
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

A non-comparison oblivious sort and its application to private
k-NN

Sofiane Azogagh
azogagh.sofiane@courrier.uqam.ca

Univ Québec à Montréal
Canada

Marc-Olivier Killijian
killijian.marc-olivier.2@uqam.ca

Univ Québec à Montréal
Canada

Félix Larose-Gervais
larose-

gervais.felix@courrier.uqam.ca
Univ Québec à Montréal

Canada

ABSTRACT
This paper introduces a novel adaptation of counting sort that
enables sorting of encrypted data using Fully Homomorphic En-
cryption (FHE). Our approach represents the first known sorting
algorithm for encrypted data that does not rely on comparisons.
The implementation leverages some basic operations on TFHE’s
Look-Up-Table (LUT) . We have integrated these operations into
RevoLUT [1], a comprehensive open-source library built upon tfhe-
rs [37], which can be of independent interest for oblivious algo-
rithms. We demonstrate the effectiveness of our Blind Counting
Sort algorithm by developing a top-k selection algorithm and apply-
ing it to privacy-preserving k-Nearest Neighbors classification. This
approach achieves approximately 5x faster performance compared
to current state-of-the-art methods.

KEYWORDS
Privacy, Homomorphic encryption, Oblivious algorithm, Sort, k-
Nearest Neighbors, Look-Up-Table

1 INTRODUCTION
As data security becomes increasingly critical in the era of cloud
computing, the need for secure data processing methods has never
been more pressing. Homomorphic encryption, first introduced by
Rivest et al. in 1978 [29], presents a groundbreaking approach to
performing computations on encrypted data without needing to
decrypt it first. This capability is particularly valuable in scenarios
where sensitive data, such as personal health records or financial
information, needs to be processed by third-party services while
maintaining privacy. Sorting algorithms, such as QuickSort [21],
MergeSort [33], and HeapSort [35], are fundamental in computer
science and are omnipresent in various applications, ranging from
database management to network security. When applied to en-
crypted data, sorting becomes a non-trivial task due to the fact that
it is a data-dependent operation. Thus, most of the traditional sort-
ing methods are not directly applicable to encrypted data, requiring
then the development of specialized algorithms that can efficiently
sort encrypted data. Recent advancements in fully homomorphic
encryption schemes have opened the door to practical applications
where sorting on encrypted data is feasible. FHE schemes, such

This work is licensed under the Creative Commons Attribu-
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Conference’17 (), 1–9
© YYYY Copyright held by the owner/author(s).
https://doi.org/XXXXXXX.XXXXXXX

as TFHE [15], BGV/BFV [7, 20], and CKKS [12], enable the execu-
tion of arbitrary functions on ciphertexts, including comparisons,
which are the basic operations in sorting algorithms. Sorting en-
crypted data plays a crucial role in privacy-preserving data analysis,
especially within the realm of machine learning. In this context,
sorting is often essential for secure model training or prediction,
where data must be organized or indexed without revealing sensi-
tive information. A famous example is the selection of k-nearest
neighbors (k-NN) from encrypted data [3, 19, 39] that we also took
to illustrate the effectiveness of our solution. Additionally, there are
innovative applications such as aggregating encrypted gradients
[18] in federated learning. Moreover, the development of efficient
sorting algorithms for encrypted data also extends to the domain of
database management. Secure databases that operate on encrypted
data need to implement sorting to support queries that involve
ordering or range searches. Efficient encrypted sorting algorithms
enhance the functionality of encrypted databases, enabling more
complex queries while ensuring data confidentiality [27].

In this paper, we delve into the recent advancements in sorting
algorithms for encrypted data using homomorphic encryption. We
examine the different methodologies in the literature, and provide
a comprehensive explanation of our approach, which leverages
certain operations of the TFHE cryptosystem. The structure of this
paper is as follows: Section 2 introduces the necessary tools and
background information on the TFHE cryptosystem. Section 3 re-
views existing techniques and the adaptation of traditional sorting
algorithms to the encrypted context. Section 4 details our proposed
approach with a time complexity analysis and noise analysis. Sec-
tion 6 presents the experimental results of our sorting algorithm and
its application to private inference on privacy-preserving machine
learning models.

2 PRELIMINARIES
In this section, after introducing the notation used in the paper, we
will present the necessary background on the TFHE’s cryptosystem
and our contribution, the RevoLUT library, which is of significant
independent interest and was used to implement our Blind Sort
algorithm.

2.1 Notation
Let 𝑝 be a power of 2. We denote by Z𝑝 the set of messages and
by ⟦𝑚⟧ the TFHE encryption of a message𝑚 ∈ Z𝑝 . For 𝑁 a power
of 2, we define R as the quotient ring Z[𝑋]/(𝑋𝑁 + 1) and R𝑞 as
the same ring modulo 𝑞, that is Z𝑞 [𝑋]/(𝑋𝑁 + 1). Unless otherwise
specified, all operations in this paper are performed in the ring
R𝑞 . We also make use of the Kronecker delta function 𝛿𝑖 𝑗 , which

1

https://creativecommons.org/licenses/by/4.0/
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17 () Sofiane Azogagh, Marc-Olivier Killijian, and Félix Larose-Gervais

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

equals 1 when 𝑖 = 𝑗 and 0 otherwise. Using this notation, we
can define the one-hot encoding of an integer 𝑖 as the bit vector
𝛿𝑖 = (𝛿𝑖 𝑗)𝑝𝑗=1 ∈ {0, 1}

𝑝 , which contains a single 1 at index 𝑖 and 0s
elsewhere. Other notations are defined in the text when needed.

2.2 The TFHE Cryptosystem
The TFHE encryption scheme, proposed in 2016 [13, 14], is based
on the security of the Learning With Errors (LWE) problem and its
ring variant, the Ring-LWE (RLWE) problem.

2.2.1 Ciphertext Types. In TFHE, several types of ciphertexts are
defined depending on the nature of the plaintext and the encryption
method employed. A commonly used type in this paper is the
General LWE (GLWE) ciphertext, defined as follows:

GLWE Ciphertexts. A message𝑚 ∈ Z𝑝 can be encrypted under

the secret key 𝑠 = (𝑠0, . . . , 𝑠𝑘−1)
$← Z𝑘2 as a GLWE ciphertext

(𝑎, 𝑏) ∈ R𝑘+1𝑞 , where 𝑎 = (𝑎0, . . . , 𝑎𝑘−1)
$← R𝑘𝑞 and 𝑏 =

∑𝑘−1
𝑖=0 𝑎𝑖 ·

𝑠𝑖 + Δ𝑚 + 𝑒 , with Δ =
𝑞
𝑝 and 𝑒 being a noise term sampled from a

Gaussian distribution. The vector 𝑎 is commonly called mask and 𝑏
body.

