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Abstract. The field of fully homomorphic encryption (FHE) has seen
many theoretical and computational advances in recent years, bringing
the technology closer to practicality than ever before. For this reason,
practitioners in related fields, such as machine learning, are increasingly
interested in using FHE to provide privacy to their applications.
Despite this progress, selecting secure and efficient parameters for FHE
remains a complex and challenging task due to the intricate interde-
pendencies between parameters. In this work, we address this issue by
providing a rigorous theoretical foundation for parameter selection for
any LWE-based schemes, with a specific focus on FHE. Our approach
starts with an in-depth analysis of lattice attacks on the LWE problem,
deriving precise expressions for the most effective ones. Building on this,
we introduce closed-form formulas that establish the relationships among
the LWE parameters.
In addition, we introduce a numerical method to enable the accurate
selection of any configurable parameter to meet a desired security level.
Finally, we use our results to build a practical and efficient tool for re-
searchers and practitioners deploying FHE in real-world applications,
ensuring that our approach is both rigorous and accessible.

Keywords: Fully Homomorphic Encryption, Parameter Selection, Learning With
Errors, Primal attacks, Bounded Distance Decoding

1 Introduction

With the advancements of future-generation networking technologies like cloud
services, artificial intelligence applications, Internet of Things, and edge com-
puting, concerns about data privacy are increasing significantly. Homomorphic
encryption serves as a solution for preserving privacy during data processing,
allowing computations on encrypted data without the need for decryption. More
specifically, Fully Homomorphic Encryption (FHE) schemes define ciphertext op-
erations corresponding to computations on the underlying plaintext as additions
or multiplications [50].

The first FHE scheme was introduced in 2009 by Gentry [37]. Gentry pro-
vided a method for constructing a general FHE scheme from a scheme with
limited but sufficient homomorphic evaluation capacity. Since then, several FHE
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constructions have been proposed, such as BGV [15], BFV [14, 35], FHEW [28],
TFHE [19, 20], and CKKS [17, 18]. More details on FHE and its applications
can be found in surveys [1, 50, 51].

The security of all practical FHE schemes is based on the presumed in-
tractability of the (decision) Learning with Errors (LWE) problem, [56], and its
ring variant (RLWE) [48]. Informally, the decisional version of LWE consists of
distinguishing equations {(ai, bi = s ·ai+ei)}i mod q, perturbed by small noise
ei (also called error), from uniform random tuples from Zn

q × Zq
3.

The problem arising from lattice-based constructions is that the error grows
whenever a homomorphic operation is performed. In particular, it grows expo-
nentially when homomorphic multiplications are computed. However, in order
to guarantee correct decryption, the error has to be small. Specifically, its max-
imal coefficient must be smaller than a quantity depending on the modulus q.
One approach to accommodating more operations is increasing the modulus q.
However, a larger modulus also decreases the security level of the underlying
scheme, requiring a larger LWE dimension n to keep the same security level,
which comes at the cost of efficiency.

This required trade-off between security (small q) and error margin (large q)
illustrates the challenge of identifying an optimal set of parameters for a given
FHE scheme. Such a balancing process called parameter estimation, is one of the
main issues that need to be addressed to make FHE practical.

Several efforts have been made by the FHE community to address the chal-
lenge of facilitating the deployment of FHE among researchers and practitioners
and to select an optimal set of parameters.

For instance, the Homomorphic Encryption Standard [3] (using the Lattice
Estimator4) provides upper bounds on the size of the modulus q for given secu-
rity levels λ and dimensions n through lookup tables, recently updated in [13].
Moreover, in [53], Mono et al. proposed a compact formula that computes the
hardness of LWE for given dimension n, modulus q and the standard deviation
of secret distribution σs. Finally, the authors of [44], starting from a theoretical
analysis of lattice attacks, present closed and precise formulas for two key tasks:
1) deriving the security parameter λ given the secret distribution χe, n, and the
modulus q, 2) determining n as a function of λ, q, and χe. Our results are built
on this work, which we extend and improve in several directions.

In addition to these general efforts, researchers have also focused on opti-
mizing parameters for specific FHE schemes. For instance, some FHE compilers,
which are high-level tools that aim at abstracting the technical APIs exposed by
FHE libraries, allow a sort of automatic parameter generation according to some
predefined requirements [50, 62]. Some examples are ALCHEMY [23], Cingulata
3 While in FHE literature n is often referred to as polynomial degree, having in mind

Ring-LWE based constructions, in this work we refer to n as to LWE dimension, as
we do not utilize any algebraic properties of Ring-LWE.

4 The Lattice Estimator (https://github.com/malb/lattice-estimator [5]) is the
successor of the LWE Estimator, which is a software tool to determine the security
level of LWE instances under various attacks proposed until the present time.

https://github.com/malb/lattice-estimator
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[16], EVA [26] and SEALion [34]. Additionally, Bergerat et al. [10] proposed
a framework for efficiently selecting parameters in TFHE-like schemes. In [53],
the authors developed an interactive parameter generator for the leveled BGV
scheme, which supports arbitrary circuit models and Biasioli et al. [11] further
extended this approach to the BFV scheme.

While these contributions mark significant progress toward the accessible and
general adoption of FHE, a fully user-friendly and efficient tool for secure pa-
rameter tuning remains unavailable. As highlighted in Paillier’s invited talk [54],
the field still faces the challenge of simplifying parameter selection to a point
where non-cryptographic-experts can confidently implement FHE in diverse ap-
plications.

Our contribution. Building on our previous work [44], we extend this result in
several directions: we additionally express the LWE parameters q and χe via the
remaining LWE parameters and a given security level λ (here, as in the previous
work, we fix the distribution of the secret to either binary or ternary). Fur-
thermore, for even more accurate estimates, we employ numerical solvers that
allow us to find precise solutions fast. All of these and more minor improve-
ments enhance our tool, which implements the functionality of outputting LWE
parameters for a given security level.

Our analysis focuses on two types of lattice algorithms: the so-called Bounded
Distance Decoding (BDD) attack and the unique Shortest Vector Problem (uSVP)
attack. We chose these two as they are currently the most efficient attacks, es-
pecially in the context of FHE. Certain versions of dual attacks [52] outperform
the attacks we consider here for some relevant parameters, however, at the time
of writing, these dual attacks do not offer correctness [30].5

From this rigorous theoretical analysis, we derive precise formulas that reveal
the relationships among FHE macro parameters, offering faster and versatile
parameter selection. Specifically,

1. For each considered attack, we
• derive the security parameter λ as a function of the standard deviations
σs and σe, the dimension n, and the modulus q.

• express the LWE dimension n in terms of λ, q, σe, and σs,

• express the LWE modulus q in terms of λ, n, σe, and σs,

• express the standard deviation of the LWE noise σe in terms of λ, q, n,
and σs.

2. Taking the obtained formulas as a starting point, we build more precise es-
timates by conducting extensive experiments with the Lattice Estimator [5],
creating a large dataset that correlates n, q, σ, and λ and producing a fitting

5 Even if [52] was correct, the improvement over uSVP or BDD would be rather
marginal as can be seen by running the Lattice Estimator. The versions of dual at-
tacks [55] that come with correctness guarantees are inferior to the attacks considered
here for concrete parameters.
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function that relates the LWE parameters with various security levels. This
effort enables us to adjust the lower-order terms in the derived expressions,
ensuring accurate estimates for broad parameter sets.

3. An alternative road towards precise estimates is numerical solvers. Since our
formulas are derived from rather elaborate complexity estimates of lattice at-
tacks, the LWE parameters are entwined, and often it is hard to derive a nice
analytical solution for a specific variable. Numerical solvers, however, per-
form very well at this task. Employing Python’s scipy fsolve functionality,
we are able to ‘reverse’ the lattice estimator for any desired LWE parameters
with striking precision.

4. Most importantly for practitioners, we provide a practical tool implementing
these formulas and offering best-practice guidelines for their application.
Written in Python and publicly available on Github repository6, our tool
ensures that our approach is rigorous, accessible, and fast.

5. We augment our tool with the option of checking for NTRU parameters to
ensure that they do not lie in the insecure regime [32].

Comparison with related work. In [10], the authors build a framework to effi-
ciently find optimal parameters for TFHE-like schemes. Their methodology relies
on a security oracle, which, given the parameters n, q, λ and σs, outputs the min-
imal σe that guarantees security λ. Our methodology deviates considerably from
their approach. The main difference is that our formulas do not come solely from
empirical results but from the analysis of the main lattice attacks. The point of
contact of the two works is the use of the Lattice Estimator to build a database
and the use of a fitting function. However, while [10] uses the fitting function to
build the totality of their formula, our use is solely for optimizing lower-order
terms.

