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Abstract. Recent attacks on NTRU lattices given by Ducas and van
Woerden (ASIACRYPT 2021) showed that for moduli q larger than the
so-called fatigue point n2.484+o(1), the security of NTRU is noticeably
less than that of (ring)-LWE. Unlike NTRU-based PKE with q typically
lying in the secure regime of NTRU lattices (i.e., q < n2.484+o(1)), the
security of existing NTRU-based multi-key FHEs (MK-FHEs) requiring
q = O(nk) for k keys could be significantly affected by those attacks.

In this paper, we first propose a (matrix) NTRU-based MK-FHE
for super-constant number k of keys without using overstretched NTRU
parameters. Our scheme is essentially a combination of two components
following the two-layer framework of TFHE/FHEW:

– a simple first-layer matrix NTRU-based encryption that naturally
supports multi-key NAND operations with moduli q = O(k · n1.5)
only linear in the number k of keys;

– and a crucial second-layer NTRU-based encryption that supports
an efficient hybrid product between a single-key ciphertext and a
multi-key ciphertext for gate bootstrapping.

Then, by replacing the first-layer with a more efficient LWE-based multi-
key encryption, we obtain an improved MK-FHE scheme with better
performance. We also employ a light key-switching technique to reduce
the key-switching key size from the previous O(n2) bits to O(n) bits.

A proof-of-concept implementation shows that our two MK-FHE
schemes outperform the state-of-the-art TFHE-like MK-FHE schemes
in both computation efficiency and bootstrapping key size. Concretely,
for k = 8 at the same 100-bit security level, our improved MK-FHE
scheme can bootstrap a ciphertext in 0.54s on a laptop and only has
a bootstrapping key of size 13.89MB, which are respectively 2.2 times
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faster and 7.4 times smaller than the MK-FHE scheme (which relies on
a second-layer encryption from the ring-LWE assumption) due to Chen,
Chillotti and Song (ASIACRYPT 2019).

1 Introduction

Multi-key Fully Homomorphic Encryption (MK-FHE) has emerged as a criti-
cal cryptographic primitive, facilitating secure computations on encrypted data
contributed by multiple users in cloud environments. At STOC 2012, López-Alt,
Tromer and Vaikuntanathan constructed the first MK-FHE scheme [27] which
supported a-priori bounded number of keys. Clear and McGoldrick presented a
GSW-type MK-FHE based on the Learning With Errors (LWE) problem [14].
Subsequently, Mukherjee and Wichs streamlined this approach and obtained a
two-round Multi-Party Computation (MPC) protocol in the common random
string model by proposing another LWE-based MK-FHE [30]. Both [30] and
[14] are static in the sense that the keys involved in the homomorphic computa-
tion have to be determined at the beginning and do not support homomorphic
computation on ciphertexts under new keys.

Peikert and Shiehian [31] introduced the concept of dynamic MK-FHE, where
the resulting ciphertexts from previous homomorphic evaluations can be em-
ployed in subsequent homomorphic computations involving additional keys. A
related concept, known as fully dynamic MK-FHE, was proposed by Brakerski
and Perlman [8], which even does not need to know the total number of all pos-
sible keys during the setup. Chen, Chillotti and Song [9] proposed a dynamic
TFHE-like MK-FHE scheme with efficient bootstrapping, but it requires a large
number of bootstrapping keys (approximately 90MB for each party in the two-
party case), limiting the applicability in resource-constrained environments such
as the Internet of Things (IoT), blockchain, and GPU acceleration [32,34,29].
Recently, Kwak et al. [25] presented another variant of the TFHE-like MK-FHE
scheme with asymptotically better computational efficiency but with much worse
noise growth and larger bootstrapping keys (more than 214MB for each party
in the two-party case).

Even if the first MK-FHE was based on NTRU lattices [27], the research on
NTRU-based MK-FHE schemes was indeed suffered from the sublattice attacks
in [20,2,10,23,16]. 5 In particular, the scheme in [27], adhering to the frameworks
outlined in BGV [7] or BFV [18], had an error of magnitude about Õ(nτk) and
a moduli q > Õ(nτk) for correctness, where τ is a small constant. However,
Ducas and van Woerden [16] showed that the NTRU problem (including its
matrix version [19]) with large moduli q > n2.484+o(1) and ternary secret could
be significantly easier than its ring-LWE counterpart using similar parameters.
Recently, Hough, Sandsbråten and Silde [21] showed that this conclusion still
holds for Gaussian secret of NTRU with such overstretched parameter, which
5 One way to avoid the sublattice attacks is to increase key size, but this can cause noise

to escalate rapidly, potentially preventing even a single homomorphic multiplication.
Therefore, ternary secret keys are typically preferred for efficiency.
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Table 1. Experimental comparison between our MK-FHEs and two related ones [9,25].

Scheme Security First layer Second layer Runtime(s) Boot. Key(MB)
Assum. Key Dist. Assum. k = 2 k = 4 k = 8 k = 16 k = 2 k = 4 k = 8 k = 16

CCS [9] 100 LWE binary RLWE 0.07 0.33 1.19 \ 89.82 96.38 102.94 \
KMS [25] 100 LWE binary RLWE 0.14 0.44 1.17 2.86 214.61 285.22 250.06 285.31

Ours (Alg. 1) 100 MNTRU ternary NTRU 0.07 0.28 0.82 2.74 38.31 38.31 38.31 38.31
Ours (Alg. 2) 100 LWE binary NTRU 0.05 0.21 0.54 2.61 13.89 13.89 13.89 13.89

Ours (Alg. 1) 128 MNTRU ternary NTRU 0.14 0.40 1.55 6.84 72.5 72.5 92.69 112.87
Ours (Alg. 2) 128 LWE binary NTRU 0.06 0.23 0.76 4.21 17.45 17.45 17.45 25.83

puts a crucial limitation on the number k of keys in existing NTRU-based MK-
FHEs [27,13]. Although the problem of obtaining MK-FHE with larger k can
be somehow eased by using very sparse secrets [36], the construction of NTRU-
based MK-FHE schemes with super-constant k = ω(1) in the standard and
secure parameter regime of NTRU lattices (e.g., uniform ternary keys with q <
n2.484+o(1)), to the best of our knowledge, is still open.

1.1 Our results

In this work, we first propose a (matrix) NTRU-based MK-FHE for super-
constant number k of keys without using overstretched NTRU parameters. Our
construction basically consists of two components following the two-layer frame-
work of the TFHE/FHEW scheme in [15,11] and the MK-FHE scheme in [9]:
a simple first-layer encryption for homomorphic NAND operations and a more
complex second-layer encryption for gate bootstrapping. Specifically, our first-
layer is an encryption scheme based on the matrix version of the NTRU problem
(a.k.a., MNTRU [19]) which naturally supports multi-key NAND operation with
moduli q = O(k ·n1.5) only linear in the number k of keys, and can thus support
a sub-linear number k of keys for q < n2.484+o(1). Our second-layer is a new and
crucial NTRU-based encryption (more precisely, a Hint-NTRU based encryp-
tion, see technical overview below) which supports an efficient hybrid product
between a single-key ciphertext and a multi-key ciphertext for gate bootstrap-
ping. Then, by using our second-layer encryption as a building block, we also
present an improved MK-FHE scheme with better performance by replacing the
first layer with an LWE-based multi-key encryption. We further reduce the key-
switching key size from previous O(n2) to O(n) bits by using a light key-switching
technique. As the TFHE-like MK-FHE in [9], our proposed two MK-FHEs in-
herently support dynamic homomorphic computation on ciphertexts under new
keys.

We implement our two schemes in experiment using the OpenFHE library [4].
In Table 1, we provide an experimental comparison of our schemes with the two
MK-FHEs by Chen, Chillotti and Song (CCS) [9] and by Kwak, Min and Song
(KMS) [25]. Since both CCS [9] and KMS [25] only choose parameters achieving
100-bit security, we select two sets of parameters achieving both 100-bit and
128-bit security for a fair comparison, where the concrete security of all set of
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parameters (as well as the ones in [9,25]) is estimated by using the LWE estimator
in [3] and the NTRU estimator in [16] (see Sec. 7.2 for details). From Table 1 one
can see that our two MK-FHE schemes are faster and have smaller bootstrapping
keys than the MK-FHE schemes in [9,25]. The efficiency improvement over [9,25]
is mainly because our NTRU-based second-layer encryption supports a more
efficient hybrid product. One can also see that our first MK-FHE scheme with
MNTRU-based first-layer ciphertexts (i.e., Alg. 1) is less efficient than our second
one with LWE-based first-layer ciphertexts (i.e., Alg. 2). The main reason is that
Alg. 1 uses uniform ternary keys which requires a more complex bootstrapping
algorithm than that of Alg. 2 using binary keys (see the technical overview below
for more details). For a concrete comparison at the same 100-bit security level,
our Alg. 2 is about 1.4, 1.6 and 2.2 times faster than CCS [9], and 2.8, 2.1 and
2.2 times faster than KMS [25] for k = 2, 4 and 8, respectively. Correspondingly,
the bootstrapping key size of our Alg. 2 is 6.5, 6.9 and 7.4 smaller than that
of CCS [9], and is 15.5, 20.5 and 18 times smaller than that of KMS [25]. For
k = 16, our Alg. 2 is about 1.1 times faster and 20.5 times smaller than KMS [25]
(note that CCS [9] did not provide the parameters for k = 16).

1.2 Technical Overview

Before diving into the technical details of our constructions, we begin by re-
calling the two-layer framework of FHEW/TFHE in [15,11], which was later
extended to the multi-key setting in [9]. Basically, the framework consists of
two layers of different encryption schemes: the first layer only supports a single
homomorphic NAND computation and the second layer is designed to boot-
strap the first layer ciphertext to support more NAND operations (namely,
the gate bootstrapping). For simplicity, we restricted our attention to the set-
ting where the first layer is an LWE-based encryption, and the second layer
is an RLWE-based encryption (namely, the whole scheme is essentially a hy-
brid scheme under two assumptions). Formally, let n, q be the dimension and
moduli of the LWE problem in the first layer, respectively. Let z ∈ {0, 1}n be
the LWE secret of the first layer, and the ciphertext of the first layer has the
form of (b,a) ∈ Zn+1

q such that b + ⟨a, z⟩ ≈ ⌊q/4⌉ · m for m ∈ {0, 1}. Given
two first-layer ciphertexts ct1 = (b1,a1) ∈ Zn+1

q and ct2 = (b2,a2) ∈ Zn+1
q en-

crypting m1 ∈ {0, 1} and m2 ∈ {0, 1}, respectively, the homomorphic NAND
operation can be simply done by computing ct′ = (b′,a′) = ( 5q8 ,0) − ct1 − ct2
such that b′ + ⟨a′, z⟩ ≈ ⌊q/2⌉ ·m where m = m1∧̄m2. Moreover, let N,Q be the
dimension and moduli of the RLWE problem in the second layer such that N
is a power of two and q = 2N . Let R = Z[X]/(XN + 1) and its quotient ring
RQ = ZQ[X]/(XN + 1). The second-layer RLWE-based encryption is basically
a GSW-like encryption under secret key s ∈ R, which given an encryption of
the first-layer secret key z ∈ {0, 1}n under s ∈ R, supports the homomorphic
computation of b′+ ⟨a′, z⟩ ≈ ⌊q/2⌉ ·m on the exponent of X (namely, Xb′+⟨a′,z⟩)
such that the modulo q operation is free in RQ (this is because the order of X in
R is exactly q due to the choice of q = 2N). By multiplying a carefully designed
polynomial r(X) ∈ RQ to Xb′+⟨a′,z⟩, one can exactly extract an encryption of
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m on the constant term of the resulting polynomial 6. The above procedure is
also known as blind rotation [15,11,26,35,5].

