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Abstract

We prove the equivalence between the Ring Learning With Errors
(RLWE) and the Polynomial Learning With Errors (PLWE) problems for
the maximal totally real subfield of the 2r3s-th cyclotomic field for r ≥ 3
and s ≥ 1. Moreover, we describe a fast algorithm for computing the
product of two elements in the ring of integers of these subfields. This
multiplication algorithm has quasilinear complexity in the dimension of
the field, as it makes use of the fast Discrete Cosine Transform (DCT).
Our approach assumes that the two input polynomials are given in a basis
of Chebyshev-like polynomials, in contrast to the customary power basis.
To validate this assumption, we prove that the change of basis from the
power basis to the Chebyshev-like basis can be computed with O(n logn)
arithmetic operations, where n is the problem dimension. Finally, we pro-
vide a heuristic and theoretical comparison of the vulnerability to some
attacks for the p-th cyclotomic field versus the maximal totally real subex-
tension of the 4p-th cyclotomic field for a reasonable set of parameters of
cryptographic size.

1 Introduction

Out of the first three post-quantum cryptography (PQC) standards published
in 2024 by the National Institute of Standards and Technologies (NIST), two of
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them, namely ML-KEM [NIS24b] and ML-DSA [NIS24a], belong to the lattice-
based family. This is not surprising, as this family has been dominant through-
out all the stages of the standardization process: lattice-based cryptography has
been the paradigm which has had the most schemes based upon, up until the
final rounds. This is due to the fact that lattice-based post-quantum primitives
can provide both acceptable key sizes and efficient performance while maintain-
ing a solid understanding of the underlying mathematical hardness. The fact
that lattice-based schemes enjoy homomorphic properties and can be turned into
Fully Homomorphic Encryption (FHE) primitives is another important reason
for the prevalence of the lattice family.

1.1 LWE and its structured variants

Within lattice-based cryptography, there exists one paradigm that has prevailed
due to its simplicity, efficiency and versatility. It is referred to as the Learning
With Errors (LWE) paradigm. Intuitively, it amounts to the hardness of solving
linear systems that have been perturbed by random noise.

There exists a number of variants of this paradigm that use different mathe-
matical structures for the data that forms the system. In purely LWE schemes,
also referred to as unstructured LWE variants, the mathematical structure em-
ployed is simply Zq = Z/qZ, the ring of rational integers modulo a rational
prime q.

The seek for significantly smaller key sizes for the sake of practical deploy-
ment and feasibility brought about structured LWE variants, most notably, Ring
LWE and Polynomial LWE. In these paradigms, the mathematical structure
from which the terms are drawn is a more complex ring. For RLWE, the un-
derlying ring is Rq = OK/qOK , where OK is the ring of integers of a certain
number field K. For PLWE we use Rq = Of/qOf , where Of = Z[x]/(f(x)) and
f(x) ∈ Z[x] is monic and irreducible.

To make our work self-contained it is convenient to recall the following def-
initions and facts:

Definition 1.1 (The R/PLWE distributions). Let K be a number field, and OK
its ring of integers. Let q be a rational prime, f(x) ∈ Z[x] a monic irreducible
polynomial in Z[x], and Of the associated quotient ring Z[x]/(f(x)). Let χ be
a discrete random distribution with values on OK/qOK (resp. Of/qOf ). For
s ∈ OK/qOK (resp. Of/qOf ), we define the (primal) RLWE (resp. PLWE)
distribution As,χ (resp. Bs,χ) as the distribution over OK/qOK × OK/qOK
(resp. Of/qOf × Of/qOf ) obtained by sampling an element a uniformly from
OK/qOK (resp. Of/qOf ), e drawn according to χ, and outputting the pair
(a, a · s+ e).

Associated with these distributions, the RLWE/PLWE search and decision
problems are defined as follows:

Definition 1.2 (R/PLWE problems). Following the same notation as above,
we have:
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Search RLWE (resp. PLWE) asks an adversary to return the secret s with
non-negligible probability when this adversary is given access to arbitrarily many
samples of the RLWE (resp. PLWE) distribution.

Decision RLWE (resp. PLWE) asks the adversary to decide whether a given
random distribution is either uniform or the RLWE (resp. PLWE) distribution,
with non-negligible probability when the adversary is given access to arbitrarily
many samples of that given random distribution.

One should note that for Galois extensions, the search problem can be effec-
tively reduced to the decision problem [EHL14]. An even stronger result exists
[PRS17], providing a reduction for any ring and modulus. Let us also mention
that, for the RLWE distribution, we have given the definition of the primal
version. Another definition can be considered, by taking the secret s and the
support of χ over the trace-dual of the ring of integers O∨K . This is indeed the
original definition of the RLWE problem in [LPR13]. However, both problems
were shown to be equivalent in [RSW18], and hence we will stick to the primal
version for the sake of simplicity.

Another relevant structured variant, as it is the paradigm used in the afore-
mentioned standardized lattice-based schemes, is the Module LWE. This para-
digm, which loosely consists on working overRdq , is of great practical importance.
The inclusion of the dimension d allows a straightforward way of tuning the over-
all security of a scheme by simply modifying the parameter d, the dimension
of the space. This modification has no practical impact on the mathematical
object Rq in which the operations take place. Therefore Module LWE provides
a way to increase the security of the scheme without modifying the structure of
Rq.

It is worth noting that this cryptographic family has been found extremely
useful not only in PQC but also in other relevant aspects of cryptography, most
notably in Homomorphic Encryption (HE). This type of cryptography inherits
its name from the mathematical notion of homomorphisms: intuitively, it allows
to perform certain operations on the encrypted plaintext, in the same way as
if we decrypt the ciphertext and apply the operation over the plaintext, mim-
icking the properties of homomorphic maps. The impact of practical schemes
that achieve this property cannot be overstated, especially in fields in which the
privacy of data is of the utmost importance. Depending on the nature of the op-
erations allowed, we can distinguish between partially homomorphic encryption
or fully homomorphic encryption, among others. The first provably lattice-based
homomorphic encryption scheme is the GPV scheme [GPV08]. Thereafter, a
vast number of HE schemes have been derived from the LWE paradigm and its
structured variants [BGV12; FV12].

The decision whether to choose an unstructured or a structured paradigm is
of great importance regarding the practical implementation and use: for purely
unstructured LWE schemes, the size of the cryptographic keys needed for key
exchange and digital signature schemes is O(n2), where n is a security param-
eter that represents the desired strength of the cryptosystem. Note that, for
cryptographically relevant instances, this can mean keys of tens of thousands of
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bytes, a steep increase, even in the PQC entourage. Meanwhile, the additional
structure added by the RLWE and PLWE variants decreases the size of cryp-
tographic keys to O(n). While this value, in the order of thousands of bytes,
represents a significant increase from pre-quantum primitives, it is well within
the accepted price to pay within PQC.