In [13], the authors provide tables listing parameters for FHE applications
targeting different levels of security. Their work is particularly valuable to non-
experts since it allows them to select secure parameters for their applications
quickly. The main difference between our work and [13] is the scope of parameters
that an end-user can obtain. That is, a table-based approach such as the one
provided by [13] is rigid by design. Although the authors offer a way to update
the parameters via a script, they are restricted to a predefined set of values. On
the other hand, with our tool, we can quickly get parameters for any range that
an application might require, without having to run any LWE estimator.

Advantages of a formula-based approach. We want to highlight that our formulas
provide not only an alternative to the existing procedures of parameter selection
in FHE but also a faster paradigm. That is, using a script-based strategy (such
as running the Lattice Estimator for different sets of parameters) is inefficient
since the only way to obtain suitable parameters is brute-force, which can mean
6 https://github.com/sergirovira/fastparameterselection

https://github.com/sergirovira/fastparameterselection
https://github.com/sergirovira/fastparameterselection


Fast Parameter Selection for FHE 5

checking many cases until the desired parameters are found. Using a look-up ta-
ble of pre-computed values is, of course, faster but also limited since it might not
accommodate all possible needs that arise when selecting parameters for FHE
schemes. This approach is used in the vast majority of FHE libraries [8, 46, 60].
Using a formula-based method, we get the best of both approaches. Namely, we
can get optimal parameters for any given application instantly. Another advan-
tage of using formulas is that we can understand the behaviour of the parameters
in relation to each other, allowing us to easily check if the parameters we are
using are optimal. Finally, it is worth mentioning that our formulas are appli-
cable to any construction based on the hardness of LWE and not only to FHE
schemes.

To conclude, our approach significantly accelerates the parameter selection
process, offering a practical and efficient tool for researchers and practitioners
deploying FHE or other LWE-based primitive in real-world applications.

The structure of the paper is as follows: Section 2 introduces the notation and
mathematical background necessary for understanding the paper. In Section 3,
we provide a comprehensive analysis of the BDD and uSVP attacks, deriving
formulas that establish the relationships among the macro parameters of FHE.
These formulas are fine-tuned in Section 4, while Section 5 examines their solu-
tions using a numerical method. Section 6 offers practical guidance on how to
use our implementation, and Section 7 compares our approach with prior works.
Finally, Section 8 presents our conclusions.

2 Preliminaries

2.1 Notation

For a positive integer q, we denote by Zq = Z/qZ the ring of integers modulo
q. For n ≥ 1, denote by Rn the real vector space. For a vector x, both xi and
x[i] denote either the i-th scalar component of the vector or the i-th element of
an ordered finite set of vectors. Matrices are denoted by bold capital letters. We
denote by ∥x∥ the Euclidean norm of x. By At we denote the transpose of A.

2.2 Mathematical background

Let B = (b1, . . . ,bk) be linearly independent vectors in Rn, then we can define
the lattice L(B) generated by B as the set of all integer linear combinations of
elements of B:

L = L(B) =
{ k∑

i=1

γibi : γi ∈ Z,bi ∈ B
}
.

If k = n, the lattice is said to be full rank. We will be concerned with integral
lattice, i.e., L ⊂ Zn. An integral lattice L is called q-ary if qZn ⊂ L ⊂ Zn. The
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determinant of a lattice L defined by a basis B is det(L) =
√
det(BtB) and is

independent of the choice of basis.
For basis vectors bi, we write b⋆

i for the corresponding Gram-Schmidt vec-
tors. Concretely, the i-th Gram-Schmidt vector b⋆

i is the projection of bi orthog-
onally to the subspace SpanR(b1, . . . ,bi−1). We denote such projecting operator
πi. We write B[i,j] to denote the matrix whose columns are {πi(bi), . . . , πi(bj)}.
It generates (a projective) sublattice of dimension j− i+1. We will make use of
the fact that det(L(B)) =

∏n
i=1 ∥b⋆

i ∥.
The minimum distance or the first successive minimum of lattice L, denoted

by λ1(L), is the Euclidean norm of a shortest non-zero vector in L: λ1(L) =
min{∥v∥ : v ∈ L, v ̸= 0}. The i-th successive minimum λi(L) is the smallest
r > 0 such that B(0, r) contains i linearly independent vectors of L, where B(0, r)
is a ball in Rn of radius r centered at 0. The successive minima are independent
of the basis choice.

The Gaussian Heuristic predicts λ1(L) for an n-dimensional lattice L:

λ1(L) ≈
√
n√
2πe

(det(L))1/n.

Hard problems on lattices. There are several fundamental problems related
to lattices, the following ones are relevant to this work.

The Shortest Vector Problem (SVP) asks to find v ∈ L such that ∥v∥ = λ1(L).
In the promise variant of SVP, the so-called unique SVP (uSVP), we are

guaranteed that the first successive minimum is γ > 1 times smaller than the
second minimum λ2. We are asked to find v ∈ L such that ∥v∥ = λ1(L).

The Closest Vector Problem (CVP) asks to find v ∈ L closest to a given
target vector t ∈ Rn.

Given a lattice L and a target vector t close to the lattice, the Bounded
Distance Decoding (BDD) problem asks to find v ∈ L closest to the target t
with the promise that ∥t− v∥ ≤ R, where R≪ λ1(L).

Discrete Gaussian Distribution. For a vector v and any σ > 0, define
ρσ(v) = exp(−π∥v∥2/(2πσ2)). For a lattice L, the discrete Gaussian probability
distribution with standard deviation σ7 is defined with the probability density
function

DL,σ(v) =
ρσ(v)∑

x∈L ρσ(x)
.

2.3 Lattice reduction

Lattice reduction aims at improving the quality of a lattice basis. In this work,
we are interested in the lattice reduction algorithm called BKZ (short for Block-
Korkine-Zolotarev, [57]). Together with a lattice basis, it receives as input an
7 Notice that the variance of a Discrete Gaussian and a Continuous Gaussian does

not match when σ ≤ 0.6. In this paper we use the same parameter for both since we
always work with σ > 0.6.
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integer parameter β (called the block size) that governs the quality of the output
basis and the runtime. Here by ‘quality’ we mean the Euclidean norm of the
shortest vector in the basis output by BKZ. Concretely, BKZ run with block
size β on a lattice L of rank n, returns a basis containing a lattice vector b1 of
norm

∥b1∥ = δnβ · det(L)1/n, (1)

where δβ is known as the root Hermite-factor and can be expressed in terms of
β as

δβ = (((πβ)1/ββ)/(2πe))
1

2(β−1) ≈
(

β

2πe

) 1
2β

, (2)

where the approximation holds for large β’s such that (πβ)1/β ≈ 1.
The BKZ-β algorithm works by calling multiple times an algorithm for SVP

on sublattices of dimension β. In [39] it is shown that after poly(n) many number
of SVP calls, the guarantee defined in Equation (1) is achieved. Hence, the
running time of BKZ is determined by the complexity of SVP in β dimensional
lattices. The asymptotically fastest algorithm for SVP is due to Becker-Gama-
Ducas-Laarhoven [9] that outputs a shortest vector in an n-dimensional lattice
in time 20.292n+o(n). We choose this running time (ignoring the o()-term) as the
measure of SVP hardness. Further, for a more concrete complexity of BKZ-β on
an n-dimensional lattice we set the running time of BKZ as

TBKZ(β, n) = 20.292β+8n+16.4, (3)

which is the choice adopted by [12, 33, 36]. The correcting constant of 16.4
obtained experimentally [9]. The concrete choice of TBKZ(β, n) is called the
core-SVP model [6]. Our results are easy to adapt to other existing choices
of TBKZ(β, n).

In addition to Equation (1), BKZ quality guarantees extend (heuristically)
to norms of Gram-Schmidt vectors of the returned basis. It is formulated in
Geometric Series Assumption. All known lattice estimators [5, 24] rely on this
assumption.

Definition 1 (Geometric Series Assumption (GSA), [58]). The norms
of Gram-Schmidt vectors of a BKZ-β reduced basis satisfy

∥b⋆
i ∥ = αi−1∥b1∥,

where α = δ
−2n
n−1

β ≈ δ−2
β ≈ β−1/β.

Babai’s algorithm. For one of the attacks considered in this work, we need an
efficient BDD solver: Babai’s algorithm [7]. Its running time is polynomial in
the lattice dimension. In a BDD instance, we are given a lattice basis B and
the target t. Assume for simplicity that the coordinates of t are independent
Gaussians with standard deviation σ (case of LWE). Informally, the success
probability of Babai depends on the relation between ∥b⋆

i ∥ and σ: if ∥b⋆
n∥ > σ,
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the success probability is constant, while if ∥b⋆
1∥ = σ, the success probability is

super-exponentially low (in the lattice dimension). We will be concerned with
the first case (constant success probability) formally defined in the next claim.
We use the formulation from [40].8

Lemma 1 ([40, Lemma 4]). Let the sequence ∥b⋆
1∥, . . . , ∥b⋆

n∥ follow GSA,
and let t be a vector with coordinates distributed as independent Gaussians with
standard deviation σ. The success probability of Babai’s algorithm is 1− o(1), if
∥b⋆

n∥ > σ(log n)1/2+ε for fixed constant ε > 0.