Specifically, when 𝑁 = 1, the ciphertext is referred to as an LWE
ciphertext. When 𝑘 = 1 and 𝑁 > 1, it is termed an RLWE ciphertext.
In this case, an LWE ciphertext encrypts a message in Z𝑞 , while an
RLWE ciphertext encrypts a polynomial in Z𝑞 [𝑋] modulo 𝑋𝑁 + 1.

LUT Ciphertexts. Additionally, [5] introduced Look-Up-Table
(LUT) ciphertexts, which are essentially RLWE ciphertexts that
include some redundancy. A Look-Up-Table in TFHE is a vector
(𝑚𝑖)0≤𝑖<𝑝 of Z𝑝 elements represented as a polynomial𝑀 (𝑋) ∈ R𝑞
of the form:

𝑀 (𝑋) =
𝑝−1∑︁
𝑖=0

𝑁
𝑝
−1∑︁
𝑗=0

𝑚𝑖𝑋
𝑖 𝑁
𝑝
+𝑗

This polynomial is then encrypted as an RLWE ciphertext to form
a LUT ciphertext. Thus, a LUT ciphertext is a specific case of an
RLWE ciphertext.

Fig. 1. Illustration of a RLWE ciphertext (top) with redundancy shown in
gray boxes, which implements a LUT ciphertext (bottom) where each box
represents an element in Z𝑝 (here 𝑝 = 8).

In this paper, ciphertexts are denoted within brackets to indicate
their type. For instance, ⟦𝑀⟧LUT = ⟦𝑚0, . . . ,𝑚𝑝−1⟧LUT represents
the message 𝑀 = (𝑚0, . . . ,𝑚𝑝−1) encrypted as a LUT ciphertext,
while ⟦𝑚⟧LWE is an LWE ciphertext and [𝑚]LWE is a trivially en-
crypted LWE ciphertext (that is a ciphertext whose mask and noise
are set to 0).

2.2.2 Classical Homomorphic Operations. As in all the homomor-
phic encryption schemes based on the LWE problem, the basic
operations that can be performed on ciphertexts are:

• Addition: (⟦★⟧RLWE, ⟦★⟧RLWE) → ⟦★⟧RLWE. Given twoGLWE
ciphertexts 𝑐1 = (𝑎1, 𝑏1) and 𝑐2 = (𝑎2, 𝑏2), the addition oper-
ation computes a new GLWE ciphertext 𝑐3 = (𝑎3, 𝑏3) where
𝑎3 = 𝑎1 + 𝑎2 and 𝑏3 = 𝑏1 + 𝑏2.
• Absorption: (★, ⟦★⟧RLWE) → ⟦★⟧RLWE. This operation multi-

plies a plaintext value𝑚 with a GLWE ciphertext 𝑐 = (𝑎, 𝑏) by
computing (𝑚 · 𝑎,𝑚 · 𝑏). Note that this is the only multiplication
that can be performed in TFHE (i.e the multiplication of two
GLWE ciphertexts is not supported).

2.2.3 TFHE’s operations. TFHE provides several building blocks
for performing homomorphic operations on ciphertexts. The main
operations used in this paper are:

• Blind Rotation (BR): (⟦★⟧LWE, ⟦★⟧LUT) → ⟦★⟧RLWE. This
operation is used to privately rotate the polynomial𝑀 (𝑋) (en-
crypted as an RLWE ciphertext) by ⟦𝑖⟧LWE coefficients.

• Sample Extraction (SE): (★, ⟦★⟧RLWE) → ⟦★⟧LWE.
This operation extracts a coefficient from the polynomial𝑀 (𝑋) =∑𝑁−1
𝑖=0 𝑚𝑖𝑋

𝑖 encrypted as an RLWE ciphertext, resulting in an
LWE ciphertext ⟦𝑚 𝑗⟧LWE. The LWE ciphertext is generated by
selecting specific coefficients from the RLWE input.

• Key Switching (KS): ⟦★⟧LWE → ⟦★⟧LWE.
This operation switches the secret key or parameters of an LWE
ciphertext to new ones by homomorphically re-encrypting the
ciphertext with a different key.

• Public FunctionalKey Switch (PFKS): {⟦★⟧LWE} → ⟦★⟧RLWE.
Introduced in [16] (Algorithm 2), this operation allows for the
compact representation of multiple LWE ciphertexts into a single
RLWE ciphertext, effectively packing several LWE ciphertexts
into one.

The redundancy in a LUT ciphertext is mainly important to guar-
antee the correctness of the bootstrapping operation. Indeed, the
LWE ciphertext used in the Blind Rotation operation serves as an
index to select the correct coefficient from the LUT ciphertext. How-
ever, this LWE ciphertext incorporates a gaussian noise 𝑒 which is
bounded by 𝑁 /𝑝 after the so-called Modulus Switching operation
(see [17] for more details). This bound gives exactly the size of the
redundancy of the coefficients in the RLWE ciphertext implement-
ing the LUT. These sequences of consecutive coefficients in the
RLWE ciphertext implementing a LUT are generally called boxes.
During the (functional) bootstrapping operation, each box corre-
sponds to a specific message𝑚𝑖 of the LUT ciphertext. When the
Blind Rotation is performed, ⟦𝑖⟧LWE points to the 𝑖-th box contain-
ing the message𝑚𝑖 in the LUT. Thus, the redundancy ensures that,
despite the random error present in ⟦𝑖⟧LWE, the Sample Extraction
operation will still correctly select the message𝑚𝑖 as long as the
noise 𝑒 is smaller than the redundancy. Note that, in RevoLUT, for
a better noise management, we perform a Key Switching before
each Blind Rotation. Hence, in the rest of the paper, whenever we
refer to the cost of Blind Rotation, we implicitly include the cost of
the associated Key Switching operation

3 RELATEDWORK
Oblivious sorting. Historically, Batcher [6] introduced his odd-

even merge sort, which has later been adapted for homomorphic
encryption due to its natural data obliviousness. This algorithm is

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

A non-comparison oblivious sort and its application to private k-NN Conference’17 (