Regarding PLWE, another highly relevant feature is achieved from the mul-
tiplicative structure. The multiplication of elements within the ring, needed for
a number of cryptographic subprocesses of key generation, encryption and dig-
ital signatures, can be made very efficient through a number of optimizations,
such as the Karatsuba or the Toom–Cook algorithms. For cyclotomic fields, the
situation is even more optimal. We can use the more efficient Number Theoretic
Transform (NTT), a special case of the Discrete Fourier Transform over finite
fields, to perform the multiplications in quasilinear order. While this algorithm
can be defined in the general case, its performance reaches an optimal point
over cyclic and nega-cyclic fields.

The structure added in these variants gives us the benefit of reductions to
approximate lattice problems like the shortest vector problem (SVP) over ideal
lattices. However, the added algebraic structure can be a source of additional
attacks that are ineffective against the unstructured variants. Particularly for
PLWE, there exists a number of relevant attacks which employ information
about the roots of the polynomial f(x) behind the PLWE instance. In [Eli+15;
Eli+16], a number of attacks against the decisional (and sometimes the search)
version of PLWE are presented, if the polynomial f(x) has a root α of small
order or of small residue in Fq, by constructing a number of distinguishability
sets made from the evaluation of the samples on the critical root. Moreover, a
more subtle family of statistical attacks can be deployed under certain conditions
discussed therein. More recently, in [BDS24], these attacks (those based on roots
of small order/residue as well as the statistical ones) have been generalized to
polynomials with roots belonging to arbitrary degree field extensions of Fq.

1.2 Relation between RLWE and PLWE problems

The RLWE and PLWE paradigms were introduced roughly at the same time. In
2009, [Ste+09] presented a structured variant of the LWE problem based on ideal
lattices over rings of the form O = Z[x]/(f(x)). They focused on cyclotomic
polynomials giving rise to the first technical description of the PLWE paradigm.

Meanwhile, in 2010, [LPR13] introduced another structured variant of LWE,
this time over the ring of integers of algebraic number fields. While most of the
results in this work were generalized to arbitrary number fields, the complete
reduction involving the pseudorandomness of the RLWE distribution, an im-
portant feat with regards to practical cryptographic instances, was only proved
for cyclotomic fields. The complete arbitrary number field generalization that
lifted the requirement of cyclotomic fields was proved in [PRS17].

As noted above, both approaches have important cryptographic qualities:
the RLWE problem bases its security on a more established and studied problem
and has not been prone to many attacks over its structure. This is contrary
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to existing approaches towards exploiting the information given in the PLWE
problem, such as root-based approaches [Eli+15; Eli+16; BDS24].

On the other hand, PLWE-based schemes enjoy faster cryptographic op-
erations than RLWE-based ones, propelled by the use of the aforementioned
NTT, Toom–Cook or Karatsuba algorithms to perform polynomial multiplica-
tions. This optimization technique is specially efficient over cyclotomic fields.
Therefore, it is natural to ask whether these two important practical consider-
ations can be present simultaneously, i.e., is it possible to have a scheme whose
security is based on the RLWE problem, but enjoys the performance of PLWE-
based schemes. A natural way to achieve this result is to study the equivalence
between these two problems. We define computational equivalence as follows:

Definition 1.3 (Equivalence between problems). Two computational problems
A and B are said to be equivalent if an oracle which solves one of the problems
can be turned, in probabilistic polynomial time, into an oracle that solves the
other and in such a way that the incurred noise increase is also polynomial.

The existence of equivalence between RLWE and PLWE for different families
of number fields has been an important object of study. In [RSW18, Section 4],
this equivalence was proved for two reduced but large families of polynomials.
For cyclotomic polynomials, [DSS24] showed that when no restriction is imposed
on the conductor of the cyclotomic field, the two problems are not equivalent in
general. However, if certain conditions are imposed on the conductor, it can be
shown that these problems are indeed equivalent. In [Bla22a], the author shows
that if the conductor is divisible by a bounded number of primes, the condition
number of the associated powers-of-the-roots Vandermonde matrix which reigns
over the equivalence (which represents the variation induced from the difference
between the coordinate and canonical embedding associated with the PLWE
and RLWE problems, respectively) is bounded by a polynomial factor and,
therefore, the problems are equivalent.

Another topic which has recently gained traction is the study of the R/PLWE
problem for the maximal totally real subextension of a cyclotomic field. The
interest for this field was introduced in [BL24; Bla22b], where it was proved that
the defining polynomials for these subfields are resistant to PLWE root-based
attacks for α = ±2 as well as for α = ±1.

Furthermore, it is a strategic approach to have at hand as large a family of
fields and rings as possible, with the idea of being prepared for a potential catas-
trophic attack against current structured cryptosystems. Indeed, it is worth to
mention [CDW17], where the authors exploit certain class-field-theoretical prop-
erties of the Stickelberger ideal to prove the following fact:

Theorem 1.1. Assuming the Generalised Riemann Hypothesis, there exists
a quantum polynomial time algorithm, that given an ideal a of OK for K a
cyclotomic number field of prime power conductor, returns an element v ∈ a of
Euclidean norm

||v|| ≤ Na1/n exp(O(
√
n).
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Even more striking is the recent refinement of Theorem 1.1, which shows that
under mild but technical conditions, the quantum algorithm runs in probabilistic
polynomial time in [K : Q], h+K and log(Na), where h+K is the narrow class
number of K. The reader is referred to [CDW21, Theorem 5.1] for further
details.

Regardless of the theoretical nature of these results, they suggest that the
ease and amenable arithmetical features that cyclotomic fields enjoy might give
rise to vulnerabilities or at least theoretical concerns. It is also noteworthy that
during the last three years, several research teams have published a number of
attacks against cyclotomic-based RLWE schemes. Even though some results
have turned out to be incorrect and consequently withdrawn, this shows that
the cryptanalysis of cyclotomic-based primitives is an active research area, and
the use of more subtle number-theoretical and class-field-theoretical ideas might
yield critical improvements in the existing cryptanalytic algorithms.

