
ZK-SNARKs for Ballot Validity:
A Feasibility Study

Nicolas Huber � , Ralf Küsters , Julian Liedtke , and Daniel Rausch

University of Stuttgart
firstname.secondname@sec.uni-stuttgart.de

Abstract. Electronic voting (e-voting) systems have become more prevalent in recent years, but se-
curity concerns have also increased, especially regarding the privacy and verifiability of votes. As an
essential ingredient for constructing secure e-voting systems, designers often employ zero-knowledge
proofs (ZKPs), allowing voters to prove their votes are valid without revealing them. Invalid votes can
then be discarded to protect verifiability without compromising the privacy of valid votes.
General purpose zero-knowledge proofs (GPZKPs) such as ZK-SNARKs can be used to prove arbitrary
statements, including ballot validity. While a specialized ZKP that is constructed only for a specific
election type/voting method, ballot format, and encryption/commitment scheme can be more efficient
than a GPZKP, the flexibility offered by GPZKPs would allow for quickly constructing e-voting systems
for new voting methods and new ballot formats. So far, however, the viability of GPZKPs for showing
ballot validity for various ballot formats, in particular, whether and in how far they are practical for
voters to compute, has only recently been investigated for ballots that are computed as Pedersen vector
commitments in an ACM CCS 2022 paper by Huber et al.
Here, we continue this line of research by performing a feasibility study of GPZKPs for the more
common case of ballots encrypted via Exponential ElGamal encryption. Specifically, building on the
work by Huber et al., we describe how the Groth16 ZK-SNARK can be instantiated to show ballot
validity for arbitrary election types and ballot formats encrypted via Exponential ElGamal. As our
main contribution, we implement, benchmark, and compare several such instances for a wide range of
voting methods and ballot formats. Our benchmarks not only establish a basis for protocol designers
to make an educated choice for or against such a GPZKP, but also show that GPZKPs are actually
viable for showing ballot validity in voting systems using Exponential ElGamal.

1 Introduction

A prominent approach for constructing secure e-voting systems is the homomorphic aggregation of ballots. In
such systems, a vote/ballot is a vector of numbers, with one number per possible choice in the election. Typi-
cally, a choice corresponds to a candidate that the voter can give one or several votes/points, so in an election
with ncand candidates, a vote would be a vector of length ncand. An additively homomorphic encryption or
commitment scheme is then used to hide the vote. This scheme is typically applied component-wise, i.e., a
vote vector of length ncand results in an encrypted ballot1 consisting of ncand many ciphertexts/commitments.
When using commitment schemes for hiding votes, voters have to send (shares of) an (encrypted) opening
of their commitment. Currently, Exponential ElGamal (EEG) encryption is the most relevant option in
practice [3,21]. To tally the election, all encrypted ballots are first homomorphically aggregated (component-
wise) to obtain a single aggregated encrypted ballot that hides individual votes. This aggregated ballot is
decrypted to obtain the aggregated tally consisting of a list of the total votes/points for each candidate.
Proofs for Ballot Validity. For the above approach of aggregation-based e-voting to be reasonable, one
needs to ensure that all encrypted ballots used for aggregation are well-formed, i.e., that they contain a valid
vote. Otherwise, a malicious voter could, without being detected, submit an encrypted ballot that contains
malformed values for the candidates available in an election, e.g., by assigning more points than allowed to
1 For simplicity of presentation, we will often only say “encrypted ballot” to refer to both cases, i.e., encryption or

commitments.

https://orcid.org/0000-0001-6905-3571
https://orcid.org/0000-0002-9071-9312
https://orcid.org/0000-0002-8289-4970
https://orcid.org/0000-0002-1901-3659

one candidate while assigning negative points to all other candidates. The aggregated tally computed from
such an invalid ballot would contain an incorrect election result, thus breaking verifiability. The standard
approach to avoid this issue is to have voters use zero-knowledge proofs (ZKPs) to prove ballot validity during
ballot submission.

A ZKP for ballot validity proves that the vote contained in an encrypted ballot belongs to the set of votes
permitted by the current election. We call this set a choice space in the following. For instance, consider
the straightforward case of single-vote elections, where a voter can cast a single vote for one out of ncand

candidates. A corresponding choice space can be defined as follows, where vi denotes the number of votes
given to candidate i in a ballot:

Csingle :=
{
(v1, . . . , vncand

)
∣∣∣vi ∈ {0,1}, ncand∑

i=1

vi ∈ {0,1}
}
.

A voter is supposed to choose her ballot b as a vector from this set, i.e., b ∈ Csingle. The voter then computes
an encrypted ballot c from b and submits c alongside a ZKP which shows that c was obtained by encrypting a
ballot b ∈ Csingle. Ballots without valid ZKP are discarded by the voting system, ensuring that even malicious
voters can contribute only one vote for one candidate.

State of the Art. A ZKP for ballot validity depends on the underlying choice space and the encryp-
tion/commitment scheme used to obtain c. Therefore, ZKPs for ballot validity have usually been designed
and proven secure only for specific combinations of choice spaces and (classes of) encryption/commitment
schemes.

For example, Helios 2.0 [3] and Belenios [21, 28] support Csingle with component-wise EEG encryption.
That is, c is a vector of EEG ciphertexts ci, each encrypting one vi. The ballot validity ZKPs in Helios
and Belenios are based on disjunctive Chaum-Pedersen proofs [19, 23], which show that an EEG ciphertext
encrypts a value from a specific set S. Concretely, for Csingle one considers the set S = {0,1}. Voters then
compute a full proof for ballot validity by combining (i) one proof for each ciphertext ci showing that the
corresponding plaintext vi is from S, and (ii) one proof for the homomorphic sum of all ncand ciphertexts
ci showing that the decryption lies in S. Generalizing single-vote, one can also use disjunctive Chaum-
Pedersen proofs for showing ballot validity for multi-vote elections, where voters can assign up to nmax votes
to candidates of their choice (up to a limit t for any individual candidate) [3,21,28]. This can be achieved by
using a larger set S. However, for larger values of nmax (and t) - and hence larger sets S - this quickly becomes
too inefficient. In such cases, one can replace disjunctive Chaum-Pedersen proofs with range-proofs [44].

Designing efficient ZKPs for ballot validity becomes an increasingly difficult task for more complex voting
methods and ballot formats. As an example, consider the class of Borda count election methods, where points
are assigned to candidates based on a ranking chosen by the voter. Such a ranking creates dependencies
between points assigned to different candidates which cannot be captured by the above approach but requires
different ZKPs. For standard Borda elections that do not permit ties within a ballot, i.e., where the ballot
is computed from distinct ranks for all candidates, ZKPs for ballot validity based on arguments for the
correctness of a shuffle have been proposed [31]. These ZKPs use a choice space where ballots encode a
permutation and support encryption via various homomorphic encryption schemes, including EEG. More
general versions of Borda allow voters to assign the same rank to multiple candidates. Since such ballots are
no longer permutations of the distinct ranks, the aforementioned proofs cannot be used. In cases where ties
are only allowed at the last place, there are constructions based on using multiple shuffle proofs [37]. To our
knowledge, the only work that has considered ballot validity ZKPs for Borda ballots with ties at arbitrary
positions is the Kryvos system [35], which leverages general purpose zero-knowledge proofs for this case (see
below).

Condorcet methods are another class of elections that use very complex choice spaces and thus require
advanced validity proofs. These ranked voting methods aim to determine a Condorcet winner who would
win against every other candidate in a direct comparison. In [22], two ZKPs for validity of Condorcet ballots
have been described. Both ZKPs are for ballots that are encrypted using EEG, but they differ in the ballot
formats that are used to encode a vote.

2

Altogether, while efficient ZKPs for proving ballot validity exist for many election types, they are generally
designed only for a specific voting method, ballot format/choice space, and (class of) encryption or commit-
ment scheme. Designing an e-voting system for new types of elections with new ballot formats, therefore,
usually entails constructing and proving the security of suitable ZKPs.
Using GPZKPs for Ballot Validity. A promising alternative which we investigate in this work are general
purpose zero-knowledge proofs (GPZKPs). GPZKPs can, in theory, show arbitrary statements, including
ballot validity for any ballot and election. The main task left for a protocol designer using a GPZKP is
to propose an optimized circuit for computing the statement that should be proven so that the resulting
GPZKP instance is sufficiently efficient. Thus, GPZKPs have the potential to simplify the process of designing
electronic election systems, enable faster prototyping if a new type of election with a different ballot format
is implemented, and allow for supporting ballot formats that are so far out of reach of current specialized
ZKPs which are constructed for showing a specific statement.

While GPZKPs such as ZK-SNARKs (zero-knowledge succinct non-interactive arguments of knowledge,
called just SNARKs in the following) have recently gained traction in several areas such as blockchains [34],
they have so far mostly gone unnoticed in the area of e-voting. In [25], techniques based on inner product
arguments (which are commonly used for constructing GPZKPs [17]) are used for proving that a vector of
ciphertexts encrypts bits. This can be used for proving validity of, e.g., single-vote ballots and can drastically
outperform the Chaum-Pedersen-based approach we described above. The first (and so far the only) work
that considered GPZKPs for more complex relations in encrypted ballots is our Kryvos system [35]. While
not the primary focus, as a side result of [35] we have shown that and how the state-of-the-art Groth16
SNARK [32] can be instantiated to obtain practical ballot validity proofs for a wide variety of common
election types as long as encrypted ballots are computed by using Pedersen Vector Commitments (PVCs).
Among others, and as mentioned above, using this GPZKP, we obtained the first (practical) ZKP for showing
validity of Borda ballots that allow ties at arbitrary positions. However, the focus of the Kryvos system is the
design of a publicly tally-hiding system rather than the design of ballot validity proofs. Hence, we did not
further investigate the viability of GPZKPs for ballot validity beyond the uncommon case of PVCs there.

It remains unclear if GPZKPs for ballot validity are practical beyond these specific settings, notably
for complex ballots in the standard case of (component-wise) EEG. A key issue is that while only a single
PVC is needed to commit to the entire vote vector, solutions using EEG require multiple ciphertexts, one
for each entry of the vote vector. This increases the complexity and, hence, the resource requirements of a
corresponding GPZKP instance, possibly to a point where voters cannot compute it at all or might require
an unreasonable amount of time (see also Section 3.1 for a more detailed discussion of the underlying issue).
We note that specialized ZKPs, which have been constructed for and are tailored towards a specific election
system, voting method, ballot format/choice space, and encryption/commitment scheme, can, of course, be
more optimized and hence more efficient than GPZKPs. The advantage of GPZKPs lies in their generality,
which, if shown to be practical in at least some settings, would open up a simple and generic approach to
building new e-voting systems.
Contributions. In this work we perform a feasibility study that investigates viability and limits of GPZKPs
for ballot validity for many ballot formats in commonly used EEG-based e-voting systems. On a technical
level, we build on the techniques for instantiating the Groth16 SNARK established in Kryvos [35] and explain
how they can, in principle, be used for proving ballot validity when ballots are encrypted component-wise
via EEG. As part of this, we also provide a detailed description of their techniques for proving ballot validity,
which had only been briefly sketched in [35] with most information left to their implementation.