2.4 The Learning With Errors Problem

The Learning with Errors problem (LWE) was introduced by Regev in [56].
The LWE problem is parametrized by an integer n, modulus q (not necessarily
prime), an error distribution χe : Zq → R+ with standard deviation σe, and a
secret distribution χs : Zq → R+ with standard deviation σs.

Definition 2 (The Learning with Errors (LWE) problem). Given a vec-
tor b ∈ Zm

q and a matrix A taken uniformly at random from Zm×n
q , the search

version of the LWE problem consists in finding an unknown vector s ∈ Zn
q such

that
As+ e = b mod q,

where e ∈ Zm
q is sampled coordinate-wise from an error distribution χe, and s

is sampled coordinate-wise from χs. In other words, the goal is to find a vector
s ∈ Zn

q given a list of m noisy equations from

As,χe,χs
= {(ai, bi = ⟨ai, s⟩+ ei) ∈ Zn

q × Zq : ai
$←− Zn

q , ei ← χe, si ← χs}.

Often in FHE constructions, we have χs ∈ {U3,U2}, the uniform distribution
on Z3 (called ternary secret LWE) or on Z2 called (binary secret LWE). For the
error, we are concerned with discrete Gaussian distribution centered in 0 with
standard deviation σe = 3.19 [3].

There exist several versions of LWE: Ring-LWE [48, 61] and Module-LWE [45].
These are mainly used for efficiency reasons, security-wise these versions, at the
time of writing, are believed to be equivalent to ‘plain’ LWE. Therefore, all
our results extend to these other versions, in particular to Ring-LWE, the most
relevant variant in the FHE context.

3 Deriving LWE dimension for required security level

On chosen algorithms. We focus on primal attacks on LWE, and do not consider
the so-called dual attacks. First, the recent discoveries [30] of failing heuristics
8 Even though in [40, Lemma 4] the authors talk about continuous Gaussian, the

result holds for the discrete Gaussian too.
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employed in efficient dual attacks [38, 52] invalidate the claimed complexities. De-
spite of ongoing attempts to bring dual attacks back into play [29], no complete
algorithm is presented that outperforms primal attacks. While other potentially
less efficient versions of dual attacks have not been invalidated, the primal at-
tacks perform better on the parameters considered in this work. Second, dual
attacks seem to be much harder to implement: we are not aware of an existing
implementation of a competitive dual attack.

We neither consider here the so-called hybrid attacks [2, 42]. These are rel-
evant for sparse secret LWE, i.e., for cases when the Hamming weight of the
secret is less than n/2. The analysis of these attacks is left for future work.

We receive on input an LWE instance (A,b = As + e) ∈ Zm×n
q × Zm

q , where
s follows the distribution χs with standard deviation σs, and e follows the dis-
tribution χe with standard deviation σe. We now describe in details the two
attacks: BDD and uSVP, derive accurate formulas for their complexities, and
finally reverse these formulas to express n as a function of q, σe, σs, and the
desired security level λ.

3.1 The BDD attack

While the BDD attack on LWE has been known for years [47], we did not find
a reference that aligns well the Lattice Estimator [5], hence we first describe the
attack, then derive its running time and reverse the runtime expression for the
desired parameters, e.g., the LWE dimension n.

The search LWE problem is an average-case BDD problem for the (m +
n)−dimensional q-ary lattice

Lbdd = {v ∈ Zn+m | [A|Im]v = 0 mod q},

with the target vector (0,b) ∈ Zn × Zm. To see this, consider a basis for this
lattice over Zm+n given by the columns of the matrix

Bbdd =

(
In 0
A qIm

)
.

From the LWE equation As+ e = b− k · q for some k ∈ Zm, we know that

Bbdd · (s,k)t = (s,b− e)t = (s,−e)t + (0,b)t.

The lattice Lbdd is with high probability of full rank m + n (since A has full
column rank n with high probability) and the determinant of Lbdd is det(Lbdd) =
qm. The Gaussian Heuristic suggests that

λ1(Lbdd) ≈
√
m+ n

2πe
· q

m
m+n .

Further, the vector (0,b) is at distance ∥(s, e)∥ ≈
√

nσ2
s +mσ2

e ≪ λ1(Lbdd)
from Lbdd, hence we have a BDD instance (Lbdd, (0,b)).
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In cases were σs < σe, one can ‘re-balance’ the contribution of s, e into the
distance

√
nσs

s +mσ2
e by scaling the In part of Bbdd by ζ = max{1, ⌊σe/σs⌉},

that is we perform the attack on Bbdd =

(
ζIn 0
A qIm

)
. Even though it increases

the distance of the target to the lattice, it also scales det(Lbdd) by a factor
ζn, which in turn increases λ1(Lbdd) and hence the decoding properties of Lbdd.
For FHE parameters, the secret s is often binary or ternary, in which cases
ζ = σe/(1/2) = 2σe or ζ = σe/(

√
2/3) =

√
3/2σe.

Denote for simplicity d := m + n, the dimension of Bbdd. The bounded
distance decoding algorithm [47] works in three steps. In Step 1, we run a BKZ-
β lattice reduction algorithm on Bbdd. Denote the output basis by B′

bdd. The
goal of BKZ is to obtain a basis with the property

λ1(B
′
bdd,[d−η,d]) < ∥πd−η((s, e))∥

for 0 ≤ η < d as small as possible. Under the Gaussian Heuristic and the
approximation ∥πd−η((s, e))∥ ≈ σe

√
η, the above inequality can be rewritten as

√
d

2πe
det
(
B′

bdd,[d−η+1,d]

)1/d
< σe

√
η. (4)

This condition means that the orthogonal projection of our short vector (s, e) on
SpanR(b1, . . . ,bd−η+1) is shorter than the shortest vector in the projected lattice
B′

bdd,[d−η+1,d] given by the basis (πd−η+1(b
′
d−η+1), . . . , πd−η+1(b

′
d)). In the LWE

setting, GSA suggests that for small η’s the left-hand side of Ineq. (4) is always
larger than the right-hand side. Although both sides decrease for decreasing η,
the left-hand side does it faster (again, due to GSA) and at some point Ineq. (4)
is satisfied.

This implies that running an SVP solver on [B′
bdd,[d−η+1,d]|πd−η+1((0,b))]

will find the projection πd−η+1((s, e)) of our secret. This SVP call constitutes
the second step of the algorithm. Notice that we call SVP on a rank-(η) lattice
generated by [B′

bdd,[d−η+1,d]|πd−η+1((s, e))].
The third step of the attack ‘lifts’ the found projected vector πd−η+1((s, e))

using Babai’s algorithm on the ‘remaining’ part of the lattice B′
bdd,[1,d−η+1],

which is a sublattice of B′
bdd generated by its first (d−η+1) vectors. The norms

of Gram-Schmidt vectors of this sublattice, ∥b⋆
1∥, . . . ∥b⋆

d−η+1∥ satisfy

∥b⋆
i ∥ ≥ λ1(B

′
bdd,[i,d]) ≥ σe

√
d− i, i ≤ d− η + 1,

where the first inequality comes from the fact that b⋆
i ∈ B′

bdd,[i,d], and the second
is due to Ineq. (4). Applying Lemma 1 to B′

bdd,[1,d−η+1] gives constant probability
of Babai algorithm to output (s, e).

Runtime analysis of BDD. Let us now analyse the runtime of this attack. Among
the three steps of the BDD attack, the most expensive ones are the first step
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(BKZ-β) and the second (SVP in dimension η). It is optimal to balance these
two steps.

The runtime of BKZ-β on a d-dimensional lattice as given in Equation (3) is
TBKZ(β, d) = 20.292β · 8d, while the runtime of SVP on η-dimensional lattice is
TSVP(η) = 20.292η. The two runtimes differ only by a polynomial factor, hence
we expect β ≈ η to be optimal. Indeed, running the estimator confirms this
choice.

The required β can be derived from Ineq. (4). Concretely, using GSA and
the BKZ-β guarantee on ∥b′

1∥, we compute

det
(
B′

bdd,[d−η+1,d]

)
=

d∏
i=d−η+1

∥b⋆
i ∥ =

d∏
i=d−η+1

δd−1−2i
β (detBbdd)

1
d

= δ
−η(d−η+2)
β · (qmζn)

η
d .