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

)

particularly well-suited for parallel processing, making it efficient
for sorting large encrypted datasets. Later, Cetin [8–10] introduced
the Direct and Greedy sort algorithms. They also presented a depth
analysis of classical sorting algorithms such as Bubble Sort, In-
sertion Sort, Odd-Even Sort, Odd-Even Merge Sort, Merge Sort,
and Bitonic Sort. Their work highlights the trade-offs between
computational depth and efficiency in homomorphic sorting. How-
ever, the number of blind comparisons required by their algorithm
scales quadratically with the size of the input array. Building on
this, [23] proposed a faster comparison algorithm and applied it
to the batched direct sort algorithm. This work addresses the com-
putational bottlenecks associated with comparison operations in
encrypted domains. For their work on oblivious top-k selection,
[19] implemented a truncated version of the batcher’s odd-even
merge sorting network for TFHE using the comparison operator
from [39]. In [18] proposed an efficient homomorphic trimmed sum
algorithm that can be used to sort encrypted data. In the realm of se-
cure multi-party computations, [34] proposed a secure multi-party
sorting protocol based on Yao’s garbled circuit. This protocol allows
multiple parties to sort data without revealing the underlying val-
ues, providing a foundation for secure collaborative computations.
Moreover, [25] proposed a new homomorphic sorting algorithm
based on the Hardy-Littlewood-Polya rearrangement inequality.
This algorithm offers remarkable performance and represents a
major advancement in the field of homomorphic sorting. The use
of mathematical inequalities in sorting provides a novel approach
to optimizing encrypted computations. Recently, [22] proposed an
efficient batched 𝑘-way sorting network using approximate com-
parison which scales remarkably well but is not exact.

Private𝑘-Nearest Neighbors. The problem of finding the𝑘 nearest
neighbors of a query vector in a private manner has been widely
studied in the literature [3, 19, 26, 28, 30, 38, 39]. The most closely
related works of this paper are those of [3, 19, 39] who proposed
to leverages fully homomorphic encryption, and more precisely
TFHE scheme, to perform private non-interactive k-NN inference.
In [39] a method is introduced to build a matrix of closeness where
the (𝑖, 𝑗) elements of this matrix is set to 1 if the 𝑖-th point of the
model is closer than the 𝑗-th point to the query vector. To build
this matrix, the authors introduced an elegant way to perform a
distances computation that we also use in this paper and detail in
Section 5.2. This matrix is then used to compute a score between 0
and 𝑘 where the higher the score, the closer vector 𝑖 is to the query
vector. Based on this work, [3] proposed a method to compute the
most frequent labels of the 𝑘 nearest neighbors of the query vector
through a majority vote. To do so, they used the sum of the lines
of the closeness matrix as a mask to compute the frequency of
each label in the 𝑘 nearest neighbors of the query vector. But the
performance showed in the paper does not seem to be far from
the one of [39]. To this date, the state of the art for private k-NN
inference leveraging FHE is the work of [19] who unearthed an old
sorting algorithm that is naturally data-oblivious and thus FHE-
friendly. However, due to the lack of TFHE comparators that do not
require additional padding bits, their algorithm performs worse in
practice than it theoretically should.

Our contribution. Based on the oblivious read/write property
enabled by TFHE’s Look-Up-Tables, it allowed us to port the so-
called counting sort algorithm in FHE to sort encrypted data. This
has enabled us to use it as a subroutine in a top-k algorithm, which
we demonstrate to be efficient when applied to k-NN inference.
As far as we know it is the first attempt to port a non-comparison
based sorting algorithm working on encrypted data. Therefore, by
targeting this sort, we free ourselves from the need of comparators
to sort encrypted elements, which was the main bottleneck in ho-
momorphic sorting using TFHE, since it required an additional bit
of precision.

4 OBLIVIOUS SORTING ALGORITHM
In this section, we first present read andwrite primitives developped
in RevoLUT for manipulating LUT ciphertexts like arrays. Then
we present our Blind Counting Sort algorithm built with them,
and then detail how we used it as a subroutine in our Blind Top-k
Selection algorithm for private k-NN inference.

4.1 Read and Write operations
4.1.1 Blind Array Access. Introduced by [4], Blind Array Access
(BAA) is the first primitive that we required to access an encrypted
index in our LUT. This is achieved by using the Blind Rotate proce-
dure, and then extracting the sample at index 0 from the resulting
RLWE ciphertext.

Algorithm 1: Blind Array Access
Input : An encrypted index ⟦𝑖⟧LWE

A LUT ciphertext ⟦𝑚0, . . . ,𝑚𝑝−1⟧LUT
Output :A LWE ciphertext ⟦𝑚𝑖⟧LWE

1 ⟦𝑟𝑜𝑡𝑎𝑡𝑒𝑑⟧LUT ← 𝐵𝑅(⟦𝑖⟧LWE, ⟦𝑚0, . . . ,𝑚𝑝−1⟧LUT)
2 ⟦𝑚𝑖⟧LWE ← 𝑆𝐸 (0, ⟦𝑟𝑜𝑡𝑎𝑡𝑒𝑑⟧LUT)
3 return ⟦𝑚𝑖⟧LWE

4.1.2 Blind Array Increment. The second primitive required is some
form of blind write operation in the LUT. For this we implemented
Blind Array Increment, which adds to the i-th message of the given
LUT the value of x. A Blind Array Assignment could easily be de-
vised by first using Blind Array Access to fetch the current value,
and subtract it from the given x before running Blind Array Incre-
ment. This would double the blind rotation cost and was left aside
since we didn’t need it for our purposes, but could help porting
other algorithms.

Algorithm 2: Blind Array Increment
Input : An encrypted index ⟦𝑖⟧LWE

A LUT ciphertext ⟦𝑚⟧LUT
An encrypted value ⟦𝑥⟧LWE

Output :A LUT ciphertext ⟦𝑚 + 𝛿𝑖𝑥⟧LUT
1 ⟦𝛿0𝑥⟧LUT ← 𝑃𝐹𝐾𝑆 (⟦𝑥⟧LWE)
2 ⟦𝛿𝑖𝑥⟧LUT ← 𝐵𝑅(−⟦𝑖⟧LWE, ⟦𝛿0𝑥⟧LUT)
3 return ⟦𝑚⟧LUT + ⟦𝛿𝑖𝑥⟧LUT

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17 () Sofiane Azogagh, Marc-Olivier Killijian, and Félix Larose-Gervais

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

The time cost of these operations follows directly from that of
Blind Rotate and the Public Functional Key Switch. In both cases,
the cost is comparatively negligible if the provided argument is
trivially encrypted.

Table 1: Time approximations for Blind Array operations

𝑡𝐵𝐴𝐼 𝑡𝐵𝐴𝐴⟦𝑥⟧LWE [𝑥]LWE
⟦𝑖⟧LWE - 𝑡𝐾𝑆 -
[𝑖]LWE 𝑡𝐵𝑅 𝑡𝐵𝑅 + 𝑡𝐾𝑆 𝑡𝐵𝑅

A caveat of this approach is that the ⟦𝛿𝑖𝑥⟧LUT is most likely mis-
aligned due to the noise present in the rotation index. This affects
the frontiers of the redundancy boxes present in LUT ciphertexts. A
way to avoid error propagation is to Sample Extract every message
from the LUT and pack them in a fresh LUT.