As the main contribution of our feasibility study, we have implemented several circuits and benchmarked
and compared the corresponding Groth16 SNARK instances for showing ballot validity for EEG encryption
for a wide range of voting methods and corresponding choice spaces.2 This includes not only major existing
ones: Single- and Multi-Vote, Borda Count, Condorcet methods, and Majority Judgment. To investigate the
potential and limits of GPZKPs for developing and supporting new voting methods and systems, we also
consider two new variants of Multi-Vote. These variants introduce non-trivial conditions on ballot formats
and mainly serve demonstration purposes. We are not aware that they are currently used in real elections.
2 All of our implementations are available at [36].

3

To summarize our findings, our benchmarks show that all of these instances are actually practical, both
for simple and complex voting methods and choice spaces. Performance depends mainly on the number
of candidates. Interestingly, however, the performance of these Groth16 instances is otherwise essentially
independent of the complexity of the underlying choice space. That is, introducing and proving additional
conditions on the format of ballots, even multiple highly complex ones, barely changes overall performance.

Altogether our work establishes for the first time that current GPZKPs are a viable option even for
complex ballot formats for commonly used Exponetial ElGamal-based e-voting systems, which opens up new
options for supporting different voting methods. Our benchmarks further provide a basis for protocol de-
signers to make an educated choice for or against a Groth16-based ballot validity ZKPs.

2 Preliminaries: GPZKPs, SNARKs, Groth16

In this section, we briefly introduce GPZKPs and sketch how Groth16 works. For a more detailed and
technical description, see Appendices A and B.

A general purpose zero-knowledge proof (GPZKP) system takes as input an arbitrary indicator function
fR : {0,1}∗ × {0,1}∗ → {0,1} for some binary relation R such that fR(x,w) = 1 iff (x,w) ∈ R for a public
statement x and a secret witness w. It then allows for computing a zero-knowledge proof (ZKP), which shows
the existence/knowledge of w such that fR(x,w) = 1. In the following, we only consider proofs of knowledge
as typically needed in e-voting [43].

To be practical for showing ballot validity, good prover efficiency, and small proof sizes are crucial:
Impatient voters have to be able to compute and then transmit the GPZKP using their own personal devices
within reasonable time and possibly having only little bandwidth available. While election verification is less
time-critical, verification speed should at least be moderately fast and, again, proof sizes should be small
since proofs from all voters need to be downloaded.

Of the various GPZKP systems [4,13,20,27,30,32,41], SNARKs fit these requirements best. Following [35],
we use the highly efficient state-of-the-art Groth16 SNARK [32] that offers constant small proof size of less
than 1 kilobyte with (almost) constant3 verification time of about a few milliseconds on a standard PC4 -
independently of the function fR. It further achieves fast polynomial proving time and thus scales well even
for highly complex functions fR. The Groth16 SNARK is, therefore, an ideal candidate for showing ballot
validity.

A bit simplified, Groth16 consists of three algorithms: Setup, Prove, and Verify. The Setup(fR) algorithm
generates two common reference strings, CRSEK (evaluation key CRS) and CRSVK (verification key CRS)
that depend on fR. CRSVK is a much smaller substring of CRSEK. This creates an instance of Groth16 that
is specific to the function fR. 5 The CRSEK can be used by anyone to create a proof π $←− Prove(CRSEK, x, w)
for fR(x,w) = 1. One can use Verify(CRSVK, x, π) to verify the proof, which requires only the smaller CRSVK.
Groth16 SNARKs are based on pairing groups of elliptic curves; a proof consists of 3 group elements. We
use the common curve BN254, which is defined over a base field of size ∼ 2254 and provides ∼ 100 bits of
security. Concretely, and following [35,40], we use the libsnark implementation [47] of Groth16 for obtaining
our benchmarks. Other implementations [10,15] support curves for higher security levels, such as BLS12-381
or BLS24-317 for 128− 160 bits of security. See Appendix D for details on the instantiation of Groth16.

Groth16 uses the language of quadratic arithmetic programs (QAPs) to specify the indicator function fR
and hence the underlying relation R. Typically, in order to obtain a QAP, fR(x,w) is first expressed as an
arithmetic circuit where each input/output/internal wire is represented either by a variable or a constant.
The public input x is a list of values assigned to some wire variables (not necessarily only input wires) - we call
3 Formally, verification time is linear in the size of x. However, in comparison with the constant term, the linear term

is extremely small for any realistic size of x. The Groth16 SNARK is hence generally considered to have constant
verification time. See also Appendix B.

4 All of our benchmarks were obtained on an ESPRIMO Q957 (64-bit, i5-7500T CPU @ 2.70GHz, 16 GB RAM).
5 Some other SNARK constructions, such as [27] have a universal setup ceremony, i.e., the CRS only needs to be

generated once and can then be updated for different indicator functions. This comes at the cost of increasing proof
size and proving times.

4

those wires public wires. A valid witness w then consists of values assigned to all remaining wire variables such
that all of these values, together with constants, describe a correct computation of the circuit.6 This circuit
is then converted to a set of so-called constraints that can, in turn, be compiled into a QAP instance. We give
a more detailed description of R1CS and QAPs in Appendix B.1. For describing instantiations of concrete
indicator functions fR one can thus use both arithmetic circuits and constraints mostly interchangeably. We
will usually describe an instantiation as a circuit yielding a certain number of constraints.

The time required to create a proof and the size of CRSEK of a Groth16 SNARK instance depend linearly
on the number of variables/wires and the number of constraints/multiplication gates - see Appendix B for
details. As the number of variables is usually related to the number of constraints, often only the number of
constraints is considered. To get an idea, here are some figures using the libsnark instantiation over BN254
for a standard PC (cf. Footnote 4): For 100,000, 500,000, and 1,250,000 constraints, the size of the CRSEK
is about 162 MB, 810 MB, and 2 GB, respectively. Note that these CRSEK sizes are uncompressed sizes and
can usually be reduced by a factor of at least 2 via standard compression methods. Proofs can be computed
in about 4.46, 22.3, and 55.75 seconds, respectively. As mentioned above, proof size and verification time
are small and independent of the circuit while CRSVK is a small subset of CRSEK which only depends on
the number of public wires (e.g., for 5,000 such wires - far more than we will need - CRSVK is smaller than
500 KB). In this paper we therefore mainly focus on determining and optimizing prover runtime and size of
CRSEK, both of which are crucial for prover efficiency and hence for determining the viability of Groth16 for
showing ballot validity.
CRS Generation and Soundness. We note that both, soundness and the zero-knowledge property of
Groth16 SNARKs depend (to some extent) on an honestly generated CRS. We provide more insights and
possible mitigations in Appendix C.

3 Proving Ballot Validity Using Groth16

To construct ballot validity proofs using Groth16, we follow the approach from Kryvos [35] for PVC-based
encrypted ballots. In this section, we give a complete overview of the approach, explain how the same
techniques can be used for EEG-based ballots, and provide the first benchmarks for several subcomponents.
Our benchmarks for complete ballot validity proofs are then given in Section 4.

Recall that voters choose their plain ballot b as a length-N -vector from some choice space C and then
use an (additively) homomorphic encryption or commitment scheme Enc(·) to obtain an encrypted ballot
c ← Enc(b). To show ballot validity via a GPZKP such as Groth16, a voter uses the following indicator
function fR(x,w): the public statement x contains the encrypted ballot c. The witness w contains a plain
ballot b and randomness rw such that fR(x,w) = 1 iff Enc(b,rw) = c and b ∈ C.

We construct a corresponding arithmetic circuit C for ballot validity from two separate sub-circuits as
shown in Figure 1. The encryption subcircuit CEnc re-computes the encrypted ballot from the plain ballot b
and randomness rw contained in the witness w and from the public encryption key contained in a public input
auxEnc. The public encrypted ballot c is assigned to the output wires of CEnc, which implies that Enc(b,rw) = c
holds in a valid proof for this circuit. The voting subcircuit CVoting takes as input the plain ballot b from
the input witness w and then outputs a bit indicating whether b ∈ C. The constant 1 is assigned to the
output wire of CVoting, which implies that b ∈ C holds for valid proofs. Both subcircuits might take additional
auxiliary public and witness values as input which can be used to improve efficiency or to generalize circuits.

This modular design of C simplifies circuit design and optimization while enabling the re-use of com-
ponents shared by circuits for different voting methods, most notably CEnc, which does not depend on C
(except for the length of the vote vector). In the following subsections, we will explain how we construct both
subcircuits while keeping the number of constraints small. We note that the overall number of constraints
and, hence, the overall performance of C is essentially the sum of CEnc and CVoting. To compare their relative
impact we therefore also provide benchmarks for all subcomponents.

6 Usually, a valid w is described only in terms of input wire variables as this already fully defines the remaining
witness values for internal and output wire variables.

5

w = (b,rw, . . .)

auxEnc

auxVoting

CEnc c

CVoting 1

Fig. 1: The arithmetic circuit C for proving ballot validity. Secret/witness values are shown in orange, public
values are blue, and constants are black.

3.1 Constructing and Optimizing CEnc.

Due to the complexity of encryption/commitment schemes, designing an efficient CEnc with a small and
hence practical number of constraints is a highly non-trivial task that makes or breaks the practicality of the
overall ballot validity proof. For designing Kryvos [35] we spent much effort on designing a highly optimized
CPVC
Enc for PVCs which we will first recall and then show how it can be transformed into a circuit CEEG

Enc for
EEG. This transformation is mostly straightforward on a technical level as both primitives use the same
operations. The main question we investigate rather is the resulting performance and practicality, which is
unclear for CEEG

Enc due to the reasons detailed at the end of the next paragraph.

Existing Building Blocks for PVCs from [35]. Let G be a (multiplicative) group of prime order q and
let h,g1, . . . ,gN be generators of G such that no relation between these generators is known. A PVC on a
plaintext vector v = (v1, . . . , vN) ∈ ZN

q is defined as c = com(v,r) = gv11 · . . . · gvNN · hρ ∈ G for (uniform)

randomness ρ
$←− Zq. The case N = 1 gives a standard Pedersen commitment.