To extend the above framework to the multi-key setting, it suffices to design
a first-layer encryption that supports multi-key NAND operation and a second-
layer GSW-like encryption that supports multi-key blind rotation. Note that
given a ciphertext ct1 = (b1,a1) ∈ Zn+1

q under a single-key secret key z1, by ap-
pending (k− 1)n zeros one can easily obtain a ciphertext ct1 = (b,a1, · · · ,ak) =
(b1,a1,0, · · · ,0) ∈ Zkn+1

q that encrypts the same message under the set of keys
{zi}1≤i≤k because of b+ ⟨a1, z1⟩ = b+

∑k
i=1 ⟨ai, zi⟩. This means that the multi-

key NAND operation can be trivially done as in the single-key setting.
The multi-key blind rotation is more complex and non-trivial because we

essentially need a way to generate the blind rotation evaluation key that encrypts
a set of first-layer secrets {zi}1≤i≤k under a set of second-layer secrets {si}1≤i≤k

on the fly (namely, the set of keys involved in the computation is not known
in the setup phase). To handle this, Chen et al. [9] presented an RGSW-like
scheme (called uni-encryption) supporting the hybrid product between an MK-
RLWE ciphertext and the uni-encryption. Specifically, for a base B ∈ Z and
d = ⌈logB Q⌉, the uni-encryption UniEnc(µ, s) = (d, f0, f1) ∈ Rd

Q × Rd
Q × Rd

Q

that encrypts µ ∈ RQ under the secret s ∈ R is defined as

d = r · a+ µ · g + e1 ∈ Rd
Q, f0 = −s · f1 + r · g + e2 ∈ Rd

Q,

where a ∈ Rd
Q is a Common Reference String (CRS), g =

[
B0, . . . , Bd−1

]
∈ Zd

is a gadget vector, r ∈ RQ is a random polynomial and f1, e1, e2 ∈ Rd
Q are

d-dimension polynomials in RQ.
To perform the multi-key blind rotation for an LWE-based first-layer cipher-

text ct
′
= (b′,a′1, · · · ,a′k) under the keys {zi}1≤i≤k for some a′i = (a′i,j)0≤j<n

and zi = (zi,j)0≤j<n, each party (of index i) independently generates a set of uni-
encryption ciphertexts {UniEnc(zi,j , si)}0≤j<n that encrypts zi ∈ {0, 1}n under
the secret key si ∈ RQ as the evaluation key. Let

CMUX(zi,j) = 1+ (Xa′
i,j − 1) · UniEnc(zi,j , si)

for binary zi,j . Since 1 can be designed as a noiseless uni-encryption of one and
the uni-encryption ciphertext also has homomorphic properties (see Lemma 2),
we have CMUX(zi,j) = UniEnc(Xa′

i,jzi,j , si). Then, we can initialize the accu-
mulator as a trivial MK-RLWE encryption ACCin = (r(X)Xb′ ,0) ∈ Rk+1

Q and
recursively compute

ACCout = ACCin ·
k∏

i=1

n−1∏
j=0

CMUX(zi,j).

By the fact that the order of X is exactly q for q = 2N , one can check that the
output ACCout is an MK-RLWE ciphertext that encrypts r(X) ·Xb′+

∑k
i=1⟨a′

i,zi⟩

6 The details on how to set such r(X) can be found in [12,9,5,35]. We omit these
details in this paper.
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under the secret (1, s1, · · · , sk) ∈ Rk+1. And by carefully designing the rotation
polynomial r(X), the message in the constant term can be exactly ⌊Q/4⌉ ·m.
Finally, by using the sample extraction as in [22], we can extract an MK-LWE
encryption ct

′′
= (b′′,a′′1 , . . . , a

′′
k) ∈ ZkN+1

Q that encrypts ⌊Q/4⌉ · m under the
secret (si)i∈[k] ∈ ZkN where si is the coefficient vector of si. Then by perform-
ing the multi-key LWE modulus-switching from Q to q and key-switching from
(si)i∈[k] ∈ ZkN to (zi)i∈[k] ∈ Zkn, we finish the bootstrapping and get a refreshed
MK-LWE ciphertext.

As sketched above, in order to obtain a (matrix) NTRU-based MK-FHE,
it suffices to design a first-layer MNTRU-based encryption that supports multi-
key NAND operation and a second-layer NTRU-based GSW-like encryption that
supports efficient hybrid product for multi-key blind rotation.

First-layer Matrix NTRU-based Multi-Key Encryption. We begin by first re-
calling the single-key MNTRU ciphertext in [5]. Formally, let n, q be two pos-
itive integers. The single-key MNTRU ciphertext that encrypts a message bit
m ∈ {0, 1} in [5] is defined as c := (e +

⌊
q
4

⌉
·m) · F−1 ∈ Zn

q where the secret
key F ∈ Zn×n is an invertible matrix, e ∈ Zn

q is a random vector from Zn
q , and

m = (m, 0, . . . , 0) ∈ Zn. Note that this can be actually viewed as a standard MN-
TRU ciphertext that encrypts a message vector

⌊
q
4

⌉
·m ·F−1 = (∗, 0, . . . , 0) ∈ Zn

with a single non-zero term, whose security can be based on either a KDM-form
MNTRU assumption (which essentially assumes that the standard MNTRU en-
cryption is KDM-secure as in [35,5], we refer to Sec. 2.4 for a formal definition),
or the matrix inhomogeneous NTRU (MiNTRU) assumption with a more com-
plex distribution for error e in [19]. We prefer to the former assumption because a
circular-secure/KDM-secure assumption is common for constructing FHEs with
bootstrapping (e.g., [35,5]), and designing FHEs without circular-secure/KDM-
secure assumptions is actually a long-term open problem. We now extend the
above single-key ciphertext to the multi-key setting, and naturally define the
multi-key MNTRU ciphertext as a vector of the form ct = (c1, · · · , ck) ∈ Zkn

q

such that

⟨c1, col0(F1)⟩+ · · ·+ ⟨ck, col0(Fk)⟩ =
⌊q
4

⌉
·m+ e

where k denotes the number of involved keys, e is a small noise and col0(Fi) =
(fi,j)0≤j<n is the first column of the secret matrix Fi.

Since a constant cannot be treated as a noiseless ciphertext in our MNTRU-
based multi-key encryption (which is unlike the LWE-based one in [9]), we have
to create an additional evaluation key evki = (ei +

⌊
5q
8

⌉
· (1,0)) · F−1

i ∈ Zn
q

encrypting the constant 5q
8 for performing the NAND gate evaluation. Now,

given two multi-key MNTRU ciphertexts ct1 = (c1, · · · , ck1
) ∈ Zk1n

q and ct =

(c1, · · · , ck2
) ∈ Zk2n

q , let k be the maximum number of different keys involved
in ct1 and ct2. By reorganizing the components and padding empty slots with
zeros, we can extend the ciphertexts ct1 and ct2 to ct

′
1, ct

′
2 ∈ Zkn under the secret
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(Fj)j∈[k]. Then, the NAND gate operation can be done by computing

ct
′
= ( 0, · · · ,0︸ ︷︷ ︸

(i−1)n zeros

, evki, 0, · · · ,0︸ ︷︷ ︸
(k−i)n zeros

)− ct
′
1 − ct

′
2 ∈ Zkn

q .

Second-layer NTRU-based Uni-Encryption. Now, we give our NTRU-based uni-
encryption scheme that supports efficient hybrid product for multi-key blind
rotation. Let B, d be two integers and d = ⌈logB Q⌉. Specifically, each party
i takes a uniformly random CRS a ∈ Rd

Q and sets the public key bi = −a ·
si + ei ∈ Rd

Q where si is the secret of the second layer for party i, ei is a d-
dimensional polynomial vectors. Party i can encrypt a plaintext µi ∈ RQ into a
uni-encryption ciphertext UniEnc(µi, si) = (di, fi) ∈ Rd

Q × Rd
Q under secret key

si such that

di = ri · a+ µi · g + ei,1 ∈ Rd
Q, fi = ei,2 · s−1

i + ri · g · s−1
i ∈ Rd

Q,

where ri is a polynomial with small coefficients, ei,1, ei,2 are d-dimensional poly-
nomial vectors and g =

[
B0, . . . , Bd−1

]
∈ Zd is a gadget vector. Note that our

NTRU-based uni-encryption ciphertext only contains two polynomials in RQ

(while the MK-FHE scheme [9] and its variant [25] have to store three polynomi-
als), which allows us to save both computation and storage for a hybrid product.
Because the same si is used in both bi = −a·si+ei and fi = ei,2 ·s−1

i +ri ·g ·s−1
i ,

the above construction essentially relies on the hardness of a KDM-secure as-
sumption and a variant of the NTRU problem called Hint-NTRU [17]. As dis-
cussed in [17], with a suitable choice of secret and error distributions, the Hint-
NTRU problem is at least as hard as the inhomogeneous NTRU problem [19].

The single-key KDM-form NTRU ciphertext that encrypts a message µ ∈ RQ

in [35] is defined as c := (g + µ)/s where the secret key s ∈ R is an invertible
polynomial, g ∈ RQ is a random polynomial from RQ. We can extend the above
single-key ciphertext to the multi-key setting, and naturally define the multi-
key NTRU (MK-NTRU) ciphertext under the secret (si)i∈[k] as a vector of the
form (ci)i∈[k] ∈ Rk

Q such that
∑k

i=1 cisi = g′ + µ where k denotes the number
of involved keys, g′ is a small noise. To homomorphically multiply the MK-
NTRU ciphertext by a uni-encryption that encrypts µi of party i, we compute
the following inner products: uj =

〈
g−1 (cj) ,di

〉
for 1 ⩽ j ⩽ k, and compute

v =
∑k

j=1

〈
g−1 (cj) ,bj

〉
. Then we output c′ = (c′1, . . . , c

′
k) ∈ Rk

Q where c′i =

ui +
〈
g−1(v), fi

〉
and c′j = uj for j ̸= i. One can check that c′ is an MK-NTRU

ciphertext that encrypts µ·µi (we defer the proof and security analysis to Sec. 4).
It is important to note that our MK-NTRU ciphertext consists of k polynomials
in RQ, which is one less than that of the MK-RLWE ciphertext in [9,25]. This
means our hybrid product only needs d(2k + 1) multiplications in RQ, which is
2d less than that of the MK-FHE schemes in [9,25].

Bootstrapping First-layer matrix NTRU-based Multi-Key Ciphertexts. Now, we
show how to bootstrap first-layer matrix NTRU-based multi-key ciphertexts.



8

Formally, Given a multi-key MNTRU ciphertext ct
′
= (c′1, · · · , c′k) ∈ Zkn

q sat-
isfying

∑k
i=1 ⟨c′i, col0(Fi)⟩ ≈

⌊
q
2

⌉
m for some c′i = (c′i,j)0≤j<n where col0(Fi) =

(fi,j)0≤j<n ∈ {−1, 0, 1}n is the first column of the secret matrix Fi, the gate
bootstrapping consists of three steps: blind rotation, modulus switching and key-
switching. Recall the previous multi-key blind rotation is to homomorphically
decrypt an MK-LWE ciphertext with a binary secret key distribution on the ex-
ponent [9,25]. One issue we encounter is that in our MNTRU scheme, the secret
key follows a ternary distribution. Therefore, we need to extend this method to
accommodate ternary secret key distributions. To solve this issue, we employ the
ternary CMUX gate 1 +

(
Xc′i,j − 1

)
· f+

i,j +
(
X−c′i,j − 1

)
· f−

i,j = Xc′i,jfi,j first
used in [5] where{

f+
i,j = 1, if fi,j = 1

f+
i,j = 0, otherwise ,

{
f−
i,j = 1, if fi,j = −1
f−
i,j = 0, otherwise

for 0 ≤ j < n.

Another issue is that in previous methods [9] the accumulator can be initialized
as a trivial MK-RLWE encryption. However, this feature is not satisfied for
our MK-NTRU ciphertext. Noticed that if we set the initial accumulator as
ACCin = (r(X),0) ∈ Rk

Q for some rotation polynomial r(X) ∈ RQ, we have
the fact ⟨ACCin, s⟩ = r(X)s1 where s = (s1, · · · , sk) ∈ Rk is the secret keys
of k keys used in hybrid product. Fortunately, we can effectively address this
challenge by carefully designing the evaluation key. Specifically, party i creates
a set of ciphertexts as follows:

– For i = 1, given secret key col0(F1) = (f1,0, . . . , f1,n−1) ∈ {−1, 0, 1}n, create
a set of ciphertexts that encrypts col0(F1) under s1 as follows:{
evk+

1,0 = UniEnc(f+
1,0/s1, s1)

evk−
1,0 = UniEnc(f−

1,0/s1, s1)
,

{
evk+

1,j = UniEnc(f+
1,j , s1)

evk−
1,j = UniEnc(f−

1,j , s1)
for 1 ≤ j < n,

– For i ̸= 1, given secret key col0(Fi) = (fi,0, . . . , fi,n−1) ∈ {−1, 0, 1}n, create
a set of ciphertext that encrypts col0(Fi) under si as follows:

evk+
i,j = UniEnc(f+

i,j , si), evk
−
i,j = UniEnc(f−

i,j , si) for 0 ≤ j < n.

Recall that in the previous scheme [9,25], the uni-encryption ciphertexts can
be publicly generated even when the plaintext is known. This feature is cru-
cial for the CMUX gate evaluation. But our KDM-form evaluation keys evk+

1,0

and evk−
1,0 given above don’t satisfy this requirement. We address this issue

with minimal additional cost by additionally constructing an auxiliary cipher-
text evk∗

1,0 = UniEnc(1/s1, s1). In this case, the CMUX gate in the first iteration
can be computed as

CMUX(f1,0) = evk∗
1,0 +

(
Xc′1,0 − 1

)
· evk+

1,0 +
(
X−c′1,0 − 1

)
· evk−

1,0,
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which is a uni-encryption of Xc′1,0f1,0/s1. In other iterations, we slightly revised
the CMUX gate as

CMUX(fi,j) = 1+
(
Xc′i,j − 1

)
·
(
evk+

i,j −X−c′i,j · evk−
i,j

)
,

where 1 is a noiseless uni-encryption of one.
We now describe our bootstrapping algorithm. Firstly, we initialize the accu-

mulator as ACCin = (r(X),0) ∈ Rk
Q and compute the hybrid product of ACCin

and CMUX(f1,0) to obtain ACC1,0. Since CMUX(f1,0) = UniEnc(Xc′1,0f1,0/s1, s1),
one can easily check that ACC1,0 is an MK-NTRU ciphertext that encrypts
r(X) · Xc′1,0f1,0 . Next we compute evk′

1,1 = evk+
1,1 − evk−

1,1 · X−c′1,1 to obtain
a uni-encryption for f+

1,1 − f−
1,1 · X−c′1,1 . Then we compute the hybrid product

between (Xc′1,1 − 1)ACC1,0 and evk′
1,1 , and ACC1,0 to obtain ACC1,1. We can

check that ACC1,1 is an MK-NTRU ciphertext that encrypts

r(X) ·Xc′1,0f1,0
(
1 + (Xc′1,1 − 1) · (f+

1,1 − f−
1,1 ·X−c′1,1)

)
= r(X) ·Xc′1,0f1,0+c′1,1f1,1 .