Fig. 2. Illustration of 𝐵𝐴𝐼 (⟦4⟧LWE, ⟦1, 2, 6, 2, 4, 6, 7, 6⟧LUT, ⟦1⟧LWE) with
𝑝 = 8. The red areas at the boundaries of the redundancy boxes represent
errors due to the noise in the LWE encryption of ⟦4⟧LWE. If the noise
in the LWE ciphertext were zero, the boxes would be perfectly aligned.
However, since we have no control over this noise, except that it does not
exceed (𝑁 /2𝑝) , we can only be certain that the center of the boxes remains
accurate.

4.2 Blind Counting Sort
Counting sort is an interesting and well known sorting algorithm
(historically attributed to [31]) that is not based on comparison. As
such, the Ω(𝑛 log𝑛) lower bound on time complexity of comparison
based sorting does not apply to it [24]. Instead it achieves worst-
case performance (usually noted O(𝑛 + 𝑘)) scaling linearly with
both the size of the input and its range of values. This is ideal since
we use LUT ciphertexts to represent encrypted arrays of 𝑝 integers
modulo 𝑝 , so 𝑛 = 𝑘 = 𝑝 .

It is worth noting that, like sorting networks, counting sort is
naturally data oblivious. That makes it FHE friendly, in the sense
that porting the algorithm does not require to adapt its control flow.

4.2.1 Algorithm. We propose Algorithm 3, porting the classical
counting sort to operate on encrypted arrays represented as LUT
ciphertexts. The procedure can be summarized as follows:

(1) Build a count array
(2) Compute its running sum
(3) Reconstruct the sorted array

After step 2, the running sum array effectively tracks for each
𝑖 < 𝑝 how many input elements are less than or equal to 𝑖 . If each
elements of the input array were distinct, these would in turn be
the correct (1-based) indices where they belong in the sorted array.
To account for duplicates, the running sums are decremented as
they are visited, in reverse, so as to maintain the sort’s stability.

Algorithm 3: Blind Counting Sort (BCS)
Input :A LUT ciphertext ⟦𝑚0, . . . ,𝑚𝑝−1⟧LUT
Output :A sorted LUT

1 ⟦𝑐𝑜𝑢𝑛𝑡⟧LUT ← ⟦0, . . . , 0⟧LUT
2 for 𝑖 ← 0 to 𝑝 − 1 do

// 𝑐𝑜𝑢𝑛𝑡𝑚𝑖
← 𝑐𝑜𝑢𝑛𝑡𝑚𝑖

+ 1
3 ⟦𝑚𝑖⟧LWE ← 𝐵𝐴𝐴([𝑖]LWE, ⟦𝑚0, . . . ,𝑚𝑝−1⟧LUT)
4 ⟦𝑐𝑜𝑢𝑛𝑡⟧LUT ← 𝐵𝐴𝐼 (⟦𝑚𝑖⟧LWE, ⟦𝑐𝑜𝑢𝑛𝑡⟧LUT, [1]LWE)
5 end
6 for 𝑖 ← 1 to 𝑝 − 1 do

// 𝑐𝑜𝑢𝑛𝑡𝑖 ← 𝑐𝑜𝑢𝑛𝑡𝑖 + 𝑐𝑜𝑢𝑛𝑡𝑖−1
7 ⟦𝑥⟧LWE ← 𝐵𝐴𝐴([𝑖 − 1]LWE, ⟦𝑐𝑜𝑢𝑛𝑡⟧LUT)
8 ⟦𝑐𝑜𝑢𝑛𝑡⟧LUT ← 𝐵𝐴𝐼 ([𝑖]LWE, ⟦𝑐𝑜𝑢𝑛𝑡⟧LUT, ⟦𝑥⟧LWE)
9 end

10 ⟦𝑟𝑒𝑠⟧LUT ← ⟦0, . . . , 0⟧LUT
11 for 𝑖 ← 𝑝 − 1 to 0 do

// 𝑐𝑜𝑢𝑛𝑡𝑚𝑖
← 𝑐𝑜𝑢𝑛𝑡𝑚𝑖

− 1
12 ⟦𝑚𝑖⟧LWE ← 𝐵𝐴𝐴([𝑖]LWE, ⟦𝑚0, . . . ,𝑚𝑝−1⟧LUT)
13 ⟦𝑐𝑜𝑢𝑛𝑡⟧LUT ← 𝐵𝐴𝐼 (⟦𝑚𝑖⟧LWE, ⟦𝑐𝑜𝑢𝑛𝑡⟧LUT, [−1]LWE)

// 𝑟𝑒𝑠𝑐𝑜𝑢𝑛𝑡𝑚𝑖
←𝑚𝑖

14 ⟦𝑚𝑖⟧LWE ← 𝐵𝐴𝐴([𝑖]LWE, ⟦𝑚0, . . . ,𝑚𝑝−1⟧LUT)
15 ⟦𝑐𝑜𝑢𝑛𝑡𝑚𝑖

⟧LWE ← 𝐵𝐴𝐴(⟦𝑚𝑖⟧LWE, ⟦𝑐𝑜𝑢𝑛𝑡⟧LUT)
16 ⟦𝑟𝑒𝑠⟧LUT ← 𝐵𝐴𝐼 (⟦𝑐𝑜𝑢𝑛𝑡𝑚𝑖

⟧LWE, ⟦𝑟𝑒𝑠⟧LUT, ⟦𝑚𝑖⟧LWE)
17 end
18 return ⟦𝑟𝑒𝑠⟧LUT

Time complexity. The algorithm we propose uses primarily Blind
Rotate and PFKS operations, which are the most expensive in TFHE.
So we can approximate its time complexity as, ignoring the Blind
Rotate calls on trivially encrypted indices, 4𝑝 · (𝑡𝐵𝑅 + 𝑡𝑃𝐹𝐾𝑆), where
𝑡𝐵𝑅 is the time it takes to execute a Blind Rotate, and 𝑡𝑃𝐹𝐾𝑆 the
time required for a PFKS.

Box centering. Whenever a LUT gets blindly rotated, it de-centers
the boxes, due to the noise in the index ciphertext. However, in this
algorithm, the blindly rotated LUT are discarded and not re-used in
further blind rotations, so this error margin does not increase. It is
important to note that upon completion, the result LUT is the sum
of many decentered LUT, and as such a few of its coefficients at the
boxes frontiers are incorrect. To alleviate this issue, the caller can
sample extract all boxes and re-pack a fresh centered LUT if they
wish.

