

d=e! (mod A(n)) 5)

that is, d is the modular multiplicative inverse of e modulo A(n).
GPT-40 was tasked to follow the specifications and these algorithms
to generate e, the public key and d, the private key.

Sub-module 3 - Encryption and Decryption: The GPT-4o is
instructed to design this third module to encrypt a message using
the generated public key, and decrypt the ciphertext to retrieve the
original message using the private key. The algorithm of encryption
and decryption was provided as follows.

Step1: Encrypt message m using public key e to generate ciphertext

¢ corresponding defined by the following equation.
c=m® (mod n) (6)

Step2: To recover m from ciphertext c, utilize the private key expo-

nent d defined by the following equation.
d=m)%=m (mod n) (7)

Finally, GPT-40 must integrate the two previously generated sub-
modules to observe the outcome of the complete RSA operation.
Results of this case study is discussed in Tab. 2 and Sec. 4.2.

3.22 Convolution Neural Network(CNN). Designing a CNN
architecture is another interesting study that we performed in this
work. CNN is commonly used in computer vision, a field of Al
that enables a computer to understand and interpret the image or
visual data. Implementing a CNN in FPGA opens up a variety of
applications, particularly in scenarios where high performance, low
latency, and power efficiency are crucial.

Kimia et al.

Sub-module 1 - Forward Pass Function: The first sub-module
that GPT-40 must implement is a forward pass function. Designing
CNN forward pass function is commenced via TensorFlow in Python,
which LLM implemented efficiently as many of the commercial and
open-source models are trained with Python datasets [26, 27]. Sub-
sequently, the transformation of the TensorFlow model into a set
of Python functions dedicated to executing the inference of the
CNN, without the use of libraries, is initiated. The purpose is to
convert this code next into C++ and Verilog, where these high-
level deep learning libraries cannot be utilized. By following the
exploration framework discussed in Sec. 3.1.2, GPT-4o generated
six essential secondary functions required for inferring accurately -
Convolutional Layers, ReLU Activation, Max Pooling Layers, Fully
Connected Layer, Flatten Function, weigh-bias initialization and
a primary function named forward, which calls within it the sec-
ondary functions.

Sub-module 2 - Testing with Image Dataset: To develop a func-
tionality test for the generated forward function, a testing dataset of
6499 images [28] and labels are taken as our reference model. After
importing the test dataset, the model must calculate the accuracy
achieved by the forward pass function generated in module 1.

Sub-module 3 - Design Optimization: This final module was
implemented to enhance the accuracy of the CNN model inference,
in which we experimented to test GPT-40’s knowledge, asking for
its suggestions. The weight and bias initialization method, data pre-
processing steps, data augmentation, and fixing some parameters
along with a number of neurons and layers were a few of GPT-
40’s implemented suggestions in the existing design. Finally, we
instructed GPT-4o to instantiate and integrate the sub-modules
within the top-level and implement the complete CNN architecture.
Results of this CNN case study is discussed in Tab. 2 and Sec. 4.2.

3.3 OPL4GPT Framework

Based on our case studies and evaluation results, in this work, we
propose OPL4GPT framework that can optimally select the most
efficient programming language for GPT-4o for a given hardware
application. OPL4GPT framework utilizes the exploration flow dis-
cussed in Sec.3.1.2 by integrating two additional process in the
flow diagram of Fig. 3 - (9 Parser, and (9 RTL/HL-Synthesis. The
parser is an in-house developed program that takes the evaluation
outcome of the generated Verilog and C/C++ code by GPT-40 for
the given hardware application and guides the designer in select-
ing the optimal implementation. Based on the selected language
(Verilog/C++), either an RTL synthesis or high-level synthesis is
performed to transform the behavioral code to gate-level design
and move to the next steps of IC design. HLS is a well-established
flow applicable for both FPGA and ASIC design with commercially
available EDA tool flow, e.g., Cadence Stratus-HLS [29] (ASIC), and
Vivado HLS [30]. Please note that, the goal of this framework is not
to promote either Verilog or C/C++ for designing hardware using
LLM rather to help designers select the most optimum language
that results precise code based on the given specification.

4 RESULTS AND DISCUSSION

In this section, we present the experimental results based on our
application space exploration of GPT-4o in generating hardware
codes using Verilog and C/C++. We have organized our results into
the experimental setup in this work, a comparison between LLM-
driven hardware code generation using Verilog and C/C++, and a
discussion about optimal language selection.
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onemaster can have mutiple slaves to control.

Prompt-1: Design an SPlcomm unic ation protocol consisting one master and one slave module.The master
is the controllingdevice (usually amicrocontroller), while the slave (usually asensor, display, or memory
chip) takes instruction from them aster. Thes implest configuration of SP1 is a singlem aster, single slave but

MOS I for master to send data to slave; MISO-for slave to s end data to master
SCLK- clocksignal ., SS/CS— master to select which slave to send data to.