From now on we use the approximation β ≈ η and work with β only. Here we
notice that in LWE one is free to choose the number of samples m, which in turn
affects the lattice dimension d. Minimizing the expression δ

−η(d−η+2)
β · (qmζn)

η
d

with respect to d, yields optimal lattice dimension d =
√

n ln(q/ζ)
ln δβ

. From Ineq. (4)
and Equation (2), we obtain the following expression for β as a function of
d, q, σe, ζ:

β ≥
d ln

(
β

2πe

)
ln
(

β
2πe

)
+ 2 ln

(
q

σe

√
2πe

)
− 2n

d ln
(

q
ζ

) . (5)

Substituting the optimal choice for d in the equation above yields

β

ln
(

β
2πe

) ≥ 2n ln q(
ln
(

β
2πe

)
+ 2 ln

(
q

σe

√
2πe

)
− 2

√
n

2 ln q ·
ln( β

2πe )
β ln

(
q
ζ

))2 (6)

Our goal is to express ln
(

β
2πe

)
via n, q, σe, σs and substitute the obtained

expression in Equation (6). Asymptotically, assuming ζ, σe are constants and
ln q ≥ lnβ, the above inequality is of the form β/ ln(β) ≥ d

ln(q) . Solutions for such
inequality do not have closed form expressions, however, one can check that they
all belong to Θ

(
n

ln(q) ln
(

n
ln q

))
. Experiments suggest that the constant inside

the Θ-notation is 1.
Letting X := β

ln( β
2πe )

, A := 2n ln q, B = 2 ln
(

q

σe

√
2πe

)
+ ln

(
2n
ln q ln

(
n

ln q

))
(it is the second addend of B where we used the simplification ln

(
β

2πe

)
≈

ln
(

2n
ln q ln

(
n

ln q

))
); C := n

2 ln q , D := ln(q/ζ), Equation (6) translates to

X =
A(

B − 2D
√

C
X

)2 .
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A positive solution to this quadratic (in
√
X) equation is

√
X = 2D

√
C+

√
A

B .
Note that the right hand side is independent of β. Unrolling the definition of X,

we obtain β
ln(β/(2πe)) =

(
2D

√
C+

√
A

B

)2
. There is no closed form solution to this

equation, however, we can express the solution via the Lambert-W function9,
which can be evaluated numerically for our parameters. Concretely, we obtain

β = 2πe
1−W1

(
− 2πeB

2D
√

C+
√

A

)
, where W1() denotes the “lower” branch of Lambert-

W function. It follows ln
(

β
2πe

)
= −W1

(
− 2πeB

2D
√
C+

√
A

)
. Substituting this result

in Equation (6), we obtain a closed expression for β (technically, it is a lower
bound for β, but we treat it as equality):

β =
2n ln q ·

(
−W1

(
− 2πeB

2D
√
C+

√
A

))
(
−W1

(
− 2πeB

2D
√
C+

√
A

)
+ 2 ln

(
q

σe

√
2πe

)
−
√

n
2 ln q ·

B
2D

√
C+

√
A
ln(q/ζ)

)2 (7)

Having β (and optimal d), we obtain the expression for the security level λ
achieved by the LWE parameters n, q, σe, σs:

λ = log(TBKZ(β, d), 2) = 0.292β + log2(8d) + 16.4. (8)

In the next section, we show that this formula gives very close results to
the Lattice Estimator predictions, and hence we can use it to express the LWE
dimension n.

Expressing n. In order to express n via λ, q, σe, σs we look at Equation (5).
This is a quadratic inequality (treated as equality) in n. Out of the two roots
we choose the one that gives us the matching answers for concrete choices of
n, λ, q, σe, σs. The solution is of the form (recall that ζ = max{1, ⌊σe/σs⌉})

n =
2 ln q · β · (2 ln q + ln(β/(2πe)− 2 ln(σe

√
2πe))2

ln(β/(2πe))(4 ln q − 2 ln ζ)2
.

Substituting the first order approximation β ≈ (λ− log(8d))/0.292 as (see Equa-
tion (3)), yields

n =
2 ln q · (λ− log(8d)) · (2 ln q + ln((λ− log(8d))/(0.584πe))− 2 ln(σe

√
2πe))2

0.292 ln((λ− log(8d))/(0.584πe))(4 ln q − 2 ln ζ)2
.

(9)

Expressing ln q. Inspecting Equation (5), we notice that it is linear in ln q in-
equality (treated here as equality). Concretely,

ln q =
(d/β − 1) ln(β/(2πe)) + 2 ln(σ2

√
2πe)

2(1− n/d)
.

Substituting the approximation for β ≈ (λ − log(8d))/0.292 and the optimal
choice for dimension d, we express lnσe as a function of λ, n, σe, σs.
9 https://en.wikipedia.org/wiki/Lambert_W_function

https://en.wikipedia.org/wiki/Lambert_W_function
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Expressing lnσe. Similarly to ln q, a closer look at Equation (5) tells that this
inequality (again treated as equality) is linear lnσe. Concretely, we can express
the exact expressions for lnσe are

lnσe =
β + 2β/ ln(β/(2πe))

(
ln(q/

√
2πe)− n

d ln q
)
− d

2β/ ln(β/(2πe)
,

or

lnσe =
β + 2β/ ln(β/(2πe))

(
ln(q/

√
2πe)− n

d (ln q + lnσs

)
− d

2β/ ln(β/(2πe)
,

depending on whether ζ = 1 (in the first case) or ζ = σe/σs (in the second
case). Substituting the approximation for β ≈ (λ− log(8d))/0.292 and the opti-
mal choice for dimension d, we express lnσe as a function of λ, q, n, σs. As the
resulting expression is fairly cumbersome to write down, we omit it here. The
precise expression can be found in our scripts.

3.2 The uSVP attack

Another approach to evaluate the hardness of LWE is to model the problem of
finding a unique shortest vector (uSVP) in a lattice closely related to Lbdd [4, 6].
The uSVP attack extends Lbdd by embedding the vector b in it [43] :

LuSVP = {v ∈ Zd+1 | [A|Im| − b]v = 0 mod q},

where as before d = m+n, later we optimize for d. The lattice LuSVP admits the
following basis matrix (written column-wise):

BuSVP =

ζIn 0 0
A qIm b
0 0 1

 ,

where again ζ = max{1, ⌊σe/σs⌉} is the scaling constant to “balance” the s and
e components of the shortest vector (ζs|−e|− 1) ∈ LuSVP. The constant 1 in the
lattice is again a conventional practical choice [4].

The primal uSVP attack consist of running the BKZ lattice reduction algo-
rithm [57, 59] on the aforementioned basis of LuSVP. The estimates [4, 6] predicts
that BKZ succeeds in finding (ζs| − e| − 1) if√

β/(d)∥(ζs| − e| − 1)∥ ≈
√

βσe ≤ δ2β−(n+m+1) det(LuSVP)1/d.

From the shape of the basis BuSVP of LuSVP, computing its volume (from now
on we ignore the +1 in the dimension of LuSVP and simplify it to dim(LuSVP) =
n+m =: d) leads to √

βσe ≤ δ2β−(d) · ζ n
d · q1−n

d . (10)

Now let us obtain a closed form for β as a function of the LWE parameters.
The following derivations are rather technical, the reader may jump directly
to Equation (14) for the final result.
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As in case of BDD, an attacker is allowed to choose m – the number of LWE
samples to build the lattice from. As our objective is to reach the condition above
for as small β as possible (the lower the β is, the easier is the attack) we aim at
finding m that maximizes the right-hand size of Inequality (10). The maximum
is achieved for d =

√
n ln(q/ζ)

ln δβ
. Substituting it in the Inequality (10) and taking

logarithms leads to the success condition:

2β ln δ − 2
√

n ln(q/ζ ln δ) + ln(q/σe)−
1

2
lnβ ≥ 0.

Using the approximation ln(δ) ≈ ln(β/(2πe))
2β , obtain the condition on β (we keep

the constants as they matter for the accuracy of the final result):

β ≥ 2n ln(q/ζ) ln(β/(2πe))

ln2(q
√
β/(2πeσe))

. (11)

For the FHE parameters, the modulus q is chosen to be much larger than n
and m and hence, larger than β. Therefore, asymptotically, the right-hand side
of the inequality above belongs to Θ

(
n

ln q ln
(

n
ln q

))
. This leads us to (again, as

in BDD, the equation below is rather the inequality giving the lower bound on
successfully β):

β =
2n ln(q/ζ) ln

(
n ln(n/ ln q)
2πe ln(q/σe)

)
ln2
(

q
√

n ln(n/ ln(q/σe))/ ln q

2πeσe

) (12)

Comparing this result with Equation (7), we notice that asymptotically both
expressions for β in BDD and in uSVP attack match.

Substituting Equation (12), obtain the expression for λ

λ = 0.292β + log2

(
8

√
2n ln(q/ζ)β

ln(β/(2πe))

)
+ 16.4. (13)

Expressing n. Given the desired security level λ, for fixed q, σe, σs, we can derive
the smallest n that reaches the given λ. Noticing that Ineq. (11) is linear in n,
we express

n ≤ β ln2(q
√
β/(2πeσe)

2 ln(q/ζ) ln(β/(2πe)
.