We can iteratively absorb Xc′i,jfi,j for i ∈ [k] and 0 ≤ j < n to obtain an
MK-NTRU ciphertext ACCk,n−1 that encrypts r(X) · X

∑k
i=1

∑n−1
j=0 c′i,jfi,j . Fur-

thermore, by carefully designing r(X) we can ensure that the constant term of
r(X) ·X

∑k
i=1

∑n−1
j=0 c′i,jfi,j equals

⌊
Q
4

⌉
·m.

Another issue is that after multi-key blind rotation, we obtain an MK-NTRU
ciphertext under the modulus Q instead of a multi-key MNTRU-based first-
layer ciphertext. Therefore, we use the modulus switching technique to switch
the modulus from Q back to q and we design a key-switching method to switch
the MK-NTRU ciphertext back to MNTRU first-layer ciphertext, resulting in a
refreshed multi-key MNTRU ciphertext of encryption

⌊
q
4

⌉
·m, which is convenient

for the next NAND gate computation.

Bootstrapping First-layer Multi-Key LWE Ciphertexts. Recall that the multi-key
LWE ciphertext (after NAND gate) that encrypts a message bit m ∈ {0, 1} in
[9] under the secret (1, z1, · · · , zk) ∈ Zkn+1 is defined as a vector of the form
ct

′
= (b′,a′1, . . . , a

′
k) ∈ Zkn+1

q such that b′ +
∑k

i=1 ⟨a′i, zi⟩ ≈ ⌊q/2⌉ ·m for some
a′i = (a′i,j)0⩽j<n ∈ Zn

q . Our second-layer encryption scheme can also be modified
to bootstrap such a standard first-layer multi-key LWE ciphertext ct′. Similarly,
it requires us to carefully design the evaluation key. Details can be found in Sec.
6 and we skip it here.

After blind rotation, we get an MK-NTRU ciphertext c = (c1, · · · , ck) ∈ Rk
Q

under the secret key (s1, · · · , sk) ∈ Rk instead of an MK-LWE ciphertext. Then
we can extract a multi-key LWE ciphertext ct′′ = (0,a′′1 , · · · ,a′′k) ∈ ZkN+1

Q under
the secret key (1, s1, · · · , sk) ∈ ZkN+1 where si is the coefficient vector of si.
Subsequently, by performing a modulus switching, we can switch the modulus
from Q back to q.
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Finally, we only need to perform one key-switching to switch the secret key
from (1, s1, · · · , sk) ∈ ZkN+1 back to the secret key (1, z1, · · · , zk) ∈ Zkn+1.
However, in previous key-switching methods [9,25] the key-switching keys are
substantially larger than the evaluation keys. For example, the evaluation key
measures 19.7 MB, whereas the key-switching keys occupy a much larger 70.1 MB
of storage space in [9]. This size discrepancy presents a significant challenge and
warrants attention. To solve this issue, we propose a light key-switching method.
Let Bks be an integer, dks =

⌈
logBks

q
⌉
. To switch an MK-LWE ciphertext under

the secret (1, s1, · · · , sk) ∈ ZkN+1 to the secret (1, z1, · · · , zk) ∈ Zkn+1, the previ-
ous method is to create a set of LWE ciphertexts that encrypts vBl

kssi,j under zi
for party i where i ∈ [k], j ∈ [0, · · · , N−1], l ∈ [0, · · · , dks−1], v ∈ [1, · · · , Bks−1].
Instead, we pack these LWE ciphertexts of party i into a small number of RLWE
ciphertexts, and the server can extract them as LWE ciphertexts almost for free
using sample extraction. This approach reduces the key-switching key size from
Õ(kn2) bits to Õ(kn) bits, which can be of independent interest to other schemes
(e.g., the single-key FHEs [15,11,12,26,35]) as well.

1.3 Organization

After giving some background in Sec. 2, we present a multi-key matrix NTRU-
based encryption scheme in Sec. 3. In Sec. 4, we present our new hybrid product.
We show how to use our new hybrid product to bootstrap the multi-key matrix
NTRU-based and LWE-based ciphertexts in Sec. 5 and Sec. 6, respectively. Fi-
nally, we report our implementation in Sec. 7.

2 Preliminaries

2.1 Notation

The set of real numbers (integers) is denoted by R (Z, resp.). Vectors and matri-
ces are denoted as lowercase bold letters (e.g. a, b) and uppercase bold letters
(e.g. A, B), respectively. The i+1-th column of a matrix A is denoted by coli(A)
and Ai,j denotes the element in the i-th row and j-th column.

The inner product of two vectors a and b is denoted by the symbol ⟨a,b⟩. The
index set [k] represents the set of integers {1, 2, ..., k}. For positive integers q,Q
and power of two N , by R and Rq (resp., RQ) we denote the 2N -th cyclotomic
ring R = Z[X]/(XN +1) and its quotient ring Rq = R/qR (resp., RQ = R/QR).

For polynomial a =
∑N−1

i=0 aiX
i ∈ R, we use Cof(a) to denote the coefficient

vector of a, and we denote the N -dimensional anti-circulant matrix of a by

A(a) :=


a0 a1 · · · aN−1

−aN−1 a0 · · · aN−2

... . . . . . . ...
−a1 −a2 · · · a0

 =


(Cof(a))

(Cof(a ·X))
...(

Cof(a ·XN−1)
)
 .
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We use ← to denote sampling an element uniformly at random from some
distribution. By ∥ · ∥ and ∥ · ∥∞, we denote the ℓ2 and ℓ∞ norms. By ⌈·⌉, ⌊·⌋ and
⌊·⌉ we denote the ceiling, floor and round function, respectively.

2.2 Gadget Decomposition

For integers q, B, let d =
⌈
logq B

⌉
and gq,B =

[
B0, . . . , Bd−1

]
∈ Zd be a gadget

vector. We write g when q and B are clear from the context. For an integer
k ≥ 1, the gadget matrix is defined as

Gk = Ik ⊗ gt =


gt 0 . . . 0
0 gt . . . 0
...

... . . . ...
0 0 . . . gt

 ∈ Zdk×k.

For any a ∈ Z, the gadget decomposition of a is defined as its signed decomposi-
tion in base B as g−1(a) = (a0, · · · , ad−1) with each ai ∈ (−B/2, B/2] such that
a = ⟨g−1(a),g⟩. The definition can be naturally extended to any polynomial in
Rq. For any a =

∑N−1
i=0 aiX

i, we define g−1(a) =
∑N−1

i=0 g−1(ai)X
i.

In practice, we can ignore the first element of g−1(a) and g to obtain g−1(a) =
(a1, · · · , ad−1) which satisfies a ≈ ⟨g−1(a),g⟩, thereby achieving optimization in
both computation and storage.

2.3 Multi-key fully homomorphic encryption

Let M be the message space with arithmetic structure. Let k be the bound
of the involved keys. A multi-key FHE scheme is a tuple of PPT algorithms
(Setup,KeyGen,Enc,Dec,Eval) having the following properties:

• Setup
(
1λ
)

: Given the security parameter λ, outputs a public parameter pp.
• KeyGen(pp): Outputs a public key pk and secret key sk.
• Enc(m, pk): Given the public key pk and a message m ∈ M, output a ci-

phertext ct. For convenience, we assume that ct contains an index to pk.
• Dec

(
ctj , {ski}i∈Tj

)
: Let Tj ⊆ [k] be a set. Given a ciphertext ctj corre-

sponding to a set of keys Tj ⊆ [k] and a tuple of secret keys {ski}i∈Tj
,

outputs the message m ∈M.
• Eval

(
C, (ct1, · · · , ctl), {pki}i∈T

)
: Let T = T1 ∪ · · · ∪ Tℓ. Given a circuit C, a

set of public keys {pki}i∈T and a tuple of multi-key ciphertexts ct1, · · · , ctl
where each ciphertext ctj is evaluated using pkTj

= {pkd, ∀d ∈ Tj} for j ∈ [l],
outputs a ciphertext ct.

Compactness. We say that a multi-key FHE scheme is compact if there exists
a polynomial poly(·, ·) such that the length of a ciphertext associated with k
keys is bounded by a polynomial poly(λ, k).
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Correctness. Let ctj be a ciphertext (associated with the set Tj) such that
Dec

(
ctj , {ski}i∈Tj

)
= mj for 1 ≤ j ≤ l. Let C : Mℓ → M be a circuit and

ct← Eval
(
C, (ct1, · · · , ctl), {pki}i∈T

)
for T = T1 ∪ · · · ∪ Tℓ. We say that a multi-

key FHE scheme is correct if

Pr
[
Dec

(
ct, {ski}i∈T

)
̸= C (m1, . . . ,ml)

]
= negl(λ).

2.4 Hard Problems

Let q, n,Q be three integers, and N a power of two. Let RQ = ZQ[X]/
(
XN + 1

)
.

Let χe(resp.,χ′
e) be a noise distribution over Z (resp., RQ). Let χs (resp., χ′

s) be
a secret distribution over Z (resp., R).

The LWE Problem [33]. The decisional LWEn,q,χs,χe problem is to distin-
guish the following two distributions:

– {(A,b = A · s+ e)|A← Zk1×n
q , s← χn

s , e← χk1
e },

– {(U,v)|U← Zk1×n
q ,v← Zk1

q }.

The decisional LWEn,q,χs,χe
assumption says that it is hard for any PPT al-

gorithms to solve decisional LWEn,q,χs,χe
with non-negligible advantage over a

random guess.

The RLWE Problem [28]. The decisional RLWEN,Q,χ′
s,χ

′
e

problem is to dis-
tinguish the following two distributions:

{(a,b = a · s+ e)|a← Rk2

Q , s← χ′
s, e← χ′k2

e and {(u,v)|u,v← Rk2

Q }}.

The decisional RLWEN,Q,χ′
s,χ

′
e

assumption says that it is hard for any PPT
algorithms to solve decisional RLWEN,Q,χ′

s,χ
′
e

with non-negligible advantage over
a random guess.

The NTRU Problem [5,35] (in the vector form). For an integer d, the deci-
sional NTRUN,Q,χ′

s,χ
′
e

problem is to distinguish the following two distributions:
– {(g0/f, · · · , gd−1/f) |f ← χ′

s, g0, · · · , gd−1 ← χ′
e},

– {(u1, · · · , ud)|u1, · · · , ud ← RQ}.

The decisional NTRU assumption (in the vector form) says that it is hard for
any PPT algorithms to solve decisional NTRUN,Q,χ′

s,χ
′
e

with non-negligible ad-
vantage over a random guess.
The matrix NTRU Problem [19,16]. The decisional matrix NTRUn,q,χs,χe

problem is to distinguish the following two distributions:

{G · F−1|F← χn×n
s ,G← χm×n

e } and {U|U← Zm×n
q }.

The decisional matrix NTRUn,q,χs,χe
assumption says that it is hard for any

PPT algorithms to solve decisional matrix NTRUn,q,χs,χe
with non-negligible

advantage over a random guess.
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The Hint-NTRU problem [17] (in the vector form). The decisional Hint-
NTRUN,Q,χ′

s,χ
′
e

problem is to distinguish the following two distributions:

– {(h = e1/s, a,b = a · s+ e2)|s← χ′
s, e1, e2 ← χ′d

e ,a← Rd
Q},

– {(u,v,w)|u,v,w← Rd
Q}.

The decisional Hint-NTRUN,Q,χ′
s,χ

′
e

assumption says that it is hard for any PPT
algorithms to solve decisional Hint-NTRUN,Q,χ′

s,χ
′
e

with non-negligible advan-
tage over a random guess.

In Eurocrypt 2024, Esgin, Espitau, Niot et al. [17] first introduced the Hint-
NTRU problem, asserting that an adversary against Hint-NTRU can break the
indistinguishability of the inhomogeneous NTRU instance [19] for appropriate
choices of parameters.

As the FHE schemes in [19,35,5], our MK-FHEs essentially rely on the KDM-
security of the (matrix) NTRU problems and Hint-NTRU problems. We formally
define the problems below.

The KDM-form NTRU Problem [35] (in the vector form). For an arbi-
trarily chosen (and public known) m ∈ RQ and integers B, d, the decisional
KDM-form NTRUN,Q,χ′

s,χ
′
e

problem is to distinguish the following two distribu-
tions:

– {
(
(g0 +B0 ·m)/f, · · · , (gd−1 +Bd−1 ·m)/f

)
|f ← χ′

s, g0, · · · , gd−1 ← χ′
e},

– {(u1, · · · , ud)|u1, · · · , ud ← RQ}.