1.3 Contributions and Organization

In this work, we continue the mathematical analysis of maximal totally real
subextensions of cyclotomic fields. In particular, we focus in the case of con-
ductor n = 2r3s with r > 1 and s ≥ 1. Notice that for this family of fields
the hypothesis of Theorem 1.1 does not apply, i.e., the ring of integers of this
maximal totally real number field is not an ideal of the ring of integers of the
cyclotomic field. Moreover, the conductor can be chosen not to be a prime
power. Hence, these extensions are not under the theoretical threat provided
by that result. Beyond that, the main contributions of our work are:

First, we prove that the RLWE and PLWE problems are equivalent for this
family of fields. Second, we demonstrate that these rings exhibit fast quasi-
linear multiplication. Finally, a numerical study is carried out related to small
roots of cyclotomic polynomials and the ones corresponding to the maximal real
subextensions of matching degree. It will be shown that heuristically, the poly-
nomials generating the real subextensions may be less likely to have other weak
small roots α ∈ S = {±2,±3,±4,±8} than cyclotomic polynomials, a fact that
sparks further interest in their study to back PLWE schemes. We constructed
the set S to consist of small powers of 2 and the prime 3 in order to witness if
primes and powers of primes exhibit similar behaviour as roots. Conclusions are
drawn in different parameter regimes, showing that the maximal real subexten-
sions provide more frequent secure instances for some parameters. Regardless
of these promising findings, this work should be regarded as a mathematical
study rather than a suggestion for a new PLWE setting.

Previous works related to ours include [Bla22b] and [BL24] addressing the
RLWE–PLWE equivalence for maximal totally real cyclotomic subextensions,
and [LS19], where an NTT-based multiplication scheme is proposed for the
non-power-of-two 2r3s-th cyclotomic fields, with r, s ≥ 1.

This work is organized as follows: Section 2 introduces the Discrete Cosine
Transform (DCT), a variation of the Discrete Fourier Transform (DFT). The
DCT will be of importance to achieve efficient polynomial multiplication over
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the totally maximal real subfields. In Section 2, we also recall the notion of
condition number, which is the formal tool to capture the notion of the RLWE–
PLWE equivalence. We exploit basic properties of the DCT to give an upper
bound for the condition number of a certain matrix that is used in the proof of
the RLWE–PLWE equivalence in the next section.

Section 3 provides a proof of the RLWE–PLWE equivalence for the totally
maximal real subextension of the cyclotomic field Q(ζn), where ζn is a primitive
n-th root of unity in C and n = 2r3s. We make use of a basis of modified
Chebyshev polynomials instead of the usual power basis to polynomially bound
the condition number of the matrix associated to the canonical embedding.

Section 4 shows that by means of the DCT efficient polynomial multiplication
can be carried out in the modified Chebyshev basis with complexity of order
O(m logm) on the conductor m.

Section 5 makes the base change computations explicit by again using the
DCT and Chebyshev interpolation. The efficiency of the base change is also
quasilinear, meaning O(m logm), where m is the degree of the polynomials in
the PLWE scheme. Therefore, we can conclude that for the totally maximal
real subextension of a cyclotomic field of conductor m = 2r3s, we can simul-
taneously inherit the security warranty from the associated number field and
RLWE problem to the PLWE problem, while maintaining asymptotically fast
polynomial multiplication.

Finally, Section 6 gives heuristic evidence for the resistance of the maximal
totally real cyclotomic polynomials against root-based attacks. Our numerical
computations show that in certain parameter regimes the minimal polynomials
of ζn + ζ−1n may be less prone to having small roots than their cyclotomic
counterparts, therefore making them less likely to be vulnerable to root-based
attacks for the PLWE paradigm.

2 The Discrete Cosine Transform, DCT

The Discrete Cosine Transform (DCT) is widely used in many digital signal pro-
cessing applications. Multiple fast algorithms for different types of the Discrete
Cosine Transform have been reported in the literature [BY98; Hou87; Kok97;
ANR74]. In this paper, we shall use types II and III, which are mutual inverses
when scaled properly.

Definition 2.1 (DCT). Let N ∈ Z+ and a(k), k = 0, 1, . . . , N − 1 a real se-
quence. The non-scaled type-III Discrete Cosine Transform of a(k) is the se-
quence â(j) defined by

â(j) =
a(0)

2
+

N−1∑
i=1

a(i) cos

(
2π(2j + 1)i

4N

)
, 0 ≤ j ≤ N − 1.

The inverse of the type-III DCT is given by the type-II DCT. The non-scaled
type-II Discrete Cosine Transformation of the sequence a(k) is a new sequence
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a′(j) given by

a′(j) =

N−1∑
i=0

a(i) cos

(
2π(2i+ 1)j

4N

)
, 0 ≤ j ≤ N − 1.

In order to simplify the notation, we introduce an N ×N cosine matrix CN

and a diagonal scale matrix SN defined by

(CN )ij = cos

(
2π(2i+ 1)j

4N

)
for i, j = 0, 1, . . . , N − 1,

and

SN =

 2
1×1

0
1×(N−1)

0
(N−1)×1

I
(N−1)×(N−1)

 .
In this way, we can write the two transforms in matrix notation:

DCT(a) := CNS−1N a, (1)

and the inverse transform
IDCT(a) := CT

Na. (2)

As mentioned before, the scaled type-III DCT and scaled type-II DCT are
inverses of each other. For the non-scaled versions we have a similar result:

Lemma 2.1. For any real sequence a(k), k = 0, 1, . . . , N − 1, we have

IDCT
(
DCT(a)

)
=
N

2
a.

In matrix notation,

CT
NCNS−1N =

N

2
IN (3)

or equivalently

CT
NCN =

N

2
SN .

Proof. First, let us deduce the following orthogonality relation

N−1∑
k=0

cos

(
2π(2k + 1)j

4N

)
= 0. (4)
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Let j = 1, 2, . . . , 2N − 1 and θ = πj
N . Then

2 sin

(
θ

2

)N−1∑
k=0

cos

(
2π(2k + 1)j

4N

)
= 2 sin

(
θ

2

)N−1∑
k=0

cos

(
πkj

N
+
πj

2N

)

=

N−1∑
k=0

2 cos

(
θk +

θ

2

)
sin

(
θ

2

)

=

N−1∑
i=0

sin(θk + θ)− sin(θk)

= sin(Nθ)− sin(0)

= 0

Next, we compute the diagonal entries (CT
NCN )jj . For j = 0, it is clear that

(CT
NCN )jj = N . Otherwise for j = 1, . . . , N − 1, we find that

(CT
NCN )jj =

N−1∑
k=0

cos2
(

2π(2k + 1)j

4N

)

=
1

2

N−1∑
k=0

(
1 + cos

(
2 · 2π(2k + 1)j

4N

))

=
N

2
+

1

2

N−1∑
k=0

cos

(
2π(2k + 1)j

2N

)
=
N

2
.