Prompt-2:SP| master first selects a slave device by
pulling its CS low. During each SP clock cycle, full-
duplex transmiss ion of a single bit occurs.Mas ter
sends abit on MOSIlinewhile slavesendsa bit on
MISO lire, and then each reads their corresponding
incoming bit. This sequence is maintained even

Datatransfer happens serially though MISO and
MOSIline. Data transferissynchronous with SCLK.
Submodule 1:

first weneed to generate the SCLK from the Sys_Clk
so that SCLK frequency = Sys_Clk frequency/8.
Design this module for active negative reset.
Generate amodule for SCLK generation for -
module baud_clk(

//1/Odefinitions are omitted due to space

lim itations

)

when only one-directionaldatatransferisintended.

Response-1:
#include "sclk.h"
static uint8_t count = 0;
static bool sclk = false;
void SCLK Generate (bool rst_n) {

if (!rst_n) {

// 1If reset is active

(low), reset count and sclk

count = 07

sclk = false;
} else {

count++;

if (count >= 8) ({
count = 0; // Reset

count after reaching 8

}

sclk = (count >= 4); //
SCLK is high for count 4 to 7, low
for count 0 to 3

}

Prompt-3: Now design the spi_master module
accordingto the SPIdata transfer technique from
previous chat by integrating the generated baud_clk
module. Transmit datato MOSat the rising and
sample data from MISO at thefalling edge of SCLK.
module spi_master(

//1/0definitions are omitted due to space limitati ons
)

define FRAME_DATA 8

Description of the FSM trnsitions are below -
1.RESET state willinitialize the reset values of signals
2.ENABLEstate, onlycs willbe 0 fom reset condition
3.WRITE_REGmaster o slave will be loaded into
shift_rm and data size will belcaded into data_frame.
4.DATA_OUT state trmnsfers data from master to
slave. Here master will shift out data bit by bit fom
shift_rm through MOSI with MSB first and it will
receive data from MISO o shift_rm LSB bit. Thedata
transfer will continueunless the whole data_frame
goesto 0.Go back to ENABLE state if t_start remains 1
and continue another transfer or go to RESET state.

Response-2:

#include "spi master.h"

#include "sclk.h"

#define FRAME DATA 8

// Global variables defined

enum {
REET = 0, EMABLE = 1,
WRITE_REG = 2, DATA_OUT = 3

bi

void SPI Master_ Init(void) {
state_rey = FESET;
cs = trwe; // Deslect slawe
mosi = false;
printf ('Master Init:RESET state\n");

}

void SPI Master_Transmit () {
.../ / omitted for space limitation
itch (state reg) {

..// omitted for space limitation

Prompt-4: Design s pi_slave. Transmit data to MISO at
rising and sample data from MOSI at falling edge
SCALK

Respanse-3:
#include "spi slawe.h"
#include "debug_utils.h"
#define FRAME DATA 8

// Global variables
enum {

reg[2:0] count;

}
Figure 4: Modular prompt approach proposed in this work. We designed and
later instantiated the sub-modules by LLM within the top-level. Prompt-1
guides the LLM with introductory information. Prompt-2 queries for the clock
divider (baud_clk) sub-module of SPI generated by LLM in Response-1.

4.1 Experimental Setup

4.1.1 Evaluation Metrics. We evaluated our application specific
case studies for five different categories of functional blocks of the
hypothetical SoC presented in Fig. 2 based on the following metrics.

(1) Syntax: This metric assesses the syntactical correctness of the
generated code by simulating the code using iVerilog and GCC
and G++ Compiler for Verilog and C/C++ respectively. A compi-
lation error indicates syntax error within the generated code
whose log is later appended with the prompt of the following
iteration to GPT-4o by utilizing the exploration flow discussed
in Sec. 3.

—
)
~

Functionality: This metric measures the intended functionality
of the LLM generated designs as per the specification of the de-
signed prompts. We decomposes this metric into the following
three sub-metrics for evaluating functional performance.

(a) Number of trials: This performance metric for our evaluation
is counting the number of trials GPT-4o required to implement
an error-free code. This metrics indicate the difficulty level the
commercial LLM had to face during implementing the similar
design specification in different programming languages. In
practicality, this metric would represent longer hardware devel-
opment time, and higher cost.