The decisional KDM-form NTRUN,Q,χ′
s,χ

′
e

assumption says that it is hard for
any PPT algorithms to solve decisional KDM-form NTRUN,Q,χ′

s,χ
′
e

with non-
negligible advantage over a random guess.

The KDM-form matrix NTRU Problem. For an arbitrarily chosen (and
public known) M ∈ Zm×n

q , the decisional KDM-form matrix NTRUn,q,χs,χe

problem is to distinguish the following two distributions:

{(G+M) · F−1|F← χn×n
s ,G← χm×n

e } and {U|U← Zm×n
q }.

The decisional KDM-form matrix NTRUn,q,χs,χe assumption says that it is hard
for any PPT algorithms to solve decisional KDM-form matrix NTRUn,q,χs,χe

with non-negligible advantage over a random guess.
Note that the standard (matrix) NTRU problem is essentially a special case

of the KDM-form (matrix) NTRU problem with m = 0 or M = 0. Intuitively,
the hardness of the KDM-form (matrix) NTRU problem is equivalent to the
KDM-security of the standard (matrix) NTRU encryption which encrypts m/f
or G·F−1 [35,5]. We also note that the matrix inhomogeneous NTRU (MiNTRU)
problem considered in [19] is basically a special case of our KDM-form matrix
NTRU problem with M being fixed to a gadget matrix. As shown in [19], for an
appropriate choice of error distributions, the above KDM-form matrix NTRU
problem is polynomially equivalent to the MiNTRU problem, which in turn is
not easier than a trapdoor version of the standard LWE problem [19].
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The KDM-form Hint-NTRU problem (in the vector form). For an arbi-
trarily chosen (and public known) m ∈ RQ, integers B, d and gadget vector
g = (B0, · · · , Bd−1), the decisional KDM-form Hint-NTRUN,Q,χ′

s,χ
′
e

problem is
to distinguish the following two distributions:

– {((e1 + g ·m)/s, a,b = a · s+ e2)|s← χ′
s, e1, e2 ← χ′d

e ,a← Rd
Q},

– {(u,v,w)|u,v,w← Rd
Q}.

The decisional KDM-form Hint-NTRUN,Q,χ′
s,χ

′
e

assumption says that it is hard
for any PPT algorithms to solve decisional KDM-form Hint-NTRUN,Q,χ′

s,χ
′
e

with
non-negligible advantage over a random guess.

Note that the standard Hint-NTRU problem is essentially a special case of
the KDM-form Hint-NTRU problem with m = 0. Essentially, the hardness of
the KDM-form Hint-NTRU problem is equivalent to the KDM-security of the
standard Hint-NTRU encryption which encrypts m/s.

3 First-layer Matrix NTRU-based Multi-Key Encryption

In this section, we propose a first-layer multi-key encryption HE that supports
multi-key NAND operation in a natural way based on the matrix NTRU assump-
tion. Formally, our construction HE = (Setup,KG,Enc,MK-Dec,MK-NAND) con-
sists of five algorithms below:

• HE.Setup(1λ): Given the security parameter λ, set the matrix dimension n,
ciphertext modulus q, secret distribution χs and error distribution χe over
Z. Return the public parameter pp = (n, q, χs, χe).

• HE.KG(pp): Sample F ← χn×n
s until F−1 exists in Zn×n

q . Define sk := F.
Create a public evaluation key as evk := (e + ⌊5 · q/8⌉ · (1,0)) · F−1 ∈ Zn

q ,
where e← χn

e . Output (evk, sk).
• HE.Enc(m,F): Given m ∈ {0, 1}, sample e′ ← χn

e . Let ∆ := ⌊q/4⌉ and
output

c = (e′ +∆ · (m,0)) · F−1 ∈ Zn
q .

• HE.MK-Dec(ct, {Fi}i∈[k]) : Given a ciphertext ct = (c1, · · · , ck) ∈ Zkn
q after

NAND gate evaluation under the secret key (F1, · · · ,Fk) ∈ (Zn×n
q )k, which

satisfies
∑k

i=1 ⟨ci, col0(Fi)⟩ ≈
⌊
q
2

⌉
m. Compute⌊

2 ·
∑k

i=1 ci · col0(Fi)

q

⌉
∈ Z2.

• HE.MK-NAND(ct1, ct2, evki) : Given ct1 = (c1,j1 , · · · , c1,jk1
) ∈ Zk1n

q sat-
isfying

∑jk1
i=j1
⟨c1,i, col0(Fi)⟩ ≈

⌊
q
4

⌉
m1 , ct2 = (c2,j1 , · · · , c2,jk2

) ∈ Zk2n
q

satisfying
∑jk2

i=j1
⟨c2,i, col0(Fi)⟩ ≈

⌊
q
4

⌉
m2 and the evaluation key evki of
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party i ∈ [k] as inputs, let k be the maximum number of different keys in-
volved in ct1 and ct2. Extend cti = (ci,j1 , · · · , ci,jki

) ∈ Zkin
q to the ciphertext

ct
′
i =

(
c′i,1, . . . , c

′
i,k

)
∈ Zkn

q where

c′i,j =

{
ci,ℓ if j = jℓ for some ℓ ∈ [ki]

0 otherwise

for i ∈ {1, 2} and j ∈ [k]. Compute the homomorphic NAND gate homo-
morphically as follows:

ct = ( 0, · · · ,0︸ ︷︷ ︸
(i−1)n zeros

, evki, 0, · · · ,0︸ ︷︷ ︸
(k−i)n zeros

)− ct
′
1 − ct

′
2 ∈ Zkn

q .

By Lemma 1, we show the correctness of the NAND gate evaluation.

Lemma 1. For i ∈ {1, 2}, let cti = (ci,j1 , . . . , ci,jki
) ∈ Zkin

q be the ciphertext
that encrypts mi under the secret key (Fj1 , . . . ,Fjki

) ∈ (Zn×n
q )ki with noise ei,

satisfying ⟨ci,j1 , col0(Fj1)⟩ + · · · + ⟨ci,jki
, col0(Fjki

)⟩ =
⌊
q
4

⌉
· mi + ei,0, where

ei,0 is the first element of ei. Let evki be the evaluation key of party i with a
noise e. Let e0 be the first element of e. Let ct = HE.MK-NAND(ct1, ct2, evki). If
|e0−e1,0−e2,0| < q−12

8 then HE.MK-Dec(ct, {Fi}i∈[k]) outputs NAND(m1,m2) =
1−m1m2.

Proof. Let F = (col0(Fj))j∈[k]. For 1 ⩽ i ⩽ 2, let ct
′
i = (c′i,1, · · · , c′i,k) be the

extended ciphertext of cti. By definition, we have
〈
ct

′
i,F
〉
= ei,0 +

⌊
q
4

⌉
mi. Let

e0 be the first element of e, then

⟨ct′,F⟩ =
〈(

0, · · · ,0, e+ ⌊5 · q/8⌉ · (1,0) · F−1
i ,0, · · · ,0

)
− ct

′
1 − ct

′
2,F

〉
=

5q

8
+ e0 + ϵ−

(
e1,0 +

q

4
m1 +m1ϵ1

)
−
(
e2,0 +

q

4
m2 +m2ϵ2

)
= e0 − e1,0 − e2,0 ±

q

8
+ ϵ−m1ϵ1 −m2ϵ2 +

q

2
(1−m1m2) ,

where ϵ, ϵ1, ϵ2 are round-off errors and |ϵ| ⩽ 1
2 , |ϵ1| ⩽ 1

2 , |ϵ2| ⩽ 1
2 , respectively. Let

e = ϵ −m1ϵ1 −m2ϵ2, we have |e| ⩽ 3
2 . The output of HE.MK-Dec(ct, {Fi}i∈[k])

is ⌊
2

q
· (e+ e0 − e1,0 − e2,0 ±

q

8
+

q

2
(1−m1m2))

⌉
.

Thus, the output is equal to 1−m1m2 as long as | 2q ·(e+e0−e1,0−e2,0± q
8 )| <

1
2 ,

which implies |e0 − e1,0 − e2,0| <
(

1
2 −

1
4 −

3
q

)
· q2 = q−12

8 . □

Theorem 1 (Security of HE). Let pp = (n, q, χs, χe) be some parameters such
that the KDM-form matrix NTRU problem is hard. Then, for any m ∈ Zq, if
(evk,F) ← HE.KG(pp), c ← HE.Enc(m,F), it holds that the joint distribution
(evk, c) is computationally indistinguishable from uniform over Zn

q × Zn
q .
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Note that our multi-key construction is essentially a natural extension of
the single-key MNTRU encryption based on the KDM-form MNTRU problems
in [5]. The proof is similar and directly, we omit the details.

4 Second-layer NTRU-based Uni-Encryption

In this section, we present a second-layer NTRU-based uni-encryption that sup-
ports an efficient hybrid product.

Our uni-encryption Π = (Setup,KG,UniEnc,HbProd) consists of four algo-
rithms:

• Setup(1λ): Given the security parameter λ, set the polynomial degree N ,
ciphertext modulus Q, gadget vector dimension d, secret distribution χ′

s and
error distribution χ′

e over R. Generate a random vector a← Rd
Q. Return the

public parameter pp′ = (N,Q, d, a, χ′
s, χ

′
e).

• KG(pp′): Sample a polynomial s← χ′
s uniformly at random until s−1 exists

in RQ and a noise e ← χ′d
e . Compute the public key b = −a · s + e and

output (s,b).
• UniEnc(µ, s): For a message µ ∈ RQ and a secret key s, sample r ← χ′

s

uniformly at random, and noise e1, e2 ← χ′d
e . Compute the ciphertext d =

r · a + µ · g + e1 ∈ Rd
Q and f = e2 · s−1 + r · g · s−1 ∈ Rd

Q and output
(d, f) ∈ Rd

Q ×Rd
Q.

• HbProd(c, {bj}j∈[k], (di, fi)): Given an NTRU-based multi-key ciphertext
c = (c1, · · · , ck) ∈ Rk

Q, the public keys {bj}j∈[k] of k keys involved in c,
and a uni-encryption (di, fi) of party i as inputs, return an MK-NTRU ci-
phertext c′ ∈ Rk

Q as follows:
(a) Compute the following inner products:

uj =
〈
g−1 (cj) ,di

〉
for 1 ⩽ j ⩽ k,

v =

k∑
j=1

〈
g−1 (cj) ,bj

〉
.

(b) Output c′ = (c′1, . . . , c
′
k) ∈ Rk where

c′j =

{
ui +

〈
g−1(v), fi

〉
if j = i,

uj otherwise.

By Lemma 2, we show that our uni-encryption supports homomorphic additions.
In Lemma 3, we establish the correctness and estimate noise bound.

Lemma 2. Let UniEnc(µ1, s) = (d1, f1),UniEnc(µ2, s) = (d2, f2) ∈ Rd
Q × Rd

Q

be two uni-encryption ciphertexts. We define the homomorphic addition between
UniEnc(µ1, s) and UniEnc(µ1, s) as

UniEnc(µ1, s) + UniEnc(µ2, s) = (d1 + d2, f1 + f2),
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which is also a uni-encryption ciphertext that encrypts µ1 + µ2 under the secret
s. And for a monomial u with ternary coefficient, u ·UniEnc(µi, s) = (u ·di, u · fi)
is also a uni-encryption ciphertext that encrypts u · µi under the secret s.

Moreover, if the variance of the noise distribution used in generating uni-
encryption is V ar(e), then the noise variance of the ciphertext (d1 +d2, f1 + f2)
and u · µi is bounded by 2V ar(e) and V ar(e), respectively.

Proof. By definition, we have that

d1 = r1 · a+ µ1 · g + e1,1 ∈ Rd
Q, f1 = e1,2 · s−1 + r1 · g · s−1 ∈ Rd

Q

d2 = r2 · a+ µ2 · g + e2,1 ∈ Rd
Q, f2 = e2,2 · s−1 + r2 · g · s−1 ∈ Rd

Q

Therefore, d1 + d2 = (r1 + r2) · a + (µ1 + µ2) · g + e1,1 + e2,1 ∈ Rd
Q and

f1+f2 = (e1,2+e2,2) ·s−1+(r1+r2) ·g ·s−1 ∈ Rd
Q. We have that (d1+d2, f1+f2)

is also a uni-encryption ciphertext that encrypts µ1 + µ2 and the noise variance
of (d1 + d2, f1 + f2) is bounded by 2V ar(e).

