
Shardora: Towards Scaling Blockchain Sharding via
Unleashing Parallelism

Yu Tao∗, Lu Zhou∗¶, Lei Xie†, Dongming Zhang†, Xinyu Lei‡, Fei Xu†, Zhe Liu†
∗College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, China

†Zhejiang Lab, China
‡Michigan Technological University, USA

¶Collaborative Innovation Center of Novel Software Technology and Industrialization, China
{yu tao, lu.zhou, zhe.liu}@nuaa.edu.cn

{xielei, zhangdongming, feixu}@zhejianglab.com
xinyulei@mtu.edu

Abstract—Sharding emerges as a promising solution to en-
hance blockchain scalability. However, it faces two critical lim-
itations during shard reconfiguration: (1) the TPS-Degradation
issue, arising from ledger synchronization conflicts during trans-
action processing, and (2) the Zero-TPS issue, caused by dis-
ruptions in transaction processing due to key negotiation. To
this end, we propose Shardora, a blockchain sharding system
for scaling blockchain by unleashing parallelism. In Shardora,
we implement two essential mechanisms: (1) A parallelized dual
committee framework with a reputation mechanism to mitigate
the TPS-Degradation issue while ensuring system security. (2)
A parallelized key pre-negotiation mechanism with a secret-
reuse strategy to avoid the Zero-TPS issue while maintaining
a continuously high TPS. We prove that Shardora offers theory-
guaranteed security. We implement a prototype of Shardora and
deploy it on Alibaba Cloud. Experimental results demonstrate
that Shardora addresses the limitations by significantly reducing
the overhead of both ledger synchronization and key negotiation,
which outperforms state-of-the-art sharding schemes by at least
90%. In addition, Shardora shows its superior performance in
terms of throughput and latency, achieving a peak throughput of
8300 TPS on a single shard with 600 nodes under LAN conditions.
The code of Shardora is publicly available on GitHub.

I. INTRODUCTION

Blockchain technology has revolutionized various industries
by offering a decentralized and secure transaction platform,
which supports many security-critical applications such as
supply chain [1], [2], finance [3], [4] and healthcare [5], [6],
etc. Unfortunately, traditional blockchain systems suffer from
low scalability. For example, Bitcoin [7] only processes up
to 7 transactions per second (TPS), and the initial Ethereum
[8] processes 15 TPS. Such poor scalability impedes the
widespread adoption of blockchain in real-world applications.
As one of the most promising solutions to address the low
scalability issue, blockchain sharding technique has been pro-
posed in prior research. It randomly partitions the network

Zhou Lu is the corresponding author.
This work was supported by the National Key R&D Program of China

(2022YFB2702000), the National Natural Science Foundation of China
(62472218, 62071222, 62032025, U21A20467, U20A20176, U22B2029), the
Shenzhen Science and Technology Program (JCYJ20210324134810028), and
the Postgraduate Research & Practice Innovation Program of Jiangsu Province
(KYCX24 0611).

into numerous smaller segments called shards [9]–[11], with
each shard maintaining its own ledger and processing a subset
of transactions in parallel. This approach helps reduce each
shard’s communication and storage overhead, thereby achiev-
ing a high transaction throughput. State-of-the-art systems
(e.g., Elastico [12], OmniLedger [13], RapidChain [14], tMPT
[15], etc.) typically employ a two-phase paradigm to periodi-
cally execute shard reconfiguration. These systems operate in
defined time intervals known as epochs, each comprising two
phases: a reconfiguration phase and a consensus phase. During
the reconfiguration phase, nodes are strategically shuffled
among different shards to ensure system security, making it
difficult for potential adversaries to manipulate specific nodes
within targeted shards. During a consensus phase, nodes within
each shard run a consensus protocol to validate and agree on
blocks of valid transactions.
Limitations of Prior Art. Roughly speaking, the previous
blockchain sharding solutions can be divided into two types:
PBFT-based solutions [12]–[15] and threshold signature-based
solutions [16], [17] (see Section VI for details). These so-
lutions all consider the presence of Byzantine adversaries.
(1) PBFT-based solutions adopt the Practical Byzantine Fault
Tolerance (PBFT) protocol [18] for transaction processing
during consensus phases. In the reconfiguration phase, nodes
are shuffled dynamically among different shards. After node
shuffling, new arrival nodes within a shard are required to
synchronize the ledger state of their current shard before they
can participate in consensus. (2) Since PBFT exhibits quadratic
communication complexity, threshold signature-based solu-
tions have been introduced to achieve linear communication
complexity for higher scalability. Nevertheless, threshold sig-
natures necessitate that, during each reconfiguration phase,
the consensus nodes within the newly formed shard must
renegotiate their keys for signature. Overall, as shown in
Figure 1, the prior blockchain sharding systems encounter
potential limitations, which are illustrated in detail as follows.

TPS-Degradation Issue: For both PBFT-based and threshold
signature-based solutions, consensus nodes (those that remain
in their original shards post-reshuffle) are responsible for
synchronizing a substantial volume of the ledger state with

Fig. 1: An overview of limitations in existing sharding systems. TPS-
Degradation issue: During reconfiguration phase, consensus nodes concur-
rently perform two tasks: 1.1⃝ processing transactions within shards alongside
the other consensus nodes, and 1.2⃝ synchronizing the historical shard ledger
with the new arrival nodes. The ledger synchronization weakens the consensus
node’s ability to process transactions, leading to TPS-Degradation. Zero-TPS
issue: During consensus phase, to deploy BFT consensus protocols with
threshold signatures, all consensus nodes must 2⃝ negotiate keys before
3⃝ conducting consensus. This requirement stops consensus nodes from

processing transactions, leading to Zero-TPS.

new arrival nodes. Concurrently, they must process trans-
actions to uphold system liveness. This dual responsibility
significantly degrades transaction throughput during the ledger
synchronization procedure. For instance, in our experiments
on RapidChain, it is observed that TPS is decreased by about
50% during this procedure.

Zero-TPS Issue: For threshold signature-based solutions,
consensus nodes must engage in mutual key negotiation each
time the shard undergoes reconfiguration. It leads to Zero-TPS
issue since transactions cannot be processed during the key
negotiation procedure. Zero-TPS issue seriously reduces the
availability of the blockchain system since the key negotiation
procedure typically lasts for hundreds of seconds.
Challenges & Solutions. To address these issues, we pro-
pose a blockchain sharding system with higher TPS named
Shardora1. The core idea of Shardora involves constructing
parallelization mechanisms from two dimension, ensuring con-
tinuous and efficient transaction processing throughout the
shard reconfiguration. However, to achieve this goal, two
technical challenges remain:

The first challenge lies in mitigating TPS-Degradation while
maintaining ledger synchronization. The TPS-degradation is-
sue arises naturally as consensus nodes necessitate a re-

1Our source code is available at https://github.com/tenondvpn/shardora.

source trade-off between transaction processing and ledger
synchronization. To address this challenge, we propose a dual
committee structure that decouples the execution logic of
ledger synchronization and transaction processing, enabling
independent and concurrent task execution. Specifically, each
shard contains two committees: a consensus committee for
transaction processing, and a waiting committee that stands
by and records newly committed transactions. The dual com-
mittee structure enables newly arrived nodes to synchronize all
historical ledger from waiting committee, without hampering
transaction processing by consensus committee.

Unfortunately, dividing the shard into smaller committees
raises significant security concerns. It shifts the system’s se-
curity dependence from the original shard to smaller consensus
committees. Compared to shards, smaller consensus commit-
tees are more vulnerable to corruption. To ensure the security
of dual committee design, we further introduce a reputation-
based dual committee shuffling strategy. Nodes’ behaviors are
analyzed into reputation scores, indicating their capabilities
and reliability. Based on their reputation, the consensus and
waiting committees periodically conduct partial node eviction
and election, respectively. This ensures that the consensus
committee comprises the most reliable and capable nodes.

The second challenge lies in maintaining transaction pro-
cessing capabilities during key negotiations. Within an epoch,
key negotiation should precede transaction processing, as
nodes require the negotiated keys to proceed. To tackle this
challenge, we present a parallelized key pre-negotiation mech-
anism. It allows key negotiation procedure of the next epoch
to run concurrently with the ongoing transaction processing of
the current epoch, thus avoiding the Zero-TPS issue.