(b) Testing accuracy: This metric evaluates the testing accuracy
of the generated code in implementing the intended function-
ality without missing any critical specifications. In the cases
when GPT-4o is successful in generating syntactically correct
code for both Verilog and C/C++, this metric can differentiate
the gap in functional correctness and performance between
these generated codes from two different languages for some
specified test cases and test scenarios. Please note that, test-
ing all the corner cases of a hardware implementation is out
of scope for this work. We, thereby, randomly applied 2" /10
(n represents the number of inputs) inputs patterns using the
LLM-generated testbench.

(c) Checkpoints: This metric analyzes the efficiency of the LLM’s
capabilities in case of design optimization for any specific func-
tional block. In our application specific exploration, we applied
different optimization techniques to design efficiently and com-
pared performance between Verilog and C/C++.

define FRAME_DATA 8
module spi_slave(
//1/0definitiors are omitted due to space limitations b
) void SPI Slawe_Init (void) {

// Initialize SPI slave state
state_rey_s = RESEI_S;
miso = false;
printf ("Slave Init:RESET_S state");

RESET_S = 0, ENABIE S =1,
DATA_OUT S = 2, UNLOADS = 3

1.shift_rs isthe shift register that transfer data to

master with MISOpin bit by bit. shift_rs willhold it's

value urtil it is reset to it'sinitial value 8'b10010101 in

theRESET state. }

2.from UNLOAD_Sstateifcsremains 0, it'll go to void SPI Slawe Receive( {

ENABLE state instead of RESET state and contirue | = // omitted for space limitation

anothertramsfer) switch (state reg s) {

........... // omitted for space limitation
}

}

Figure 5: For the same design of Fig. 4, Prompt-3 and Prompt-4 queries the
LLM for the master and slave module of SPI. The LLM generated codes in
responses to these prompts are presented in Response-2, and Response-3.

4.1.2 Modular Prompting. In Sec. 3.1.3, we discussed our
modular prompt engineering approach that exploits the logi-
cal hierarchy to interact with the LLM and design the target
functional block in a bottom-up fashion by first generating the
sub-modules codes and later integrating those LLM-generated
sub-modules to realize the complete function. Modular prompts
for designing SPI are shown in Fig. 4 and 5 involving the sub-
module based prompt engineering technique. In the Prompt-1
of Fig. 4, we have introduced the GPT-4o0 with the information
about SPI protocol and necessary signals associated with the
design. In Prompt-2, we queried the LLM to generate C++ code
for implementing the clock divider function. The LLM response
with the generated C++ SPI clock code is shown in Response-1
of Fig. 4. Later in the Prompt-3 and Prompt-4 of Fig. 5, we in-
structed LLM to generate the master and slave modules of SPI,
respectively. The LLM-generated responses to these queries are
shown in Response-2 and Response-3 of Fig. 5 implementing
the modules. In the master module code, GPT-4o instantiated the
clock divider and slave module code, which enables commercial
LLM to achieve scalable logic circuit design.

4.2 Comparison between C/C++ and Verilog

Experimental results, based on the exploration framework and
evaluation metrics described in Sec. 3.1.2 and 4.1.1 are shown
in Tab. 2, comparing the LLM-generated codes in C/C++ and
Verilog. For each category, we presented the results for at least
one module, reflecting the variety of application space explo-
ration and robustness of GPT-4o in generating hardware codes
in different languages. Moreover, the decomposed sub-modules
by LLM are presented in the sub-module column of Tab. 2.

The RSA module in the crypto category showed promising per-
formance for the codes generated in C++, which successfully
achieved 100% test accuracy implementing the sub-modules
described in our case study Sec. 3.2. On the other hand, Verilog
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Table 2: Comparison between C++ and Verilog Hardware Codes Generated by GPT-4o.