By definition, we also have that

(udi, ufi) = (r′i · a+ u · µi · g + e′i,1, e
′
i,2 · s−1 + r′i · g · s−1)

is also a uni-encryption ciphertext that encrypts u · µi where r′i = u · ri, e′i,1 =
u · ei,1, e′i,2 = u · ei,2 for i ∈ {1, 2}. By the fact u is a monomial with a ternary
coefficient, we have V ar(e′i,1) ≤ V ar(e) and V ar(e′i,2) ≤ V ar(e). □

Lemma 3 (Hybrid Product). Let c = (c1, · · · , ck) ∈ Rk
Q be an MK-NTRU

ciphertext under the secret key s = (s1, · · · , sk) ∈ Rk, and let {bj}j∈[k] be the
public keys of k keys associated with c. Let (di, fi) ← UniEnc(µi, si) be the uni-
encryption of µi ∈ RQ for party i, and let c′ ← HbProd(c, {bj}j∈[k], (di, fi)) be
the output of the hybrid product, we have that ⟨c′, s⟩ ≈ µi ⟨c, s⟩.

Moreover, if the noise variance in generating (di, fi) and {bj}j∈[k] is V ar(e)
and the variance of the secret is V ar(s), then the variance of the increased noise
in the resulting ciphertext is upper bounded by (2kNV ar(s) + 1)B

2

12 dNV ar(e).



18

Proof. By definition, we have that c′ is generated by adding
〈
g−1(v), fi

〉
to the

i−th components of (u1, . . . , uk). Thus, we have

⟨c′, s⟩ =
k∑

j=1

uj · sj +
〈
g−1(v), fi

〉
· si =

k∑
j=1

〈
g−1(cj),di

〉
· sj + ⟨g−1(v), fi · si⟩

=

k∑
j=1

〈
g−1(cj), ri · a+ µi · g + ei,1

〉
· sj + ⟨g−1(v), ri · g + ei,2⟩

= µi

k∑
j=1

cjsj + ri ·
k∑

j=1

⟨g−1(cj), sj · a⟩+
k∑

j=1

⟨g−1(cj), ei,1⟩ · sj

+ ri ·
k∑

j=1

〈
g−1 (cj) ,−a · sj + ej

〉
+ ⟨g−1(v), ei,2⟩

= µi

k∑
j=1

cjsj +

k∑
j=1

⟨g−1(cj), ei,1⟩ · sj + ri ·
k∑

j=1

〈
g−1 (cj) , ej

〉
+ ⟨g−1(v), ei,2⟩

and the noise variance is bounded by

(kNV ar(sj) + 1)
B2

12
dNV ar(e) + kNVar(ri)

B2

12
dNV ar(e)

= (2kNV ar(s) + 1)
B2

12
dNV ar(e)

This completes the proof. □

In the following, we will use σ2
HP1 = (V ar(s)kN + 1)dNB2

12 V ar(e), and σ2
HP2 =

V ar(s)kN dNB2

12 V ar(e) to denote the variance of the increased noise (with re-
spect to the input ciphertext) for the hybrid product.

By Theorem 2, we show that our NTRU-based Uni-Encryption is provably
IND-CPA secure in the standard model.
Theorem 2 (Security of the second-layer NTRU-based Uni-Encryption).
Let pp′ = (N,Q, d, a, χ′

s, χ
′
e) ← Setup(1λ) be the parameters such that standard

RLWEN,Q,χ′
s,χ

′
e

and the KDM-form Hint-NTRUN,Q,χ′
s,χ

′
e

assumptions hold, we
have that our second-layer NTRU-based Uni-Encryption is provably IND-CPA
secure in the standard model.

Proof. We prove Theorem 2 by using a series of games G0 ∼ G2, where G0

is the standard IND-CPA game, and G2 is a random one. Suppose that there
exists an adversary A = (A1,A2) which can break the IND-CPA security of our
hybrid product with advantage ε. Let Hi be the event that A correctly guesses
in game Gi, then the adversary’s advantage AdvHi

[A] in game Gi is exactly
|Pr [Hi]− 1/2|.

Game G0. This game is the real IND-CPA security game. Formally, the chal-
lenger C works as follows:
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KeyGen. First randomly choose s ← χ′
s, e ← χ′d

e , compute b = −a · s + e.
Then, return b to the adversary A1, and keep the secret key s private.

Challenge. After receiving two equal length plaintexts M0,M1 ∈ M from the
adversary A1, the challenger C first randomly chooses a bit µ∗ ← {0, 1}, and

r ← χ′
s, e1 ← χ′d

e , e2 ← χ′d
e .

Then, it defines

d = r · a+Mµ∗ · g + e1 ∈ Rd
Q, f = e2 · s−1 + r · g · s−1 ∈ Rd

Q

and returns the challenge ciphertext (d, f) to A2.

Finalize. Upon receiving a guess µ′ ∈ {0, 1} from A2, if µ′ = µ∗, the challenger
C outputs 1, else outputs 0.

Lemma 4.
∣∣Pr [H0]− 1

2

∣∣ = ϵ.

Proof. This lemma immediately follows the fact that C honestly simulates the
attack environment for A, and only outputs 1 if and only if µ′ = µ∗.

Game G1. This game is identical to G0 except that the challenger C changes the
KeyGen phase and Challenge phase as follows:

KeyGen. Randomly choose s← χ′
s, b′ ← χ′d

e . Then, return b′ to the adversary
A1, and keep the secret key s private.

Challenge. After receiving two equal length plaintexts M0,M1 ∈ M from the
adversary A1, the challenger C first randomly chooses a bit µ∗ ← {0, 1}, and

r ← χ′
s, e1 ← χ′d

e , f
′ ← Rd

Q.

Then, it defines
d = r · a+Mµ∗ · g + e1 ∈ Rd

Q

and returns the challenge ciphertext (d, f ′) to A2.

Lemma 5. Game G0 and G1 are computationally indistinguishable in the ad-
versary’s view. Moreover, |Pr [H1]− Pr [H0]| = negl(λ).

Proof. Since the differences between Game G0 and G1 is that C replaces b =
−a · s + e ∈ Rd

Q and f = e2 · s−1 + r · g · s−1 in Game G0 with a randomly
chosen b′ ∈ Rd

Q and f ′ in Game G1. Under the KDM-form Hint-NTRUN,Q,χ′
s,χ

′
e

assumption, we have that |Pr [H1]− Pr [H0]| = negl(λ).

Game G2. This game is similar to game G1 except that the challenger C changes
the Challenge phase as follows:
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Challenge. After receiving two equal length plaintexts M0,M1 ∈ M from the
adversary A1, the challenger C first randomly chooses a bit µ∗ ← {0, 1}, and

h← Rd
Q, f

′ ← Rd
Q.

Then, it defines
d′ = h+Mµ∗ · g ∈ Rd

Q

and returns the challenge ciphertext (d′, f ′) to A2.

Lemma 6. Under the RLWEN,Q,χ′
s,χ

′
e

assumption, we have that Game G1 and
G2 are computationally indistinguishable in the adversary’s view. Moreover,
|Pr [H2]− [H1]| = negl(λ).

Proof. This lemma follows from that the only difference between Games G1 and
G2 is that C replaces r · a+ e1 in G1 with a random one h← Rd

Q in G2.

Lemma 7.
∣∣Pr [H2]− 1

2

∣∣ ⩽ negl(λ).

Proof. This lemma directly follows from that h in Game G2 is uniformly random,
and statistically hides the information of Mµ∗ in h+Mµ∗ · g.

By Lemmas 4∽7, we have that ε =
∣∣Pr [H0]− 1

2

∣∣ ⩽ negl(λ). This completes the
proof of Theorem 2. □

5 Bootstrapping First-layer matrix NTRU-based
Multi-Key Ciphertexts.

In this section, we describe how to apply our second-layer NTRU-based hy-
brid product to bootstrap a first-layer matrix NTRU-based multi-key ciphertext.
In Sec.5.1, we described the multi-key NTRU modulus switching technique. In
Sec.5.2, a key-switching technique is introduced to transform an MK-NTRU ci-
phertext back into a multi-key matrix NTRU ciphertext. In Sec.5.3, we present
the bootstrapping algorithm and analyze its correctness.

5.1 Modulus Switching for MK-NTRU ciphertext

To transform an MK-NTRU ciphertext from modulus Q to q, we can multiply
it by q/Q and round the result to the nearest integer.

Lemma 8. Given an MK-NTRU ciphertext c = (c1, · · · , ck) ∈ Rk
Q that encrypts

m ∈ {0, 1} with secret key s = (s1, · · · , sk) ∈ Rk, where
∑k

i=1 cisi =
⌊
Q
4

⌉
m+ e,

the MK-NTRU modulus switching procedure NModSwitch(c, q) is defined as

NModSwitch(c, q) = (c′1, · · · , c′k) = (

N−1∑
i=0

⌊
q

Q
c1,i

⌉
Xi, · · · ,

N−1∑
i=0

⌊
q

Q
ck,i

⌉
Xi),



21

where cj,i denotes the i-th coefficient for cj (j ∈ [k]). Then, (c′1, · · · , c′k) is
an MK-NTRU ciphertext that encrypts the same message under the secret key
s ∈ Rk. Moreover, if the noise variance of c is V ar(e), then the noise variance of
the ciphertext after modulus switching is bounded by ( q

Q )2V ar(e)+1+
∑k

i=1 ∥si∥
12 .

Proof. Let
∑k

i=1 cisi =
⌊
Q
4

⌉
m+ e. By definition, we have

k∑
i=1

c′i · si =
k∑

i=1

⌊
q

Q
ci

⌉
· si

=

k∑
i=1

q

Q
ci · si +

k∑
i=1

ϵi · si

=
⌊q
4

⌉
m+

q

Q
· e+ ϵ0 +

k∑
i=1

ϵi · si

where ϵ0, ϵ1 is a polynomial with infinite norm bounded by 1 and 1
2 , respectively.

The noise variance of the ciphertext after modulus switching is bounded by

(
q

Q
)2V ar(e) + 1 +

∑k
i=1 ∥si∥
12

.

This completes the proof. □

For this modulus switching, we denote σ2
NMS = 1+

∑k
i=1 ∥si∥
12 as the variance of

the increased noise (relative to the input ciphertext).

5.2 Key-switching from MK-NTRU Ciphertext to the base scheme

In this subsection, we define a pair of two algorithms (MN.KSKG,MN.KS) for key
switching the MK-NTRU ciphertext to the MNTRU-based first layer multi-key
ciphertext as follows:

• MN.KSKG(si,Fi): Given matrice Fi ∈ Zn×n
q , polynomial si ∈ R as inputs,

the algorithm first samples matrice Ei ← ZNdks×n
q from some noise distri-

bution over Zq and outputs

KSKi = (Ei +GN · A(si) ·M) · F−1
i ∈ Z(N ·dks)×n

q ,

where A(si) denotes the anti-circulant matrix of si and M ∈ ZN×n
q is a

matrix with entries being all zeros except for M0,0 = 1.
• MN.KS(c, {KSKi}i∈[k]): Input an NTRU-based multi-key ciphertext c =

(c1, · · · , ck) ∈ Rk
q that encrypts a polynomial with constant coefficient m ∈

{0, 1} and the key-switching keys {KSKi}i∈[k] of keys associated with ct, it
first computes

ĉi =
(
g−1 (ci,0) , · · · ,g−1 (ci,N−1)

)
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where (ci,0, · · · , ci,N−1) is the coefficient vector of ci. Then it computes

ci = ĉi ·KSKi

for i ∈ [k] and outputs ct = (c1, · · · , ck).

Lemma 9 (Key-switching for MK-NTRU ciphertext). Let F1, · · · ,Fk ∈
Zn×n
q and s1, · · · , sk ∈ R be k matrices and polynomials, respectively. Let

c = (c1, · · · , ck) ∈ Rk
q be an MK-NTRU ciphertext that encrypts a polyno-

mial with constant coefficient m ∈ {0, 1} under the secret key (s1, · · · , sk) ∈
Rk. Then, for any KSKi = MN.KSKG(si,Fi), we have that the output of
MN.KS(c, {KSKi}i∈[k]) is a matrix NTRU based ciphertext that encrypts m ∈
{0, 1} under the secret key {F1, · · · ,Fk} ∈ Z(n×n)k

q .
Moreover, if the variance of the noise in c is V ar(e), and the variance of

the noise distribution used in generating KSKi is V ar(eks), then the variance
of the noise in the resulting ciphertext ct is upper bounded by

k
B2

ks

12
NdksV ar(eks) + V ar(e).

Proof. By definition, it is clear that
∑k

i=1 cisi =
⌊
q
4

⌉
m+ e and

ĉi ·KSKi =
(
g−1 (ci,0) , · · · ,g−1 (ci,N−1)

)
· (Ei +GN · A(si) ·M) · F−1

i

=
(
(g−1 (ci,0) , · · · ,g−1 (ci,N−1)) ·Ei + (Cof0(cisi), 0, · · · , 0)

)
· F−1

i ,

where Cof0(cisi) denotes the constant term of the polynomial cisi ∈ Rq. There-
fore, each ci is a matrix NTRU based ciphertext that encrypts the constant
term of cisi under the secret Fi ∈ Zn×n

q . Thus, the output ct = (c1, · · · , ck) is a
MNTRU-based multi-key ciphertext that encrypts m under the secret {Fi}i∈[k].