Finally, for i 6= j it holds that

(CT
NCN )ij =

N−1∑
k=0

cos

(
2π(2k + 1)i

4N

)
cos

(
2π(2k + 1)j

4N

)

=
1

2

N−1∑
k=0

cos

(
2π(2k + 1)(i+ j)

4N

)
+ cos

(
2π(2k + 1)(i− j)

4N

)
= 0.

Next, we recall the definition of the condition number of a matrix, a tool
with which the notion of equivalence is stated.

Definition 2.2. Let A ∈ GLn(C) be an invertible square matrix with complex
entries. The condition number is defined as

κF (A) = ||A||F ||A−1||F ,

where || ||F denotes the Frobenius norm.
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Now, we can prove the following:

Lemma 2.2. The condition number of the cosine matrix CN is

κF (CN )2 := ||CN ||2F ||C−1N ||
2
F = N2 +

N − 1

2
= O(N2).

In particular, ||CN ||2F = N +N(N − 1)/2 and ||C−1N ||2F = (2N − 1)/N .

Proof. We know that ||CN ||2 = Tr(CT
NCN ). Therefore, from the previous

Lemma 2.1, we have CT
NCN = N

2 SN , and ||CN ||2 = N +N(N − 1)/2.

On the other hand, by using (3) the inverse matrix C−1N can be written as

C−1N =
2

N
S−1N CT

N .

It follows that

C−1N C−TN =
2

N
S−1N .

Now, we have everything we need to compute the Frobenius norm of the inverse
transform,

||C−1N ||
2
F = Tr(C−TN C−1N )

= Tr(C−1N C−TN )

= Tr

(
2

N
S−1N

)
=

2

N

(
1

2
+N − 1

)
=

2N − 1

N
.

Finally, the squared condition number of the cosine matrix CN is

κF (CN )2 = ||CN ||2F ||C−1N ||
2
F =

N(N + 1)

2
· 2N − 1

N
= N2 +

N − 1

2
.

3 RLWE–PLWE equivalence for n = 2r3s

The study of the equivalence between RLWE and PLWE was first addressed in
[DD12] for cyclotomic number fields of degree 2kp or 2kpq with p, q primes and
q < p, and later on in [RSW18, Section 4] for two particular non-cyclotomic
families of polynomials. In [DSS21], the authors obtained an explicit closed
formula for the condition number of the 2kpl cyclotomic field, and in [DSS24]
the authors showed that for an arbitrary conductor, the two problems are not
equivalent for cyclotomic fields.

Still within the cyclotomic family, in [Bla22a], it was proved that if the con-
ductor is divisible by a bounded number of primes, the RLWE–PLWE equiva-
lence holds alongside with much sharper bounds for the condition number for
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conductors divisible by up to 3 primes. This result was recently generalized in
[Bar+23] to conductors divisible by up to 6 primes. The authors also intro-
duce and study cyclo-multiquadratic number fields, a family which also enjoys
RLWE–PLWE equivalence and fast multiplication.

Beyond cyclotomics, in [Bla22b], the RLWE–PLWE equivalence was proved
for the maximal totally real subfield of the 4p-th cyclotomic field. This result
was generalized in [BL24] to conductors of the form 2rpq with p < q primes, as
well as for p = 1 or q = 1. Furthermore, in this last work it was proved that the
defining polynomials of these subfields are resistant to the PLWE root-based
attacks for α = ±1,±2. This gives a reason to pay attention to these fields from
a cryptographic point of view. However, cyclotomic polynomials can vanish at
α = 2 modulo suitable primes, and the authors provided some examples.

To set the stage for our result, let ψn = ζn + ζ−1n = 2 cos(2π/n) so Q(ψn) =
Q(ζn)+ is the maximal real subfield of the cyclotomic field Q(ζn). We know
that [Q(ψn) : Q] = φ(n)/2, where φ is Euler’s totient function. It is well known
that the ring of integers of Q(ψn) is Z[ψn] ∼= Z[x]/(Ψn(x)), where Ψn(x) is the
minimal polynomial of ψn of degree φ(n)/2. For these standard claims, we refer
to [Was12].

Chebyshev polynomials exhibit nice properties with the cosine function, es-
pecially the cosine of a multiple of an angle. Since the element of interest
ψn = 2 cos(2π/n) has an extra factor of 2, we introduce a modified family of
Chebyshev polynomials.

Definition 3.1. Let Tn(x) be the Chebyshev polynomial of the first kind of
degree n. We define the family of polynomials Vn(x) with V0(x) = 1 and

Vi(x) = 2Ti(x/2) for i ≥ 1

to be the modified Chebyshev polynomial of degree i.

The family of modified Chebyshev polynomials satisfy the property

Vn(2 cos(θ)) = 2 cos(nθ) for any θ and n ≥ 1.

Alternatively, Vn(x) can be defined by the recursion

Vn(x) = xVn−1(x)− Vn−2(x) for n ≥ 3,

with the initializing sequence

V0(x) = 1, V1(x) = x, V2(x) = x2 − 2.

Fix n = 2r3s and m = φ(n)/2 = 2r−13s−1. Then

V := {V0(x), V1(x), . . . , Vm−1(x)}

is basis for O = Z[x]/(Ψn(x)) as all the polynomials Vi(x) are monic with degree
i. The Minkowski canonical embedding M : Z[x]/(Ψn(x))→ Rm is given by

a0V0(x) + a1V1(x) + . . .+ am−1Vm−1(x) 7→M(a0, a1, . . . , am−1)T ,
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where

M
m×m

=



1 2 cos(2π/n) 2 cos(2π2/n) . . . 2 cos(2π(m− 1)/n)
...

...
... . . .

...
1 2 cos(2πσ/n) 2 cos(2πσ2/n) . . . 2 cos(2πσ(m− 1)/n)
...

...
...

. . .
...

1 . . . . . . . . .


is an m-by-m matrix with σ ∈ {1, 2, . . . , n/2} and (σ, n) = 1.

To show that the PLWE and RLWE problems are equivalent, it enough to
prove that the condition number of the matrix M is bounded by a polynomial
in n. In this case, we say that M is well conditioned. To see this, first note that
the matrix M is well conditioned if and only if the matrix

V
m×m

=



1 cos(2π/n) cos(2π2/n) . . . cos(2π(m− 1)/n)
...

...
... . . .