A major factor for the size and hence performance of CPVC
Enc is exponentiation. Building on results from [40],

Kryvos uses an instantiation of the common Montgomery elliptic curve Curve25519 over the scalar field
Fr = Zr of BN254 (the curve used for Groth16 by libsnark [47], see Section 2 and Appendix D), where r is
a 254-bit prime. This allows for an efficient implementation of exponentiation via the Montgomery ladder
algorithm.7 More precisely, as described in [40] and as we recall in Appendix D.2, we set G to be the large
prime-order subgroup of this curve, which has size q ≈ 2251. A group element is a curve point that can be
represented in affine or equivalently projective coordinates consisting of two resp. three coordinates in Fr. In
CPVC
Enc , a point is represented by one wire per coordinate. For affine coordinates, a third wire is used to indicate

whether the given point is the special point at infinity. The number of constraints needed for implementing
the Montgomery ladder algorithm then depends on the (maximal) size of the exponent. As reported in [35],
an exponentiation with an arbitrary 255 bit randomness r requires 5,084 constraints. However, valid votes
v usually have much smaller entries vi, typically just a few bits (depending on the choice space). Kryvos
bounds the size of a (valid) vi by 32 bits, which covers all interesting choice spaces and requires only 624
constraints for one exponentiation. This can, in principle, be improved further by using a smaller bound
determined from a specific choice space at hand.

Based on this choice of G, for Kryvos we designed and reported constraint numbers for the following
subcircuits: (i) The aforementioned circuit for computing an exponentiation gm of an elliptic curve point
g with m ≤ q using Montgomery’s ladder. This only gives the (projective) X- and Z-coordinate of gm.
(ii) A circuit for computing the (projective) Y -coordinate from output of the Montgomery ladder and the
(projective) Y -coordinate of g following Okea and Sakurai [45] (39 constraints). (iii) A circuit for converting
projective to affine coordinates (15 constraints). (iv) A circuit for multiplying two points given in affine
coordinates (86 constraints). These subcircuits are then combined to obtain CPVC

Enc .
Observe that the exponentiation with large randomness is by far the most expensive step. This is why

this approach scales particularly well for PVCs: For committing to a vector of size N , only a single expensive
exponentiation (hr) is needed (N+1 exponentiations overall). In contrast, EEG requires more exponentiations
(3N) for encrypting a vector of size N and 2N of those exponentiations are for the large randomness. So
this raises the question whether we can obtain reasonably efficient ballot validity SNARKS for EEG.

7 We stick with multiplicative notion of the group law also for elliptic curve groups.

6

g.X, g.Z
v

g.Y

r

pk.X,pk.Z

pk.Y

(gv).X,(gv).Z

(gv+1).X,(gv+1).Z

(gr).X,(gr).Z

(gr+1).X,(gr+1).Z

(pkr).X,(pkr).Z

(pkr+1).X,(pkr+1).Z

Exp
(i)

Exp
(i)

Exp
(i)

y-Rec
(ii)

gv

y-Rec
(ii)

gr

y-Rec
(ii)

pkr

Conv
(iii)

gv

Conv
(iii)

pkr

Mul
(iv)

gvpkr

c:=(gr,gvpkr)

Fig. 2: Circuit CEnc for computing an EEG ciphertext c from plaintext v with randomness r. The secret witness
(marked in orange) is w := (v,r). The public statements (marked in blue) are the ciphertext c = (gr,gvpkr)
and auxEnc, which contains the public key pk and the generator g. Where important, we show wires with
individual coordinates, e.g., g.X denotes the projective X-coordinate of g. We also use purple/black color
for projective/affine coordinates. When no individual coordinate but just a point is given, e.g., gv, then
this represents the three wires for that point’s coordinates. The numbers (i)− (iv) refer to the sub-circuits
from Section 3.1.

0 20 40 60 80 100 120

N values/plaintexts

0

10

20

30

40

50

60

P
ro

ve
[s

]

N EEG Ciphertexts [32 bits]

N EEG Ciphertexts [16 bits]

N EEG Ciphertexts [1 bit]

1 PVC (for N values) [32 bits]

0

500

1000

1500

2000

2500

E
K

C
R

S
[M

B
]

0.0

0.5

1.0

1.5

#
C

on
st

ra
in

ts
(m

ill
io

n
s)

Fig. 3: Prover runtime, CRSEK size, and constraints for CEEG
Enc and CPVC

Enc

Proving Plaintext Knowledge for a Vector of EEG Ciphertexts. Again, let G be a (multiplicative)
group of prime order q and generator g. An EEG ciphertext for a plaintext v ∈ Zq and a given public key

pk ∈ G is obtained by sampling a randomness r
$←− Zq and returning c = (c0,c1) = (gr, gv · pkr).

We constructed a circuit CEEG
Enc for computing N such ciphertexts from N plaintexts vi, N randomnesses

ri, and a public key pk from the subcircuits established in Kryvos. We depict the resulting circuit in Figure 2
for the case N = 1. For N > 1, this circuit is copied N times with separate input and output wires, except for
the input wires corresponding to pk and g which are shared by all copies. Given the caption of Figure 2, most
of the circuit is self-explanatory, perhaps except for the final ciphertext output where c0 = gr is returned
directly in projective coordinates (without using the Conv subcircuit) since a conversion to affine coordinates,
if desired, can also later be computed outside of the circuit/ZKP.

Benchmarks and Comparison. After implementing our new circuit CEEG
Enc for EEG ciphertexts, we have

benchmarked the performance of Groth16 for this circuit and various sizes N of the plaintext vector, as
well as various upper bounds on the bit length of individual plaintexts. We have also benchmarked the
existing implementation of CPVC

Enc for PVCs on the same machine (see Footnote 4 on Page 4) to obtain a fair
comparison, with all results shown in Figure 3.

As expected, creating a SNARK proof for validating a vector of EEG ciphertexts instead of a PVC is
much less efficient for large vector lengths N . However, and perhaps unexpected, even for a vector consisting

7

0 25 50 75 100 125 150 175 200

ncand

0

10

20

30

40

P
ro

ve
[s

]
Condorcet

BTS

Pointlist-Borda
(npoints = ncand)

Single-Choice; Line-Vote;
Multiple-Choice, MWR (with
nbits = 32 + dlog2(ncand)e);
Pointlist-Borda (npoints = 10);
Majority Judgment (ngrades = 6)

Majority Judgment (ngrades = ncand)

0

500

1000

1500

E
K

C
R

S
[M

B
]

0.00

0.25

0.50

0.75

1.00

#
C

on
st

ra
in

ts
(m

ill
io

n
s)

Fig. 4: Prover runtime, CRSEK size, and constraints of CVoting for several voting methods. For Pointlist-Borda,
we use L = {1, . . . , npoints}, for Multi-Vote and MWR, we use t = 232 − 1 and nmax = ncand · t.

of 50 EEG ciphertexts a voter can still compute a proof in less than 30 seconds using a CRSEK of about 1
GB, which is already good enough to be viable in a wide range of settings and election types. While reducing
the maximal bit length of a plaintext slightly improves performance, the difference between 1, 16, and 32 bit
is negligible due to the impact of the several exponentiations with large randomnesses. For a more detailed
discussion of practicality in various situations, see Section 4.

3.2 Constructing and Optimizing CVoting

Since the subcircuit CVoting checks that a (plain) ballot belongs to a given choice space, its design depends
on the voting method/choice space. Here, we describe and benchmark circuits for the following common
voting methods/choice spaces: Single-Vote, Multi-Vote, Borda Count, Condorcet, and Majority Judgment.
To investigate the potential and limits of GPZKPs for developing and supporting new voting methods and
systems, we further construct and benchmark circuits for two additional (somewhat artificial) complex choice
spaces - both variants of Multi-Vote, which we call Line-Vote and Multi-Vote with Rules. We provide the
benchmarks for CVoting for all of our choice spaces in Figure 4.

Since CVoting is independent of the method used for encrypting ballots - thanks to the modularity of C
- we can reuse the existing sub-circuits for Single-Vote, Multi-Vote, Borda Count, Condorcet, and Major-
ity Judgment from [35] with some minor optimizations and extensions. We briefly recall their designs for
completeness and provide some additional details, such as constraint numbers. We also provide the first
benchmarks for these subcircuits, which were not benchmarked separately in [35].

Single-Vote. Recall that in a single-vote election, a voter can give only one vote for their preferred candidate,
with the corresponding choice space Csingle defined in Section 1. Checking that b ∈ Csingle entails two substeps:
(i) Checking that each ballot entry is a bit, which requires one constraint per candidate, and (ii) checking
that the sum of all ballot entries equals 1, which requires one constraint. To allow abstention by casting a
ballot without a vote, one can instead check that the sum is a bit, which also requires one constraint.

For ncand candidates, Csingle
Voting thus consists of ncand + 1 constraints. This yields a very small CRSEK of less

than 1 MB and proof times of less than 0.05 seconds for any realistic number of candidates (see Figure 4).

Multi-Vote. Multi-vote generalizes single-vote by letting voters allocate up to nmax votes among ncand

candidates, with a maximum of t votes assigned to any candidate. Analogous to Csingle, we define the following
choice space:

Cmulti(nmax,t) :=

{
(v1, . . . , vncand

) | ∀i : vi ∈ {0, 1, . . . , t} ∧ 0 ≤
ncand∑
i=1

vi ≤ nmax

}
.

8

The circuit Cmulti
Voting for Cmulti then checks that each vi is in the allowed range (between 0 and t) and that

the sum of all vi is in the correct range (between 0 and nmax). Such range checks require converting the
respective value into individual bits. Therefore, the number of constraints depends on the maximal possible
bit size nbits of

∑ncand

i=1 vi which is, in turn, determined by the bit sizes of t and nmax. The complete circuit
requires about (nbits+1) · (ncand+1) constraints (the exact number depends on t and nmax), which - even for
unrealistically high values of nbits such as nbits = 41 - is still very small for any realistic number of candidates.
Hence, performance of Cmulti

Voting is essentially the same as for Csingle
Voting (see Figure 4).

Supporting New Choice Spaces: Line-Vote and Multi-Vote with Rules. We consider two modifi-
cations of multi-vote that are somewhat artificial but represent cases where one might want to use GPZKPs:
they are novel choice spaces, so no ballot validity ZKPs exist, and as they are obtained by adding non-trivial
interdependencies between the votes for individual candidates, it is hard to construct new specialized ZKPs.