However, with partial node shuffling, a majority of con-
sensus nodes in the current epoch may be re-elected to the
consensus committee for the next epoch. These nodes are
tasked with dual responsibilities: managing transaction pro-
cessing and participating in key negotiation for the next epoch.
As key negotiation demands considerable communication and
computational resources, it poses a risk of inducing the TPS-
Degradation issue in prior works. To improve the efficiency
of transaction processing during key negotiation, we fur-
ther introduce a secret-reusable decentralized key negotiation
mechanism. It enables these re-elected nodes to reuse pre-
viously negotiated secrets in the current negotiation, thereby
diminishing resource consumption for consensus nodes and
making the TPS-degradation issue significantly mitigated.
Contribution. Our main contributions are as follows.
• Cost-effective Reconfiguration. By decoupling and par-

allelizing the dual committee within the shard, we re-
duce ledger synchronization overhead of consensus nodes,
thereby mitigating the TPS-Degradation Issue. It is ob-
served 50-1000× reduction in ledger synchronization over-
head compared to prior works [14], [15].

• High Security. Shardora employs a reputation-based node
shuffling mechanism to prevent shard corruption, offer-
ing lower and negligible system failure probability than
random-based node shuffling.

https://github.com/tenondvpn/shardora

• Availability-aware Reconfiguration. Utilizing parallelized
key pre-negotiation, Shardora is the first sharded blockchain
to achieve linear consensus complexity while ensuring con-
tinuous transaction processing throughout reconfiguration,
thereby avoiding Zero-TPS issue.

• Lightweight Key Negotiation. We introduce a lightweight
key negotiation mechanism that allows consecutive elected
consensus nodes to reuse their previously negotiated secret
for the current negotiation, cutting communication and
computation overhead on consensus nodes for key nego-
tiation by at least 90% compared to [16], [17].

II. PROBLEM FORMULATION

A. System Model

Figure 2 shows the system model. Shardora system contains
2 different types of shards, which are introduced below.
Shard. Shardora comprises multiple transaction shards and a
root shard.
1) Transaction Shard: These shards handle transaction pro-

cessing through consensus protocols.
2) Root Shard: It tracks and updates node reputation scores

within each transaction shard. Based on these scores, it
executes partial node shuffling to ensure system security.

For each shard, it is composed of 3 types of blockchain nodes,
which form 2 types of committees, respectively.
Node. Each node (i.e., a device with computing power) can
freely join in the system. These nodes can be categorized into
consensus nodes, waiting nodes, and candidate nodes.
1) Consensus Node: They are responsible for processing

transactions via consensus protocols to win block rewards
and reputation scores. Consensus nodes are elected within
respective shards to form a consensus committee.

2) Waiting Node: In addition to consensus nodes, the remain-
ing nodes within a shard are classified as waiting nodes.
These nodes do not engage in transaction processing but
continuously maintain the most recent shard ledger state
and await potential election to become consensus nodes. A
group of waiting nodes forms a waiting committee. Note
that, newly arrived nodes within shards are automatically
designated as waiting nodes and synchronize the current
shard ledger from existing waiting nodes.

3) Candidate Node: Candidate nodes hold a transitional sta-
tus, indicating their potential elevation to consensus nodes
in the next epoch, contingent on successful key negotiation.
Success elevates them to consensus nodes. Conversely,
failure relegates them back to waiting nodes.

B. Transaction Model

A transaction model refers to the way transactions are
structured, validated, and recorded on the blockchain. Our
scheme adopts the account/balance model for transaction [19].
The system will process a transaction only after confirming
that there is sufficient balance in the trading account to ensure
that the transaction proceeds properly. In our scheme, we
categorize transactions into the following types:

1) Time Transaction: It serves to achieve clock synchroniza-
tion across different shards. Periodically, the root shard
initiates a time transaction, which is then finalized through
consensus to generate a time block. This time block is then
broadcast to all transaction shards, initiating a new epoch
and periodic shard reconfiguration.

2) Transfer Transaction: It is used to update the state of user’s
account. A transfer transaction can be finished via two
consecutive operations: withdraw and deposit. Taking the
transfer from account A to B as an example, the process
requires a withdrawal from A and a subsequent deposit
into B, ensuring transaction atomicity.

3) Creation Transaction: Nodes can join the system by initi-
ating a creation transaction, thus designating themselves
within either root or transaction shards. Additionally, a
transfer transaction needs to be launched to deposit funds
into the public account as the node’s stake.

4) Election Transaction: In each epoch, the root shard initiates
an election transaction for each transaction shard to elect its
next consensus committee. After achieving consensus on
the election transaction, the election results are included
in an election block. It will be broadcast to the relevant
shards to inform them to shuffle nodes.

C. Network Model

We consider a peer-to-peer network comprising nodes with
heterogeneous computing and bandwidth resources. Honest
nodes are well interconnected, and messages are synchronized
among them via a gossip protocol [20]. Similar to most public
blockchain [12]–[14], [21], we assume that messages sent by
an honest node will reach all other honest nodes within a
known fixed delay ∆. For minimized latency, we only consider
such ∆ in slow operations like identity creation and shard as-
signment. For other protocols, we adopt partially synchronous
model [18] with optimistic, exponentially increasing timeouts.

D. Threat Model and Security Assumption

We consider the presence of a Byzantine adversary that can
corrupt up to F nodes among N participating nodes in the
whole system. Similar to prior sharded blockchain schemes
[12]–[14], [22], [23], we assume that the adversary can control
at most 1/4 of the nodes in the system at any given time,
i.e., F ≤ N/4. In Shardora, honest nodes obey all protocols
while Byzantine adversaries may cause arbitrary failures to
deviate from the protocol. We further assume our Byzantine
adversary is slowly-adaptive [12]–[14] which means it can
choose nodes to corrupt only at the start of a protocol or an
epoch, but cannot alter its choice within one epoch. Driven by
attack goals, adversaries in Shardora will perform different
malicious behaviors: (1) Simple Attack: They continuously
perform malicious behaviors, including sending invalid or
inconsistent or no message, to prevent consensus from being
reached. (2) Camouflage Attack: Due to the employment
of reputation-based node shuffling, there exists a potential
camouflage attack where adversaries act honestly to establish
the same reputation score distribution as the honest one before

Fig. 2: System model. There are five major sub-phases within each epoch: 1⃝ Root shard broadcasts time block to trigger the beginning of a new epoch e.
2⃝ Transaction (TX) shards statistic and upload nodes’ contribution in previous epoch e − 1. 3⃝ Root shard updates nodes’ reputation score and performs

reputation-based node election/eviction through the FTS algorithm. 4⃝ Root shard agree on the election/eviction results to generate election blocks, which are
then sent to the respective shards. 5⃝ Upon receiving election blocks, transaction shards carry out node shuffling. During this phase, two tasks run in parallel:
5.1⃝ consensus nodes continue to process transactions. 5.2⃝ the elected candidates for the next epoch conduct key pre-negotiation. Should the key negotiation
prove successful, these candidates will ascend to the role of consensus nodes in the subsequent epoch. Additionally, any node can initiate a creation transaction
to join the system and become a new arrival node which can sync ledger information of the current shard from waiting nodes instead of consensus nodes.

launching the attack. (3) Key Negotiation Attack: On the one
hand, adversaries and malicious candidates may compromise
the key negotiation process by launching attacks, resulting
in negotiation failures. On the other hand, adversaries may
exploit the key negotiation reuse feature to compromise the
system security.

III. OUR PROPOSED SHARDORA

A. Overview of Shardora

Shardora can be divided into the following phases:
reputation-based dual committee node shuffling, key pre-
negotiation, consensus agreement and reputation scoring.
Reputation-based Dual Committee Node Shuffling. This
phase is executed to ensure shards’ dynamism and con-
sensus committees’ robustness, thereby enhancing the sys-
tem’s resistance against slow-adaptive attacks and boosting
overall performance. The root shard initiates this phase at
the beginning of each epoch. It achieves consensus on the
reputation-based node shuffling results of each shard for the
next epoch, conducting the dual committee node shuffling
one epoch ahead. It includes (1) intra-shard node shuffling
and (2) cross-shard node shuffling. Through intra-shard node
shuffling, nodes with higher reputations are retained in the
consensus committee, ensuring their reliability and capability.
Cross-shard node shuffling aims to further resist slow-adaptive
attacks and keep shard reputation resemble.
Key Pre-negotiation. This phase aims to prevent key negotia-
tion from stopping transaction processing. It allows each shard
to procure the consensus committee candidates in advance
and initiate key negotiations for threshold signatures. Once a
node in a shard learns that it has been selected as a candidate

consensus node for the upcoming epoch, it will negotiate with
other candidates via DKG (Distributed Key Generation) [24]–
[27] to generate the required secret keys for BLS threshold
signatures. Subsequently, the node can assume the role of a
consensus node only upon the conclusion of these negotiations.
Consensus Agreement. During each epoch, the current con-
sensus committee executes the consensus protocol. Mean-
while, the candidate consensus committee for the upcoming
epoch is involved in a key pre-negotiation process. Such two
processes run in parallel. According to the negotiated keys
from the previous epoch, the current consensus committee uti-
lizes BFT protocols with BLS threshold signature [28]–[30] as
the intra-shard consensus protocol to batch valid transactions
into blocks for consensus. For cross-shard transactions, our
system implements the Atomic protocol from Monoxide [31].
Reputation Scoring. Shardora utilizes reputation scores to
evaluate the reliability and capability of nodes. Factors such
as stake, historical contributions, and recent contributions
are considered in the computation of reputation scores. By
leveraging a reputation-based mechanism for node shuffling
and leader selection, Shardora brings the following benefits:
(1) Ensuring that nodes in the consensus committee, especially
leaders, are powerful and robust. (2) Improving the system
throughput and security through reputation-based competi-
tion among nodes. (3) Promoting a balanced distribution of
resources across shards according to reputation, making it
challenging for attackers to take control of a shard.