Noise growth analysis. In the first loop, the count LUT (initially
noiseless) gets added into 𝑝 times from the result of a blind rotation
over a noiseless LUT, so its noise grows up to 𝑝E𝐵𝑅 . In the second
loop, the count LUT gets added into 𝑝 times from the result of a
packing of a noisy LWE extracted from the previous count LUT.

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

A non-comparison oblivious sort and its application to private k-NN Conference’17 (

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

)

This gives us a noise growth of order
∑𝑝
𝑖=0 𝑖E𝐾𝑆 =

𝑝 (𝑝−1)
2 E𝐾𝑆 . In

the third loop, the count LUT, gets added into 𝑝 times in the same
manner as the first loop (from a noiseless LUT), so it grows by
an additional 𝑝E𝐵𝑅 . Therefore, the total noise of the count LUT is
bounded by

2𝑝E𝐵𝑅 +
𝑝 (𝑝 − 1)

2
E𝐾𝑆

The result LUT (initially noiseless) gets added into 𝑝 times from
the result of a blind rotation of a packed LUT from an input LWE.
Note that since the noise of a blind rotation is independant of the
noise of its index, the result LUT noise is independant of the count
LUT noise. Therefore the result LUT noise grows up to

𝑝∑︁
𝑖=0
E𝑚𝑖
+ 𝑝E𝐾𝑆 + 𝑝E𝐵𝑅

Interestingly, the running sum part of the algorithm is the cheap-
est in terms of time complexity but turns out to be the source of the
quadratic error growth. For 𝑝 large enough, this will require boot-
strapping some count values during the second loop to maintain
the correctness of the algorithm.

4.3 Blind Top-k selection
For 𝑘 < 𝑝 , we can implement Blind Top-𝑘 selection in a tournament
fashion, using BCS as a (𝑘, 𝑑)-selector for 𝑑 ≤ 𝑝 . An illustration of
the blind Top-𝑘 selection is given in Figure 3.

Fig. 3. Illustration of the blind Top-𝑘 selection algorithm for 𝑘 = 3 and
𝑝 = 8. The input LWE ciphertexts are first split into chunks of size 𝑝 . Each
chunk is then packed into a LUT through a Public Functional Key Switch
(PFKS) and processed by a Blind Counting Sort (BCS) to select its 𝑘 smallest
elements using multiple Sample Extraction (SE). The selected elements from
each chunk are then recursively processed until only 𝑘 elements remain.

Complexity analysis. Since BCS is a non-comparison oblivious
sort, it does not require comparators contrarily to [19], so we can’t
compare ourselves in the number of comparisons. However, the
commons and most expensive operations in both algorithms are

Blind Rotation (BR) and Public Functional Key Switch (PFKS), so we
focus on comparing the number of BR and PFKS in both algorithms.
To date, and to the best of our knowledge, there is no homomor-
phic comparator with TFHE that does not require an extra bit of
precision. The comparator used in [19] which is the one of [11],
does not escape this limitation. For instance, when processing 4-bit
data (𝑝 = 16), they need to use 5-bit parameters (𝑝 = 32), which
adds practical complexity to their approach.

In Table 2, we report the running times of the Blind Rotation and
Public Functional Key Switch operations for two different values
of 𝑝 in the tfhe-rs library and in Figure 4 we give the estimated
running time of our blind Top-𝑘 selection algorithm compared
to [19] when processing data with the same precision (i.e. elements
are from Z16).

Table 2: Running times (in ms) of Blind Rotation and PFKS
in tfhe-rs library [37] for 𝑝 = 16 and 𝑝 = 32.

𝑝 Blind Rotate (𝑡𝐵𝑅) Public Functional Key Switch (𝑡𝑃𝐹𝐾𝑆)
16 18 3
32 43 12

Fig. 4. Estimated running time of our blind Top-𝑘 selection algorithm com-
pared to [19] when processing data with the same precision (i.e. elements
are from Z16).

5 PRIVATE K-NEAREST NEIGHBORS
CLASSIFICATION

In this section, we present our use case of applying the Blind Count-
ing Sort algorithm to an efficient top-k algorithm enabling private
inference on k-Nearest Neighbors. We first describe the pipeline of
the private k-Nearest Neighbors classification and then we detail
each step of the pipeline.

5.1 Pipeline and threat model
In a classical setting of a Machine Learning as a Service (MLaaS)
platform, a client who wants to perform a k-NN classification with

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference’17 () Sofiane Azogagh, Marc-Olivier Killijian, and Félix Larose-Gervais

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

a classifier in the cloud will send its data (i.e a vector of features
𝑓) to the server. The server owns the model, i.e the set of points
(𝑤1, . . . ,𝑤𝑛) and the corresponding labels (𝑙1, . . . , 𝑙𝑛). Thus, after
receiving the input data 𝑓 from the client, the server will compute
the distance between 𝑓 and all the points of the model (i.e 𝑑𝑖 =

| |𝑓 −𝑤𝑖 | |). Then, to find the 𝑘-nearest neighbors of 𝑓 , it has to select
the 𝑘 smallest labels corresponding to the 𝑘 smallest distances and
return the most frequent one by a majority vote.

To enable privacy-preserving k-NN classification, we must adapt
this pipeline to work with encrypted data, specifically develop-
ing methods to compute distances and select the 𝑘 smallest labels
while operating on an encrypted query vector 𝑓 . Regarding the
distance computation, [19] adapted the method of [39] to compute
the squared distance between an encrypted vectors and a plaintext
vector using the homomorphic properties of the TFHE cryptosys-
tem. This method is detailed in Section 5.2. Once each distances
are computed, to select the 𝑘 labels associated to the 𝑘 smallest
distances, we use the Blind Counting Sort algorithm to implement
a top-k selection. This is detailed in Section 5.3.

Threat model. In this work, we are placing ourselves in a scenario
where a client wants to perform a k-NN classification on the cloud.
Following standard assumptions in Machine Learning as a Service
(MLaaS), the server is considered honest-but-curious, meaning that
it does not deviate from the protocol although it may try to infer
information about the client’s data. Moreover, as other works [19,
39], the server deleguate the majority vote at the end of the top-k
selection to the client. Hence, the client learns more information
about the server’s model than in a classical setting. One can argue
that if a malicious clients wants to infer information about the
server’s model, it would be better to perform the majority vote
on the server side. A simple way to do it, is to homomorphically
count the frequency of each label in the top-k selection, as done in
the first step of Algortihm 3 and then perform an homomorphic
argmax on this frequency array.