Line-Vote: In Line-Vote, voters are given ncand many (ordered) options to vote YES or NO. Voters can vote
YES for any number of those options subject to the restriction that all YES-votes must form a continuous
line, i.e., if two options receive a YES-vote, then all options in-between must receive a YES-vote as well.
A use case might be voting for core office hours: let options be hours of the day with voters/workers using
YES-votes to indicate a single continuous period of availability. The choice space can be formalized as follows:

Cline := {(v1, . . . , vncand
) | vi ∈ {0, 1} ∧ (i < j ∧ vi,vj = 1⇒ ∀i < k < j : vk = 1)} .

A corresponding circuit Cline
Voting can be built easily analogous to Cmulti

Voting: C
line
Voting uses an additional “helper”

wire which is first set to v1 and is then incremented for all non-zero vi that occur directly after a zero entry
vi−1. A ballot is then valid iff all vi and the helper wire are bits. This circuit consists of 2ncand constraints.

Multi-Vote with Rules (MWR): In MWR, we consider multi-vote ballots whose entries are subject to addi-
tional arithmetic rule(s). One can add arbitrary (numbers of) rules. As a concrete example, we consider a
rule where the product of the second and the third ballot entry equals the first one:

CMWR(nmax,t) := {b = (v1, . . . , vncand
) ∈ Cmulti(nmax,t) | v1 = v2 · v3} .

A potential application of this and similar rules are surveys with conditional follow-up questions. E.g.,
v1 ∈ {0,1} might be a vote on a YES-/NO-question about a change in law, with 0 corresponding to yes.
Then, only those in favor of a change are asked about different new laws v2 and v3 of which they must accept
at least one (accept also corresponding to 0). The corresponding circuit CMWR

Voting is again easy to construct:
use Cmulti

Voting as a basis and add additional constraints for each rule. In the above example, just 2 additional
constraints are needed.

Altogether, both examples confirm that it is indeed simple to support new choice spaces via GPZKPs and
that, depending on the additional conditions imposed on the vi, this might not even come at a noticeable
cost (see Figure 4).
Pointlist-Borda and Borda Tournament Style (BTS). Borda is a ranked election method where voters
rank the candidates according to their preference and, based on this ranking, points are assigned to each
candidate. Variants of Borda are used, e.g., for parliamentary elections in Nauru [46] and the Eurovision
Song Contest (ESC) [26]. As suggested in [35], such variants used in practice can be captured as instances
of what they call Pointlist-Borda. A Pointlist-Borda instance is defined via a fixed point list L that contains
npoints many distinct positive numbers. Voters then construct their ballots by assigning each number in L
to one candidate and, if npoints < ncand, 0 points to all remaining candidates. Observe that this represents a
ranking where the highest-ranked candidate receives the most points and so on with ncand−npoints candidates
tied for the last place. Formally, the choice space is as follows:

CBordaPointList(L) :=
{
(v1, . . . , vncand

)
∣∣∣(∀p ∈ L∃i : vi = p)

∧ |{i ∈ [1,ncand] | vi = 0}| = ncand − npoints

}
.

9

The size of CBordaPointList
Voting depends on npoints = |L| but is not affected by the concrete values in L (hence,

we simply take L = [1, npoints] for benchmarking). For small constants, such as npoints = 10, the size of
CBordaPointList
Voting scales linearly in ncand, similar to single-/multi-vote. The worst case is npoints = ncand, which

scales quadratically in ncand but remains practical. For example, in an extreme case of npoints = ncand = 100,
computing a proof still only requires less than 2 seconds and a CRSEK of less than 100 MB (see Figure 4 for
both cases).

There are many different ways to design Borda methods that additionally allow for ties between candidates
at arbitrary positions. For example, for Kryvos [35] we considered such a Borda method that we called Borda
tournament style (BTS). Since there are no specialized ballot validity ZKPs for BTS, it serves as a great
case study for the potential of GPZKPs.

To build a BTS ballot, voters first choose a ranking r = (r1, . . . , rncand
) ∈ Nncand of candidates, where

ri > rj means that candidate i is ranked worse than candidate j. Note that the voter can tie arbitrarily
many candidates at arbitrary ranks. In the ballot, a candidate i then receives a ∈ N points for each candidate
that this voter ranked lower than i and b ∈ N points for each candidate that i is tied with. Here, a and b
are some pre-defined parameters of the election with a > b, e.g., a = 2 and b = 1. Formally, this gives the
following choice space:

CBordaTournamentStyle :=
{
(x1, . . . , xncand

)
∣∣∣∃(r1 , . . . , rncand

) ∈ Nncand s.t. ∀i :
xi =a · |{j ∈ {1, . . . , ncand}|rj > ri}|+

b · |{j ∈ {1, . . . , ncand} \ {i}|rj = ri}|
}
.

To improve efficiency, the corresponding circuit CBTS
Voting takes a witness w as input that contains not just

the plain ballot b but also the ranking r = (r1, . . . , rncand
). From r, CBTS

Voting then computes the corresponding
ballot b′ and verifies whether b = b′.8 The performance of CBTS

Voting is also quadratic in ncand but worse than
CBordaPointList
Voting due to increased complexity of the choice space. However, performance still remains practical

even for ncand = 100 (see Figure 4).

Condorcet Methods. In Condorcet methods, which are, e.g., used for internal elections of the Debian
project [24], a voter submits a ranking of candidates. Condorcet methods differ in how they determine the
winner but, if such a candidate exists, they will return the candidate who wins against all other candidates in
a direct comparison. To make rankings compatible with aggregation of ballots, they are typically represented
as comparison matrices [22,33,35].

Specifically, given a ranking r = (r1, . . . , rncand
) ∈ Nncand of candidates (where ri > rj means that candidate

i is ranked worse than candidate j), a voter constructs her ballot as an ncand × ncand matrix A with 1 at
position (i,j) if candidate i is ranked better than candidate j and 0 otherwise. Note that hence n2

cand many
values are used for a ballot, unlike all aforementioned voting methods that used one value per candidate.
Also note that, if candidates are tied, then this is represented by Aij and Aji both being 0, i.e., a ballot is
a positive preference matrix as defined in [22]. The choice space then is:

CCondorcet =
{
A ∈ {0,1}ncand×ncand

∣∣∣∃(r1, . . . , rncand
) ∈ Nncand s.t. ∀i,j ∈ [1, ncand] :

ri > rj ⇒ Aij = 0, Aji = 1 ∧
ri = rj ⇒ Aij = Aji = 0

}

8 As a slight optimization, in the combined circuit C the check b = b′ can be omitted by using the wires containing
b′ (instead of b) as input for the subcircuit CEnc.

10

The circuit CCondorcet
Voting extends the one proposed in [35], which did not support ties. It first checks that all

matrix entries are bits and that for i ̸= j also Aij +Aji is a bit. 9 It remains to check transitivity (i.e., that,
for any triple (i,j,k) of distinct candidates, it holds that ri ≤ rj and rj ≤ rk imply ri ≤ rk, with ri = rk iff
ri = rj and rj = rk). Checking both cases, i.e., ≤ and =, turns out to be easier if ties are expressed through
1-entries instead of 0-entries. For this, CVoting computes a “check matrix” B with Bij := 1−Aji, which does
not require any new constraints (intuitively, because this computation can be performed as part of other
already existing constraints). Note that B equals A everywhere except that 1-entries replace the 0-entries
that represent ties in A. Then, the circuit checks whether Bij · Bjk · (1 − Bik) = 0, which is true iff A is
transitive (observe that this check indeed covers both the “≤”- and the “=”-case). The resulting circuit scales
cubically in the number of candidates, where, e.g., 25 candidates require a CRSEK of about 90 MB and a
proof time of about 2.5 seconds (see Figure 4).
Majority Judgment. Majority Judgment is an election method where a voter can grade each candidate
independently according to a pre-defined list of ngrades grades. The election winner(s) are then determined
based on the candidate(s) who received the highest median grade. Majority Judgment is a common method
in political research polling, but variants have also found application for judging sports competitions such
as Olympic figure skating. Following Canard et al. [18], we consider a ballot as an (ncand × ngrades)-matrix
A, where assigning the j-th grade to the i-th candidate is represented by the i-th row of A containing zeros
everywhere except for the j-th column, where we set Aij := 1. More precisely, as described in [35], the choice
space for Majority Judgment is given as

CMajorityJudgement(ngrades) :=

A ∈ {0,1}ncand×ngrades | ∀i ∈ [ncand] :
∑

j∈[ngrades]

Aij = 1

 .

We note that CMajorityJudgement can be seen as ncand-fold product of Csingle, which is why our circuit
CMajorityJudgement
Voting for CMajorityJudgement essentially applies Csingle

Voting to each row of a ballot. Thus, the performance
of CMajorityJudgement

Voting is ngrades times worse than the performance of Csingle
Voting. We have benchmarked two varia-

tions, where the first uses ngrades = ncand, leading to a quadratic scaling in the number of candidates, and
the second variant uses ngrades = 6, as in the common letter grade scale, see Figure 4.

4 Overall benchmarks for Proving Ballot Validity

Following the outline given in Section 3, we can now combine the encryption subcircuit CEnc with a suitable
plaintext bit size from Section 3.1 and a voting subcircuit CVoting from Section 3.2 to obtain complete circuits
C for proving ballot validity. Our benchmarks of prover runtime, CRSEK size, and constraints for these circuits
using EEG encryption and depending on the number of candidates ncand are given in the top half of Figure 5.
For comparison, in the bottom half of Figure 5 we provide our benchmarks for ballots computed as PVCs
using the constructions of [35]. As mentioned in Section 2, the proof size is less than 1 KB, and verification
requires only about 7 ms as both are mostly independent of the circuit. Since the CRSVK is a subset of CRSEK
we do not provide separate benchmarks, but its size is always in the order of ∼ 20 KB and hence negligible.

The performance of Groth16 for the combined circuit C is essentially the sum of the subcircuits CEnc and
CVoting and thus dominated by the much slower CEnc. Note that the performance of CEnc in Figure 3 was
given depending on the number N of plaintexts, while for the combined circuit C we consider performance
depending on number ncand of candidates. All but two choice spaces use one plaintext per candidate, i.e.,
N = ncand, so the benchmarks given in Figure 5 mostly retain the linear behavior of CEnc, potentially plus
some small non-linear overhead caused by CVoting. The exceptions are Condorcet and Majority Judgment
ballots, where N = n2

cand resp. N = ncand ·ngrades. For Condorcet and Majority Judgment with ngrades = ncand

this causes visibly quadratic behavior in the combined circuit due to CEnc (plus some smaller cubic overhead
9 One can instead check that Aij + Aji = 1 to prevent ties as proposed in [35]. This yields the same number of

constraints.