B. Detailed Description

As a public blockchain platform, Shardora enables any
node to join freely and become either a root or transaction

shard node by initiating a creation transaction. This transaction
requires the node to deposit some funds into the public account
as its stake Sti. After the transaction is committed, the root
shard will allocate the node to shards in the following epoch
based on its preferences. Nodes preferring the root shard will
be allocated there. Alternatively, if the transaction shard is
desired, assignment occurs randomly, based on each shard’s
reputation distribution. Subsequently, the node becomes a
waiting node in its designated shard. The shard assignment
follows a balancing principle: the root shard assigns the node
to the transaction shard with the lowest reputation. It ensures
a balanced distribution of reputation scores across all shards.

At the beginning of each epoch, the root shard will shuf-
fle the nodes based on their reputation scores. Specifically,
it rotates specific nodes among corresponding committees
intra/cross-shard, and selects a leader for each new consensus
committee. To ensure the security of shards, node shuffling
must possess two key properties: Randomness and Resem-
blance. Randomness means that all node shuffling and leader
election results are unpredictable. Resemblance dictates that
each shard maintains similar reputation scores to prevent any
particular shard from being targeted by attacks.

1) Reputation-based Dual Committee Node Shuffling: In
each epoch, the root shard will proactively perform reputation-
based node shuffling for the subsequent epoch. This shuffling
process is illustrated in Algorithm 1, which involves 6 sub-
phases: epoch randomness generation, consensus committee
eviction, waiting committee election, leader election, shard
resemblance and ledger synchronization.
Epoch Randomness Generation. As demonstrated in line 1-3
in Algorithm 1, Shardora allows the root shard to perform
epoch randomness generation in advance before the epoch
starts. For example, the random value r for epoch e is
generated at the end of epoch e − 1. At the beginning of
each epoch, the root broadcasts r to all shard nodes, initiating
shard reconfiguration. Similar to [14], shardora utilizes the
Follow-the-Satoshi (FTS) [32] algorithm for random selection
and eviction, which relies on an unbiased random number.
Therefore, in each epoch, the Root shard will conduct a
verifiable secret sharing (VSS) of Feldman [33] to generate
such random r.
Consensus Committee Eviction. After receiving the clock
block from the root shard, nodes in each transaction shard will
agree on their contribution in the previous epoch as Conte−1

and then sync this information to the root shard to update
their reputation scores (line 5-7). The root shard will first
rank the received contribution within each shard. Then, bottom
k1 nodes will be directly evicted (line 8-9). In addition to
directly evicting k1 nodes, k2 nodes also need to be randomly
evicted based on their reputation scores. Notably, to ensure
security, Shardora requires k1 + k2 ≥ 1

3nc + 1, a detailed
proof is provided in Section IV-B2. As line 10-16 show, for
the nodes remaining in the current consensus committee, the
root shard generates a new list Scores#m

cn according to the
updated reputation scores and such that maxV alue represents
the highest reputation score. Then the root shard subtracts

Algorithm 1 Reputation-based Dual Committee Node Shuffling

1: Procedure EpochStart(epoch e)
2: r ← GENERATERANDOMNESS(e− 1)
3: Broadcast r to all nodes
4: In-Shard Node Shuffling:
5: for each tx shard #m do
6: Consensus Committee Eviction:
7: Conte−1 ← SYNCCONT(shard #m, root) ▷ Sync

respective contributions to the root shard
8: L#m

c ← SORTDESCENDING(Conte−1) ▷ Done by the root
9: Evicted#m

1 ← GETNODE(L#m
c [(n− k1 + 1) : n])

10: L#m
r ← L#m,c[1 : n− k1]

11: Scores#m
cn ← UPDATEREPUTATIONSCORES(L#m

r)
12: maxV alue← MAXVALUE(Scores#m

cn)
13: for i = 0 to length(Scores#m

cn)-1 do
14: Scores#m

cn

′
[i]← maxV alue− Scores#m

cn [i]

15: MTeli ← GENERATEMERKLETREE(Scores#m
cn

′
)

16: Evicted#m
2 ← EVICTWITHFTS(MTeli, k2, r)

17: for node in Evicted#m
1 do

18: Evicted1 ← Evicted1.append(node)

19: for node in Evicted#m
2 do

20: INSHARDSHUFFLE(node, waiting, e+ 1)
21: Waiting Committee Election:
22: MTele ← GENERATEMERKLETREE(Scores#m

wn)
23: Elected#m ← ELECTEDWITHFTS(MTele, (k1 + k2), r)
24: for node in Elected#m do
25: INSHARDSHUFFLE(node, candidate, e+ 1)
26: KEYNEGOTIATION(candidate, e+ 1)
27: if success then
28: PROMOTETOCONSENSUSNODE(candidate)
29: else
30: DEMOTETOWAITINGNODE(candidate)
31: Cross-Shard Node Shuffling:
32: Evictedc ← SORTDESCENDINGBYSCORE(Evicted1)
33: for all node in Evictedc do
34: toShard← SHARDWITHLOWESTREPUTATION
35: CROSSSHARDSHUFFLE(node, waiting, e+ 1, toShard)
36: REQUESTLEDGERSYNC(node, toShard)

each element in Scores#m
cn from maxV alue to obtain a new

list Scores#m
cn

′

, and uses each element in Scores#m
cn

′

as a
stakeholder of each node to construct a Merkle tree for random
eviction. Based on this Merkle tree, the FTS algorithm runs
on the root shard to evict k2 nodes. Such FTS algorithm relies
on the epoch random number as a seed.

Shardora employs two stages of node eviction in the con-
sensus committee (corresponding to k1 and k2 nodes in each
stage). For k1 nodes in list Evicted#m

1 that are directly
evicted, they will be reassigned to the waiting committee in
other shards (line 17-18 & 31-35). Such cross-shard eviction
is implemented to achieve a balanced distribution of repu-
tation scores across shards. In contrast, the k2 nodes in list
Evicted#m

2 will be rotated to become waiting nodes within
the same shard (line 19-20). This intra-shard eviction ensures
the robustness and efficiency of the consensus committee.
Waiting Committee Election. Similar to eviction, the root shard
utilizes the reputation scores of waiting nodes Scores#m

wn

within each shard as stakeholders to construct a Merkle tree for
election. For each shard, the root shard then executes the FTS

algorithm to elect k1+k2 waiting nodes as candidate consensus
nodes for the subsequent epoch (line 22-25). Only after
successfully completing the key negotiation can candidates
to become consensus nodes. Failure to do so results in their
demotion waiting nodes (line 26-30).
Leader Election. In the elected consensus committee, the root
shard performs the FTS algorithm again to elect the leader.
Through reputation-based node shuffling, Shardora ensures
that the elected consensus committee and leader are robust.
Shard Resemblance. During node shuffling, k1 nodes with the
lowest recent epoch contribution will be directly evicted to
other shards. Assume that there are m transaction shards in
the system, then a total of m·k1 nodes will be evicted directly.
For balanced reputation scores among all shards, the reputation
scores of all these nodes will be arranged in descending order
to generate a list, denoted as Evictedc. Each element in
Evictedc is then allocated in descending order to the shard
with the lowest overall reputation score (line 31-35).
Ledger Synchronization. During node shuffling, the evicted
consensus nodes will be reassigned to other shards as new
arrival waiting nodes. These nodes are required to synchronize
the historical ledger state of the new shard. Through line 36
in Algorithm 1, Shardora allows these nodes to request ledger
synchronization from other old waiting nodes within the shard.
The consensus nodes will uniformly ignore such requests to
prevent them from hindering transaction processing.

2) Key Pre-negotiation: Shardora employs BLS thresh-
old signatures-based BFT consensus protocol for intra-shard
agreement. Unfortunately, threshold signatures inherently re-
quire signers to engage in key negotiation before signing, as
depicted in Figure 1. Only with the negotiated keys can sig-
nature aggregation and verification be achieved. Consequently,
each time the consensus committee changes (node shuffling),
key negotiation must be repeated within the new committee,
causing Zero-TPS issue as transactions cannot be processed
during the negotiation.