...
1 cos(2πσ/n) cos(2πσ2/n) . . . cos(2πσ(m− 1)/n)
...

...
...

. . .
...

1 . . . . . . . . .


is well conditioned as it is a simple scaling of the columns of M. In fact,
M = 2VS−1m . We are ready to state our first main result.

Theorem 3.1. Let r ≥ 3, s ≥ 1, and n = 2r3s. Then PLWE and RLWE are
equivalent for the maximal real subextension of the n-th cyclotomic field.

Proof. To match the denominators of the arguments of the cosines in V and
CN , we set n = 4N = 2r3s. This gives us the relation N = 3m/2 for the matrix
dimensions. Notice that V is a m×m matrix, but CN is a larger N×N matrix.

Additionally, we can directly see that each entry of V is of the form cos
(

2πσj
2r3s

)
and every entry of CN is of the form cos

(
2π(2i+1)j

2r3s

)
. Since (σ, n) = 1 implies σ

is odd and 3 - σ, we conclude that V is actually a submatrix of CN associated
to the rows i such that 3 - (2i+ 1).

Thus, let P be the row permutation matrix associated to the permutation
p(i) of {0, 1, 2, . . . , N − 1} such that 3 - 2p(i) + 1 for i = 0, 1, . . . ,m− 1 and for
the rest of the row indices i = m,m + 1, . . . , N − 1, 3|2p(i) + 1. Then the row
permutation yields

PCN =

 V
m×m

B
m×m/2

A
m/2×m

C
m/2×m/2

 ,
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where all the matrices have entries of the form cos(2πσj/n) with σ odd. Fur-
thermore, we have the additional conditions that

for A, j = 0, . . . ,m− 1 and 3 | σ,
for B, j = m, . . . , N − 1 and 3 - σ,
for C, j = m, . . . , N − 1 and 3 | σ.

Finally, we observe that for all column indices j > m, we have a unique
index j′ ∈ {1, . . . ,m/2} such that j = m+ j′. Also, let j̃ = m− j′. Then

cos

(
2πσj

n

)
+ cos

(
2πσj̃

n

)
= cos

(
2πσm

n
+

2πσj′

n

)
+ cos

(
2πσm

n
− 2πσj′

n

)
= 2 cos

(
2πσm

n

)
cos

(
2πσj′

n

)
= 2 cos

(
2πσ

6

)
cos

(
2πσj′

n

)
.

The first cosine term in the product can attain two values depending on the
divisibility of σ. If 3 - σ, we know that (σ, 6) = 1. Hence, we can write
σ = 6l ± 1 for some l ∈ Z. The other option is that 3 | σ, and then 2σ/6 is an
odd integer. We separate the two cases as follows:

2 cos

(
2πσ

6

)
=

2 · cos
(
π(σ/3)

)
, if 3 | σ

2 · cos
(

2π(6l±1)
6

)
, if 3 - σ

=

{
−2, if 3 | σ
1, if 3 - σ.

We want to use this simplification of the sum of the two cosine terms colum-
nwise on the matrix PCN . To perform the summation as a column operation
on PCN , let

R1
N×N

=

 I
m×m

D
m×(m/2)

0
(m/2)×m

I
(m/2)×(m/2)

 ,
where

D
m×(m/2)

=

 0
(m/2+1)×1

0
(m/2+1)×(m/2−1)

0
(m/2−1)×1

J
(m/2−1)×(m/2−1)

 ,
and J denotes a row-reversed identity matrix. The column operation PCNR1

yields

PCNR1 =

 V
m×m

B′
m×(m/2)

A
(m/2)×m

C′
(m/2)×(m/2)
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where the first columns of B′ and C′ are vectors of lengths m and m/2 consisting
only of elements 1/2 and −1, respectively. Otherwise, the rest of B′ comprises
elements of the form cos(2πσj′/n) with 3 - σ and j′ = 1, . . . ,m/2−1. Similarly,
for C′, the elements are of the form −2 cos(2πσj′/n) for j′ = 1, . . . ,m/2 − 1
but 3 | σ. The coefficients multiplying the cosines are direct result of the
simplification step described above.

In order to bound the norm of the block V in the matrix PCN , we want to
bring the matrix PCN to a block lower triangular form with only zero entries
in the upper-right block. For another set of column operations, let

R2
N×N

=

 I
m×m

E
m×(m/2)

0
(m/2)×m

I
(m/2)×(m/2)

 ,
where

E =


−1/2
1×1

0
1×(m/2−1)

0
(m/2−1)×1

−I
(m/2−1)×(m/2−1)

0
(m/2)×1

0
(m/2)×(m/2−1)

 .
Then another set of column operations gives us the block triangular matrix

PCNR1R2 =

 V
m×m

0
m×(m/2)

A
(m/2)×m

C′′
(m/2)×(m/2)

 ,
where C′′ consists of elements of the form −3 cos(2πσj′/n) for j′ = 0, . . . ,m/2−
1 where 3 | σ.

Finally, we combine the column operations into a single matrix

R
N×N

= R1R2 =

 I
m×m

F
m×(m/2)

0
(m/2)×m

I
(m/2)×(m/2)

 ,
where F = E + D. Note that the nonzero entries of E and D do not overlap.
Moreover, the inverse of the matrix R is

R−1
N×N

=

 I
m×m

−F
m×(m/2)

0
(m/2)×m

I
(m/2)×(m/2)

 .
Now we can bound the Frobenius norm of V. From the first block form

PCN =

 V
m×m

B
m×(m/2)

A
(m/2)×m

C
(m/2)×(m/2)
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we observe that V is a submatrix, so we get the strict bound

||V||2F < ||PCN ||2F = ||CN ||2F .

To bound the norm of the inverse V−1, we use the column reduced form given
by the right multiplication by R,

||V−1||2F < ||R−1C−1N PT ||2F ≤ ||R−1||2F ||C−1N PT ||2F
= ||R−1||2F ||C−1N ||

2
F = (N + ||F||2F )||C−1N ||

2
F < 2N ||C−1N ||

2
F .

By combining the two bounds we get a polynomial upper bound for the condition
number of V,

κF (V)2 = ||V−1||2F ||V||2F < 2N ||C−1N ||
2
F ||CN ||2F = 2NκF (CN )2.

As a last step, from Lemma 2.2 we know that κF (CN )2 = O(N2). Putting
everything together yields the desired bound

κF (V)2 = 2NO(N2) = O(N3) = O(n3).

This concludes the proof.