5.2 Distances computation using TFHE
Before the computation of the distances, the client’s feature vector
𝑓 = (𝑓0, 𝑓1, . . . , 𝑓𝛾−1) must be encoded and encrypted in a particular
way to enable the server to compute the squared distances. Indeed,
as explained in [19], the squared distance between two vectors 𝑓
and𝑚 is given by

𝑑𝑖 = | |𝑓 −𝑚 | |2 = | |𝑓 | |2 − 2⟨𝑓 ,𝑚⟩ + | |𝑚 | |2

This gives a sort of "symmetric" formula where the left term | |𝑓 | |2
is owned by the client and the right term | |𝑚 | |2 is owned by the
server. Thus each party can precompute their part of the formula
independently. The challenge lies in computing the middle term
of the formula, 2⟨𝑓 ,𝑚⟩. This can be done by using a polynomial
multiplication as shown in [19]. More formally, if we set

𝐹 (𝑋) =
𝛾−1∑︁
𝑖=0

𝑓𝑖 · 𝑋 𝑖 and𝑀 (𝑋) =
𝛾−1∑︁
𝑖=0

𝑚𝛾−𝑖−1 · 𝑋 𝑖

The𝛾−1 coefficient of the polynomial product 𝐹 (𝑋)·𝑀 (𝑋) is exactly
⟨𝑓 ,𝑚⟩ (a more detailed proof is given in the appendix of [39]). To
support that in the encrypted domain, the client produces 𝑐 =

⟦𝐹 (𝑋)⟧RLWE and sends it to the server. Then, the server performs

an Absorption between 𝑐 and𝑀 (𝑋), and SampleExtract the 𝛾 − 1
coefficient of the resulting RLWE ciphertext to get ⟦⟨𝑓 ,𝑚⟩⟧LWE.
The server can then compute the distances by adding the three
terms of the squared distance formula :

⟦𝑑𝑖⟧LWE = ⟦||𝑓 | |2⟧LWE − 2⟦⟨𝑓 ,𝑚⟩⟧LWE + ⟦||𝑚 | |2⟧LWE

This simple method to compute the distance is extremly effi-
cient, taking less than 1% of the total computation time of the
k-NN algorithm. However, for certain datasets where 𝛾 is large, to
avoid a noise explosion we need either to increase the plaintext
modulus 𝑝 or to use the method explained in [19] (Section 4.3) to
reduce the precision homomorphically. This precision reduction
increases the running time of the distance computation as it needs
more bootstrapping operations but has the advantage of allowing
keeping the plaintext modulus 𝑝 as lower as possible to reduce the
computational costs of the sorting algorithm.

5.3 Selecting the k-Nearest Neighbors
Once the distances are computed, we can use the BCS algorithm as
a subroutine to implement a top-k selection as detailed in Section
5.3. The difficulty of this step is that we don’t want to send the 𝑘
smallest distances to the client, but rather the labels associated to
them. However, the top-k selection algorithm returns the 𝑘 smallest
distances, not the labels. To address this issue, we can see the sorting
process as a permutation of elements and tweak the BCS algorithm
to mirror this permutation onto the corresponding labels. By doing
so, at the end of the tournament, we obtain the top-𝑘 distances
along their associated labels. In terms of complexity, this method
adds 𝑝 BR and 𝑝 PFKS to the original BCS algorithm. The detailed
algorithm of this key-value BCS is described in the Appendix B.

6 EXPERIMENTS
In this section, we present the experimental results of our Blind
Sort algorithm and our private kNN selection based on it. All exper-
iments are performed on a computer running Ubuntu 24.04 with
an Intel i9-11900KF CPU clocked at 3.5GHz and 64GB of RAM.

6.1 Sort algorithm
Here are the execution times for our proposed sorting algorithm.
For our algorithm, we denote 𝑝 the plaintext modulus and the array
size.

We compare first with numbers taken from [23] where they
implemented in BGV a batched version of [8]’s Direct Sort using
their improved comparison operator. They are sorting 9352 arrays
simultaneously, so the total column records the wall time their
algorithm takes, and the amortized column tracks the time per
array. Contrarily to the other two, their method sorts encrypted
8-bits integers regardless of 𝑝 .

The numbers for [19] are obtained by running their implementa-
tion of Batcher’s odd-even merge sorting network (not truncated)
on the same hardware as ours. Due to their comparison operator
costing a precision bit, to sort 𝑝 integers modulo 𝑝 they actually
need to work on a plaintext modulus of 2𝑝 , which makes the basic
Blind Rotate and PFKS operations more expensive comparatively.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

A non-comparison oblivious sort and its application to private k-NN Conference’17 (

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

)

Table 3: Computation times in seconds for sorting 𝑝 elements
in Z𝑝 . The numbers prefixed with ∼ are extrapolated.

Iliashenko [23] Cong [19] BCS
𝑝 total amortized
4 186.28 0.02 ∼0.1 0.1
8 867.46 0.09 0.95 0.32
16 3652.23 0.39 8.65 0.83
32 14769.23 1.579 77.96 3.79
64 60351.02 6.453 833.79 17.76
128 ∼246232 ∼26 ∼8913 125.5

6.2 Private k-Nearest Neighbors inference
We compare the execution times of our secure 𝑘-NN algorithm with
the ones of [39] and [19]. They have both been applied to the Breast
Cancer dataset [36] and the MNIST dataset [2].

Table 4: The TFHE parameters used in our experiments for
the k-NN classification. The notation used are the one in
TFHE’s original paper [15]

Parameter Value
LWE dimension (𝑛) 742
RLWE polynomial degree (𝑁) 2048
LWE standard deviation (𝜎LWE) 240

RLWE standard deviation (𝜎RLWE) 22

Decomp params bootstrapping (𝑔, ℓ) (223, 1)
Decomp params KS (𝑔, ℓ) (23, 5)
Decomp params PFKS (𝑔, ℓ) (223, 1)
Ciphertext modulus (𝑞) 264

Plaintext modulus (𝑝) 24

Plaintext modulus MNIST 25

Plaintext modulus breast cancer 24
Dataset message space MNIST Z2
Dataset message space breast cancer Z2

Pre-processing and precision reduction. Both datasets are bina-
rized as in [39] and [19]. Specifically, all the features below 𝑝 are
set to 0 and the features above 𝑝 are set to 1. This is a current
pre-processing step for k-NN classification as explained in [32]. For
the breast cancer dataset, as 𝛾 = 30 is relatively low, the plaintext
modulus match the message space, so we can compute the squared
distances between the query and the model points without any
precision reduction. However, for the MNIST dataset, even after
we use the precision reduction technique mentioned at the end of
the Section 5.2 to compute squared distances. This is because the
MNIST dataset has larger feature values and dimensions, making
the exact computation more expensive in terms of noise. In both
cases, we achieve better running times than previous works while
maintaining comparable accuracy levels.