To prevent key negotiation from interrupting transaction
processing, Shardora employs a pre-negotiation mechanism. In
the mechanism, the root shard pre-publishes the next epoch’s
candidate consensus committees for each shard, so that candi-
dates can conduct key negotiation during the current epoch. In
other words, during the current epoch, transaction processing
runs in parallel with key negotiation for the following epoch.
However, given Shardora’s partial node shuffling implemen-
tation, most consensus nodes in the current epoch may still
be elected as candidates for the consensus committee in the
next epoch, as shown in Figure 2. During this epoch, these re-
elected nodes must handle transaction processing while also
engaging in key negotiation for the next epoch. Since key
negotiation consumes significant bandwidth and computational
resources, it reduces current transaction processing efficiency.
To mitigate this impact, Shardora proposes a lightweight
key negotiation mechanism that enables re-elected nodes to
reuse some intermediate values from the preceding round of
key negotiations. Specifically, our key negotiation mechanism
consists of the following sub-phases.

Fig. 3: Lightweight key negotiation mechanism. In epoch e+ 1, D rotates B
and occupies the same index position as B in LC. The re-elected nodes {A,
C} maintain their original index position in LC to reuse secret contribution
shares and verification vector shares calculated in epoch e.

Parameter Settings. Assume that g is a base point on the
elliptic curve BN128. Let Zp be a finite fields, where p is a
prime order on the elliptic curve BN128. Let G1, G2, and GT

be three multiplicative groups of prime order q, a bilinear map
is denoted as e : G1×G2 → GT . h : (0, 1)∗ → G1 expresses
a hash function. Furthermore, let nc denote the total number of
nodes in the consensus committee. The threshold t represents
the minimum number of participating nodes required to reach
consensus, such that t ≥ 2

3nc+1 for BFT. In addition, since the
genesis block, there will be a list LC to record the candidate
consensus nodes, where |LC| = nc. Each candidate node
in the list will take its index in LC as an identity number.
To achieve a lightweight key negotiation process, re-elected
consensus nodes are allowed to reuse the intermediate values
employed in the prior epoch’s key negotiation, as shown in
Figure 3. To achieve this goal, LC will not be completely re-
ordered after each election of a new consensus committee. Re-
elected consensus nodes maintain their original index positions
in LC, while newly added nodes will fill the vacant positions
left by evicted nodes.
Polynomial Generation. Upon receiving the election block
from the root shard, each node will know whether it is elected
to join the next epoch’s candidate consensus committee. For
each newly elected node Pi, it will first obtain its identity
number idi = index(Pi) in LC. The function index(Pi)
returns such a number associated with the node Pi. The index
values are uniquely assigned to a newly elected node in LC
for the vacant position in an arbitrary manner. Then it locally
generates a random polynomial fi(x) of degree t− 1 as

fi(x) =

t−1∑
j=0

ai,jx
j ,

where ai,j ∈ Zp, t = 2
3nc + 1. For consensus nodes who

are re-elected to serve on the consensus committee in the
upcoming epoch, they will retain their previous positions in
LC. It enables them to reuse the polynomial f(x) generated
in the previous epoch.
Secret Sharing. Each candidate Pi then broadcasts its public
verification vector Vi. Vi is generated by mapping fi(x)’s
coefficients to points on the elliptic curve BN128 as

Vi = [ai,0, ai,1, ai,2, . . . , ai,t−1] · g.

Newly elected nodes are required to generate a verification
vector V and broadcast it to all other nc − 1 candidates.
In contrast, re-elected nodes can reuse the V generated in
the previous epoch and only distribute it to k1 + k2 new
nodes. An example presented in Figure 3 demonstrates that,
during epoch e + 1, the re-elected nodes A and C can reuse
the verification vector calculated in epoch e. Additionally,
candidates are further required to compute and distribute secret
key contributions. Each candidate Pi will generate a secret
contribution for other candidates Pj based on their polynomial.
The secret contribution is computed as sji = fi(idj + 1). The
newly elected node needs to calculate and distribute secret
contributions for all nc candidates (including itself), while the
re-elected node only needs to distribute secret contributions for
new nodes, and the contributions for all nodes can be reused.
As shown in Figure 3, the re-elected nodes A and C can reuse
all the secret shares computed in epoch e. This is because
node B has been rotated to D, and D occupies the same index
position in LC of epoch e+1 as B in LC of epoch e. For nodes
A and C in epoch e+1, node D is regarded as a node that with
the identity number 1. Hence, they transmit respective secret
contributions fA(2) and fC(2) to D. These contributions are
mathematically equivalent to the ones previously transmitted
to node B in the preceding epoch.
Verification. With Vi, Pj can verify the received sji through

sji · g =

t−1∑
k=0

(idj + 1)k · Vi[k]. (1)

If equation (1) holds for t = 2
3nc + 1, it ensures that secret

contribution sji is correct and consistent with fi(x).
Public Key Calculation. Upon receiving 2

3nc+1 correct secret
contributions, candidates generate a secret contribution list Ls

corresponding to LC locally, which is then disseminated to
all peers. A candidate’s secret contribution is considered valid
only if it corresponds with the contributions of over two-
thirds of the candidates occupying the same position. Every
candidate incorporates the first element of the verification
vector from each valid candidate to construct the system public
key, represented as PK =

∑nc−1
j=0 Vj [0], where Vj is derived

from a valid Pj . If Pj is deemed invalid, then Vj [0] = null.
Candidates excluded from this process will degenerate into
waiting nodes.
Secret Key Reconstruction. Meanwhile, the secret sharing Si

of each valid candidate Pi is computed as Si =
∑nc−1

j=0 sij .
It is computed by aggregating all the secret contributions
received from all valid candidates Pj . To further reconstruct

the collective secret key SK, at least t = 2
3nc + 1 valid

participants need to collaborate and do Lagrange interpolation.
Then SK is computed as SK =

∑t
i=1 Si · λi+1, where λi =∏t,j ̸=idi

j=1
j

j−idi
are the Lagrange coefficients. Upon completing

the key negotiation process, all valid candidates transition
into consensus nodes, forming the consensus committee for
the subsequent epoch. They leverage their secret shares Si

for signing. The elected leader is tasked with aggregating all
valid signatures received. Provided that over two-thirds of the
nodes have correctly contributed their signatures, it becomes
feasible to aggregate these into a signature signed by the
collective secret key SK. All nodes are capable of verifying
this aggregated signature through the system public key PK.

3) Consensus Agreement: This section presents the consen-
sus protocols employed in Shardora. We discuss intra-shard
and cross-shard consensus protocols separately. The intra-
shard consensus is responsible for transactions within one
shard, while the cross-shard consensus handles transactions
across multiple shards.
Intra-shard Consensus. It is achieved in each shard through a
specific protocol during any given epoch e. Shardora employs
BFT consensus protocol as its intra-shard consensus protocol,
supplemented by well-established BLS threshold signature
schemes. Threshold signatures necessitate that signers nego-
tiate relevant keys before signing. Consequently, Shardora
completes the necessary key negotiation for epoch e during
the preceding epoch e−1, as outlined in the previous section.
With the keys obtained, consensus nodes can perform signing
and verification to implement the BFT consensus protocols,
ultimately reaching an agreement on a valid block. The specific
process is as follows:

The leader of the consensus committee proposes a block
containing a batch of valid transactions. Following the pro-
posal, the leader broadcasts a pre-vote message to all other
consensus nodes. This message includes the proposed block
and its metadata. Upon receiving the pre-vote message, other
consensus nodes undertake the validation of the proposal.
If successful validation, these nodes utilize their respective
secret shares Si to sign the pre-vote message mpv as σpv,i ←
h(mpv) · Si. Then they relay the signature back to the leader
as an endorsement of the proposed block. A block is deemed
ready for pre-commit once a supermajority (typically defined
as two-thirds) of the consensus committee members have
sent their valid pre-vote messages, confirming consensus on
the proposed block. Through Lagrange interpolation, all valid
signatures on the pre-vote message can be aggregated into an
entire signature σpv as σpv ←

∑t
i=1 σpv,i · λi. This σpv will

then be incorporated into the pre-commit message as metadata.
Only the e(g, σpv) = e(PK, h(mpv)) holds can indicate
that over two-thirds of the consensus committee members
have confirmed the pre-vote message. Once the verification is
successful, they will sign the pre-commit message again using
their own secret share Si, similar to the pre-vote phase. After
all three phases of sign and verification (pre-vote, pre-commit,
and commit), the leader can finalize the block and commit it
into the shard’s ledger. After the block confirmation, the leader

randomly rotates to ensure that each consensus node has the
opportunity to propose a block.
Cross-shard Consensus. Cross-shard transactions are inher-
ently more complex to process than in-shard transactions,
necessitating consensus across all involved shards to ensure
consistency. Similar to [15], [31], Shardora decomposes a
cross-shard transaction into two intra-shard transactions. For
example, we depict a cross-shard transaction TXcs, transfer-
ring an amount φ from account a in shard #1 to account b in
shard #2, as follows:

TXcs = ⟨{#1, a} , {#2, b} , φ⟩ .