4 Fast multiplication in Z[x]/(Ψn(x)) via the DCT

In this section, we introduce an algorithm for fast multiplication over the ring
Z[x]/(Ψn(x)). The algorithm is similar to the Number Theoretic Transform
(NTT). However, the NTT is typically computed over the ring Z[x]/(xn + 1),
where n is a power of two yielding the ring of integers of the 2n-th cyclotomic
field [AB75; Pol71]. For non-power-of-two cyclotomic fields, in [LS19] the au-
thors describe an NTT-based multiplication algorithm in the 2r3s-th cyclotomic
field, where r ≥ 1 and s ≥ 1. The algorithms developed to compute the DCT
and its inverse IDCT can be classified into two categories: indirect and direct.
Indirect algorithms take advantage of existing fast algorithms, such as the fast
Fourier and Hadamard transforms [ANR74]. On the other hand, direct algo-
rithms reduces the computational complexity by means of matrix factorization
and recursive decomposition as a generalization of the Cooley–Tukey algorithms
with the same asymptotic complexity O(n log n) [BY98; Bi99; Hou87; Kok97].

Next, we show how the DCT and its inverse can be used for fast multiplication
algorithms. If p(x) is a polynomial of degree less than or equal to N − 1, then
p(x) can be represented in base {V0(x), V1(x), . . . , VN−1(x)} as

p(x) =

N−1∑
i=0

aiVi(x).

We define DCT(p(x)) := DCT(a), where a = (a0, a1, . . . , aN−1)T . Related to
the cosine transform, we define a grid of points

xj := 2 cos

(
2π(2j + 1)

4N

)
, j = 0, 1, . . . , N − 1. (5)
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The evaluation of p(x) at the grid points xj yields

p(xj) = a0 + 2

N−1∑
i=1

ai cos

(
2π(2j + 1)i

4N

)
.

Moreover, we have the following property

p̂ = 2DCT(p(x)),

where p̂ = (p(x0), p(x1), . . . , p(xN−1))T is the vector of all the evaluations.
Finally, let p(x), g(x) ∈ Z[x] and r(x) = p(x)q(x). By definition the eval-

uations satisfy r(xj) = p(xj)q(xj) for all xj in the grid. Thus, the vector
evaluations satisfy the property

r̂ = p̂� q̂,

where � denotes the componentwise product of vectors, that is,

DCT(r(x)) = 2DCT(p(x))� DCT(q(x)). (6)

This is the approach that we shall use to derive a fast algorithm for multipli-
cation in quotient rings of the form Z[x]/(f(x)) for a special family of modulo
polynomials f(x).

4.1 Case n = 2r

For n = 2r, the maximal real subextension of Q(ζn) has dimension m =
φ(n)/2 = 2r−2. In order to avoid trivialities, we consider only the case r ≥ 3.

It is well known that Ψn(x) = Vm(x) [LW16, Theorem 2.6] where Vm(x) is
the modified Chebyshev polynomial from Definition 3.1. Every element in the
ring R := Z[x]/(Ψn(x)) can be represented by a polynomial of degree less than
or equal to m− 1. Furthermore, if p(x), q(x) ∈ R and N = m, then DCT(p(x))
and DCT(q(x)) can be computed in order n log n [BY98; Bi99].

In addition, since for n = 2r the grid points xj for j = 0, 1, . . . , N − 1 match
the roots of Ψn(x) = Vm(x), then for every polynomial f(x) ∈ Z[x] we have
that f(xj) = f(xj), where f(x) ∈ R denotes the residue of f(x) modulo Ψn(x).
This implies that if r(x) = p(x)q(x), then r̂ = r̂ and

DCT(r(x)) = DCT(r(x))

= 2DCT(p(x))� DCT(q(x)).

If r(x) =
m−1∑
i=0

ciVi(x) ∈ R, then c = (c0, c1, . . . , cm−1)T can be computed using

the inverse of the DCT and Lemma 2.1, that is,

c =
4

N
IDCT(DCT(p(x))� DCT(q(x))). (7)

The fast implementation of the inverse transform IDCT requires in total
(r−2)2r−2 multiplications and 3(r−2)2r−3−2r−2+1 additions [Kok97; Hou87].
This means the asymptotic complexity of computing c is O(m logm).
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4.2 Case n = 2r3s

As before, to avoid trivialities we only consider the cases r ≥ 3 and s ≥ 1. For
n = 2r3s, the maximal real subextension of Q(ζn) has dimension m = φ(n)/2 =
2r−13s−1, and the minimal polynomial is Ψn(x) = Vm(x)− 1. This fact can be
easily verified by computing

Vm

(
2 cos

(
2π

n

))
− 1 = 2 cos

(
2πm

n

)
− 1

= 2 cos

(
2π

6

)
− 1

= 0.

Thus, ψn is root of Vm(x)− 1 which is a monic polynomial of degree m.
To describe the fast multiplication, let p(x), q(x) ∈ R = Z[x]/(Ψn(x)). Then

p(x) and q(x) have degrees strictly less than deg Ψn(x) = m. Therefore, the
product r(x) = p(x)q(x) has degree less than or equal to N − 2 with the choice
N = 2m. We pick N to be the size of the DCT, we write

r(x) = p(x)q(x) =

N−1∑
i=0

ciVi(x).

Hence the coefficient vector r(x) can be written as

c =
2

N
IDCT(DCT(r(x)))

=
2

N
IDCT(2DCT(p(x))� DCT(q(x)))

=
4

N
IDCT(DCT(p(x))� DCT(q(x)))

Both the DCT and the IDCT of size N can be computed in O(N logN) [Bi99;
Kok97], even for the composite dimension N = 2r3s−1. This means that we can
compute c and hence r(x) = p(x)q(x) in O(N logN).

Now, in order to compute the residue r(x) ∈ R of r(x), we notice that
Vm(x) ≡ 1 mod Ψn(x). By using the trigonometric identity

cos(α+ β) + cos(α− β) = 2 cosα cosβ,

we obtain for degrees i = 1, . . . ,m− 1 a formula for the reduction

Vm+i(x) = Vi(x)Vm(x)− Vm−i(x)

≡ Vi(x)− Vm−i(x) mod Ψn(x). (8)

By using the above relations on r(x) = p(x)q(x) =
N−1∑
i=0

ciVi(x), we obtain

r(x) = d0 + d1x+ . . .+ dm−1x
m−1,
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where the polynomial coefficients di can be computed as a sums of the elements
of the vector c. The explicit formula is

d =



c0 + cm
c1 + cm+1 − c2m−1

...
ci + cm+i − c2m−i

...
cm−1 + cm+1


.