Table 5: Computation time in seconds for the breast cancer
dataset.

𝑘 𝑑 [39] [19] Ours
𝜏 = 4 𝜏 = 1 𝜏 = 4 𝜏 = 1

3 10 4 1.8 3.2 0.79 0.75
30 ∼18 5.0 11.5 1.87 2.77
50 ∼51 7.4 19.0 2.39 4.77
200 ∼830 25.5 76.0 7.55 19.29

5 10 ∼2 2.2 4.2 0.77 0.76
30 ∼18 7.5 16.7 2.16 3.06
50 ∼52 11.6 28.8 3.41 5.75
200 ∼831 40.2 114.6 8.73 23.03

Table 6: Computation time in seconds for the MNIST dataset.

𝑘 𝑑 [39] [19] Ours
𝜏 = 4 𝜏 = 1 𝜏 = 4 𝜏 = 1

3 40 30 8.7 17.5 2.41 4.33
175 696 31.9 78.1 6.85 19.03
269 1524 47.4 119.5 10.66 29.31
457 4248 78.9 202.3 17.20 49.44
1000 ∼20837 168.0 441.1 34.81 109.23

5 40 ∼33 11.6 25.5 2.72 4.92
175 ∼636 43.1 112.7 8.50 22.82
269 ∼1505 62.7 173.0 12.96 35.25
457 ∼4351 105.0 291.1 18.88 57.39
1000 ∼20859 227.5 642.3 39.37 125.29

7 CONCLUSION
In this paper, we introduced the first oblivious sorting algorithm
that operates directly on encrypted data without requiring any com-
parisons between ciphertexts. By leveraging this novel sorting ap-
proach, we developed an efficient top-k algorithm and demonstrated
its effectiveness through a k-nearest neighbors implementation that
significantly outperforms the state-of-the-art. The adaptation of
the counting sort algorithm to the encrypted domain was made
possible through the RevoLUT library and its powerful LUT read
and write operations. The key contribution of our work lies in
eliminating the need for ciphertext comparisons, which removes
the requirement for additional precision bits in the representation.
This allows us to work with exactly the same precision as the input
data, leading to more efficient computations while maintaining the
same level of accuracy. Our experimental results on both the breast
cancer and MNIST datasets demonstrate substantial performance
improvements, with speedups of up to 5x compared to previous
approaches.

ACKNOWLEDGMENTS
TODO

REFERENCES
[1] 2024. RevoLUT: Rust efficient versatile library for oblivious Look-Up Tables.

https://github.com/sofianeazogagh/revoLUT.
[2] Alpaydin and Kaynak. 1998. Optical Recognition of Handwritten Digits. UCI

Machine Learning Repository. DOI: https://doi.org/10.24432/C50P49.

7

https://github.com/sofianeazogagh/revoLUT

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference’17 () Sofiane Azogagh, Marc-Olivier Killijian, and Félix Larose-Gervais

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

[3] Yulliwas Ameur, Rezak Aziz, Vincent Audigier, and Samia Bouzefrane. 2022. Se-
cure and Non-interactive k-NN Classifier Using Symmetric Fully Homomorphic
Encryption. In Privacy in Statistical Databases: International Conference, PSD 2022,
Paris, France, September 21–23, 2022, Proceedings (Paris, France). Springer-Verlag,
Berlin, Heidelberg, 142–154. https://doi.org/10.1007/978-3-031-13945-1_11

[4] Sofiane Azogagh, Victor Delfour, Sébastien Gambs, and Marc-Olivier Killijian.
2022. PROBONITE: PRivate One-Branch-Only Non-Interactive decision Tree
Evaluation. In Proceedings of the 10thWorkshop on Encrypted Computing&Applied
Homomorphic Cryptography (Los Angeles, CA, USA) (WAHC’22). Association
for Computing Machinery, New York, NY, USA, 23–33. https://doi.org/10.1145/
3560827.3563377

[5] Sofiane Azogagh, Victor Delfour, and Marc-Olivier Killijian. 2024. Oblivious
TuringMachine. In 2024 19th European Dependable Computing Conference (EDCC).
IEEE, 17–24.

[6] Kenneth E Batcher. 1968. Sorting networks and their applications. In 1968 AFIPS
Spring Joint Computer Conference. IEEE, 307–314.

[7] Zvika Brakerski and Vinod Vaikuntanathan. 2014. Leveled fully homomorphic
encryption without bootstrapping. ACM Transactions on Computation Theory
(TOCT) 6, 3 (2014), 1–36.

[8] Gizem S Çetin, Yarkın Doröz, Berk Sunar, and Erkay Savaş. 2015. Depth optimized
efficient homomorphic sorting. In Progress in Cryptology–LATINCRYPT 2015: 4th
International Conference on Cryptology and Information Security in Latin America,
Guadalajara, Mexico, August 23-26, 2015, Proceedings 4. Springer, 61–80.

[9] Gizem S Çetin, Yarkın Doröz, Berk Sunar, and Erkay Savaş. 2015. Low depth
circuits for efficient homomorphic sorting. Cryptology ePrint Archive (2015).

[10] Gizem S Cetin, Erkay Savaş, and Berk Sunar. 2020. Homomorphic sorting with
better scalability. IEEE Transactions on Parallel and Distributed Systems 32, 4
(2020), 760–771.

[11] Olive Chakraborty and Martin Zuber. 2022. Efficient and accurate homomorphic
comparisons. In Proceedings of the 10th Workshop on Encrypted Computing &
Applied Homomorphic Cryptography. 35–46.

[12] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. 2017. Homomor-
phic encryption for arithmetic of approximate numbers. International Conference
on the Theory and Application of Cryptology and Information Security (2017),
409–437.

[13] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. 2016.
Faster Fully Homomorphic Encryption: Bootstrapping in Less Than 0.1 Seconds.
In Advances in Cryptology - ASIACRYPT 2016 - 22nd International Conference
on the Theory and Application of Cryptology and Information Security, Hanoi,
Vietnam, December 4-8, 2016, Proceedings, Part I (Lecture Notes in Computer
Science, Vol. 10031), Jung Hee Cheon and Tsuyoshi Takagi (Eds.). 3–33. https:
//doi.org/10.1007/978-3-662-53887-6_1

[14] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. 2018.
TFHE: Fast Fully Homomorphic Encryption over the Torus. IACR Cryptol. ePrint
Arch. (2018), 421. https://eprint.iacr.org/2018/421

[15] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. 2020.
TFHE: Fast fully homomorphic encryption over the torus. Journal of Cryptology
33, 1 (2020), 34–91.