TXcs can be represented as two in-shard transactions TXis

and conducted in respective shards in two-phase:

TX#1
is = ⟨ρ, a, φ⟩ , TX#2

is = ⟨ϕ, b, φ, γ⟩ .

Phase 1: TX#1
is is processed in shard #1 to perform with-

draw operation ρ from account a. Following the confirmation
of TX#1

is , a proof of acceptance, denoted as γ, is generated
as

γ =
〈
{σc, PK}e , TX

#1
is , Hheader, HTXs

〉
,

where σc represents the aggregated signature on the commit
message that finalizes the block containing TX#1

is . Therefore,
{σc, PK}e are utilized to validate σc from any epoch e. In
addition, Hheader is the hash of the block including transaction
TX#1

is , and HTXs denotes Merkle proof of account a.
Phase 2: TX#2

is is processed in shard #2 to perform deposit
operation ϕ to account b. With γ, consensus nodes in shard
#2 can confirm that TX#1

is has been committed to the ledger
of shard #1, thereby ensuring the atomicity of TXcs.

4) Reputation Scoring: Shardora employs reputation scores
to evaluate the reliability and capability of nodes. Reliability
indicates the nodes’ adherence to honest behavior, while capa-
bility measures the number and complexity of creating valid
transaction blocks when they serve as leaders. In our reputation
model, reliability is evaluated based on the nodes’ stake,
similar to the Proof of Stake (PoS) mechanism. Capability
is assessed by the nodes’ accumulative contributions to block
creation, like literature [16], [17]. For each epoch, the root
shard updates the reputation scores across all shards. The
reputation score Repe

i for node i in epoch e is calculated as

Repe
i =

Stei +
∑e−1

k=t C
k
i

2
, (2)

where Stei denotes the accumulative stake of node i. Ck
i

denotes the contribution made by node i in epoch k. Let t
be the epoch at which node i joins the system. The reputation
score Repei for node i aggregates the scores accumulated up
to the most recent epoch e − 1 since its initial participation.
The calculation of Stei and Ck

i are introduced in detail below.
Stake Stei . Shardora requires that each node i joining the
system must transfer a certain tokens to the public account
as its initial stake Stti. At any subsequent epoch k, users
can pledge additional stakes δStki , which will be accumulated
into Repk+1

i at the start of epoch k + 1, thus increasing the

probability of election. Furthermore, block rewards Rk
i earned

during mining in each epoch k are automatically deposited
to the public account as part of the node’s stake. Then the
accumulated stake up to epoch e is calculated as Stei =
Stti +

∑e−1
k=t+1

(
δStki +Rk

i

)
. Importantly, the stake may only

be transferred to the node’s account upon its departure with
no detected malicious behaviors. This design aims to increase
the economic costs of attacks, where any malicious behaviors
result in the lose of all accumulated stakes. Conversely, for
honest nodes, this design increases their staked amounts and
potentially enhance their gains over time. In addition, to
prevent the stake domination caused by the rich, Shardora
smooths Stei and limits it to [0,100]. For normalized reputation
score in equation (2), Ck

i will also be mapped to this range.
Block Creation Contribution Ck

i . The block creation contribu-
tions represent the valid transaction contributions confirmed by
each node when serving as a leader in each epoch. Shardora
specifies that within an epoch, once a leader successfully
submits a valid block, it will automatically switch to the next
leader, ensuring that every consensus node has the opportunity
to serve as a leader. Followers, upon verifying the validity of
a block, locally statistic contribution of the block proposed
by the leader. When one of the followers transitions to the
next leader, it will include a transaction in the proposed
block to agree on the contribution of the previous leader. The
contribution Ck

i of leader i in epoch k is calculated as

Ck
i =

nk
i∑

x=1

(∑lx
j=1 ξ

x
i,jG

x
j∑lx

j=1 G
x
j

)
,

where nk
i is the number of blocks that node i proposed in

epoch k when it serves as a leader. lx denotes the number of
valid transactions in the x-th proposed block. Gx

j specifies the
gas cost for evaluating the value of transaction j in the x-th
proposed block. An reward-penalty coefficient ξxi,j is employed
to either reward or penalize different behaviors of leader i on
transaction j in the x-th proposed block, assigning a reputation
score of {1, 0, -1} to represent correct, unknown and incorrect
behaviors, respectively.

IV. SECURITY ANALYSIS

This section will discuss the security properties of Shardora
in terms of system security and key negotiation security.

A. System Security Analysis
The security of Shardora relies on two probabilistic selec-

tion processes: first, select n nodes from a set of N nodes
to form a shard, and then select nc nodes from these n
nodes to establish a consensus committee. Let X1 and X2

represent the number of malicious nodes in the selected shard
and consensus committee, respectively. With the requirement
of BFT, only when X2 ≥ ⌈nc/3⌉, the consensus committee
becomes vulnerable to result in system failure.
Claim 1: Compared to random-based selection, reputation-
based selection offers higher security. What’s more, the prob-
ability that the number of malicious nodes among the nc final
selected nodes exceeds nc/3 is negligible.

Proof: In the first round of selection, let the probability
of choosing a malicious node be p1b and the probability of
choosing an honest node be p1h, where p1h = 1 − p1b. The
number of malicious nodes chosen, X1, approximately follows
a binomial distribution, i.e., X1 ∼ Binomial(n, p1b). Then,
in the second round of selection, nc nodes are further selected
from the n nodes. Let the probability of choosing a malicious
node in the second round be p2b, the probability of choosing
an honest node be p2h, where p2h = 1− p2b. Conditioned on
X1 = k, the number of malicious nodes selected in the second
round, X2, approximately follows a binomial distribution:
X2|X1 = k ∼ Binomial(nc, p2b). System failure occurs
when X2 ≥ ⌈nc/3⌉, such probability can be expressed as:

P (X2 ≥
nc

3
) =

n∑
k=0

P (X1 = k)× P (X2 ≥
nc

3
|X1 = k),

where,

P (X1 = k) =

(
n

k

)
p1b

k(1− p1b)
n−k,

P (X2 ≥
nc

3
|X1 = k) =

nc∑
l=⌈nc

3 ⌉

(
nc

l

)
p2b

l(1− p2b)
nc−l.

For random-based selection, the probability that a mali-
cious node is selected in both rounds is equal, denoted as
prand
1b = prand

2b = F
N . For reputation-based selection, prep

1b =
F repb

F repb+(N−F)reph
, where repb, reph denote the reputation of

Byzantine nodes and honest nodes, respectively. Regardless
of whether it is a simple attack or camouflage attack, it holds
that repb ≤ reph. Thus, it can be proved that prep

1b ≤
F
N = prand

1b .
Similarly, prep

2b =
E[X rep

1]repb
E[X rep

1]repb+(n−E[X rep
1])reph

≤ E[X rep
1]

n ≤
F
N = prand

2b , where E[X rep
1] represents the expected number

of malicious nodes chosen in the first round, computed as
E[X1] = n× Fprep

1b

Fprep
1b+(N−F)prep

1h

. Therefore, it can be proved that
P (X rep

2 ≥ nc

3) ≤ P (X rand
2 ≥ nc

3). Following the assumption
in most public blockchain system, we consider a system
fault tolerance of 1/4 (set N=2000, F=500). Additionally,
given n = 600, nc = 300, prep

1b = 0.15 (0.25 for random),
the Shardora system’s failure probability is calculated to be
6.87 × 10−16. It is negligible and significantly lower than
the failure probability for random-based selection under the
same conditions, which is 4.84×10−4. Even in the worst-case
scenario, where all adversaries collude to launch a camouflage
attack, the system’s failure probability only reduces to a
random-based level of 10−4, maintaining a high security level.
Moreover, it is highly challenging for nodes to collude in a
distributed environment. □

B. Key Negotiation Security Analysis

1) Key Negotiation Security: When malicious nodes are
elected as candidates for the upcoming consensus committee,
they are required to jointly negotiate the keys for threshold
signatures with other candidates through DKG. During this
process, malicious candidates may refuse to cooperate with

other participants or deliberately provide incorrect information
to obstruct the key generation process.
Claim 2: Even if all malicious candidates refuse to cooperate
or provide incorrect information, it will not obstruct the key
generation process.