Treating the above inequality as equality and using β ≈ λ/0.292 as a first
order approximation (see Equation (3)), yields

n =
λ (0.5 ln(λ/0.292) + ln(q/(2πeσe)))

2

0.584 ln(q/ζ) ln(λ/(0.584πe))
. (14)

We defer from refinements of the expression as they involve tedious compu-
tations coming form a more accurate expression of β, Equation (3). In the latter
section we show that Equation (14) already provides a very good accuracy.
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Expressing ln q. We notice that Inequality (11) is quadratic in ln q. Treating this
expression as equality and choosing the positive root (which can be checked with
some known parameters) reveals the simplified solution:

ln q =

n− β
ln(2πe) ln

( √
β

2πeσe

)
+

√
n2 − 2nβ

ln(β/(2πe)) ln
(

2πeσ2
e√

β

)
ln(β/(2πe)

.

Substituting the approximation for β = λ/0.292, we obtain the expression
for ln q as a function of LWE parameters and λ.

Expressing lnσe. Similarly, Inequality (11) is quadratic in lnσe. In case ζ =
σe/σs, the relevant for us solution is

lnσe =

β
ln(β/(2πe)) ln

(
q
√
β

2πe

)
− n+

√
n2 − 2n β

ln(β/(2πe)) ln
( √

β
2σsπe

)
β/ ln(β/(2πe))

.

In case ζ = 1, we have

lnσe = ln

(
q
√
β

2πe

)
−

√
2n ln q√

β/ ln(β/(2πe))
.

4 Fine-tuning and Verification

4.1 Our methodology

As we have detailed in the previous section, during the derivation of our formulas,
several simplifications had to be made in order to express the security parameter
λ via LWE parameters, and, inversely, the LWE dimension n via λ, q, σs, σe.
Although our formulas perform very well ‘by default’, we can optimize them and
compensate for the loss in accuracy coming from the simplifications via a fitting
function. The idea is to add certain parameters to our formulas and then learn
them by using a list of points computed from the Lattice Estimator [5] and a
fitting function. We remark that the simplifications only have a noticeable effect
on the non-leading terms, and they perform very well by ‘default’. Thus, the
correction done via the fitting function can be understood as fixing these terms.

Database. The database used to verify our formulas has been constructed as
follows. Fix σe = 3.19. Given a range of values for q, a range for LWE dimension
n and σs ∈ {U2,U3}, we run the Lattice Estimator to obtain the security level
of the corresponding points. It is worth noticing that σs = U2 is employed in
TFHE-like schemes where 210 ≤ n ≤ 211, while σs = U3 is utilized in the other
schemes (BGV, BFV and CKKS), where the dimension n is much bigger, i.e.
n ≤ 216. We have selected various parameter sets providing different security
levels to validate our formulas exhaustively. Following common practice in the
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FHE literature we populate our database with parameters offering at least 80 bits
of security [21, 22, 49]. Table 1 shows the number of points that we considered.

σs Range of n Range of log q σe Num. points

U2 [210, 211] [20, 64] 3.19 42962

U3 [210, 215] [10, 1600] 3.19 5282

Table 1: Number of points (in our database) used to verify our formulas divided
by secret distribution. Half of them correspond to the output of the lattice
Estimator for uSVP and the other half for BDD.
Classification and Curation Given the database, we classify the points per se-
curity level. It is important to notice that, given a security level, not all points
need to be considered since most of them will never be used in practice. The
considered points follow this criterion:

– Fix a LWE dimension n, we consider the point (n, q) with the biggest possible
q. We can perform more computations with a bigger q.

– Fix a modulus q, we will only consider the point (n, q) with the smallest
possible n. We have higher efficiency with a smaller n.

Verification. The verification step consists of plotting the curated points against
our optimized formulas. Since we provide formulas derived from the attacks
against uSVP and BDD, we verify each formula separately against the points
where the security level corresponds to that attack.

Fine-tuning. After creating our database by running the Lattice Estimator as
explained above, we do the following:

1. We refine the resulting formulas (Equations (8), (9), (13) and (14)) by incor-
porating additional variables. Using coupled optimization10, we determine
the optimal values for these variables to ensure that our parameterized func-
tions follows the data points generated with the Lattice Estimator, i.e., ac-
curately reflects the security level estimation.

2. Finally, we provide a further simplification of these formulas, explicitly de-
pending on the macro variables n, λ and q. Note that in this case, the
variables found using the coupled optimization technique are intrinsically
dependent on the secret distribution χs (and so on ζ).

4.2 Verification of uSVP security level, Equation (13)

Starting from Equation (13) and using the process explained above, the resulting
function for λ (considering the uSVP attack) is

λ = Aβ +B ln

(
2n ln(q/ζ)β

ln(β/(2πe))

)
+ C, (15)

10 Specifically, we use the LMFIT Minimizer class: https://lmfit.github.io/lmfit-
py/fitting.html.

https://lmfit.github.io/lmfit-py/fitting.html
https://lmfit.github.io/lmfit-py/fitting.html
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where
A = 0.317747 B = 2.071129 C = 1.849214 if χs = U2
A = 0.296208 B = 0.800603 C = 12.09086 if χs = U3.

Now, our aim is to express Equation (15) in a simplified form that explicitly
depends on the variables n and q.

Let define x = n/ ln q, k1 = 1
2πe and k2 = 1

2πeσe
= k1

σe
, then since ln(q/ζ) ≈

ln(q/σe) ≈ ln(q), we have that Equation (12) can be approximate as

β ≥ 2n ln(q/ζ) ln(k1x lnx)

ln2(k2q
√
x lnx)

≈ 2n ln q(ln(x lnx)− 2.8)

(ln q + 0.5 ln(x lnx)− 4)2
.

Considering n, q such that the security level is between 80 and 130, we have that
ln q + 0.5 ln(x lnx)− 4 ≈ ln q. So

β ≈ 2x (ln(x) + ln(ln(x))− 2.8) . (16)

Substituting Equation (16) in Equation (15) we have:

λ ≈ 2A ln
(

n
ln q + ln

(
ln
(

n
ln q

))
− 2.8

)
n

ln q +B ln
(

2n ln(q/ζ)β
ln(β/(2πe))

)
+ C

≈ A′ ln
(
k3

n
ln q

)
n

ln q +B ln
(

2n ln(q)β
ln(β)−2.8

)
+ C

≈ A′ ln
(
k3

n
ln q

)
n

ln q +B ln(4n2k4) + C,

where k3 and k4 are small constants since if we consider n, q such that the
security level is between 80 and 130,

k4 =
lnx+ ln

(
lnx
)
− 2.8

ln
(
2x
)
+ ln

(
lnx+ ln

(
lnx
)
− 2.8

)
− 2.8

≈ 1.

Using coupled optimization, we find the following

λ ≈ Ã ln

(
B̃n

ln q

)
n

ln q
+ C̃ lnn+ D̃ (17)

Ã = 0.445309 B̃ = 1.486982 C̃ = 0.950115 D̃ = 11.21416 if χs = U2
Ã = 0.833542 B̃ = 0.154947 C̃ = 1.469823 D̃ = 18.09877 if χs = U3.

The comparison results between the output of the Lattice Estimator and our for-
mulas (Equations (15) and (17)) are presented in Tables 2 and 3, demonstrating
the effectiveness of our approach in accurately estimating security levels.
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n = 210 n = 211

log q Estimator (15) (17) log q Estimator (15) (17)

20 172 178 172 37 191 193 188
24 142 145 142 46 151 152 149
25 136 139 136 50 137 139 136
26 130 133 130 53 129 130 128
27 125 128 125 54 126 128 126
28 120 123 120 57 119 121 119
30 112 114 112 62 110 111 109
33 101 103 101 67 100 102 101
37 90 92 90 74 90 93 91
42 79 81 80 84 80 82 80

Table 2: Comparison between the security level provided by our formulas (Equa-
tions (15) and (17)) and the Lattice Estimator with with σs = U2.

n = 210 n = 215

log q Estimator (15) (17) log q Estimator (15) (17)

16 231 215 233 650 179 155 180
18 204 187 202 760 151 130 151
19 193 175 190 810 140 121 141
25 143 126 137 880 128 110 128
27 132 115 126 930 121 104 121
28 126 110 121 1000 112 96 112
30 117 102 112 1050 106 107 106
32 109 94 104 1200 93 80 93
43 80 68 76 1400 80 69 80
48 71 60 68 1500 74 64 75

Table 3: Comparison between the security level provided by our formulas (Equa-
tions (15) and (17)) and the Lattice Estimator with σs = U3.

In Figure 1 we pictured the data points of the Lattice Estimator and our
formula proposed in Equation (17).