Moreover, since the variance of the noise distribution used in generating
KSKi is V ar(eks), we have V ar(ĉi · Ei) ≤ B2

ks

12 NdksV ar(eks) where ĉi =(
g−1 (ci,0) , · · · ,g−1 (ci,N−1)

)
, and the variance of the noise in the resulting ci-

phertext ct is upper bounded by k
B2

ks

12 NdksV ar(eks) + V ar(e). This completes
the proof. □

We use the symbol σ2
NKS = k

B2
ks

12 NdksV ar(eks) to denote the variance of the
increased noise (with respect to the input ciphertext) for key-switching.

5.3 Bootstrapping
In this subsection, we define a pair of algorithms (MN.BSKG,MN.BSEval) for
bootstrapping an MNTRU-based first-layer multi-key ciphertext as follows:
• MN.BSKG(Fi): Given a matrix Fi ∈ Zn×n

q as input, run (si,bi) ← KG(pp′)
and set the public key as PKi = bi. Let (fi,j)0≤j<n = col0(Fi) be the first
column of the secret matrix Fi. For (fi,j)0≤j<n, let{

f+
i,j = 1, if fi,j = 1

f+
i,j = 0, otherwise ,

{
f−
i,j = 1, if fi,j = −1
f−
i,j = 0, otherwise

for 0 ≤ j < n.
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– For i = 1, given secret key col0(F1) = (f1,0, . . . , f1,n−1) ∈ {−1, 0, 1}n,
create a set of ciphertexts that encrypts col0(F1) under s1 as follows:{

evk+
1,0 = UniEnc(f+

1,0/s1, s1)

evk−
1,0 = UniEnc(f−

1,0/s1, s1)
,

{
evk+

1,j = UniEnc(f+
1,j , s1)

evk−
1,j = UniEnc(f−

1,j , s1)
for j ̸= 0,

and creates an auxiliary ciphertext evk∗
1,0 = UniEnc(1/s1, s1). The eval-

uation key is defined as EVK1 = (evk∗
1,0, {evk

+
1,j , evk

−
1,j}0≤j<n).

– For i ̸= 1, given secret key col0(Fi) = (fi,0, . . . , fi,n−1) ∈ {−1, 0, 1}n,
create a set of ciphertext that encrypts col0(Fi) under si as follows:

evk+
i,j = UniEnc(f+

i,j , si), evk
−
i,j = UniEnc(f−

i,j , si) for 0 ≤ j < n.

The evaluation key is defined as EVKi = ({evk+
i,j , evk

−
i,j}0≤j<n).

Then it computes the key-switching key KSKi = MN.KSKG(si,Fi), and
outputs (EVKi,KSKi).

• MN.BSEval(ct, {PKi,EVKi,KSKi}i∈[k], r): Given a multi-key MNTRU ci-
phertext ct = (c1, · · · , ck) ∈ Zkn

q that encrypts m ∈ {0, 1} under the secret
key F1, · · · ,Fk ∈ Zn×n

q , the key-triple {PKi,EVKi,KSKi}i∈[k], and a ro-
tation polynomial r ∈ RQ as inputs, computes and returns ct

′ as described
in Algorithm 1.

Theorem 3 (Bootstrapping MNTRU-based Ciphertexts). Let q,Q be
two positive integers. Given a multi-key MNTRU ciphertext ct = (c1, · · · , ck) ∈
Zkn
q that encrypts m ∈ {0, 1} under the secret key F1, · · · ,Fk ∈ Zn×n

q , Algo-
rithm 1 outputs a refreshed multi-key MNTRU ciphertext that encrypts the same
message m ∈ {0, 1}. And the noise of the refreshed ciphertext is bounded by a
Gaussian with standard deviation

β =

√
q2

Q2
((2kn+ 3)σ2

HP1 + knσ2
HP2) + σ2

NMS + σ2
NKS

where σ2
HP1, σ2

HP2 are the variance of the increased noise for the hybrid product
described in Sec. 4 , σ2

NMS and σ2
NKS are the variance of the increased noise for

modulus switching and key switching for NTRU described in Sec. 5.1 and 5.2,
respectively.

Proof. To aid in description, we use MKNTRUQ,s(m) to represent an MK-NTRU
ciphertext encrypts m ∈ R under the secret s = (s1, · · · , sk) ∈ Rk. To perform
the correctness of the Algorithm 1, we first show that the output ACC of the
loop (step 3 ∼ 13) is an MK-NTRU ciphertext

MKNTRUQ,s(rX
∑k

i=1

∑n−1
j=0 ĉi,jfi,j ).

Let ACCi,j be the value of ACC after evaluating the i-th iteration of the outer
loop and the j-th iteration of the inner loop. By Lemma 2 and the correct-
ness of the CMUX gate, it’s clear that the value of evk1,0 is a uni-encryption
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Algorithm 1 MN.BSEval(ct, {PKi,EVKi,KSKi}i∈[k], r)

Input:
A multi-key MNTRU ciphertext ct = (c1, · · · , ck) ∈ Zkn

q ;
The key-triple {PKi,EVKi,KSKi}i∈[k];
A rotation polynomial r(X) ∈ RQ.

Output:
A multi-key MNTRU ciphertext ct

′ ∈ Zkn
q .

1: ĉt = (ĉ1, · · · , ĉk)←
⌊

2N·ct
q

⌉
∈ Zkn

2N

2: ACC← (r(X),0) ∈ Rk
Q

3: for i = 1; i < k + 1; i = i+ 1 do
4: for j = 0; j < n; j = j + 1 do
5: if i = 1, j = 0 then
6: evk1,0 ← evk∗

1,0 + (X ĉ1,0 − 1)evk+
1,0 + (X−ĉ1,0 − 1)evk−

1,0

7: ACC← HbProd(ACC, {PKl}l∈[k], evk1,0)
8: else
9: evki,j ← evk+

i,j − evk−
i,j ·X

−ĉi,j

10: ACC← ACC+ HbProd((X ĉi,j − 1)ACC, {PKl}l∈[k], evki,j)
11: end if
12: end for
13: end for
14: ACC ← NModSwitch(ACC, q)
15: ct

′ ← MN.KS(ACC, {KSKi}i∈[k])

16: return ct
′

ciphertext of (1 + (X ĉ1,0 − 1) · f+
1,0 + (X−ĉ1,0 − 1) · f−

1,0)/s1 = X ĉ1,0f1,0/s1,
and we can easily check that ACC1,0 is MKNTRUQ,s(rX

ĉ1,0f1,0) by the prop-
erty of hybrid product. Then, in the next iteration, evk1,1 = evk+

1,1 − evk−
1,1 ·

X−ĉ1,1 = UniEnc((f+
1,1 −X−ĉ1,1 · f−

1,1), s1) by Lemma 2 and ACC1,1 = ACC1,0 +

HbProd((X ĉ1,1 − 1)ACC1,0, {bl}l∈[k], evk1,1). By Lemma 3, we have that

⟨ACC1,1, s⟩ ≈ rX ĉ1,0f1,0(1 + (X ĉ1,1 − 1)(f+
1,1 −X−ĉ1,1 · f−

1,1)) = rX ĉ1,0f1,0+ĉ1,1f1,1

which is also an MKNTRU ciphertext MKNTRUQ,s(rX
ĉ1,0f1,0+ĉ1,1f1,1).

Now, it suffices to show that if ACCh,m = MKNTRUQ,s(rX
∑h

i=1

∑m
j=0 ĉi,jfi,j ),

then ACCh,m+1 also has the same formula. Note that at the h-th iteration of
the outer loop and the m + 1-th iteration of the inner loop, the algorithm will
first compute evkh,m+1 = evk+

h,m+1 − evk−
h,m+1 ·X−ĉh,m+1 and then compute

ACCh,m+1 = ACCh,m +HbProd((X ĉh,m+1 − 1)ACCh,m, {bl}l∈[k], evkh,m+1). And
we can easily check evkh,m+1 is UniEnc(f+

h,m+1−X−ĉh,m+1 ·f−
h,m+1). By Lemma

3, we have that

⟨ACCh,m, s⟩ ≈ rX
∑h

i=1

∑m
j=0 ĉi,jfi,j (1 + (f+

h,m+1 −X−ĉh,m+1 · f−
h,m+1))

= rX
∑h

i=1

∑m+1
j=0 ĉi,jfi,j .
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Also, we can check that if ACCh,n−1 = MKNTRUQ,s(rX
∑h

i=1

∑n−1
j=0 ĉi,jfi,j ), then

ACCh+1,n−1 also has the same formula. We omit the details here since it’s the
same as the previous analysis. Thus, after the loop, we have that ACCk,n−1 =

MKNTRUQ,s(rX
∑k

i=1

∑n−1
j=0 ĉi,jfi,j ). And by Lemma 8 and Lemma 9, the output

of Algorithm 1 is a refreshed multi-key MNTRU ciphertext.
Now, we analyze the noise of the resulting ciphertext. We begin by analyzing

the noise in ACC during the loop (steps 3 ∼ 13). During the first iteration
of the outer loop and the zeroth iteration of the inner loop, the variance of
the noise in evk1,0 is 5V ar(e), where the factor of 5 arises from the CMux
gate. Consequently, the variance of the noise in ACC1,0 is 5σ2

HP1 + σ2
HP2. In the

next iteration, the variance of the noise in evk1,1 reduces to 2V ar(e), while the
variance of the additional noise in ACC1,1 becomes 2σ2

HP1 + σ2
HP2. Therefore,

after the loop (step 3 ∼ 13), the variance of the noise is bounded by

5σ2
HP1 + σ2

HP2 + (kn− 1)(2σ2
HP1 + σ2

HP2) = (2kn+ 3)σ2
HP1 + knσ2

HP2.

By Lemma 8, we have the noise variance after the modulus switching from Q to
q in step 14 is bounded by q2

Q2 ((2kn + 3)σ2
HP1 + knσ2

HP2) + σ2
NMS . By Lemma

9, we have the noise variance after the key switching in step 15 is bounded by

q2

Q2
((2kn+ 3)σ2

HP1 + knσ2
HP2) + σ2

NMS + σ2
NKS .

This finally completes the proof. □

Theorem 4. If the standard deviation of refreshed noise for the output in Al-
gorithm 1 satisfies Theorem 3 except with negligible probability and the modulus
satisfies q = Õ(kn1.5), then the output of Algorithm 1 can be correctly decrypted
except with negligible probability.

Proof. Since σ2
HP1 = (V ar(s)kN+1)dNB2

12 V ar(e), σ2
HP2 = V ar(s)kN dNB2

12 V ar(e),
σ2
NMS = 1 +

∑k
i=1 ∥si∥
12 and σ2

NKS = k
B2

ks

12 NdksV ar(eks) where V ar(s) = O(1)
for uniform ternary distribution, q/Q, B, Bks, V ar(e), V ar(eks) ∈ O(1), d, dks ∈
O(log n), and ∥si∥ ∈ O(n) we have the final noise of the output ciphertext in
Algorithm 1 is Õ(kn1.5) except with negligible probability. By lemma 1, the cor-
rectness will hold as long as the standard deviation of refreshed noise after boot-
strapping is less than q−12

24 . Using six standard deviations as a high-probability
bound of the refreshed noise after bootstrapping, we have that q = Õ(kn1.5). □

6 Bootstrapping First-layer Multi-Key LWE Ciphertexts

In this section, we describe how to modify our second-layer scheme to bootstrap
a standard first-layer multi-key LWE ciphertext. In Sec. 6.1, we describe the
modulus switching for multi-key LWE ciphertext. In Sec. 6.2, we propose a light-
key switching technique. In Sec. 6.3, we present the bootstrapping algorithm and
analyze its correctness.
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6.1 Modulus Switching for Multi-Key LWE ciphertext

The modulus switching from Q to q can be easily achieved by multiplying the
targeted ciphertext with q/Q, and rounding the results to the nearest integer.

Lemma 10 (Modulus Switching for Multi-Key LWE ciphertext). Given
as input a multi-key LWE ciphertext ct = (b,a1, · · · ,ak) ∈ ZkN+1

Q under secret
key s = (1, s1, · · · , sk) ∈ ZkN+1, the LWE modulus switching procedure is defined
as

b′ =

⌊
q

Q
b

⌉
and a′i =

⌊
q

Q
ai

⌉
for i ∈ [k].

Then, (b′,a′1, · · · ,a′k) is a multi-key LWE ciphertext that encrypts the same
message under the same secret key s ∈ ZkN+1. Moreover, if the noise variance
of ct is α2, then the noise variance of the ciphertext after modulus switching is
bounded by ( q

Q )2α2 +
1+

∑k
i=1 ∥si∥
12 .

Proof. Let b+
∑k

i=1 ⟨ai, si⟩ =
⌊
Q
4

⌉
m+ e. By definition, we have

b′ +

k∑
i=1

⟨a′i, si⟩ =
⌊
q

Q
· b
⌉
+

k∑
i=1

⌊
q

Q
⟨ai, si⟩

⌉

=
q

Q
· b+

k∑
i=1

q

Q
⟨ai, si⟩+ ϵ0 +

k∑
i=1

⟨ϵi, si⟩

=
q

4
·m+

q

Q
· e+ ϵ0 +

k∑
i=1

⟨ϵi, si⟩

where ϵ0 ∈ [−1/2, 1/2] and ϵi ∈ [−1/2, 1/2]N are uniformly random. The noise
variance of the ciphertext after modulus switching is bounded by

(
q

Q
)2α2 +

1 +
∑k

i=1 ∥si∥
12

.