Proof: The DKG specifies that as long as more than the
threshold number t of nodes provide the correct secret values,
the complete key can be recovered. Assumed that there are fc
malicious nodes in the consensus committee with nc nodes. To
keep the liveness of key negotiation, the threshold value should
satisfy t ≤ nc − fc. With the requirement of BFT, Shardora
can guarantee that each consensus committee satisfies nc ≥
3fc + 1 (defined in Section II-D). Therefore, only when t ≤
2fc + 1 is satisfied can t ≤ nc − fc hold. In addition, to keep
safety, at least one honest node is required to participate in key
negotiation, hence t should satisfy t ≥ fc + 1. Consequently,
when fc + 1 ≤ t ≤ 2fc + 1, we can ensure the success of the
key negotiation process. □

2) Key Negotiation Value Reuse Security: DKG ensures the
randomness of each node’s polynomial to maintain security,
preventing replay attacks and collusion by malicious nodes
from recovering the aggregate polynomial. In contrast, during
consecutive and independent DKG processes across epochs,
Shardora allows unshuffled nodes to reuse most of their key
negotiation value for mitigating the TPS-Degradation issue.
Claim 3: Key negotiation value reuse by unshuffled nodes does
not compromise the security of Shardora, as the aggregate
polynomial has changed.

Proof: The security of DKG primarily relies on the random-
ness of the aggregate polynomial formed by honest nodes.
This randomness ensures the aggregate polynomial is un-
predictable, guaranteeing system security. Shardora maintains
security since it allows key negotiation value reuse while
ensuring the aggregate polynomial changes randomly during
independent DKG processes across epochs. In each new epoch,
Shardora partially rotates the consensus committee (k1 + k2
nodes). As analyzed in Section IV-A, the probability of having
f ≥ 1

3nc malicious nodes in a consensus committee of size
nc is negligible. Since Shardora requires k1 + k2 ≥ 1

3nc + 1,
at least f + 1 nodes are rotated in each epoch. According to
BFT security criterion, this guarantees the inclusion of at least
one new honest node in the consensus committee candidate
after each rotation. Although unshuffled nodes reuse their key
negotiation values, the inclusion of new honest nodes ensures
that the aggregate polynomial generated in the new epoch
changes, therby maintaining system security.

□

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our shardora
by local experimental comparison and cloud testbed deploy-
ment. The experimental setup is outlined as follows:
Local experiment setup. We evaluate the performance of
Shardora against state-of-the-art schemes across several met-
rics to highlight its distinctive features. The evaluation of state-
of-the-art schemes is implemented based on our codebase.

Local experiments are conducted on a laptop with Intel(R)
Core(TM) i7-1165G7 CPU @2.8GHz (4 cores), 16GB RAM.
The experimental setup involves 2 transaction shards, each
comprising 5 nodes. Each block contains 1000 transactions,
with an average transaction size of around 200 bytes.
Cloud testbed deployment setup. We deployed the Shardora
prototype on 100 virtual servers rented from Alibaba Cloud
to evaluate the system’s performance in real-world networks.
Each server is equipped with CentOS Linux 7 Core, an
Intel® Xeon® Platinum 8163 CPU @ 2.5GHz (8 cores), and
16GB RAM, with the network bandwidth configured to 3Gbps.
Notably, this experimental setup allowed for initiating up to
600 nodes with Shardora deployed.

A. Performance Comparison

1) Ledger Synchronization Overhead: We evaluate the data
size synchronized by consensus nodes to newly joined nodes
under different shard reconfiguration schemes. Under the local
experiment setup, we further set the reconfiguration interval
to 100 blocks. The results are shown in Figure 4(a). It can
be observed that synchronized data size in RapidChain [14]
linearly increases with the proposed number of blocks since
newly arrived nodes need to synchronize the entire ledger.
In contrast, tMPT [15] maintains a relatively stable data size
by synchronizing only the states of active accounts. Similarly
to RapidChain, our Shardora also requires the newly arrived
nodes to download the entire ledger. However, Figure 4(a)
shows that Shardora incurs negligible data synchronization
overhead (approximately 200KB) for consensus nodes during
the ledger synchronization. Such overhead is reduced by
50× than [15] and 1000× than [14]. This is because the
dual committee design, Shardora enables consensus nodes to
synchronize only the latest block, while new arrival nodes can
retrieve the historical ledger from waiting nodes.

2) Key Negotiation Overhead: To evaluate the communica-
tion and computation overhead of nodes during key negotia-
tion, we set consensus committee sizes as 100, 256, 512, 600,
800 and 1024, with a node shuffling ratio of 10%. The exper-
imental results, illustrated in Figure 4(b) and 4(c), highlight
two key findings: (1) Shardora exhibits significantly enhanced
performance compared to RepShard [16] and RepChain [17],
reducing communication and computation overhead by at least
90%. This efficiency gain stems from Shardora’s ability to
allow nodes to reuse data from prior epochs of key negotiation,
thereby eliminating the need for redundant computations and
data transmissions required by RepShard and RepChain when
the consensus committee changes. (2) Furthermore, the com-
putation and communication overhead is lower on re-elected
consensus nodes than on the newly elected waiting nodes.
In Shardora, newly elected waiting nodes must compute and
broadcast their verification vectors and secret shares to all
network nodes, while re-elected consensus nodes only transmit
secret shares to the newly elected nodes and verify their
correctness. With a consensus committee size of 1024, a re-
elected consensus node consumes approximately about 8MB

of bandwidth and 17ms in key negotiation time, which causes
a minor impact on its transaction processing efficiency.

3) Throughput During Shard Reconfiguration: To demon-
strate the capability of Shardora for seamless and cost-effective
shard reconfiguration, we configure the system epoch time to
5 minutes. It means that the system automatically performs
shard reconfiguration every 5 minutes. Then we measure the
system throughput over two epoch periods, and the comparison
results among different schemes are presented in Figure 4(d).
During shard reconfiguration, our Shardora maintains a stable
throughput. The difference in highest and lowest throughput
remains within 400 TPS. While throughput in other schemes is
affected by the shard reconfiguration. Elastico [12] experiences
zero-TPS during the reconfiguration phase due to the com-
plete rotation. Consensus nodes in RapidChain [14] need to
allocate significant resources to solve the offline PoW puzzle.
Both RapidChain and tMPT [15] require consensus nodes to
perform ledger synchronization.

B. Cloud Testbed Evaluation of Shardora

1) System Throughput Stress Test: To conduct a stress test
on the system’s throughput, we vary the transaction arrival
rate to determine the peak throughput that the system can
sustain within 600 nodes under different number of shards
S and consensus committee size nc. The results are shown in
Figure 5(a). At a consensus committee size of nc = 600, the
throughput of a single shard can peak at 8326 transactions per
second (TPS). The system’s overall throughput surpass 50,000
TPS when nc = 100 and S = 6.

2) Throughput and TX Confirmation Latency: In this sec-
tion, we measure the system throughput and transaction con-
firmation latency across various numbers of shards, consensus
committee sizes, and transaction arrival rates. Figure 5(b)
illustrates the impact of the consensus committee size on the
throughput and transaction confirmation latency. Transaction
confirmation latency rises with the increase of consensus
committee size due to the need for more nodes to validate and
agree on each transaction. Meanwhile, throughput decreases
since the increased communication overhead brought about
by a larger consensus committee, thereby affecting the trans-
action processing speed. Figure 5(c) demonstrates the positive
effects of increasing the number of shards on throughput and
transaction confirmation latency. As the number of shards
increases, the number of transactions that each shard needs
to process decreases, potentially accelerating the consensus
speed within individual shards, and reducing transaction con-
firmation latency. Since sharding allows for parallel transaction
processing in the blockchain network, the overall throughput
increases. This finding is consistent with the results shown in
Figure 5(a). But the total throughput in Figure 5(c) remains
below 2000 TPS, not exceeding the transaction arrival rate.
Figure 5(d) depicts the impact of transaction arrival rates on
throughput and transaction confirmation latency. Given that the
transaction arrival rates have not reached the system’s trans-
action processing limit, throughput increases as transaction
arrival rates rise. However, as more transactions need to be

(a) Bandwidth consumption on con-
sensus nodes for ledger sync.

(b) Communication overhead for key
negotiation.

(c) Computation overhead for key ne-
gotiation.

(d) Throughput at a transaction arrival
rate of 3000 TXs/sec.

Fig. 4: Comparison of bandwidth consumption, communication overhead, computation overhead, and throughput during shard reconfiguration.

(a) Throughput stress test. (b) TR=2000 TXs/sec, S=2. (c) TR=2000 TXs/sec, nc=100. (d) nc=100, S=6 and nc=300, S=2.
Fig. 5: Our performance evaluation in a LAN. We deploy Shardora prototype on 100 servers (initiate 600 nodes) rented from Alibaba Cloud to evaluate our
throughput and transaction confirmation latency under different conditions: number of shards, consensus committee size, and transaction arrival rates.