4.3 Verification of BDD security level, Equation (8)

Starting from Equation (8) and using the couple optimization, the resulting
function for λ (considering the BDD attack) is

λ ≈ Ãβ + B̃ ln
(2nβ ln(q/ζ)

ln(β)

)
+ C̃. (18)

where
Ã = 0.26497 B̃ = 3.25511 C̃ = −13.69437 if χs = U2.
Ã = 0.28891 B̃ = 0.87868 C̃ = 19.1069 if χs = U3

In Figures 2 and 3 we pictured the data points of the Lattice Estimator and our
formula proposed in Equation (18).
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Fig. 1: The security formula (Equation (17)) with data points of the Lattice
Estimator for χs = U3 considering the uSVP attack.

Fig. 2: The security level formula (Equation (18)) with data points of the Lattice
Estimator for χs = U2 considering the BDD attack.

From the Lattice Estimator outputs considered in this paper, we observed
that for binary secret, the BDD attack always outperforms uSVP, although by
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a non-significant amount. Indeed, as our formulas suggest, the two attacks have
very close runtimes.

Fig. 3: The security formula (Equation (18)) with data points of the Lattice
Estimator for χs = U3 considering the BDD attack.

Our goal is to express Equation (18) in a simplified form that explicitly
depends on the variables n and q.

Since ln(q/ζ) ≈ ln(q/σe) ≈ ln(q), we have that, starting from Equation (7),

– A = 2n ln q ≈ n ln q;
– B = 2 ln

(
q

σ
√
2πe

)
+ ln

(
2n
ln q ln

(
n

ln q

))
≈ ln q + ln

(
n

ln q ln
(

n
ln q

))
– C = n

2 ln q ≈
n

ln q ,
– D = ln(q/ζ) ≈ ln q

Thus,
B

2D
√
C +

√
A
≈ k1

√
ln q

n
+ k2

where k1 and k2 are small constants. Let z = −2πe
(
k1

√
ln q
n + k2

)
, then Equa-

tion (7) can be approximate as

β ≈ 2n ln q · (−W1(z))(
−W1(z) + ln q +

√
n

ln q ·
(
k1

√
ln q
n + k2

)
ln q + k3

)2
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≈ 2n ln q · (−W1(z))(
−W1(z) + k4 ln q + k2

√
n ln q + k3

)2
≈ n · (−W1(z))(
− 1√

ln q
W1(z) + k4

√
ln q + k2

√
n
)2

Since W1() denotes the “lower” branch of Lambert-W function and the Lambert-
W is the inverse function of y = xex.

For our value of z we can somehow approximate −W (z) = − ln(z) + k, for
some constant k [41]. Thus, since − 1√

ln q
W1(z) is a small constant and since

ln
(

n
ln q

)
ln q
n ≈ 0 , Equation (7) becomes

β ≈
k1n ·

(
ln
(

n
ln q

)
+ k
)

(
k4
√
ln q + k2

√
n
)2 ≈ kn ·

(
ln
(

n
ln q

)
+ k
)

k̃4 ln q + k̃2n+ k̃3
√
n ln q

≈ k5
n

ln q
ln

(
n

ln q
+ k

)
+ k6, (19)

where ki are some constants.
Finally, substituting Equation (19) in Equation (18), we have

λ ≈ a
n

ln q
ln

(
n

ln q
+ k

)
+B ln

(
2n2 + d

)
+ c, (20)

Note that Equation (20) is similar to Equation (17), and this is not surpris-
ing as the two attacks yield very similar results. Therefore, we aim to further
approximate Equation (20) to obtain a formula identical to Equation (17), but
with different constants. Thus, using coupled optimization, we obtain

λ ≈ A′ ln

(
B′n

ln q

)
n

ln q
+ C ′ lnn+D′ (21)

where

A′ = 0.424578 B′ = 2.122152 C ′ = 1.959558 D′ = 1.155390 if χs = U2
A′ = 0.606897 B′ = 0.476667 C ′ = 0.667667 D′ = 15.20932 if χs = U3.

The comparison results between the output of the Lattice Estimator and our
formulas (Equations (18) and (21)) are presented in Tables 4 and 5.
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n = 210 n = 211

log q Estimator (18) (21) log q Estimator (18) (21)

20 172 166 173 37 191 185 190
24 142 138 142 46 151 147 150
25 136 132 136 50 137 135 137
26 130 127 130 53 129 127 129
27 125 122 125 54 126 125 127
28 120 117 120 57 119 118 120
30 112 109 112 62 110 108 110
33 101 99 101 67 100 100 101
37 90 88 90 74 90 91 91
42 79 77 79 84 80 80 80

Table 4: Comparison between the security level provided by our formulas (Equa-
tions (18) and (21)) and the Lattice Estimator with with σs = U2.

n = 210 n = 215

log q Estimator (18) (21) log q Estimator (18) (21)

16 231 234 232 650 179 179 179
18 204 206 202 760 151 151 150
19 193 194 190 810 140 140 140
25 143 144 140 880 128 128 128
27 132 132 128 930 121 121 120
28 126 127 123 1000 112 112 112
30 117 117 114 1050 106 107 106
32 109 109 106 1200 93 93 92
43 80 79 78 1400 80 80 79
48 71 70 70 1500 74 74 74

Table 5: Comparison between the security level provided by our formulas (Equa-
tions (18) and (21)) and the Lattice Estimator with σs = U3.

4.4 Verification of the LWE dimension via uSVP, Equation (14)

Starting from Equation (14) and using the couple optimization, the resulting
function for n (considering the uSVP attack) is

n =
Aλ
(
0.5 ln(λ/0.292) + ln(q/(2πeσe)) +B

)2
0.584 ln(q/ζ) ln(λ/(0.584πe) + C)

, (22)

where
A = 1.02575 B = 0.17241 C = 34.84910 if χs = U2
A = 1.05153 B = 0.52652 C = 43.20997 if χs = U3.

In Figure 4 we pictured the data points of the Lattice Estimator and our
formula proposed in Equation (22) for the ternary distribution.
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Fig. 4: The security level formula (Equation (22)) with data points of the Lattice
Estimator for χs = U3 considering the uSVP attack.

Our goal is to express Equation (22) in a simplified form that explicitly
depends on the variables λ and q. To do this, we consider Equation (17) and
setting x = n/ ln q, we have

λ ≈ Ã ln(B̃x)
n

ln q
+ C̃ lnx+ C̃ ln ln q + D̃.

Thus,

n ≈

(
λ− C̃ lnx− C̃ ln ln q − D̃

Ã ln(B̃x)

)
ln q ≈

(
λ+ k1 ln ln q

k2 ln(x) + k3
+ k4

)
ln q

where ki are some constants. Since x appears only in the logarithm, we can
consider the leading term of Equation (17) approximating x ≈ aλ+ b, where a, b
are some constants. Thus, using couple optimization, we obtain

n ≈
(
λ+A′ ln(ln q)

B′ ln(λ) + C ′ +D′
)
ln q, (23)

A′ = −1.142080 B′ = 0.231197 C ′ = 1.106616 D′ = −0.233138 if χs = U2
A′ = −1.073049 B = 0.278319 C ′ = 0.931202 D′ = 0.792882 if χs = U3.



24 Beatrice Biasioli, Elena Kirshanova, Chiara Marcolla, and Sergi Rovira

The comparison results between the output of the Lattice Estimator and
our formula (Equation (23)) are presented in Tables 6 and 7, demonstrating the
effectiveness of our approach in accurately estimating security levels.

log q Estλ Estn (22) (23) log q Estλ Estn (22) (23)

λ ≈ 80 λ ≈ 100

42 80 1024 1036 1040 34 100 1024 1037 1041
58 80 1408 1432 1428 46 102 1408 1427 1429
71 80 1728 1754 1743 57 100 1728 1735 1734
84 80 2048 2076 2057 67 100 2048 2039 2035

λ ≈ 110 λ ≈ 120

31 110 1024 1036 1038 28 123 1024 1042 1042
42 112 1408 1424 1426 39 121 1408 1423 1425
52 111 1792 1746 1747 48 121 1792 1748 1750
61 112 2048 2064 2063 57 121 2048 2072 2074

λ ≈ 128 λ ≈ 140

27 128 1024 1045 1043 24 144 1024 1042 1034
37 128 1408 1424 1425 34 140 1408 1425 1424
45 129 1728 1739 1742 41 143 1728 1746 1748
54 128 2048 2068 2072 49 142 2048 2068 2073

Table 6: Comparison between the LWE dimension provided by our formula Equa-
tion (23) and the Lattice Estimator with secret distribution U2. Estn represents
the n selected as input parameter for the Lattice Estimator. Estλ represents the
output security level provided by the Estimator given log q, Estn and the corre-
sponding distribution.

n = 210 = 1024 n = 215 = 32768
log q Estλ (22) (23) log q Estλ (22) (23)

43 80 1054 1082 1400 80 34247 33534
34 102 1056 1066 1100 101 33420 32910
32 109 1060 1065 1000 112 33422 32971
29 122 1074 1069 930 121 33369 32959
27 132 1081 1068 880 128 33244 32863
25 143 1084 1062 810 140 33206 32870

Table 7: Comparison between the LWE dimension provided by our formula Equa-
tion (23) and the Lattice Estimator with secret distribution U3. Estλ represents
the output security level provided by the Estimator given log q, Estn and the
corresponding distribution.