The number of operations needed for the reduction of r(x) to r(x), meaning
the transform from c to d, is linear in m. Hence, the overall complexity is
asymptotically dominated by the O(N logN) complexity of the DCT and IDCT.
As a conclusion, the overall complexity of computing a product of two elements
in R is O(m logm).

4.3 DCT modulo a prime number

As usual in cryptography and other contexts, in particular in LWE schemes, it is
necessary to reduce integers modulo a prime number. The algorithms developed
earlier might be difficult to implement numerically due to the nature of values
of the cosine function. Nevertheless, this difficulty disappears when working in
the quotient ring Rq = Zq[x]/(Ψn(x)) for a suitable choice of the prime q.

For n = 2r or n = 2r3s, it is enough to choose a prime q satisfying q ≡ 1
mod n, because this implies the existence of a primitive n-th root of unity, ζn,
in the finite field Fq = Z/qZ. In both cases, for all indices i and j, we use

2 cos

(
2π(2j + 1)i

4N

)
= ζ(2j+1)i

n + ζ−(2j+1)i
n ∈ Fq.

Likewise, all the elements of the matrices CN and C−1N can be seen as elements
of Fq, and in particular the DCT and IDCT can be computed over the elements
of Fq.

5 PLWE in Z[x]/(Ψn(x)) via fast base change

Let n = 2r or n = 2r3s with the corresponding m = φ(n)/2, and consider the
PLWE problem in the quotient ring R = Z[x]/(Ψn(x)). Under the PLWE–
RLWE equivalence shown in Section 3, we want to keep the security guarantees
of the PLWE scheme which is typically stated in the power basis. This means
that we must sample the polynomials a(x) and s(x) in the power basis with
coefficient vectors drawn uniformly on Fmq .

To obtain fast multiplication of a(x) and s(x) in the ring R, the idea is
to first perform a change of basis and compute the product a(x) · s(x) in the
modified Chebyshev basis {V0(x), V1(x), . . . , Vm−1(x)} using the results from
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Section 4. After the fast computations in the modified Chebyshev basis, we
perform another change of basis back to the power basis giving us the product
a(x)s(x) in the original basis.

In fact, all of these operations can be computed using a total of O(n log n)
arithmetic operations. The quasilinear complexity of the multiplication in the
modified Chebyshev basis was already proved in Section 4. This section fo-
cuses on proving that the two change of basis transforms can also be done in
O(n log n). This result is stated as the following lemma.

Lemma 5.1. Given a polynomial of degree less than or equal to m − 1, the
complexity of the change of basis between the power basis {1, x, x2, . . . , xm−1}
and {V0(x), V1(x), . . . , Vm−1(x)} is O(m logm).

Before we can prove Lemma 5.1, we need a few more results regarding the
complexity of polynomial evaluation on the Chebyshev nodes xj (5) and Cheby-
shev interpolation. In [Pan98; Ger88], the authors describe an algorithm to
evaluate a polynomial p(x) of degree at most N − 1 at the Chebyshev nodes xj
with complexity O(N logN). In [Pan98], this result is stated as the following
theorem.

Theorem 5.1. Any polynomial of degree at most N − 1 can be evaluated on
the Chebyshev nodes xj, j = 0, . . . , N − 1, at the cost of O(N logN) arithmetic
operations.

The authors also provide the following result on the efficiency of interpolation
on the Chebyshev nodes.

Theorem 5.2. Interpolation to a polynomial of a degree at most N − 1 on the
Chebyshev node set can be performed in O(N logN) arithmetic operations.

We are now ready to prove Lemma 5.1

Proof. First, let us explore the complexity of the change from the power basis
{1, x, x2, . . . , xm−1} to the modified Chebyshev basis

V := {V0(x), V1(x), . . . , Vm−1(x)}.

Let p(x) =
∑m−1
i=0 pix

i be a polynomial in Z[x]/(Ψn(x)) and consider its expan-
sion in the V -basis as

p(x) =

m−1∑
i=0

ciVi(x).

For the change of basis, given the coefficients pi our goal is to find the coefficients
ci.

Let xj denote the Chebyshev nodes from (5). As was shown in Section
4, the vector of evaluations p̂ =

(
p(x0), p(x1), . . . , p(xN−1)

)
and the vector of
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coefficient c = (c0, c1, . . . , cm, 0, . . . , 0) satisfy the relations

p̂ = 2DCT(c) (9)

c =
N

4
IDCT(p̂). (10)

In other words, given the vector of evaluations p̂, the vector of coefficients c
can be computed in order N log(N). This is formalized by Equation (10). Vice-
versa, given the vector of coefficients c, we can compute the vector of evaluations
via a single DCT with complexity O(N log(N)).

Theorem 5.1 states that given a polynomial

p(x) =

m−1∑
i=0

pix
i

in the power basis, the vector of evaluations p̂ can be computed in O(N logN),
and from this, we apply the respective DCT to retrieve the coefficient vector c in
base {V0(x), V1(x), . . . , Vm−1(x)}. Therefore, the total order of the base change
is O(N logN).

Next, we consider the change of basis from {V0(x), V1(x), . . . , Vm(x)} to the
power basis. Let q(x) ∈ Z[x]/(Ψn(x)) be a polynomial and write its represen-
tation in the V -basis as

q(x) =

m−1∑
i=0

aiVi(x).

By using using (9), the vector of evaluations at the Chebyshev nodes, can
be computed with O(N logN) arithmetic operations. Note that this statement
is similar to that of Theorem 5.1, but here the polynomial to be evaluated is
given in the V -basis. Now, the interpolation problem of finding the coefficients
qi of q(x) in the power basis, i.e, the form

q(x) =

m−1∑
i=0

qix
i,

can be solved in order O(N logN) due to the interpolation Theorem 5.2.

We are ready to state our second main result.

Theorem 5.3. Given two polynomials a(x), s(x) ∈ Z[x]/(Ψn(x)) in the power
basis, their product a(x) · s(x) ∈ Z[x]/(Ψn(x)) can be computed with asymptotic
complexity O(n log n).

Proof. With Lemma 5.1 and the fast multiplication algorithm from Section 4,
the proof is evident.
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6 Small roots of cyclotomic polynomials modulo
a prime

Let Of = Z[x]/(f(x)) and Rq = Of/qOf as before. The root-based attacks
from [Eli+16] show that if the polynomial f(x) has a small root modulo the
reducing prime q, then there exists a polynomial time evaluation attack against
the decisional PLWE problem. In this section, we compare heuristically cyclo-
tomic fields and their maximal real subfields for attacks against roots of small
residue. We show that between the two families of minimal polynomials, Φp(x)
and Ψ4p(x) of the same degree, the maximal real extensions Ψ4p(x) tend to have
less small roots x ∈ S = {±2,±3,±4,±8} when p is large enough. On the other
hand, for cyclotomic polynomials of small degree p < 200 and reducing primes
q < 5 · 1010, we did not encounter any small roots in S.