(a) TX confirmation latency. (b) Throughput.
Fig. 6: Transaction confirmation latency and throughput distribution at nc=300
and n=2 network scale when TR is varied from 1000 to 5000 TXs/sec.

processed, the transaction confirmation latency also increases.
Moreover, Figure 5(d) indicates that at a constant network
scale of 600 nodes, a smaller consensus committee size and
a larger number of shards typically lead to higher throughput
and shorter transaction confirmation latency, particularly as
transaction arrival rates ascend.

We further measure the system throughput and transac-
tion confirmation latency over two epoch periods, and the
experimental results are presented in Figure 6, where the
upper and lower bounds represent the maximum and minimum
values, respectively. The green dashed line represents the mean
and the red solid line represents the median. As shown in
Figure 6(a), when the transaction arrival rate is 2000, the dif-
ference between the maximum and minimum values of trans-
action confirmation delay does not exceed 0.3 seconds, and
the mean and median values are almost equal. This indicates
that the transaction confirmation latency of Shardora remains

(a) Reputation score comparison
over different epochs.

(b) Consensus committee election
statistics over 5000 epochs.

Fig. 7: Reputation score and election statistic.

relatively stable during shard reconfiguration. Although the
volatility of transaction confirmation latency increases as the
transaction arrival rate increases. It is caused by queuing in
the transaction pool rather than reconfiguration. Figure 6(b)
further demonstrates the seamless reconfiguration process of
Shardora, as it maintains a stable TPS regardless of the
transaction arrival rate. Furthermore, the small TPS spread and
roughly equal mean and median values in Figure 6(b) further
support the stability of the reconfiguration process.

3) Reputation Statistic: Figure 7(a) compares the average
reputation scores of static malicious nodes and honest nodes
across different epochs. As epochs progress, the average
reputation of honest nodes gradually rises, whereas it declines
for malicious nodes, approaching zero by the 500th epoch.
The reputation gap between malicious and honest nodes is
also reflected in the selection frequency for consensus nodes.
Figure 7(b) reveals that, after 5000 epochs, honest nodes are

TABLE I: Comparison on existing blockchain sharding schemes. The ledger synchronization overhead on consensus nodes ranges from zero, denoted as , to
full synchronization, denoted as . A checkmark ✓ indicates the fulfillment of the property, while a cross × indicates the lack of fulfillment. The abbreviation
“N/A” denotes that the status of the property remains unknown.

Scheme Shard
Reconfiguration

Ledger
Synchronization

Reconfiguration
Interval

Intra-Shard
Consensus

Consensus
Complexity

Reconfiguration
System Availability Heterogeneity Incentives

Elastico [12] Full one-day long PBFT O(n2) × × ×
RepShard [16] Full N/A BFT+BLS O(n) × ✓ ×
RepChain [17] Full N/A CSBFT O(n2) × ✓ ✓

Omniledger [13] Partial one-day long PBFT O(n2) ✓ × ×
RapidChain [14] Partial one-day long PBFT O(n2) ✓ × ×

SSRR [34] Partial N/A BFT O(n2) ✓ × ×
tMPT [15] Partial 100 blocks PBFT O(n2) ✓ × ×

SkyChain [35] Partial (0,1000s) BFT O(n2) ✓ × ×
Cuckchain [36] Partial N/A PBFT O(n2) ✓ ✓ ✓

ECFR [37] Partial N/A PBFT O(n2) ✓ ✓ ✓
Our Shardora Partial 10 min (Default) BFT+BLS O(n) ✓ ✓ ✓

chosen more frequently as consensus nodes than malicious
nodes. These findings demonstrate that Shardora becomes
increasingly robust as system runtime extends.

VI. RELATED WORK

In this section, we will first discuss the shard reconfiguration
mechanism in existing blockchain sharding schemes, then
introduce their respective in-shard consensus protocols to
reveal the motivation of our work. Comparisons of the existing
schemes for sharding reconfiguration is listed in TABLE I.
Blockchain sharding schemes with reconfiguration. As the
first sharding protocol with presence of Byzantine adversaries,
Elastico [12] enables each shard to process transactions in
parallel, thereby improving scalability. But it requires all
previously participating nodes to recompute a PoW puzzle
during the reconfiguration phase. This requirement inevitably
results in a temporary loss of system availability. To ensure
continuous availability, other solutions such as Omniledger
[13], RapidChain [14], tMPT [15], SkyChain [35], etc., adopt
partial node shuffling during the reconfiguration phase. Om-
niledger shuffles only a small portion (≤ 30%) of the nodes
in each shard, allowing most nodes to remain in their original
shards and continue processing transactions. In RapidChain,
the bounded Cuckoo rule is used to strategically shuffle a
small number of nodes. However for existing schemes that
support partial node shuffling, when a node is shuffled to
a new shard, it needs to download and synchronize the
complete ledger of that shard from the remaining nodes
(which work on transaction processing in this period). This
synchronization consumes significant bandwidth and com-
putational resources on these nodes, hampering the system
throughput. Ominiledger and tMPT mitigate synchronization
overhead by compressing ledger information, while SkyChain
utilizes reinforcement learning to dynamically adjust the re-
configuration interval, minimizing the impact on throughput.
As public blockchain sharding systems, [12]–[15], [34], [35]
ignore the heterogeneity among participating nodes in terms
of computing resources, network bandwidth, and historical
behaviors. To mitigate potential bottlenecks caused by less
capable nodes and improve system throughput, nodes are
reputation scored in [16], [17], [36], [37]. These scores help
in the strategic shuffling of nodes to maintain a balanced

distribution of competent nodes across all shards. Furthermore,
[17], [34], [36] introduce an incentive mechanism to reward
consensus nodes involved in transaction processing.
Intra-shard consensus protocols of blockchain sharding.
Elastico [12] was the first to adopt the PBFT protocol for
handling transactions within each shard. Subsequent works
further leveraged PBFT for intra-shard consensus [13]–[15],
[34], [36]. PBFT is well-suited for dynamic sharding systems,
as nodes joining the network can establish their identity
using a public-private key pair and seamlessly sign and verify
transactions with their own key, regardless of future shard
reassignment. However, PBFT exhibits a communication com-
plexity of O(n2) per block within a shard of n nodes, which
escalates to O(n3) during the view-change protocol [18].
This high communication complexity limits optimal system
throughput. To address this, RepShard [16] and RepChain [17]
incorporated BLS threshold signatures into the BFT protocol,
reducing the communication complexity to O(n). Neverthe-
less, the use of threshold signatures requires the consensus
nodes in newly formed shards to renegotiate keys during
each shard reconfiguration. This results in the system being
temporarily unavailable, as transactions cannot be processed
during the negotiation process.

VII. CONCLUSION

In this paper, we propose Shardora, a blockchain shard-
ing system designed to achieve high system throughput and
security. By implementing a reputation-based dual commit-
tee node shuffling strategy, we reduce the TPS-Degradation
issue during reconfiguration phases. Furthermore, Shardora
incorporates a lightweight decentralized key pre-negotiation
mechanism to avoid Zero-TPS issue during key negotiation
periods. We systematically prove the security of Shardora
through rigorous tests and analyses. We develop a prototype of
Shardora and make our source code available on GitHub. To
evaluate performance, we deploy our Shardora prototype on
Alibaba Cloud. Experimental results have demonstrated that
the proposed Shardora outperforms other baselines in terms
of ledger synchronization overhead, key negotiation overhead,
and throughput stability during reconfiguration.

REFERENCES

[1] S. Saberi, M. Kouhizadeh, J. Sarkis, and L. Shen, “Blockchain tech-
nology and its relationships to sustainable supply chain management,”
International journal of production research, vol. 57, no. 7, pp. 2117–
2135, 2019.

[2] P. Dutta, T.-M. Choi, S. Somani, and R. Butala, “Blockchain technology
in supply chain operations: Applications, challenges and research oppor-
tunities,” Transportation research part e: Logistics and transportation
review, vol. 142, p. 102067, 2020.

[3] P. Treleaven, R. G. Brown, and D. Yang, “Blockchain technology in
finance,” Computer, vol. 50, no. 9, pp. 14–17, 2017.

[4] B. Scott, “How can cryptocurrency and blockchain technology play a
role in building social and solidarity finance?” UNRISD Working Paper,
Tech. Rep., 2016.

[5] H. M. Hussien, S. M. Yasin, N. I. Udzir, M. I. H. Ninggal, and S. Salman,
“Blockchain technology in the healthcare industry: Trends and opportu-
nities,” Journal of Industrial Information Integration, vol. 22, p. 100217,
2021.