11

0 10 20 30 40 50 60 70 80 90 100 110 120
ncand

0

20

40

60

P
ro

ve
[s

]

Condorcet

BTS

Pointlist-Borda
(npoints = ncand)

Multi-Vote & MWR(with
nbits = 32 + dlog2(ncand)e),
Pointlist-Borda (npoints = 10)

Single-Vote, Line-Vote

Majority Judgment (ngrades = 6)

Majority Judgment (ngrades = ncand)

0 10 20 30 40 50 60 70 80 90 100 110 120
ncand

0

20

40

60

P
ro

ve
[s

]

0

1000

2000

E
K

C
R

S
[M

B
]

0.0

0.5

1.0

1.5

#
C

on
st

ra
in

ts
(m

ill
io

n
s)

0

1000

2000

E
K

C
R

S
[M

B
]

0.0

0.5

1.0

1.5

#
C

on
st

ra
in

ts
(m

ill
io

n
s)

Benchmarks of C for various choice spaces with EEG ciphertexts (Top) and PVCs (Bottom)

Fig. 5: Comparison of full ballot validity proofs. Majority Judgment, Condorcet, Single-, and Line-Vote use
CEnc with 1-bit plaintexts; all other choice spaces use 32-bit plaintexts. Note that in the upper figure, the
lines for Condorcet and Majority Judgment with ncand = ngrades overlap.

for Condorcet ballots due to CCondorcet
Voting that explains the distance between the two graphs in the case of

PVCs).
To summarize our benchmarks, for most election types with EEG, Groth16 ballot validity proofs can be

computed by voters within a reasonable time on standard PCs, even for large numbers of candidates. Since
runtime is dominated by CEnc, it stays mostly the same even for new ballot formats with potentially very
complex validity rules, as shown by Line-Vote, MWR, and BTS. The outliers are Condorcet and Majority
Judgment (with large values for ngrades), for which computing a proof quickly becomes impractical due to
the higher number of ciphertexts. We note, however, that real-world Condorcet elections, such as [24], rarely
have more than 10 candidates. Similarly, a Majority Judgment election with more than 20 grades and/or
candidates seems unrealistic - typical applications use 6 to 10 grades to grade only a few candidates [6]. For
such cases, a proof of ballot validity can still be computed in less than a minute. As for the size of CRSEK, it
is non-negligible in all cases but still within ranges that can reasonably be downloaded once as part of the
election software. Also, recall that the presented CRSEK sizes are uncompressed sizes. We also note that the
same CRS can then be re-used for multiple elections.

In conclusion, our results establish that Groth16 and, hence, GPZKPs are a viable option for showing
ballot validity in EEG-based voting systems. We have further shown the potential of GPZKPs for supporting
new voting methods with novel complex ballot formats. While specialized ZKPs, where available, can still
be preferable to GPZKPs, e.g., due to better efficiency, our results show that GPZKPs can be a viable and,
importantly, quite generic and uniform option. A detailed performance comparison between GPZKPs and
specialized ZKPs for various ballot formats and group choices would be an interesting future work.

Acknowledgements: This research was funded in part by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation), grant 411720488.

References

1. Abdolmaleki, B., Lipmaa, H., Siim, J., Zajac, M.: On Subversion-Resistant SNARKs. IACR Cryptol. ePrint Arch.
2020, 668 (2020)

2. Abdolmaleki, B., et al.: UC-Secure CRS Generation for SNARKs. In: AFRICACRYPT 2019, Proceedings. LNCS,
vol. 11627, pp. 99–117. Springer (2019)

3. Adida, B., et al.: Electing a University President Using Open-Audit Voting: Analysis of Real-World Use of Helios.
In: USENIX/ACCURATE Electronic Voting Technology (EVT 2009) (2009)

12

4. Ames, S., et al.: Ligero: Lightweight Sublinear Arguments Without a Trusted Setup. In: ACM CCS 2017. pp.
2087–2104 (2017)

5. Aranha, D.F., Karabina, K., Longa, P., Gebotys, C.H., López, J.: Faster explicit formulas for computing pairings
over ordinary curves. In: Paterson, K.G. (ed.) Advances in Cryptology - EUROCRYPT 2011 - 30th Annual
International Conference on the Theory and Applications of Cryptographic Techniques, Tallinn, Estonia, May
15-19, 2011. Proceedings. Lecture Notes in Computer Science, vol. 6632, pp. 48–68. Springer (2011). https:
//doi.org/10.1007/978-3-642-20465-4_5, https://doi.org/10.1007/978-3-642-20465-4_5

6. Balinski, M., Laraki, R.: Election by majority judgment: experimental evidence. In: In situ and laboratory ex-
periments on electoral law reform: French presidential elections, pp. 13–54. Springer (2010)

7. Barreto, P.S.L.M., Lynn, B., Scott, M.: Constructing elliptic curves with prescribed embedding degrees. In:
Cimato, S., Galdi, C., Persiano, G. (eds.) Security in Communication Networks, Third International Confer-
ence, SCN 2002, Amalfi, Italy, September 11-13, 2002. Revised Papers. Lecture Notes in Computer Science,
vol. 2576, pp. 257–267. Springer (2002). https://doi.org/10.1007/3-540-36413-7_19, https://doi.org/10.
1007/3-540-36413-7_19

8. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In: Preneel, B., Tavares, S.E. (eds.)
Selected Areas in Cryptography, 12th International Workshop, SAC 2005, Kingston, ON, Canada, August 11-12,
2005, Revised Selected Papers. Lecture Notes in Computer Science, vol. 3897, pp. 319–331. Springer (2005).
https://doi.org/10.1007/11693383_22, https://doi.org/10.1007/11693383_22

9. Bellare, M., Fuchsbauer, G., Scafuro, A.: NIZKs with an Untrusted CRS: Security in the Face of Parameter
Subversion. In: Advances in Cryptology - ASIACRYPT 2016 - 22nd International Conference on the Theory and
Application of Cryptology and Information Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part II.
Lecture Notes in Computer Science, vol. 10032, pp. 777–804 (2016)

10. Bellés-Muñoz, M., et al.: Circom: A circuit description language for building zero-knowledge applications. IEEE
Trans. Dependable Secur. Comput. 20(6), 4733–4751 (2023)

11. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.: Aurora: Transparent succinct
arguments for R1CS. In: Ishai, Y., Rijmen, V. (eds.) Advances in Cryptology - EUROCRYPT 2019 - 38th Annual
International Conference on the Theory and Applications of Cryptographic Techniques, Darmstadt, Germany,
May 19-23, 2019, Proceedings, Part I. Lecture Notes in Computer Science, vol. 11476, pp. 103–128. Springer
(2019). https://doi.org/10.1007/978-3-030-17653-2_4, https://doi.org/10.1007/978-3-030-17653-2_4

12. Ben-Sasson, E., et al.: Secure Sampling of Public Parameters for Succinct Zero Knowledge Proofs. In: IEEE SP
2015. pp. 287–304. IEEE Computer Society (2015)

13. Ben-Sasson, E., et al.: Scalable, Transparent, and Post-Quantum Secure Computational Integrity. IACR Cryp-
tology ePrint Archive 2018, 46 (2018)

14. Bernstein, D.J.: Curve25519: New diffie-hellman speed records. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.
(eds.) Public Key Cryptography - PKC 2006, 9th International Conference on Theory and Practice of Public-
Key Cryptography, New York, NY, USA, April 24-26, 2006, Proceedings. Lecture Notes in Computer Science,
vol. 3958, pp. 207–228. Springer (2006). https://doi.org/10.1007/11745853_14, https://doi.org/10.1007/
11745853_14

15. Botrel, G., et al.: Consensys/gnark: v0.9.0 (Feb 2023). https://doi.org/10.5281/zenodo.5819104
16. Bowe, S., Gabizon, A., Miers, I.: Scalable Multi-party Computation for zk-SNARK Parameters in the Random

Beacon Model. IACR Cryptol. ePrint Arch. 2017, 1050 (2017)
17. Bünz, B., et al.: Bulletproofs: Short Proofs for Confidential Transactions and More. In: SP 2018. (2018)
18. Canard, S., Pointcheval, D., Santos, Q., Traoré, J.: Practical Strategy-Resistant Privacy-Preserving Elections. In:

Computer Security - 23rd European Symposium on Research in Computer Security, ESORICS 2018, Barcelona,
Spain, September 3-7, 2018, Proceedings, Part II. Lecture Notes in Computer Science, vol. 11099, pp. 331–349.
Springer (2018)

19. Chaum, D., Pedersen, T.P.: Wallet Databases with Observers. In: CRYPTO ’92. LNCS, vol. 740, pp. 89–105.
Springer (1992)

20. Chiesa, A., Ojha, D., Spooner, N.: Fractal: Post-quantum and Transparent Recursive Proofs from Holography.
In: EUROCRYPT 2020. (2020)

21. Cortier, V., Gaudry, P., Glondu, S.: Belenios: a simple private and verifiable electronic voting system. Foundations
of Security, Protocols, and Equational Reasoning: Essays Dedicated to Catherine A. Meadows pp. 214–238 (2019)

22. Cortier, V., Gaudry, P., Yang, Q.: A Toolbox for Verifiable Tally-Hiding E-Voting Systems. In: ESORICS 2022.
LNCS, vol. 13555, pp. 631–652. Springer (2022)

23. Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of Partial Knowledge and Simplified Design of Witness Hiding
Protocols. In: CRYPTO 1994. Springer (1994)

24. Debian Project: Debian Voting Information. https://www.debian.org/vote/ (2024)

13

https://doi.org/10.1007/978-3-642-20465-4_5
https://doi.org/10.1007/978-3-642-20465-4_5
https://doi.org/10.1007/978-3-642-20465-4_5
https://doi.org/10.1007/978-3-642-20465-4_5
https://doi.org/10.1007/978-3-642-20465-4_5
https://doi.org/10.1007/3-540-36413-7_19
https://doi.org/10.1007/3-540-36413-7_19
https://doi.org/10.1007/3-540-36413-7_19
https://doi.org/10.1007/3-540-36413-7_19
https://doi.org/10.1007/11693383_22
https://doi.org/10.1007/11693383_22
https://doi.org/10.1007/11693383_22
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/11745853_14
https://doi.org/10.1007/11745853_14
https://doi.org/10.1007/11745853_14
https://doi.org/10.1007/11745853_14
https://doi.org/10.5281/zenodo.5819104
https://doi.org/10.5281/zenodo.5819104
https://www.debian.org/vote/

25. Devillez, H., Pereira, O., Peters, T.: How to verifiably encrypt many bits for an election? In: ESORICS 2022.
LNCS, vol. 13555, pp. 653–671. Springer (2022)

26. European Broadcasting Union: Eurovision Song Contest - How it works. https://eurovision.tv/about/
how-it-works (2024)

27. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: Permutations over Lagrange-bases for Oecumenical Non-
interactive arguments of Knowledge. IACR Cryptol. ePrint Arch. 2019, 953 (2019)

28. Gaudry, P.: Some zk security proofs for belenios (2017)
29. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and succinct nizks without pcps. In:

Johansson, T., Nguyen, P.Q. (eds.) Advances in Cryptology - EUROCRYPT 2013, 32nd Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Athens, Greece, May 26-30, 2013.
Proceedings. Lecture Notes in Computer Science, vol. 7881, pp. 626–645. Springer (2013). https://doi.org/10.
1007/978-3-642-38348-9_37, https://doi.org/10.1007/978-3-642-38348-9_37

30. Giacomelli, I., Madsen, J., Orlandi, C.: ZKBoo: Faster Zero-Knowledge for Boolean Circuits. In: USENIX Security
Symposium 2016. pp. 1069–1083. USENIX Association (2016)

31. Groth, J.: Non-interactive Zero-Knowledge Arguments for Voting. In: ACNS 2005. LNCS, vol. 3531, pp. 467–482
(2005)

32. Groth, J.: On the Size of Pairing-Based Non-interactive Arguments. In: EUROCRYPT 2016. LNCS, vol. 9666,
pp. 305–326. Springer (2016)

33. Hertel, F., et al.: Extending the Tally-Hiding Ordinos System: Implementations for Borda, Hare-Niemeyer, Con-
dorcet, and Instant-Runoff Voting. In: E-Vote-ID 2021. pp. 269–284. University of Tartu Press (2021)

34. Hopwood, D.E., et al.: Zcash Protocol Specification. https://zips.z.cash/protocol/protocol.pdf (2024)
35. Huber, N., et al.: Kryvos: Publicly Tally-Hiding Verifiable E-Voting. In: CCS 2022. pp. 1443–1457. ACM (2022)
36. Huber, N., et al.: Implementation of our Circuits. https://github.com/HicolasNuber/ballotsnarks (2024)
37. Joaquim, R.: How to prove the validity of a complex ballot encryption to the voter and the public. JISA 19(2),

130–142 (2014)
38. Kim, T., Barbulescu, R.: Extended tower number field sieve: A new complexity for the medium prime case. In:

Robshaw, M., Katz, J. (eds.) Advances in Cryptology - CRYPTO 2016 - 36th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part I. Lecture Notes in Computer
Science, vol. 9814, pp. 543–571. Springer (2016). https://doi.org/10.1007/978-3-662-53018-4_20, https:
//doi.org/10.1007/978-3-662-53018-4_20

39. Kohlweiss, M., Maller, M., Siim, J., Volkhov, M.: Snarky ceremonies. In: Tibouchi, M., Wang, H. (eds.) Advances
in Cryptology - ASIACRYPT 2021 - 27th International Conference on the Theory and Application of Cryptology
and Information Security, Singapore, December 6-10, 2021, Proceedings, Part III. Lecture Notes in Computer
Science, vol. 13092, pp. 98–127. Springer (2021). https://doi.org/10.1007/978-3-030-92078-4_4, https://
doi.org/10.1007/978-3-030-92078-4_4

40. Kosba, A., et al.: C∅C∅: A Framework for Building Composable Zero-Knowledge Proofs. Cryptology ePrint
Archive (2015)

41. Maller, M., et al.: Sonic: Zero-Knowledge SNARKs from Linear-Size Universal and Updatable Structured Refer-
ence Strings. In: Proceedings of the 2019 ACM CCS. pp. 2111–2128 (2019)

42. Masson, S., Sanso, A., Zhang, Z.: Bandersnatch: a fast elliptic curve built over the BLS12-381 scalar field. IACR
Cryptol. ePrint Arch. p. 1152 (2021), https://eprint.iacr.org/2021/1152

43. Mestel, D., Müller, J., Reisert, P.: How efficient are replay attacks against vote privacy? A formal quantitative
analysis. J. Comput. Secur. 31(5), 421–467 (2023)

44. Morais, E., et al.: A survey on zero knowledge range proofs and applications. SN Applied Sciences 1, 1–17 (2019)
45. Okeya, K., Sakurai, K.: Efficient Elliptic Curve Cryptosystems from a Scalar Multiplication Algorithm with

Recovery of the y-Coordinate on a Montgomery-Form Elliptic Curve. In: CHES 2001. LNCS, vol. 2162, pp.
126–141. Springer (2001)

46. Republic of Nauru: Electoral Act No. 15. http://ronlaw.gov.nr/nauru_lpms/files/acts/
d83250a1ebdc56c1701fa7aa245af5b1.pdf (2024)

47. scipr-lab: libsnark. https://github.com/scipr-lab/libsnark (2024)
48. Sean Bowe: BLS12-381: New zk-SNARK elliptic curve construction. https://electriccoin.co/blog/

new-snark-curve/ (2017)
49. Vercauteren, F.: Optimal pairings. IEEE Trans. Inf. Theory 56(1), 455–461 (2010). https://doi.org/10.1109/

TIT.2009.2034881, https://doi.org/10.1109/TIT.2009.2034881

14

https://eurovision.tv/about/how-it-works
https://eurovision.tv/about/how-it-works
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37
https://zips.z.cash/protocol/protocol.pdf
https://github.com/HicolasNuber/ballotsnarks
https://doi.org/10.1007/978-3-662-53018-4_20
https://doi.org/10.1007/978-3-662-53018-4_20
https://doi.org/10.1007/978-3-662-53018-4_20
https://doi.org/10.1007/978-3-662-53018-4_20
https://doi.org/10.1007/978-3-030-92078-4_4
https://doi.org/10.1007/978-3-030-92078-4_4
https://doi.org/10.1007/978-3-030-92078-4_4
https://doi.org/10.1007/978-3-030-92078-4_4
https://eprint.iacr.org/2021/1152
http://ronlaw.gov.nr/nauru_lpms/files/acts/d83250a1ebdc56c1701fa7aa245af5b1.pdf
http://ronlaw.gov.nr/nauru_lpms/files/acts/d83250a1ebdc56c1701fa7aa245af5b1.pdf
https://github.com/scipr-lab/libsnark
https://electriccoin.co/blog/new-snark-curve/
https://electriccoin.co/blog/new-snark-curve/
https://doi.org/10.1109/TIT.2009.2034881
https://doi.org/10.1109/TIT.2009.2034881
https://doi.org/10.1109/TIT.2009.2034881
https://doi.org/10.1109/TIT.2009.2034881
https://doi.org/10.1109/TIT.2009.2034881

A Succinct Non-Interactive Arguments of Knowledge (SNARKs)

In this section, we recall (and slightly adapt) the definition of succinct non-interactive arguments of knowledge
(SNARKs) given in [32]. We note that several further definitions exist; in particular, the notion of succinctness
differs among various authors.

Formally, we consider a relation generator R that, given security parameter η, outputs a binary relation R
that is decidable in time polynomial in η. This relation generator may also output some auxiliary information
z for an adversary.

Definition 1 (Non-Interactive Argument [32]). A non-interactive argument for a relation R← R(η)
is a quadruple of probabilistic algorithms (Setup,Prove,Verify,Sim) running in time polynomial in η such that

–
(
CRS = (CRSEK,CRSVK), st

)
← Setup(R), i.e., Setup produces a common reference string CRS and a

simulation trapdoor st for the relation R.
– π ← Prove(R,CRSEK, (Stmt,Wtns) ∈ R), i.e., Prove takes CRSEK and statement-witness pair (Stmt,Wtns)

and returns an argument π.
– 0/1← Verify(R,CRSVK,Stmt, π), i.e., Verify takes CRSVK, statement Stmt and argument π and returns 0

(reject) or 1 (accept).
– π ← Sim(R, st,Stmt), i.e, Sim takes statement Stmt and simulation trapdoor st and returns an argument

π.

Definition 2 (Perfect Zero-Knowledge Succinct Non-Interactive Argument of Knowledge [32]).
A non-interactive argument as defined in Definition 1 is a perfect zero-knowledge succinct argument of

knowledge, or a (perfect-)zk-SNARK10 for short, if the following additional properties hold:

– Perfect Completeness: When using an honestly-generated common reference string (i.e., a CRS obtained
from running Setup), an honestly-generated proof for (Stmt,Wtns) ∈ R is always accepted. Formally that
is ∀η ∈ N, R ∈ R(η), (Stmt,Wtns) ∈ R :

Pr
[(
CRS = (CRSEK,CRSVK), st

)
← Setup;π ← Prove(R,CRSEK,Stmt,Wtns) :

Verify(R,CRSVK,Stmt, π) = 1
]
= 1.

– Perfect Zero-Knowledge: When using an honestly generated CRS, no adversary A can distinguish between
proofs generated from a statement-witness pair (Stmt,Wtns) using Prove and proofs generated by the
simulator Sim using the simulation trapdoor st (even when A is given access to the simulation trapdoor
st).
Formally that is ∀η ∈ N, (R, z)← R(η), (Stmt,Wtns) ∈ R and all adversaries A the following holds true:

Pr
[(
CRS = (CRSEK,CRSVK), st

)
← Setup;π ← Prove(R,CRSEK,Stmt,Wtns) : A(R,z,CRS,st,π) = 1

]
=Pr

[(
CRS = (CRSEK,CRSVK), st

)
← Setup;π ← Sim(R, st,Stmt) : A(R,z,CRS,st,π) = 1

]
.

– Computational Knowledge-Soundness: Up to an error probability that is negligible in η, a polynomial-time
adversary A with access to an honestly-generated CRS can only create a proof for statement Stmt such
that Verify accepts if A knows a witness Wtns such that (Stmt,Wtns) ∈ R. This is formalized by requiring
that for all polynomial-time adversaries A there exists a polynomial-time extractor algorithm K(A) such
that the following holds:

Pr
[
(R, z)← R(η),

(
CRS = (CRSEK,CRSVK), st

)
← Setup;

((Stmt, π);Wtns)← (A∥K(A))(R, z,CRS) :

(Stmt,Wtns) ̸∈ R and Verify(R,CRSVK,Stmt, π) = 1
]
= negl(η),

10 We usually use the term SNARK when referring to a (perfect-)zk-SNARK and implicitly assume the zero-knowledge
property.