This completes the proof. □

For modulus switching, we denote σ2
LMS =

1+
∑k

i=1 ∥si∥
12 as the variance of the

increased noise (relative to the input ciphertext).

6.2 Light Key Switching for Multi-key LWE ciphertext

Let (b,a1, · · · ,ak) ∈ ZkN+1
q be an MK-LWE ciphertext under (1, s1, · · · , sk) ∈

ZkN+1. To switch the secret from (1, s1, · · · , sk) ∈ ZkN+1 to (1, z1, · · · , zk) ∈
Zkn+1 for some si = (si,j)0≤j≤N−1 and zi = (zi,j)0≤j<n. In prior methods
[9,25], each party i independently generates the key switching key as a set of LWE
ciphertexts that encrypts each value v ·Bl

ks ·si,j under the secret zi = (zi,j)0≤j<n
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where j ∈ ZN , l ∈ Zdks
, v ∈ [Bks−1] (See Appendix A). Instead, we sequentially

decode those values

{B0
kssi,0, 2B

0
kssi,0, · · · , (Bks − 1)Bdks−1

ks si,N−1}

into the coefficients of t polynomials m1(X), · · · ,mt(X) in Rq = Zq[X]/(XN+1)
where t = (Bks − 1)dks.

In this setting, for any value v · Bl
ks · si,j , one can check that it be decoded

in x-th coefficient my(X) polynomial where
⌈
y = (Bks−1)(jdks+l)+v

N

⌉
and x =

(Bks − 1)(jdks + l) + v − 1 mod N . To perform key-switching, we only need to
employ the sample extraction algorithm in [22] (Sec. IV, step 1), which we refer
to as SamExt for clarity, to extract the corresponding LWE ciphertext from the
RLWE ciphertext at the desired position. Notably, we only need to extract the
first n coefficients.

Formally, we define two algorithms (ML.PKSKG,ML.KS) as follows.

• ML.PKSKG(zi, si): Given two vectors zi = (zi,0, · · · , zi,n−1) ∈ Zn, s =
(si,0, · · · , si,N−1) ∈ ZN and two integers q, Bks as input, the algorithm com-
putes dks = ⌈logBks

q⌉ and sets zi =
∑n−1

j=0 zi,jX
j + 0Xn · · ·+ 0XN−1 ∈ Rq.

Then it decodes the values v ·Bl
kssi,j into t polynomials m1(X), · · · ,mt(X)

where j ∈ ZN , l ∈ Zdks
, v ∈ [Bks − 1] as described above. Then it samples

polynomial a′i,j ∈ Rq uniformly at random and ei,j ∈ Rq from some noise
distribution and computes PKSKi,j = (b′i,j , a

′
i,j) where b′i,j = a′i,j ·zi+ei,j+

mj(X) ∈ Rq for j ∈ [t]. Finally, it outputs PKSKi = {PKSKi,j}j∈[t] as
the key-switching key of party i.

• ML.KS(ct, {PKSKi}i∈[k]): Given as input a multi-key LWE ciphertext

ct =

(
b =

k∑
i=1

⟨ai, si⟩+ e+ ⌊q
4
⌉ ·m,a1, · · · ,ak

)
∈ ZkN+1

q

for ai = (ai,j)j∈ZN
∈ ZN

q and the key-switching keys {PKSKi}i∈[k] of keys
associated with ct, the algorithm first computes g−1(ai,j) = (vi,j,l)l∈Zdks

for
each i ∈ [k] and j ∈ ZN and then computes as follows:
• Key reconstruction. Extrac LWE ciphertexts

{(b′i,j,l,vi,j,l
,a′i,j,l,vi,j,l

)}i∈[k],j∈Zn,l∈Zdks

where b′i,j,l,vi,j,l
=
〈
a′i,j,l,vi,j,l

, zi

〉
+ ei,j,l,vi,j,l

+ vi,j,l · si,j · Bl
ks from

{PKSKi}i∈[k].
• Key switching. Compute

b′i =

N−1∑
j=0

dks−1∑
l=0,vi,j,l ̸=0

b′i,j,l,vi,j,l
and a′i =

N−1∑
j=0

dks−1∑
l=0,vi,j,l ̸=0

a′i,j,l,vi,j,l
,

and let b′ = b+
∑k

i=1 b
′
i. Finally, the algorithm outputs a multi-key LWE

ciphertext ct
′
= (b′,a′1, . . . , a

′
k) ∈ Zkn+1.
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Lemma 11 (Key-switching for MK-LWE ciphertext). Let s1, · · · , sk ∈
ZN and z1, · · · , zk ∈ Zn be some vectors. Let ct = (b,a1, · · · ,ak) ∈ ZkN+1

be a multi-key LWE ciphertext that encrypts m ∈ {0, 1} under the secret key
(1, s1, · · · , sk) ∈ ZkN+1. Let PKSKi = ML.PKSKG(zi, si) be the key-switching
key of party i. We have that c′ = ML.KS(ct, {PKSKi}i∈[k]) ∈ Zkn+1

q is a valid
multi-key LWE ciphertext that encrypts the same message m ∈ {0, 1} under the
secret key (1, z1, · · · , zk) ∈ Zkn+1.

Moreover, if the variance of the noise in ct is V ar(e) and the variance of
the noise distribution used in generating PKSKi is V ar(eks), we have that
the variance of the noise after key-switching is upper bounded by V ar(e) +
kdksNV ar(eks).

Proof. By definition, we have that ct = (b =
∑k

i=1 ⟨ai, si⟩+e+⌊ q4⌉·m,a1, · · · ,ak)
for some ai = (ai,0, · · · , ai,N−1) ∈ ZN

q and that PKSKi = {PKSKi,j}j∈[t] for
some PKSKi,j = (b′i,j = a′i,j · zi + ei,j + mj(X), a′i,j) where {mj(X)}j∈[t] are
polynomial that sequently decode the values

{B0
kssi,0, 2B

0
kssi,0, · · · , (Bks − 1)Bdks−1

ks si,N−1}

into their coefficients. By a trivial sample extraction, we get some LWE cipher-
texts LWE(vi,j,l) =

(
b′i,j,l,vi,j,l

,a′i,j,l,vi,j,l

)
where

b′i,j,l,vi,j,l
=
〈
a′i,j,l,vi,j,l

, zi

〉
+ ei,j,l,vi,j,l

+ vi,j,l · si,j ·Bl
ks

without increasing the noise variance. This lemma directly follows from the fact
that ai,j =

∑dks−1
l=0 vi,j,lB

l
ks and that

b′ =

k∑
i=1

N−1∑
j=0

dks−1∑
l=0,vi,j,l ̸=0

b′i,j,l,vi,j,l
+ b

=

k∑
i=1

N−1∑
j=0

dks−1∑
l=0,vi,j,l ̸=0

(
〈
a′i,j,l,vi,j,v

, zi

〉
+ ei,j,l,vi,j,v

+ vi,j,l · si,j ·Bl
ks) + b

=

k∑
i=1

⟨a′i, zi⟩+
k∑

i=1

N−1∑
j=0

dks−1∑
l=0,vi,j,l ̸=0

ei,j,l,vi,j,v
+

k∑
i=1

N−1∑
j=0

ai,jsi,j + b

=

k∑
i=1

⟨a′i, zi⟩+
k∑

i=1

N−1∑
j=0

dks−1∑
l=0,vi,j,l ̸=0

ei,j,l,vi,j,v
+ e+ ⌊q

4
⌉ ·m.

Therefore, the variance of the noise for the output ciphertext is bounded by
V ar(e) + kdksNV ar(eks). This completes the proof. □
For key switching, we denote σ2

LKS = kdksNV ar(eks) as the variance of the
increased noise.

The correctness of our light key switching for multi-key LWE ciphertexts is
guaranteed by Lemma 11. We now proceed to provide the necessary security
analysis.
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Security. Our ML.PKSKG’s security can be theoretically based on the standard
RLWE and NTRU assumptions as long as the secret in PKSK has sufficient
large entropy for appropriate choices of parameters.

Specifically,the RLWE ciphertexts generated by our ML.PKSKG basically
use a secret key zi chosen from a distribution always having zeros in the last
N − n coefficients over Rq, which is different from standard RLWE ciphertexts.
However, as long as zi has sufficient large entropy for appropriate choices of
parameters, the corresponding RLWE instances well fit the setting of Entropic
RLWE problem, which in turn is provably hard under the standard RLWE and
NTRU (a.k.a DSPR) assumptions [6].

Regarding concrete security, one often translates an RLWE instance in di-
mension N into N samples of LWE instances in the same dimension N , as the
best-known lattice attacks do not seem to offer additional advantages in solving
RLWE compared to standard LWE, and one can naturally treat a single RLWE
instance as N samples of LWE instances corresponding to a public anti-circular
matrix defined by the ring multiplication.

In our case, as the last N − n coefficients of the secret key are zeros, it is
equivalent to treat the last N −n columns of the public (anti-circular) matrix as
zeros when we translate the RLWE instance into LWE instances. In particular,
our RLWE instance in ML.PKSKG can be translated into N samples of LWE
instances in dimension n (instead of N for a standard RLWE instance). We have
actually taken this into account when choosing our concrete parameters using
the LWE estimator [3] in Sec. 7.

6.3 Bootstrapping

In this subsection, we define a pair of algorithms (ML.BSKG,ML.BSEval) for
bootstrapping an MK-LWE ciphertext as follows:

• ML.BSKG(zi): Given a secret key zi = (zi,j)0≤j<n ∈ {0, 1}n as input, the
algorithm first runs (si,bi)← KG(pp′) and sets the public key as PKi = bi.

– For i = 1, given secret key z1 = (z1,j)0≤j<n ∈ {0, 1}n, create a set of
ciphertexts that encrypts z1 under s1 as follows:

evk1,0 = UniEnc(z1,0/s1, s1), evk1,j = UniEnc(z1,j , s1) for j ̸= 0

and creates an auxiliary ciphertext evk∗
1,0 = UniEnc(1/s1, s1). The eval-

uation key is defined as EVK1 = (evk∗
1,0, {evk1,j}0≤j<n).

– For i ̸= 1, given secret key zi = (zi,j)0≤j<n ∈ {0, 1}n, create a set of
ciphertexts as follows

evki,j = UniEnc(zi,j , si) for 1 ≤ j < n.

The evaluation key is defined as EVKi = ({evki,j}0≤j<n).
Then it computes the key-switching key PKSKi = ML.PKSKG(zi, si), and
outputs (EVKi,PKSKi).
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• ML.BSEval(ct, {PKi,EVKi,PKSKi}i∈[k], r): Given a multi-key LWE ci-
phertext ct = (b,a1, · · · , ak) ∈ Zkn+1

q under the secret (1, z1, · · · , zk) ∈
Zkn+1, the key-triple {PKi,EVKi,PKSKi}i∈[k], and a rotation polyno-
mial as inputs, computes and returns ct

′ as described in algorithm 2.

Algorithm 2 ML.BSEval(ct, {PKi,EVKi,PKSKi}i∈[k], r)

Input:
A multi-key LWE ciphertext ct = (b,a1, · · · ,ak) ∈ Zkn+1

q ;
The key-triple {PKi,EVKi,PKSKi}i∈[k];
A rotation polynomial r(X) ∈ RQ.

Output:
A multi-key LWE ciphertext ct

′ ∈ Zkn+1
q .

1: ĉt = (b̂, â1, · · · , âk)←
⌊

2N·ct
q

⌉
∈ Zkn+1

2N

2: ACC← (r(X)X b̂,0) ∈ Rk
Q

3: for i = 1; i < k + 1; i = i+ 1 do
4: for j = 0; j < n; j = j + 1 do
5: if i = 1, j = 0 then
6: evk1,0 ← evk∗

1,0 + (X â1,0 − 1)evk1,0

7: ACC← HbProd(ACC, {PKl}l∈[k], evk1,0)
8: else
9: ACC← ACC+ HbProd((X âi,j − 1)ACC, {PKl}l∈[k], evki,j)

10: end if
11: end for
12: end for
13: ct1 ← SamExt(ACC)
14: ct2 ← LModSwitch(ct1, q)
15: ct

′ ← MN.KS(ct2, {PKSKi}i∈[k])

16: return ct
′

Theorem 5 (Bootstrapping LWE-based Ciphertexts). Let q,Q be two
positive integers. Given a multi-key LWE ciphertext ct = (b,a1, · · · ,ak) ∈ Zkn+1

q

that encrypts m ∈ {0, 1} under the secret key (1, z1, · · · , zk) ∈ Zkn+1, Algorithm
2 outputs a refreshed multi-key LWE ciphertext that encrypts the same message
m ∈ {0, 1}. The noise of the refreshed ciphertext is bounded by a Gaussian with
standard deviation

β =

√
q2

Q2
((kn+ 1)σ2

HP1 + knσ2
HP2) + σ2

LMS + σ2
LKS ,

where σ2
HP1, σ2

HP2 are the variance of the increased noise for hybrid product
described in Sec. 4, σ2

LMS and σ2
LKS are the variance of the increased noise for

modulus switching and key switching for LWE ciphertexts described in Sec. 6.1
and Sec. 6.2, respectively.
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Proof. The correctness of Algorithm 2 directly follows from the properties of
uni-encryption in Lemma 2, the correctness of the hybrid product in Lemma 3,
the modulus switching in Lemma 10, and the LWE key switching in Lemma 11.
The analysis process parallels that of Theorem 3, we omit it for brevity.