C++ Implementation

Verilog Implementation

Category Modules  Sub-modules  Syntax Functionality Syntax Functionality
#Trials #Trials Testing Acc. (%) Checkpoints #Trials ~ #Trials  Testing Acc. (%) Checkpoints
Text to ASCII  Zero Shot Zero Shot Simulated successfully 2 3 v/ Simulated successfully
. A o . / Generated large random primes XGenerated same primes
Crypto RSA KeyGen Zero Shot Zero Shot 100% v Generated random pub/pvt Keys 5 12 NA Xlncorrect simulation
EncDec Zero Shot 2 v Generated random keys Zero Shot  Inf* XIncorrect response after integration
Forward Pass 3 Zero shot
CNN Func Test  Zero Shot 2 28.6% v/ Simulated successfully Inf* Inf* NA XSyntax and compilation error
Optimization Zero shot Successful inference
Accelerators
sub-mod1 1 Zero shot v/Implemented scalable/parallel model
Al 100% v Accurately implemented/processed weights/cache Inf* Inf* NA XSyntax and compilation error
V Delegated layers to multi-cores
sub-mod2  Zero shot 2 V Aceurately implemented/processed weights/cache
Clock Gen  Zero Shot Zero Shot V/Simulated successfully Zero Shot  Zero shot /Simulated successfully
Peripherals SPL 100% XManual debugging , 80%  Transferred/received data
P Master ! s / Transferred/received data ZeroShot 6 Xncorrect initial bits
o p v'No manual debugging o  Transferred/received data
Slave ! 2 v Transferred/received data Zero Shot 4 XIncorrect initial bits
DSP FIR Filt BandStop ~ Zero Shot Zero Shot 100% / Generated Cutoff freq., hamming window 2 Zero shot 100% / Generated Cutoff freq., hamming window
HEIS OptFIR Zero Shot g /Pipelined MAC, FP arithmetic, loop unrolling 1 Zero Shot ¢ Pipelined MAC, FP arithmetic, loop unrolling
ISA Zero Shot 3 Zero Shot 4
Register file 1 2 1 3
ICache 1 Zero Shot Zero Shot  Zero Shot
Processor  16-bit MIPS ALU Zero Shot Zero Shot 100% Successfully compiled/simulated Zero Shot Zero Shot 100% /Successfully compiled/simulated
Fetch 1 5 1 6
Decode Zero Shot 2 3 14
Exec Zero Shot Zero Shot Zero Shot  Zero Shot
DCache Zero Shot Zero Shot Zero Shot 3
Mem Zero Shot Zero Shot Zero Shot 2
WB Zero Shot Zero Shot Zero Shot  Zero Shot

*: Could not generate a working code after 15 trials.

code failed to achieve the desired functionality despite generat-
ing syntactically correct codes. Moreover, GPT-40 was able to
generate functionally correct C++ codes of RSA in fewer #trials
than syntactically correct but functionally incorrect Verilog.
For CNN and Al accelerator implementation, GPT-40’s capabil-
ity in generating C++ codes clearly outperforms Verilog imple-
mentation across all the evaluation metrics including design
optimization techniques. Verilog designed code failed to even
pass the syntax metrics along with the functionality tests. Please
note that the testing accuracy of 28.6% for CNN is the infer-
ence accuracy of the CNN model. Though LLM’s capability in
generate hardware codes using C++ outperforms that of Ver-
ilog for the crypto and accelerator, we can notice competitive
results in Processor and DSP. Both Verilog and C/C++ achieved
similar performance by implementing the specified prompts.
In sub-modular designing, both codes achieved 100% test ac-
curacy within a similar number of trials. The last category of
our experiments is the peripherals category, where we designed
SPI, UART, and 12C protocols. As the representative model, SPI
indicates the number of trials evaluation metrics effect. Both
languages passed the syntax test, C achieved 100% test accuracy,
whereas LLM struggled at Verilog with 80%. Moreover, Verilog
required more trials to pass the functionality tests.

4.3 Discussion

This paper explores the capability of state-of-the-art LLM, GPT-
4o in designing different functional blocks of an SoC using
Verilog and C/C++. Our novel prompt engineering techniques
combined with the application space exploration developed the
OPL4GPT framework, helping designers select the optimum
language. The outcome of this research is highlighted below.
e LLMs can leverage the advantage of higher abstraction levels
in hardware code generation besides focusing only on Verilog.

o We developed a solid workflow that utilizes LLMs to generate
hardware circuits from natural language specifications.

o Our application space exploration strongly conveys that LLM’s

efficiency in generating hardware code depends on the se-
lected language. For instance, C/C++ outperforms in the case
of mathematical, algorithm intensive (e.g., RSA), involving
inference, pipelining, and parallel circuits (e.g., CNN, Al ac-
celerator). For peripherals and processors with finite state
machines, besides Verilog, C++ can also achieve competitive
performance with optimized prompt engineering.
Though our research found several outstanding directions
for the domain of LLM-aided chip designing by considering
higher-level abstraction language as an alternative, we ad-
dress our limitations for not covering all the test scenarios
associated with the functional blocks. We plan to extend our
future work by rigorously evaluating with adequate testcases.
Implementing HLS optimization with state-of-the-art EDA
tools is another venture we will explore in future research.

5 CONCLUSION

With the advent of LLM and semiconductor circuits becom-
ing a concern of national significance, bringing automation
to the hardware design/development process is of utmost im-
portance. This paper performed a comprehensive application
space exploration of LLM in generating Verilog and C/C++
codes for diverse functional blocks. Based on the case stud-
ies, we proposed OPL4GPT framework that can dynamically
select the most optimal language for LLM for the given hard-
ware application. Our results show that LLM can implement
data-intensive, mathematical, and algorithmic hardware bet-
ter C/C++ while peripherals and processors in Verilog. More
detailed analyses incorporating HLS and broader hardware
applications are part of our plan for future work.
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