15

where ((Stmt, π);Wtns) ← (A∥K(A))(R, z,CRS) denotes that A on input (R, z,CRS) outputs (Stmt, π),
and K(A) on the same input (including random coins) outputs Wtns.11

– Succinctness: The runtime of Verify is polynomial in η+ |Stmt| and the proof size |π| is polynomial in η.12

We emphasize that the security notions of computational knowledge-soundness and perfect zero-knowledge
both require an honestly generated CRS. Moreover, computational knowledge-soundness is only defined to
hold against adversaries that do not learn the simulation trapdoor st. Indeed, if an adversary was to learn st, it
can easily create a proof π for a statement Stmt without knowing a witness Wtns such that (Stmt,Wtns) ∈ R
by invoking the simulation algorithm Sim. For this reason, the simulation trapdoor st is sometimes called the
toxic waste of the Setup algorithm. While it is required for generating CRS, it is crucial that no malicious
party can learn st. A SNARK proven secure in the above model is said to require a trusted setup. While
SNARK constructions that do not require a trusted setup exist - e.g., [4, 11] - the Groth16 SNARK, which
we use for efficiency reasons, does fall into the above definition and, hence, requires a trusted setup. We will
discuss implications and mitigations of this in Appendix C.

B The Groth16 SNARK.

In this section, we recall the Groth16 SNARK construction [32] and its instantiation in more detail in order
to explain how it can be used with our circuits for ballot validity.

B.1 Rank-1-Constraint Systems and Quadratic Arithmetic Programs

As mentioned in Section 2, we base our implementation on arithmetic circuits over some finite field Fr. These
circuits are converted to a system of so-called constraints, more precisely a rank-1-constraint system (R1CS)
over Fr. A constraint over n variables a1, . . . , an (which correspond to the number of wires in the arithmetic
circuit) is an equation of the form(

u0 +

n∑
i=1

aiui

)
·
(
v0 +

n∑
i=1

aivi

)
= w0 +

n∑
i=1

aiwi,

where ui, vi, wi ∈ Fr are constants defining the constraint. A valid assignment to an R1CS is an assignment
of the n variables a1, . . . , an to elements of Fr such that all constraints in the R1CS are satisfied. If the R1CS
is derived from an arithmetic circuit, this corresponds to a valid assignment to the circuit’s wires.

For simplicity, we write an R1CS with µ constraints over ω variables as three matrices U,V,W ∈ Fµ×(ω+1)
r ,

where each row corresponds to one constraint.
Such an R1CS can then be compiled into a Quadratic Arithmetic Program (QAP) over Fr [29], which is

a set QAP = {T, (Uj ,Vj ,Wj)
ω
j=0} of polynomials in Fr[X], where T (X) =

∏µ
i=1(X − ri) for some mutually

distinct ri ∈ Fr - usually one choses the ri to be µ-th roots of unity in Fr for efficiency reasons - and
Uj ,Vj ,Wj are the unique polynomials of degree ≤ µ− 1 such that

∀i = 1, . . . , µ : Uj(ri) = uij ,Vj(ri) = vij , and Wj(ri) = wij .

11 We recall that a distinguishing feature between zero-knowledge arguments and zero-knowledge proofs is that the
soundness notion of the former only considers polynomially-bounded adversaries, while in the latter one typically
allows any adversaries with bounded runtime. In practice, however, the term ZKP is often also used for zero-
knowledge arguments, which is why we also often use the term ZKP in this work.

12 Succinctness captures the properties of having small proof sizes and an efficient Verify algorithm. While the concrete
interpretations of “small” and “efficient” differ among the literature, we follow Groth [32] in this definition of
succinctness.

16

A QAP is called satisfiable if there are elements λ1, . . . , λω ∈ Fr such that the polynomial

Pλ(X) :=

U0 + ω∑
j=1

λjUj

 ·
V0 + ω∑

j=1

λjVj

−
W0 +

ω∑
j=1

λjWj

of degree deg(Pλ) ≤ 2µ− 2 is divisible by the polynomial T in Fr[X]. In this case, we call λ = (λ1, . . . , λω)
a valid assignment. This corresponds to a valid assignment for the R1CS and, in turn, to a valid assignment
for the arithmetic circuit.

B.2 The Groth16 Protocol

Given a QAP QAP = {T, (Uj ,Vj ,Wj)
ω
j=0} over Fr with µ := deg(T), the goal of the Groth16 protocol is for a

prover P to compute a ZKP π that shows that P knows a valid assignment λ = (λ1, . . . , λω) ∈ Fω
r for QAP.

Typically, some of the assignment values, say the first ωStmt values λStmt := (λ1, . . . , λωStmt
), are public

(statement values) while the remaining ωWtns = ω − ωStmt values λWtns = (λωStmt+1, . . . , λω) are private
(witness values) and only known to P. In particular, nobody should learn the witness values from π.

For this purpose, let G1,G2, and GT be (multiplicative) groups of prime order r := |Fr| such that there is
an efficiently computable, non-degenerate bilinear pairing e(·, ·) : G1 ×G2 → GT . Let g1,g2 be generators of
G1 resp. G2, and e(g1, g2) be a generator of GT . We denote params := {G1,G2,g1,g2,e(·,·),Fr}; Fr is sometimes
called the scalar field of the pairing groups G1,G2. Then, as mentioned in Section 2, the Groth16 protocol
consists of three algorithms - Setup, Prove, and Verify - which we will describe in the following.

The Setup Algorithm The Setup algorithm starts by sampling the simulation trapdoor st consisting of 5
uniformly random field elements α, β, γ, δ, τ $←− Fr. Using st and QAP, it then computes the (evaluation key)
common reference string CRSEK as CRSEK = (CRSEK1,CRSEK2), where CRSEK1 consisting of elements of G1

and CRSEK2 consisting of elements G2 are defined as follows, where we color the different elements in order
to make them easily recognizable at later points:13

CRSEK1 =

{
gα1 , g

β
1 , g

δ
1,
(
gτ

j

1

)µ−1

j=0
,
(
g
Ui(τ)
1

)ω
i=0

,
(
g
Vi(τ)
1

)ω
i=0

,

(
g

τj ·T (τ)
δ

1

)µ−2

j=0

,

(
g

βUj(τ)+αVj(τ)+Wj(τ)

γ

1

)ωStmt

j=0

,

(
g

βUj+ωStmt
(τ)+αVj+ωStmt

(τ)+Wj+ωStmt
(τ)

δ
1

)ωWtns

j=1

}
,

CRSEK2 =

{
gβ2 , g

γ
2 , g

δ
2

(
gτ

j

2

)µ−1

j=0
,
(
g
Vi(τ)
2

)ω
i=0

}
.

As mentioned in Section 2, running Prove requires the full CRSEK. However, for running Verify only the
smaller CRSVK = (CRSVK1,CRSVK2) is required, where CRSVK1 consisting of elements of G1 and CRSVK2

consisting of elements G2 are defined as follows:

CRSVK1 =

{
gα1 ,

(
g

βUj(τ)+αVj(τ)+Wj(τ)

γ

1

)ωStmt

j=0

}
⊂ CRSEK1,

CRSVK2 =

{
gβ2 , g

γ
2 , g

δ
2

}
⊂ CRSEK2

13 The values
(
g
Ui(τ)
1

)ω

i=0
,
(
g
Vi(τ)
1

)ω

i=0
, and

(
g
Vi(τ)
2

)ω

i=0
are often not considered part of CRSEK as they can be

computed from the description of QAP and other values in CRSEK. This offers a trade-off between the size of CRSEK

and the prover runtime. For ease of presentation, we include them here in CRSEK and refer to the discussion in [32]
for details.

17

To summarize the CRS sizes, consider an R1CS with µ constraints over ω variables, ωStmt ≤ ω of which
are associated with public values. Then, CRSEK consists of 2µ + 3ω + 5 elements from G1 and ω + µ + 3
elements from G2.14 Meanwhile, CRSVK consists of only ωStmt +2 elements from G1 and only three elements
from G2.

The Prove Algorithm Recall that the goal of the prover P is to compute a ZKP π that shows that P
knows a valid assignment λ = (λ1, . . . , λω) for QAP = {T, (Uj ,Vj ,Wj)

ω
j=0}. Since an assignment λ is valid

if and only if Pλ (as defined above) divides T , this is equivalent to showing that P knows a polynomial
Hλ ∈ Fr[X] of degree deg(Hλ) ≤ deg(T) − 2 = µ − 2 such that Hλ · T = Pλ. In order to do so, the Prove
algorithm proceeds as described in Figure 6.

Prove(params,QAP,CRSEK, λ = (λ1, . . . , λω)): π ∈ G1 ×G1 ×G2

1. Compute Hλ := Pλ

T and denote Hλ(X) =
∑µ−2

k=0 HλkX
k. That is, Hλk is the k-th coefficient of Hλ.

2. Compute g
Hλ(τ)·T (τ)

δ
1 =

∏µ−2
i=0

(
g

τi·T (τ)
δ

1

)Hλi

.

3. Compute gWtns
1 :=

ω∏
i=ωStmt+1

(
g

βUi(τ)+αVi(τ)+Wi(τ)

δ
1

)λi

.

4. Pick ρ, σ
$←− Fr.

5. Compute gA1 :=
(
gδ1
)ρ

gα1 · gU0(τ)
1 ·

ω∏
i=1

(
g
Ui(τ)
1

)λi

, gV1 :=
(
gδ1
)σ

gβ1 · g
V0(τ)
1 ·

ω∏
i=1

(
g
Vi(τ)
1

)λi

,

gC1 := gWtns
1 · g

Hλ(τ)·T (τ)

δ
1 ·

(
gA1
)σ · (gV1)ρ · (gδ1)−σ·ρ

,

gB2 :=
(
gδ2
)σ

gβ2 · g
V0(τ)
2 ·

ω∏
i=1

(
g
Vi(τ)
2

)λi

.

6. Return π = (gA1 , g
C
1 , g

B
2).

Fig. 6: The Prove algorithm for the Groth16 SNARK [32] with params = {G1,G2,g1,g2,e(·,·),Fr},
QAP = {T, (Uj ,Vj ,Wj)

ω
j=0}, assignment λ = (λStmt,λWtns) = (λ1, . . . , λωStmt

, λωStmt+1, . . . , λn=ωStmt+ωWtns
), and

CRSEK = (CRSEK1,CRSEK2) as described above.

Remark. The Prove algorithm described in Figure 6 uses µ + 2 · ω + ωWtns + 4 exponentiations in G1

and ω + 1 exponentiations in G2. Since, in general, µ ≪ ω, this is - in principle - worse than the Prove
algorithm that is initially described by Groth in [32], which requires 3µ + ωWtns + 4 exponentiations in G1

and µ+ 1 exponentiations in G2. However, due to reasons related to the ones described in Footnote 13 and
as already remarked in [32], the initial proof algorithm additionally uses more FFT computations that -
while asymptotically dominated by the exponentiations - may be more costly in practice. For this reason
and for simplicity of presentation, we depicted this modified Prove algorithm that was also already sketched
by Groth in [32].