Next, we analyze the noise of the resulting ciphertext. We begin our analysis
by evaluating the noise within ACC during the loop (steps 3 ∼ 13). In the
first iteration of the outer loop and the initial iteration of the inner loop, the
variance of noise in evk1,0 is 2V ar(e), with the factor of 2 attributed to the
CMUX gate. Therefore, the variance of the noise in ACC1,0 is 2σ2

HP1 +σ2
HP2. In

the next iteration, the variance of the noise in evk1,1 reduces to V ar(e), while
the variance of the additional noise in ACC1,1 becomes σ2

HP1+σ2
HP2. Therefore,

after the loop (step 3 ∼ 12), the variance of the noise is bounded by

2σ2
HP1 + σ2

HP2 + (kn− 1)(σ2
HP1 + σ2

HP2) = (kn+ 1)σ2
HP1 + knσ2

HP2.

By Lemma 8, we have the noise variance after the modulus switching from Q to
q in step 14 is bounded by q2

Q2 ((kn+ 1)σ2
HP1 + knσ2

HP2) + σ2
LMS . By Lemma 9,

we have the noise variance after the key switching in step 15 is bounded by

q2

Q2
((kn+ 1)σ2

HP1 + knσ2
HP2) + σ2

LMS + σ2
LKS .

This finally completes the proof. □

Theorem 6. If the standard deviation of the noise for the output in Algorithm
2 satisfies Theorem 5 except with negligible probability and the modulus satisfies
q = Õ(kn1.5), then the output of Algorithm 2 can be correctly decrypted except
with negligible probability.

Proof. Since σ2
HP1 = (V ar(s)kN+1)dNB2V ar(e)

12 , σ2
HP2 = V ar(s)kN dNB2V ar(e)

12 ,
σ2
LMS =

1+
∑k

i=1 ∥si∥
12 and σ2

LKS = kdksNV ar(eks) where V ar(s) = O(1) for
uniform ternary distribution, q/Q, B, Bks, V ar(e), V ar(eks) ∈ O(1), d, dks ∈
O(log n), and ∥si∥ ∈ O(n) we have that the standard deviation of the noise in
Algorithm 2 after bootstrapping is Õ(kn1.5) except with negligible probability.
By the reference [15], the NAND gate correctness of MK-LWE ciphertext will
hold as long as the refreshed noise after bootstrapping is less than q

16 . Using
six standard deviations as a high-probability bound of the refreshed noise after
bootstrapping, we have that q = Õ(kn1.5). □

7 Analysis and Implementation

In this section, we first analyze the computational complexity and key size of
our algorithms proposed in Sec. 5 and Sec. 6, and then give a comparison to the
prior works. Finally, we present the implementation results.
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7.1 Analysis and Comparison

In Table 2, we give a theoretical comparison of the bootstrapping algorithms
among our MK-FHEs, CCS [9] and its variant KMS [25], where n is lattice di-
mension, k is the number of keys, d is the gadget decomposition dimension, #mul
denotes the number of multiplications in RQ for performing the bootstrapping,
and #RQ (resp.,#bits) denotes the number of RQ elements (resp., bits) for stor-
ing the evaluation key (resp., key-switching key) at each party. One can see that
our Alg. 2 outperforms CCS [9] and KMS [25] in both the evaluation key size
and the computational efficiency. Alg. 1 and Alg. 2 have the same computational
complexity, but the evaluation key size of Alg. 1 is almost twice that of Alg. 2.
This is primarily because the secret key of the first layer in Alg. 1 is ternary,
which requires us to employ a more complex CMUX gate. Moreover, the noise
magnitude in the KMS scheme is larger, which means that larger parameters
need to be chosen in implementation, resulting in higher costs.

Table 2. Comparison of different bootstrapping methods among ours vs. [9,25]

Method #mul #RQ #bits noise
CCS [9] 4k(k + 1)nd 3dn nNBksdks log2 Qks Õ(kn1.5)

KMS [25] 4nkd2 + 2k(2k + 3)d (4n+ 3)d nNBksdks log2 Qks Õ(kn2)

Ours (Alg. 1) (2k + 1)knd (4n+ 2)d nNdks log2 Qks Õ(kn1.5)

Ours (Alg. 2) (2k + 1)knd (2n+ 2)d 2N(Bks − 1)dks log2 Qks Õ(kn1.5)

7.2 Recommended Parameters

We observe that the state-of-the-art works CCS [9] and KMS [25] only achieve a
security level of 100 bits, as noticed in [1]. For a fair comparison, we first select
parameters that support 2, 4, 8, and 16 participants with a minimum security
level of 100 bits. We also give a set of parameters that support up to 2, 4, 8, and
16 participants with the standard 128-bit security. The recommended parameter
sets are presented in Table 3.

For LWE instances, we use a uniform binary key distribution and set the
noise standard deviation to 1.9. We use the LWE estimator [3] to determine
the concrete security7. For MNTRU instances, we use a uniform ternary key
distribution and set the noise standard deviation to 0.5 (resp., 0.75) for 128-
bit (resp., 100-bit). For the second-layer NTRU ciphertexts, we fix the noise
standard deviation to 0.4 (resp., 0.25) for 128-bit (resp., 100-bit) security with a
uniform ternary secret key. To determine the concrete security, two recent types
of attacks are considered. One is the Dense Sublattice Discovery (DSD) attack,
which focuses on recovering a basis vector from the dense sublattice within the
NTRU lattice. The other one is the Secret Key Recovery (SKR) attack, aiming
7 https://github.com/malb/lattice-estimator
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to directly recover a vector of the short lattice basis by the lattice attacks.
Ducas and van Woerden identified the fatigue point at Q = N2.484+o(1), where
the modulus Q is such that for values above Q, the DSD attack becomes more
efficient than SKR [16]. They have also provided an NTRU estimator8. One can
use it to determine the BKZ block size β′ required for the DSD attack or SKR
attack to break the (M)NTRU problem. To convert β′ to the concrete security,
we use the cost model T (d, β) := 20.292·β

′+16.4+log2(8·d) (in the NTRU setting
d = 2N) as in [5,24].

Table 3. Parameters Sets for Our MK-FHE.

k
First layer Second layer Estimate

Assumption (n, q,Bks, dks) logn q Key Dist. Noise Dist (N,Q,B, d) logN Q Key Dist. Noise Dist. Security
2

LWE (500, 32749, 32, 3) 1.67 < 2.484 binary σ = 1.9

(2048, 227, 29, 3)

2.45 < 2.484 ternary σ = 0.25 1004 (2048, 227, 29, 3)
8 (2048, 227, 29, 3)
16 (2048, 227, 29, 3)

2

LWE (635, 32749, 32, 3) 1.61 < 2.484 binary σ = 1.9

(2048, 227, 29, 3)

2.45 < 2.484 ternary σ = 0.4 1284 (2048, 227, 29, 3)
8 (2048, 227, 29, 3)
16 (2048, 227, 27, 4)

2

MNTRU (560, 45181, 32, 4) 1.69 < 2.484 ternary σ = 0.75

(2048, 227, 29, 3)

2.45 < 2.484 ternary σ = 0.25 1004 (2048, 227, 29, 3)
8 (2048, 227, 29, 3)
16 (2048, 227, 29, 3)

2

MNTRU (765, 45181, 32, 4) 1.61 < 2.484 ternary σ = 0.5

(2048, 227, 27, 4)

2.45 < 2.484 ternary σ = 0.4 1284 (2048, 227, 27, 4)
8 (2048, 227, 26, 5)
16 (2048, 227, 25, 6)

7.3 Experimental Results

All experiments run on the same laptop with a 12th Gen Intel(R) Core(TM)
i9-12900H @2.50 GHz and 32 GB RAM, running Ubuntu 20.04.6 LTS. We use
the OpenFHE library (v1.1.1) [4] to implement the proposed algorithms. Our
codes are publicly available at https://github.com/SKLC-FHE/MKFHE. In Table
4, we present the implementation results with the state-of-the-art works CCS [9]
and KMS [25], as detailed below. CCS∗ is implemented in C++ with the TFHE
library9, while KMS and CCS∗∗ are implemented in Julia10.

From Table 4 one can see that, for parameters at 100-bit security, the boot-
strapping time of our Alg. 1 is the same as CCS [9], and 2 times faster than
KMS [25]. Correspondingly, the bootstrapping key size of our Alg. 1 is 2.3 times
smaller than that of CCS [9], and 5.6 times smaller than that of KMS [25]. For
k = 4 and 8, our Alg. 1 is about 1.2 and 1.5 times faster than CCS [9], and
1.6 and 1.4 times faster than KMS [25]. Correspondingly, the bootstrapping key
size of our Alg. 1 is 2.5 and 2.7 smaller than that of CCS [9], and is 7.4 and 6.5
times smaller than that of KMS [25]. For k = 16, our Alg. 1 is approximately
8 https://github.com/WvanWoerden/NTRUFatigue
9 https://github.com/ilachill/MK-FHE

10 https://github.com/SNUCP/MKTFHE

https://github.com/SKLC-FHE/MKFHE
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Table 4. Timings and key sizes for bootstrapping

Scheme λ
Hybrid Runtime(s) EVK(MB) KSK
Product 2 4 8 16 2 4 8 16 (MB)

CCS∗ [9] 100 RLWE 0.07 0.33 1.09 \ 19.69 26.25 32.81 \ 70.13
CCS∗∗ [9] 100 RLWE 0.12 0.42 1.61 11.36 39.85 53.12 66.38 159.21 54.38
KMS [25] 100 RLWE 0.14 0.44 1.17 2.86 105.86 176.47 141.31 176.56 108.75

Alg. 1 100 NTRU 0.07 0.28 0.82 2.74 29.56 29.56 29.56 29.56 8.75
Alg. 2 100 NTRU 0.05 0.21 0.54 2.61 13.21 13.21 13.21 13.21 0.68
Alg. 1 128 NTRU 0.14 0.40 1.55 6.84 60.55 60.55 80.74 100.92 11.95
Alg. 2 128 NTRU 0.06 0.23 0.76 4.21 16.77 16.77 16.77 25.15 0.68

the same as KMS [25] and 7.4 times smaller than KMS [25]. For k = 16, we did
not report CCS’s implementation in C++ because the parameters they provided
only support up to k = 8. Moreover, our Alg. 2 is about 1.4, 1.6 and 2.2 times
faster than CCS [9], and 2.8, 2.1 and 2.2 times faster than KMS [25] for k = 2,
4 and 8, respectively. Correspondingly, the bootstrapping key size of our Alg. 2
is 6.5, 6.9 and 7.4 smaller than that of CCS [9], and is 15.5, 20.5 and 18 times
smaller than that of KMS [25]. For k = 16, our Alg. 2 is about 1.1 times faster
and 20.5 times smaller than KMS [25]. Moreover, due to the influence of the
first-layer ternary key, Alg. 1 exhibits slightly inferior performance compared to
Alg. 2.
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A Key-Switching for Multi-key LWE ciphertext in [9,25]

• LWE.KSKG(zi, si): Given two vectors zi = (zi,0, · · · , zi,n−1) ∈ Zn, s =
(si,0, · · · , si,N−1) ∈ ZN and two integer q, Bks as input, the algorithm first
computes dks = ⌈logBks

q⌉ and sets g = (B0
ks, · · · , B

dks−1
ks ). Then it sam-

ples vector ai,j,l,v ← Zn uniformly at random and ei,j,l,v ∈ Zq from some
noise distribution and computes kski,j,l,v = (bi,j,l,v,ai,j,l,v) where bi,j,l,v =
−ai,j,l,v · zi + ei,j,l,v + v · si,j · Bl

ks for all j ∈ ZN , l ∈ Zdks
, v ∈ [Bks − 1].

Finally, it outputs KSKi = {kski,j,l,v} as the key-switching key of party i.
• LWE.KS(ct, {KSKi}i∈[k]): Given as input a multi-key LWE ciphertext ct =

(b,a1, · · · ,ak) ∈ ZkN+1 and the key-switching keys {KSKi}i∈[k] of keys
associated with ct, the algorithm computes g−1(ai,j) = (vi,j,l)l∈Zdks

for each
i ∈ [k] and j ∈ ZN and then compute

b′i =

N−1∑
j=0

dks−1∑
l=0,vi,j,l ̸=0

bi,j,l,vi,j,l
and a′i =

N−1∑
j=0

dks−1∑
l=0,vi,j,l ̸=0

ai,j,l,vi,j,l
,

and let b′ = b +
∑k

i=1 b
′
i. Finally, the algorithm outputs a multi-key LWE

ciphertext c′ = (b′,a′1, . . . , a
′
k) ∈ Zkn+1.
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