The roots in the set S are small powers of two. We also included another
small prime 3 because our preliminary computations suggested it might occur
as root relatively often. This choice allowed us to study the frequency of the
roots in S to see if it varies a lot between the elements of S.

For the prime q and n = deg f(x), the parameters of the three final lattice-
based NIST candidates are:

• q = 3329 and n = 256 for ML-KEM, formerly known as Kyber [NIS24b].

• q = 8380417 and n = 256 for ML-DSA, formerly known as Dilithium
[NIS24a].

• q = 12289 and n = 512 in security level 1 and n = 1024 in security level
of Falcon [NIS22].

The ML-KEM and ML-DSA are the first two lattice-based PQC standards.
In practice, for PLWE instances the sparsity of the vulnerable polynomials

allows us to pre-emptively test for small zeros for different prime moduli q and
choose a safe one. In this regard, the weak polynomials we present are only of
theoretical interest in the PQC realm. However, it is worth mentioning that in
[BDS24], the authors attack the PLWE problem by using as the modulus the
NTRU polynomials with parameters:

• n = 509, q = 2048, σ = 8.

• n = 677, q = 2048, σ = 8.

• n = 821, q = 4096, σ = 8.

This attack is not directly based on roots but, on distinguishing the PLWE
distribution from the uniform distribution with non-negligible advantage by
using a refined statistical test. However, like the root-based attacks, this attack
takes advantage of the evaluation of the polynomials at special points. In any
case, it does not imply that an attack the NTRU cryptosystem exists, as this
is backed by a different security consideration, i.e. the NTRU problem itself.
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Regardless, this is evidence that even the real-world parameters can be affected
by novel families of attacks.

The situation is slightly different in the homomorphic encryption setting,
where much larger values of both the degree n and the prime modulus q can
occur. For instance, within HELib [GKT22], a large initial ciphertext modulus
of 780 bits is used, which needs a cyclotomic degree of 55831. Thus, the ring is
of dimension φ(55831) = 54000 achieving 129 bits of security. More specifically,
in [Bos+24, Table 4.2] we can observe that n runs in powers of 2 from 1024 to
131072, and q, depending on n, runs between 29 to 1920 bits. These parameters
refer to power-of-two cyclotomic polynomials.

In [BL24; Bla22b], the authors show that for the maximal real cyclotomic
extensions, the minimal polynomials Ψn(x) do not have roots at x = ±2 for any
reducing odd prime q when n = 2rk for an odd k. Moreover, x = ±1 are never
roots modulo an odd prime q. As a result, the family of polynomials Ψn(x) is
immune against the attacks against roots of small order with x = −1 and attacks
against roots of small residue with x = ±2. This is not the case for cyclotomic
polynomials, since the authors provide an example of a cyclotomic polynomial
Φ61(x) that does have a root at x = 2 modulo q = 9520972806333758431. Again,
we emphasize that this is a theoretical threat due to the size of the modulus
q ≈ 1019 being astronomical and thus infeasible in practice.

For primes from p < 1500, we computed the evaluations of Φp(x) and Ψ4p(x)
at the elements of the set S and then reduced the evaluations with a varying
prime modulus q running as high as 5 · 1010. Note that thank to the result
from [BL24; Bla22b], we could exclude the possibility of α = ±2 being a root
of Ψ4p(x) modulo any prime q. Furthermore, the minimal polynomials Ψ4p(x)
are even [LW16] so α ∈ S is root if and only if −α ∈ S is a root. Thus, in our
numerical search the number of roots at α and −α are the same for Ψ4p(x).
Finally, note that for a fixed p, the degrees of the two polynomials are equal

deg Φp(x) = φ(p) = p− 1,

deg Ψ4p(x) = φ(4p)/2 = φ(p) = p− 1.

The visualization of the computational results is given in Figure 1 (a) and
(b), respectively for Φp(x) and Ψ4p(x). If a polynomial has more than one small
root in S, the smallest root in absolute value is plotted.
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(a) Small roots of the cyclotomic polynomials Φp(x).
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(b) Small roots of the maximal real cyclotomic polynomials Ψ4p(x).

Figure 1: Each point of the plot is a pair (p− 1, q) for primes p and q such that
fp(α) ≡ 0 mod q for some α ∈ S where fp(x) = Φp(x) or fp(x) = Ψ4p(x). For
both polynomials the degree of the field extension is deg fp(x) = p− 1 and the
cardinality of the finite field is q.
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For primes p less than 1500 and q less than 5 · 1010, we found 1191 small
roots in S for the cyclotomic polynomials Φp(x). For the same range of primes,
the maximal real cyclotomic polynomials had fewer small roots in S, only 926.
The distribution of roots of the two polynomial families with no indication of
the precise value of α is given in Figure 2. The small zeroes of the cyclotomic
polynomials Φp(x) seem to appear only at higher degree polynomials with p >
200, whereas the maximal real cyclotomic polynomials start having small zeroes
already at p = 23.

The counts for the number of zeros we found for the evaluation points in
S is given in Table 1. We did not observe a significant difference between the
number of zeros at the small powers of 2 or at the small prime 3. In Table 1
the number of zeros of Ψ4p(x) at α and −α are equal due to the even parity of
polynomials.

In summary, the small zeroes of Φp(x) are more frequent in the primes
p > 200, that is, the density of the small zeros of Φp(x) appears to be larger as
the red points in Figure 2 are more concentrated to the right where p > 200. On
the other hand, Ψ4p(x) has overall less small zeros in the degree range p < 1500
and q < 5 · 1010, and the zeros are more sparse and evenly distributed in the
p–q-plane. The number of zeros we found does not vary significantly between
the elements of S with counts ranging approximately between 100 to 200.
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Figure 2: Small roots α ∈ S for the pairs (p, q). The points are coloured in red
for a root of Φp(x) and in blue for Ψ4p(x).
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Table 1: Number of zeros of Φp(x) and Ψ4p(x) for elements in S with p < 1500
and q < 5 · 1010.

x = −2 x = 2 x = −3 x = 3 x = −4 x = 4 x = −8 x = 8
Φp(x) 105 102 117 121 213 190 121 222
Ψ4p(x) 0 0 140 140 172 172 151 151
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