In Figure 5, we pictured the data points of the Lattice Estimator for uSVP
attack and our formula proposed in Equation (23).

4.5 Verification of the LWE dimension via BDD, Equation (9)

Starting from Equation (9), and setting β ≈ (λ− ln(λ))/0.292, we use the couple
optimization to find the resulting function for n (considering the BDD attack):

n =
(Ãβ + B̃)

(
2 ln q + ln (β/2πe) + C̃

)2
2
(
ln (β/2πe) + D̃

)
(ln(q2/ζ))

2
ln q (24)
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Fig. 5: Comparison between Equation (23) and the data points output by the
Lattice Estimator for χs = U2, considering the uSVP attack.

where

Ã = 1.154587 B̃ = −46.18551 C̃ = −4.457340 D̃ = 0.809972 if χs = U2
Ã = 1.417954 B̃ = −48.44275 C̃ = −2.871196 D̃ = 1.884925 if χs = U3.

We approximate Equation (24) obtaining

n ≈
(k1λ+ k5 lnλ)

(
(ln q + k2) + (k3 lnλ− k3 ln lnλ+ k4)

)2
(k3 lnλ− k3 ln lnλ+ k4) ln q

≈(k1λ+ k5 lnλ)

(
ln q + k6

k3 lnλ− k3 ln lnλ+ k4
+

k3 lnλ− k3 ln lnλ+ k4
ln q

)
≈(k1λ+ k5 lnλ)

(
k7

ln q

lnλ
+ k8

lnλ

ln q

)
for some constant ki ∈ R. Using coupled optimization techniques we have

n = (A′λ+B′ lnλ)

(
C ′ ln q

lnλ
+D′ lnλ

ln q

)
(25)

A′ = 0.463730 B′ = −1.634159 C ′ = 5.236220 D′ = 1.818256 if χs = U2
A′ = 2.755987 B′ = −10.41781 C ′ = 0.869780 D′ = 0.318689 if χs = U3.

The comparison results between Equations (24) and (25) and the output of
the Lattice Estimator are presented in Tables 8 and 9. In Figure 6, we show the
data points of the Lattice Estimator for the BDD attack and Equation (25).
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log q Estλ Estn (24) (25) log q Estλ Estn (24) (25)

λ ≈ 80 λ ≈ 100

42 80 1024 1047 1050 34 100 1024 1053 1055
58 80 1408 1444 1444 46 102 1408 1445 1445
71 80 1728 1767 1765 57 100 1728 1754 1753
84 80 2048 2090 2087 67 100 2048 2059 2058

λ ≈ 110 λ ≈ 120

31 110 1024 1053 1054 28 123 1024 1059 1061
42 112 1408 1442 1442 39 121 1408 1441 1440
52 111 1792 1765 1765 48 121 1792 1766 1766
61 112 2048 2083 2083 57 121 2048 2092 2093

λ ≈ 128 λ ≈ 140

27 128 1024 1062 1063 24 144 1024 1059 1060
37 128 1408 1442 1441 34 140 1408 1442 1442
45 129 1728 1758 1758 41 143 1728 1764 1764
54 128 2048 2088 2089 49 142 2048 2085 2088

Table 8: Comparison between the LWE dimension n provided by Equation (25)
and the Lattice estimator with χs = U2, for the BDD attack. Estn represents
the n selected as the input parameter for the Lattice Estimator. Estλ represents
the output security level provided by the Estimator given log q, Estn and the
corresponding distribution.

n = 210 = 1024 n = 215 = 32768
log q Estλ (24) (25) log q Estλ (24) (25)

43 79 1061 1030 1450 77 33555 33716
34 101 1086 1037 1150 97 33272 33292
32 108 1096 1042 1050 106 33040 33061
29 120 1109 1046 930 121 33116 33146
27 129 1116 1046 870 129 32872 32907
25 140 1127 1050 810 140 32999 33042

Table 9: Comparison between the LWE dimension n provided by our formulas
(Equation (25)) and the Lattice Estimator with χs = U3, for the BDD attack.
Estλ represents the output security level provided by the Estimator given log q,
Estn and the corresponding distribution.
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Fig. 6: The LWE dimension n (Equation (25)) with data points of the Lattice
Estimator for χs = U3 for the BDD attack.

5 Generalization employing numerical methods

In the previous sections, we derived formulas to express the security level λ and
the LWE dimension n from the complexity analysis of the primal BDD and
uSVP attacks. The idea is to first approximate the non-leading terms of these
equations to retrieve the desired parameter, Section 3, and then compensate with
a fine-tuning phase as we presented in Section 4. This approach has several ad-
vantages: it is fast, numerically stable, and explicitly shows the relations among
the parameters. On the other hand, the fine-tuning phase proposed is specific for
σe = 3.19. This choice of the standard deviation of the error distribution is the
preferred one for the BGV, BFV, and CKKS schemes. However, in TFHE, it is
often required to vary in order to achieve a specific level of security due to the
restrictions on the ciphertext size. In the following, we propose a computational
alternative that allows to precisely determine the value of any of the parameters
λ, n, q, and σe (the latter 2 parameters on the ln-scale), provided the remaining
ones and the desired secret distribution.
The idea is to employ numerical methods, i.e. mathematical tools designed to
solve numerical problems, for the resolution of the systems of equations obtained
from the theoretical analysis of the attacks on LWE provided in Section 3. In
detail, we get a system of two equations in the two variables β and the desired
parameter as follows.

BDD attack. In Section 3.1, we obtained Equations (6) and (8), relating the
parameters λ, n, q, σs, σe and the block size β. Writing them as equations in
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implicit form, we obtain the following system
β − 2n ln q ln( β

2πe )ln( β
2πe )+2 ln

(
q

σe
√

2πe

)
−2

√
n

2 ln q ·
ln( β

2πe )
β ln( q

ζ )

2 = 0

λ− (0.292β + log2(8d) + 16.4) = 0,

(26)

where the optimal d is set to d =
√

2n ln q β
ln(β/2πe) . Note that, in our scenario, we have

a system of two equations in two unknowns, the block size β and the parameter
to be determined, that we can solve with a numerical method for root finding.
In particular, we chose to use Python method fsolve, because it appeared fast
and effective in practice.

Specifically, in computing the security level λ, we adopt the numerical solver to
find β from the first equation. Then plug its value in the second to get λ.

In the computation of n, q and σe, we are able to make a further improvement in
the precision of our approximation. Indeed, so far we assumed β ≈ η, which only
introduce little fluctuations in the computation of λ with the numerical approach.
However, this approximation can have a bigger impact when estimating other,
more delicate parameters like ln q or lnσe. Therefore, in this case we use the the
version of Equation (6) in which η is not substitute by β. The resulting system
of equations is {

η − d+ 1
ln δβ

(ln q

σe

√
2πe
− n

d ln q
ζ ) = 0

λ− (0.292β + log2(8d) + 16.4) = 0,

and η is computed from λ − (0.292η + log2(η) + 16.4) = 0, using a numerical
method as well.

uSVP attack. Analogously, we can write Equations (11) and (13) from Sec-
tion 3.2 in a system of two equations describing the relations among the param-
eters and the block size β,β − 2n ln(q/ζ) ln(β/(2πe))

ln2(q
√
β/(2πeσe))

= 0

λ− (0.292β + ln(8
√

2n ln(q/ζ)β
ln(β/(2πe)) ) + 16.4) = 0,

(27)

and find the desired parameter by solving the system with a numerical method.

In our tool, we adopt this strategy to determine the values of the ciphertext
modulus q and standard deviation of the error distribution σe. Additionally, we
propose numerical estimates for the security level λ and the LWE dimension
n, comparing the results with the ones obtained using the approach from the
previous sections, both for σe = 3.19 and different. To clarify, we do not propose
a way to compute σs, as the distribution of the secret key is chosen a priori,
according to the scheme and the scenario. TFHE-like schemes employ the binary
distribution, while BGV, BFV, and CKKS use the ternary if leveled and the
sparse if the bootstrapping is expected.
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6 How to use our results in practice

In this section we present a powerful tool that integrates the results of Sections 4
and 5. The tool, available in our Github repository11, allows users to quickly and
efficiently select secure LWE parameters.

After narrowing down the range of possible parameter choices with our tool,
users can verify them using any LWE estimator. For example, one could reply on
the Lattice Estimator or on the Leaky-LWE Estimator [25].12 It is important to
note that our tool targets security and does not take into account the correctness
of FHE decryption, since this depends on the circuit being evaluated and the
selected FHE scheme.

Now, we will provide a detailed overview of our tool’s functionality and
demonstrate how to use it in practice.