[6] T. McGhin, K.-K. R. Choo, C. Z. Liu, and D. He, “Blockchain in
healthcare applications: Research challenges and opportunities,” Journal
of network and computer applications, vol. 135, pp. 62–75, 2019.

[7] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[8] G. Wood et al., “Ethereum: A secure decentralised generalised trans-

action ledger,” Ethereum project yellow paper, vol. 151, no. 2014, pp.
1–32, 2014.

[9] J. Xie, F. R. Yu, T. Huang, R. Xie, J. Liu, and Y. Liu, “A survey on
the scalability of blockchain systems,” IEEE network, vol. 33, no. 5, pp.
166–173, 2019.

[10] G. Wang, Z. J. Shi, M. Nixon, and S. Han, “Sok: Sharding on
blockchain,” in Proceedings of the 1st ACM Conference on Advances in
Financial Technologies. ACM, 2019, pp. 41–61.

[11] A. I. Sanka and R. C. Cheung, “A systematic review of blockchain
scalability: Issues, solutions, analysis and future research,” Journal of
Network and Computer Applications, vol. 195, p. 103232, 2021.

[12] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and P. Saxena,
“A secure sharding protocol for open blockchains,” in Proceedings of
the 2016 ACM SIGSAC conference on computer and communications
security. ACM, 2016, pp. 17–30.

[13] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and
B. Ford, “Omniledger: A secure, scale-out, decentralized ledger via
sharding,” in 2018 IEEE symposium on security and privacy (SP).
IEEE, 2018, pp. 583–598.

[14] M. Zamani, M. Movahedi, and M. Raykova, “Rapidchain: Scaling
blockchain via full sharding,” in Proceedings of the 2018 ACM SIGSAC
conference on computer and communications security. ACM, 2018,
pp. 931–948.

[15] H. Huang, Y. Zhao, and Z. Zheng, “tmpt: Reconfiguration across
blockchain shards via trimmed merkle patricia trie,” in 2023 IEEE/ACM
31st International Symposium on Quality of Service (IWQoS). IEEE,
2023, pp. 1–10.

[16] G. Wang, “Repshard: reputation-based sharding scheme achieves linearly
scaling efficiency and security simultaneously,” in 2020 IEEE Interna-
tional Conference on Blockchain (Blockchain). IEEE, 2020, pp. 237–
246.

[17] C. Huang, Z. Wang, H. Chen, Q. Hu, Q. Zhang, W. Wang, and
X. Guan, “Repchain: A reputation-based secure, fast, and high incentive
blockchain system via sharding,” IEEE Internet of Things Journal, vol. 8,
no. 6, pp. 4291–4304, 2020.

[18] M. Castro and B. Liskov, “Practical byzantine fault tolerance and
proactive recovery,” ACM Transactions on Computer Systems (TOCS),
vol. 20, no. 4, pp. 398–461, 2002.

[19] H. Huang, X. Peng, J. Zhan, S. Zhang, Y. Lin, Z. Zheng, and S. Guo,
“Brokerchain: A cross-shard blockchain protocol for account/balance-
based state sharding,” in IEEE INFOCOM 2022-IEEE Conference on
Computer Communications. IEEE, 2022, pp. 1968–1977.

[20] R. Karp, C. Schindelhauer, S. Shenker, and B. Vocking, “Randomized
rumor spreading,” in Proceedings 41st Annual Symposium on Founda-
tions of Computer Science. IEEE, 2000, pp. 565–574.

[21] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand:
Scaling byzantine agreements for cryptocurrencies,” in Proceedings of
the 26th symposium on operating systems principles, 2017, pp. 51–68.

[22] I. Eyal, A. E. Gencer, E. G. Sirer, and R. Van Renesse, “{Bitcoin-
NG}: A scalable blockchain protocol,” in 13th USENIX symposium on
networked systems design and implementation (NSDI 16), 2016, pp. 45–
59.

[23] E. K. Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser, and B. Ford,
“Enhancing bitcoin security and performance with strong consistency via
collective signing,” in 25th usenix security symposium (usenix security
16), 2016, pp. 279–296.

[24] K. Gurkan, P. Jovanovic, M. Maller, S. Meiklejohn, G. Stern, and
A. Tomescu, “Aggregatable distributed key generation,” in Annual Inter-
national Conference on the Theory and Applications of Cryptographic
Techniques. Springer, 2021, pp. 147–176.

[25] S. Das, T. Yurek, Z. Xiang, A. Miller, L. Kokoris-Kogias, and L. Ren,
“Practical asynchronous distributed key generation,” in 2022 IEEE
Symposium on Security and Privacy (SP). IEEE, 2022, pp. 2518–2534.

[26] S. Das, Z. Xiang, L. Kokoris-Kogias, and L. Ren, “Practical asyn-
chronous high-threshold distributed key generation and distributed poly-
nomial sampling,” in 32nd USENIX Security Symposium (USENIX
Security 23), 2023, pp. 5359–5376.

[27] H. Zhang, S. Duan, C. Liu, B. Zhao, X. Meng, S. Liu, Y. Yu, F. Zhang,
and L. Zhu, “Practical asynchronous distributed key generation: Im-
proved efficiency, weaker assumption, and standard model,” in 2023 53rd
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN). IEEE, 2023, pp. 568–581.

[28] R. Bacho and J. Loss, “On the adaptive security of the threshold bls
signature scheme,” in Proceedings of the 2022 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2022, pp. 193–207.

[29] A. Tomescu, R. Chen, Y. Zheng, I. Abraham, B. Pinkas, G. G. Gueta,
and S. Devadas, “Towards scalable threshold cryptosystems,” in 2020
IEEE Symposium on Security and Privacy (SP). IEEE, 2020, pp. 877–
893.

[30] M. Bellare, E. Crites, C. Komlo, M. Maller, S. Tessaro, and C. Zhu,
“Better than advertised security for non-interactive threshold signatures,”
in Annual International Cryptology Conference. Springer, 2022, pp.
517–550.

[31] J. Wang and H. Wang, “Monoxide: Scale out blockchains with asyn-
chronous consensus zones,” in 16th USENIX symposium on networked
systems design and implementation (NSDI 19). USENIX, 2019, pp.
95–112.

[32] I. Bentov, C. Lee, A. Mizrahi, and M. Rosenfeld, “Proof of activity:
Extending bitcoin’s proof of work via proof of stake [extended abstract]
y,” ACM SIGMETRICS Performance Evaluation Review, vol. 42, no. 3,
pp. 34–37, 2014.

[33] P. Feldman, “A practical scheme for non-interactive verifiable secret
sharing,” in 28th Annual Symposium on Foundations of Computer
Science (sfcs 1987). IEEE, 1987, pp. 427–438.

[34] Y. Liu, J. Liu, Y. Hei, W. Tan, and Q. Wu, “A secure shard reconfigura-
tion protocol for sharding blockchains without a randomness,” in 2020
IEEE 19th International Conference on Trust, Security and Privacy in
Computing and Communications (TrustCom). IEEE, 2020, pp. 1012–
1019.

[35] J. Zhang, Z. Hong, X. Qiu, Y. Zhan, S. Guo, and W. Chen, “Skychain:
A deep reinforcement learning-empowered dynamic blockchain sharding
system,” in Proceedings of the 49th International Conference on Parallel
Processing. ACM, 2020, pp. 1–11.

[36] J. Tian, C. Jing, and J. Tian, “Cuckchain: A cuckoo rule based secure,
high incentive and low latency blockchain system via sharding,” in 2023
IEEE Symposium on Computers and Communications (ISCC). IEEE,
2023, pp. 1228–1234.

[37] M. Zhang, J. Li, Z. Chen, H. Chen, and X. Deng, “An efficient and
robust committee structure for sharding blockchain,” IEEE Transactions
on Cloud Computing, vol. 11, no. 3, pp. 2562–2574, 2023.

	Introduction
	Problem Formulation
	System Model
	Transaction Model
	Network Model
	Threat Model and Security Assumption

	Our Proposed Shardora
	Overview of Shardora
	Detailed Description
	Reputation-based Dual Committee Node Shuffling
	Key Pre-negotiation
	Consensus Agreement
	Reputation Scoring

	Security Analysis
	System Security Analysis
	Key Negotiation Security Analysis
	Key Negotiation Security
	Key Negotiation Value Reuse Security

	Performance Evaluation
	Performance Comparison
	Ledger Synchronization Overhead
	Key Negotiation Overhead
	Throughput During Shard Reconfiguration

	Cloud Testbed Evaluation of Shardora
	System Throughput Stress Test
	Throughput and TX Confirmation Latency
	Reputation Statistic

	Related Work
	Conclusion
	References