The Verify Algorithm In order to do verify a Groth16 proof π = (πA, πC , πB) ∈ G1 ×G1 ×G2, the Verify
algorithm proceeds as described in Figure 7. This takes ωStmt +1 exponentiation in G1 and the computation
of 4 pairings (which can be reduced to 3 pairings if one includes e(gα1 ,g

β
2) in CRSVK). Since ωStmt is very small

for typical circuits, this linear factor barely affects the runtime of Verify, which is hence often considered a
constant-time algorithm.
14 If the additional CRS elements from Footnote 13 are excluded, CRSEK consists of 2µ+ω+3 elements from G1 and

3 + µ elements from G2.

18

Verify(params,QAP,CRSVK, λStmt = (λ1, . . . , λωStmt
), π = (πA, πC , πB)): 0,1

1. Compute gStmt
1 := g

βU0(τ)+αV0(τ)+W0(τ)
γ

1 ·∏ωStmt

i=1

(
g

βUi(τ)+αVi(τ)+Wi(τ)

γ

1

)λi

.

2. If e(πA, πB) = e(gα1 ,g
β
2) · e(gStmt

1 ,gγ2) · e(πC , g
δ
2), then return 1, else return 0.

Fig. 7: The Verify algorithm for the Groth16 SNARK [32] with params = {G1,G2,g1,g2,e(·,·),Fr}, QAP =
{T, (Uj ,Vj ,Wj)

ω
j=0}, statement values λStmt = (λ1, . . . , λωStmt

), and CRSVK = (CRSVK1,CRSVK2) as described
above.

Theorem 1 (Security of the Groth16 Protocol [32]). Assuming an adversary that only uses a poly-
nomial number of generic group operations and pairings, the Groth16 protocol (Setup,Prove,Verify) as de-
scribed above together with the simulation algorithm Sim depicted in Figure 8 is a SNARK for the relation
RQAP = {λ = (λStmt,λWtns) |λ is a satisfying assignment for QAP} in the sense of Appendix A. That is, it is
a succinct non-interactive argument that guarantees perfect completeness, perfect zero-knowledge, and com-
putational knowledge-soundness in the generic bilinear group model.

Sim(params,QAP, λStmt = (λ1, . . . , λωStmt
), st = (α, β, γ, δ, τ)): π ∈ G1 ×G1 ×G2

1. Pick A,B
$←− Fr.

2. Compute C =
AB−αβ−(βU0(τ)+αV0(τ)+W0(τ))−

∑ωStmt
i=1 λi·(βUi(τ)+αVi(τ)+Wi(τ))

δ .
3. Return π = (gA1 , g

C
1 , g

B
2).

Fig. 8: The Sim algorithm for the Groth16 SNARK [32] with params = {G1,G2,g1,g2,e(·,·),Fr}, QAP =
{T, (Uj ,Vj ,Wj)

ω
j=0}, statement values λStmt = (λ1, . . . , λωStmt

), and simulation trapdoor st.

19

C Trusted Setup and Mitigations

As mentioned above, the security of Groth16 crucially depends on an honestly generated CRS and on the
simulation trapdoor st not being known to any malicious party. That is, Groth16 requires a trusted setup.
Indeed, if st = (α, β, γ, δ, τ) was known to an adversary A, it could easily compute a proof for any assign-
ment λStmt = (λ1, . . . , λωStmt

) to the statement values by running the simulation algorithm Sim as depicted
in Figure 8. The resulting proof π will be accepted with probability 1 although no valid assignment to the
witness values λWtns might exist. That is, knowing st allows for creating fake proofs and, hence, breaking
(knowledge) soundness of the Groth16 SNARK.

Moreover, a malicious party running the Setup algorithm could generate a malformed (subverted) CRS,
which can enable breaking the zero-knowledge property of the Groth16 SNARK. In order to prevent this,
methods have been proposed [1,9] that, by adding a few random elements to the CRS, allow the construction
of an efficient CRS verification algorithm for ensuring that using it for creating a proof indeed provides the
zero-knowledge property. We note that these additional elements are only required for CRS verification and,
hence, do not need to be downloaded to generate proof.

However, as shown by Bellare et al. [9], it is impossible to achieve both knowledge and soundness against a
subverted CRS simultaneously. In order to mitigate the soundness issue, one can run a multi-party protocol [2,
12, 16, 39] in order to distribute the CRS generation among several parties, which guarantees soundness as
long as at least one of these parties is honest (and discards her contribution to the computation of st after
executing the setup). That being said, it is impossible to eliminate every trust assumption regarding the setup
of Groth16 while maintaining its zero-knowledge property. If this is desired, other GPZKPs, such as [4, 17]
could be used, which do not require a trusted CRS generation and are in principle compatible with our
constructions, as they are also based on R1CS resp. QAPs. However, they are less efficient in computation
and proof size when compared to Groth16. It would be an interesting future work to see how they compare
for the circuits for ballot validity that we proposed here.

It is, of course, desirable to minimize trust assumptions for verifiability. However, in practice, one often
still has some trust assumptions, e.g., trusted bulletin boards, authentication/registration servers, or a trusted
PKI. Moreover, for typical e-voting protocols, one assumes that not all tallying parties are dishonest in order
to achieve vote privacy - otherwise, they could jointly decrypt any ciphertext. For these reasons, using the
approach of distributed CRS generation for Groth16 SNARKs does not weaken the overall security model
commonly used in electronic voting.

D Instantiating Groth16 and Choosing the ElGamal Group G

As the Groth16 protocol is based on pairings, the groups G1,G2 are instantiated as groups over pairing-
friendly elliptic curves. In the following, we describe a standard instantiation of G1 and G2 and its implication
on the choice of the ElGamal group G. Finally, we discuss other existing instantiations of G1,G2 that could
be interesting alternatives.

D.1 Instantiation of the Pairing Groups G1 and G2

A standard instantiation [34,47] of G1 and G2 and, hence, of the Groth16 SNARK, uses the Barreto-Naehrig
curve BN254 (which sometimes is called BN128 or alt_BN_128). While BN254 was originally intended to offer
128 bits of security, the attacks proposed by Kim and Barbulescu [38] reduced its security level to ∼ 100 bits,
which is, however, still sufficient for many applications. While we discuss other curve choices below, we chose
to stick with BN254 for benchmarking our implementations, as we used the libsnark implementation [47] of
Groth16, which does not support other curves.

The curve E := BN254 is defined by the (affine) Weierstrass equation y2 = x3 + 3 over the field Fp with
p being the 254-bit prime

p = 21888242871839275222246405745257275088696311157297823662689037894645226208583.

20

Its order is the 254-bit prime

r = 21888242871839275222246405745257275088548364400416034343698204186575808495617,

which determines the size of G1 = E(Fp) and G2 (an order-r subgroup of E(Fp12)) and hence the scalar
field Fr over which QAPs can be defined in order to be compatible with the Groth16 protocol for these
parameters. Over these groups, the Weil pairing and variants can be defined and efficiently computed. In
practice, the optimal ate-pairing [5, 49] is used for efficiency reasons.

We note that elements of G1 are just elliptic curve points over the base field Fp and hence - when using
projective coordinates - can be represented using three elements from Fp. On the other hand, elements from
G2 are elliptic curve points over the field extension Fp12 , a naive representation of which would require
twelve field elements for each coordinate. A more compressed representation of elements from G2 has been
described by Barreto and Naehrig in [8], which reduces the number of required field elements to just 2. Still,
representing elements in G2 requires twice as much space as representing elements from G1. Concretely, an
element of G1 resp. G2 requires ∼ 100 resp. ∼ 200 bytes, which leads to proof sizes of well-below 1 KB for
this instantiation.

D.2 Choosing The ElGamal Group G

The above curve choice and the resulting group sizes of the pairing groups G1, G2 for instantiating the
Groth16 protocol necessitate that the arithmetic circuits, that is, the QAPs, that we consider are defined
over the field Fr of size

r = 21888242871839275222246405745257275088548364400416034343698204186575808495617.

Moreover, as explained in Section 3.1, we need to use these arithmetic circuits to compute several expensive
exponentiations for computing a PVC, respectively, an EEG ciphertext. In other words, elements of and
computations within the ElGamal group G need to be expressed using the arithmetic of Fr. In order to
address this efficiently, in Kryvos [35], leveraging results from [40], we used a subgroup of a Montgomery
curve E defined over the base field Fr - namely, an instantiation of Curve25519 [14]. Such a curve E defined
over the scalar field of another elliptic curve is sometimes called an embedded curve. Concretely, the elliptic
curve is defined as E := {(x,y) ∈ F2

r | y2 = x3 + 126932x2 + x}, which has order

|E| = 23 · 2736030358979909402780800718157159386074658810754251464600343418943805806723.

Let q be the large prime factor of |E|, i.e.,

q := 2736030358979909402780800718157159386074658810754251464600343418943805806723,

which is a 251-bit prime. Then, we choose the subgroup G ⊆ E of order q as our ElGamal group. By
construction, elements of G are represented using two to three elements from Fr (depending on whether we
represent them in affine or projective coordinates), which sums up to less than 50 − 100 bytes per group
element and, hence, 100 − 200 bytes per EEG ciphertext. We note that these uncompressed sizes can be
further reduced using standard compression methods. Regarding security of G, in [40], the authors report a
security level of ∼ 125 bits.

D.3 Other Curve Choices

Neither the curve from which G1 and G2 are derived (BN254 in our case) nor the Montgomery curve E from
which we derived G is intrinsic to the construction. However, as illustrated above, the construction of G
depends on G1 and G2 in the sense that elements and computations in G need to be expressible (efficiently)
by using Fr-arithmetic, where Fr is determined by G1 and G2. Hence, when using BN254 to instantiate G1

21

and G2, the choices for G are limited to groups that work well with arithmetic over the field of size

r = 21888242871839275222246405745257275088548364400416034343698204186575808495617.

We believe that the instantiation of E from [40] is fairly optimal in this sense. However, other common instan-
tiations for G1 and G2 exist, most notably those derived from the Barreto-Lynn-Scott curve BLS12-381 [7,48],
which offers a slightly higher security level than BN254. For this particular curve, two embedded curves have
been found that potentially allow for efficiently expressing the computation of EEG ciphertexts within circuits
over the scalar field of BLS12-381 [34,42]. We did not consider a Groth16-instantiation over BLS12-381 in this
work, as we based our implementations on libsnark [47], which only supports BN254. However, other Groth16
implementations, such as circom [10] and gnark [15] do support BLS12-381. Adapting our constructions to
BLS12-381 and analyzing their efficiency and security could be interesting future work.

22

	ZK-SNARKs for Ballot Validity:A Feasibility Study