Estimation of the security level To determine the security level, use the
command –param "lambda" followed by the known parameters: n, q, σs, and
σe. For example, if you want to know the security of an LWE scheme with
n = 1024, log q = 27, the binary secret distribution, and the error following a
discrete Gaussian distribution with σe = 3.19, you can enter:

python3 estimate.py --param "lambda" --n "1024" --logq "27"
--secret "binary" --error "3.19"

which will produce:

where the usvp and bdd columns display the outputs of Equations (15) and (18),
and the usvp_s and bdd_s show the results of Equations (17) and (21). It is
important to note that the output includes four distinct security level values,
each derived from a different approach as previously described. To determine the
security level, simply select the minimum value among them; in this example,
λ ≈ 122.

In our tool, it is also possible to specify a range for logq. For example, to set
logq with values between 20 and 22, as well as 35 and the range from 40 to 41,
you would enter:

python3 estimate.py --param "lambda" --n "1024" --logq "20-22;35;40-41"
--secret "binary" --error "3.19"

resulting in:
11 https://github.com/sergirovira/fastparameterselection
12 https://github.com/lducas/leaky-LWE-Estimator

https://github.com/sergirovira/fastparameterselection
https://github.com/sergirovira/fastparameterselection
https://github.com/lducas/leaky-LWE-Estimator
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Finally, you can add the –verify 1 option to any command to compare the
formula’s output with the Lattice Estimator’s results. For instance, one would
enter:

python3 estimate.py --param "lambda" --n "1024" --logq "27"
--secret "binary" --error "3.19" --verify 1

which produces:

Note that the column diff represents the difference between the value in the
previous column (i.e., attack_name) and the output of the Lattice Estimator run
with the parameters specified in the Secret dist., LWE dim., log q columns
and the value of the previous column. For instance, if we run the Lattice Esti-
mator with n = 210, q = 27 and binary secret for the uSVP attack, we obtain a
security level of 125 bit. Thus, the value −2 as the difference between the Lattice
Estimator’s output and the result of our formula Equation (15) (Eq. 15), which
is 123.

Estimation of the LWE dimension. The LWE dimension n can be estimated
in the same way as explained in the previous paragraph, with the initial command
changed to –param "n". Here, one provides the LWE parameters as before, but
with target λ replacing n. For instance:

python3 estimate.py --param "n" --lambda "80" --logq "400;550;1500"
--secret "ternary" --error "3.19"

A cropped view of the obtained output is:

where, attack_name represents the output of Equations (22) and (24), while
the columns attack_name_s show the results from the simplified versions of
the previous formulas (the ones explicitly dependent on the macro variables n,
λ and q), as in Equations (23) and (25). attack_name pow2 shows the closest
power-of-two value corresponding to the n displayed in the previous column,
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and attack_name_s num provides the results computed through the numerical
solver (as explained in Section 5). To determine the LWE dimension n for the
desired security level, you should select the largest result.

Estimation of the size of the modulus q In this case, the procedure is the
same as described earlier, with the only difference being the initial command,
which now is –param "logq". Thus, if you enter:

python3 estimate.py --param "logq" --lambda "128" --n "32768"
--secret "ternary" --error "3.19"

the output will be the following

Note that the difference here, with respect to the previous solutions, is that the
results come only from the numerical method.

Estimation of the standard deviation of the error distribution As be-
fore, you can estimate σe given the other LWE parameters and the results are
again obtained via the numerical method. In this case, the initial command to
estimate σe is –param "std_e", so if you enter:

python3 estimate.py --param "std_e" --lambda "110" --n "1024" --logq "20"
--secret "binary"

The result will be

To determine the standard deviation of the error distribution σe for the
desired security level, the largest result should be selected, which in this case is
σe = 3.19.

7 Advantages of a formula-based approach

Prior to our work, selecting secure parameters for LWE-based FHE schemes was
only possible by using the Lattice Estimator [5] and constructing tables based on
its outputs. We believe this approach has two major problems: 1) depending on
the parameters, the Lattice Estimator can take a long time to produce an output
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and 2) relying on a set of predefined tables is too rigid, constraining developers
and libraries to use those sets of parameters.

The formula-based approach presented in this work solves the previous prob-
lems and provides a fast and flexible methodology to select secure parameters
for FHE that can directly replace the tables used by existing FHE libraries or
provide a faster methodology to update those tables.

Another great advantage of a formula-based approach is total flexibility con-
cerning the parameters that can be fixed. As shown in the previous sections, we
provide formulas not only for the security level λ but also for the size of the
ciphertext modulus q, the LWE-dimension n and the standard deviation of the
error σe. This will allow companies working on privacy-preserving applications
based on FHE to have total control over the parameters that they need with-
out investing efforts towards constraining their applications to predefined sets of
parameters.

In the rest of this section we compare our approach with [13] and [10] which,
at the time of writing, are the state-of-the-art approaches for parameter selection
in FHE.

7.1 Comparision with [13]

In [13], the authors provide tables listing parameters for FHE applications target-
ing different levels of security (128, 192 and 256). Moreover, the paper includes
a script (based on the Lattice Estimator) which can be used to update the listed
values.13 Their work is particularly valuable to non-experts since it allows them
to select secure parameters for their applications quickly.

The main difference between our work and [13] is the scope of parameters
that an end-user can obtain. That is, a table-based approach such as the one
provided by [13] is rigid by design. Although the authors offer a way to update
the parameters via a script, they are restricted to a predefined set of values. The
parameters presented in [13] indeed cover most of the current FHE applications
but there is no fundamental reason for which we could not obtain parameters
outside the usual range. For instance, there might be applications that benefit
from a different security level, a smaller LWE dimension or from using a di-
mension other than a power of two [27]. With our tool, we can quickly get the
parameters of Table 10, which would serve the purpose of such applications.

Another difference between our work and [13] is their use of the Lattice
Estimator. The script provided by [13] generates the tables by first reading a set
of predefined values stored in a lookup table and then runs binary search invoking
the Lattice Estimator until optimal parameters are found. Our formula-based
approach allows us to obtain optimal values without the need to run the Lattice
Estimator, which makes the process of updating the tables much faster. We want
to remark that we only use the Lattice Estimator to verify and fine-tune our
formulas while [13] relies on it to produce the tables.
13 See https://github.com/gong-cr/FHE-Security-Guidelines/

https://github.com/gong-cr/FHE-Security-Guidelines/
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λ n log q χs

110 512 17 U3

128 512 13 U3

110 3072 101 U3

128 3072 80 U3

Table 10: Example of parameters obtained using our tool that are not typically
offered in the literature. We selected σe = 3.19 in all the examples.

There are other subtle but important differences between [13] and our work.
They use the Matzov attack [52], which is not known to be correct [31], we are
relying on more understood attacks. Properly analyzing dual attacks on lattice
in the same fashion as we present here for primal attacks (BDD and uSVP) is
beyond the scope of this work. Finally, they do not consider sparse secrets nor
NTRU while we do not consider quantum attacks.

7.2 Comparison with [10]

In [10], the authors detail a framework to find optimal parameters for applica-
tions built from TFHE-like schemes. They find parameters which are both secure
and provide correctness of computation for the underlying cryptographic task.
Their method relies on a security oracle, which given n, q, λ and σs outputs the
minimal σe that guarantees security λ. In practice14, this oracle is constructed
as a linear approximation. Their methodology is the following. Fix log q = 64,
σs = U2 and security level λ. Given a range of values for σe, iterate over different
values of n to find the minimum n for which the Lattice Estimator outputs se-
curity level λ. The output is then a collection of points {(ni, σi

e)}i which can be
linearly interpolated, obtaining parameters a, b. The oracle corresponds to the
function F(n) = 2⌈a·n+b⌉. Our methodology deviates considerably from [10]. The
main difference is that our formulas do not come solely from empirical results
but from the mathematical descriptions of the attacks against uSVP and BDD.
This distinction allows us to provide a more general and theoretically grounded
parameter selection framework.

8 Conclusion

Starting from a theoretical base, we provided a pioneering methodology to ob-
tain closed formulas for the security level of LWE as a function of the LWE
dimension n, modulus q, standard deviations of secret σs, and error σe. ‘Re-
versing’ these formulas we can express any fixed LWE parameter n, or q, or σs,
or σe as a function of the other parameters and the security level λ. We have
then verified and fine-tuned our formulas using empirical data obtained from the
Lattice Estimator [5]. Additionally, we introduce the use of a numerical method
that allows us to precisely determine not only the values of λ and n but also the
14 See https://github.com/zama-ai/concrete/tree/main/tools/parameter-curves

https://github.com/zama-ai/concrete/tree/main/tools/parameter-curves
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value of either the (maximal) modulus q or the standard deviation of the error
distribution σe, given the other LWE parameters.

The results obtained in this work significantly accelerate the parameter se-
lection process of any LWE-based encryption scheme. We use them to build a
practical and efficient tool for researchers and practitioners deploying FHE in
real-world applications and seeking for a fast, user-friendly and accessible mech-
anism to choose secure parameters.
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