[16] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. 2020.
TFHE: fast fully homomorphic encryption over the torus. Journal of Cryptology
33, 1 (2020), 34–91.

[17] Ilaria Chillotti, Marc Joye, Damien Ligier, Jean-Baptiste Orfila, and Samuel Tap.
2020. CONCRETE: Concrete operates on ciphertexts rapidly by extending TfhE.
InWAHC 2020-8th Workshop on Encrypted Computing & Applied Homomorphic
Cryptography.

[18] Antoine Choffrut, Rachid Guerraoui, Rafael Pinot, Renaud Sirdey, John Stephan,
and Martin Zuber. 2023. Practical Homomorphic Aggregation for Byzantine ML.
arXiv preprint arXiv:2309.05395 (2023).

[19] Kelong Cong, Robin Geelen, Jiayi Kang, and Jeongeun Park. 2023. Revisiting
Oblivious Top-𝑘 Selection with Applications to Secure 𝑘-NN Classification.
Cryptology ePrint Archive, Paper 2023/852. https://eprint.iacr.org/2023/852

[20] Junfeng Fan and Frederik Vercauteren. 2012. Somewhat practical fully homo-
morphic encryption. IACR Cryptol. ePrint Arch. 2012 (2012), 144.

[21] C. A. R. Hoare. 1962. Quicksort. Computer Journal 5, 1 (1962), 10–15.
[22] Seungwan Hong, Seunghong Kim, Jiheon Choi, Younho Lee, and Jung Hee Cheon.

2021. Efficient Sorting of Homomorphic Encrypted Data With k-Way Sorting
Network. IEEE Transactions on Information Forensics and Security 16 (2021),
4389–4404. https://doi.org/10.1109/TIFS.2021.3106167

[23] Ilia Iliashenko and Vincent Zucca. 2021. Faster homomorphic comparison opera-
tions for BGV and BFV. Proceedings on Privacy Enhancing Technologies 2021, 3
(2021), 246–264.

[24] Donald Ervin Knuth. 1997. The art of computer programming. Vol. 3. Pearson
Education.

[25] Neeta B Malvi and N Shylashree. 2024. Innovative Homomorphic Sorting of
Environmental Data in Area Monitoring Wireless Sensor Networks. IEEE Access
(2024).

[26] Jeongsu Park and Dong Hoon Lee. 2018. Privacy Preserving k-Nearest Neighbor
for Medical Diagnosis in e-Health Cloud. Journal of healthcare engineering 2018,

1 (2018), 4073103.
[27] Raluca Ada Popa, Catherine M S Redfield, Nickolai Zeldovich, and Hari Bal-

akrishnan. 2011. CryptDB: Protecting confidentiality with encrypted query
processing. In Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles. 85–100.

[28] Yinian Qi and Mikhail J Atallah. 2008. Efficient privacy-preserving k-nearest
neighbor search. In 2008 The 28th International Conference on Distributed Com-
puting Systems. IEEE, 311–319.

[29] Ronald L Rivest, Burton S Kaliski, and Yair Yacobi. 1978. Data encryption standard.
Advances in Cryptology (1978).

[30] Hong Rong, Hui-Mei Wang, Jian Liu, and Ming Xian. 2016. Privacy-Preserving
k-Nearest Neighbor Computation in Multiple Cloud Environments. IEEE Access
4 (2016), 9589–9603. https://doi.org/10.1109/ACCESS.2016.2633544

[31] Harold Herbert Seward. 1954. Information sorting in the application of elec-
tronic digital computers to business operations. Ph. D. Dissertation. Massachusetts
Institute of Technology. Department of Electrical Engineering.

[32] David Bingham Skalak. 1997. Prototype selection for composite nearest neighbor
classifiers. University of Massachusetts Amherst.

[33] John Von Neumann. 1960. Design and analysis of computer algorithms. IBM
Journal of Research and Development 4, 1 (1960), 43–63.

[34] Guan Wang, Tongbo Luo, Michael T. Goodrich, Wenliang Du, and Zutao Zhu.
2010. Bureaucratic protocols for secure two-party sorting, selection, and per-
muting. In Proceedings of the 5th ACM Symposium on Information, Computer
and Communications Security (Beijing, China) (ASIACCS ’10). Association for
Computing Machinery, New York, NY, USA, 226–237. https://doi.org/10.1145/
1755688.1755716

[35] J. W. J. Williams. 1964. Algorithm 232: Heapsort. Commun. ACM 7, 6 (1964),
347–348.

[36] William Wolberg, Olvi Mangasarian, Nick Street, and W. Street. 1993. Breast
Cancer Wisconsin (Diagnostic). UCI Machine Learning Repository. DOI:
https://doi.org/10.24432/C5DW2B.

[37] Zama. 2022. TFHE-rs: A Pure Rust Implementation of the TFHE Scheme for
Boolean and Integer Arithmetics Over Encrypted Data. https://github.com/zama-
ai/tfhe-rs.

[38] Yandong Zheng, Rongxing Lu, Songnian Zhang, Jun Shao, and Hui Zhu. 2024.
Achieving Practical and Privacy-Preserving kNN Query Over Encrypted Data.
IEEE Transactions on Dependable and Secure Computing 21, 6 (2024), 5479–5492.
https://doi.org/10.1109/TDSC.2024.3376084

[39] Martin Zuber and Renaud Sirdey. 2021. Efficient homomorphic evaluation of
k-NN classifiers. Proceedings on Privacy Enhancing Technologies (2021).

8

https://doi.org/10.1007/978-3-031-13945-1_11
https://doi.org/10.1145/3560827.3563377
https://doi.org/10.1145/3560827.3563377
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/978-3-662-53887-6_1
https://eprint.iacr.org/2018/421
https://eprint.iacr.org/2023/852
https://doi.org/10.1109/TIFS.2021.3106167
https://doi.org/10.1109/ACCESS.2016.2633544
https://doi.org/10.1145/1755688.1755716
https://doi.org/10.1145/1755688.1755716
https://github.com/zama-ai/tfhe-rs
https://github.com/zama-ai/tfhe-rs
https://doi.org/10.1109/TDSC.2024.3376084

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

A non-comparison oblivious sort and its application to private k-NN Conference’17 (

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

)

A PREFIX BLIND COUNTING SORT
We decribe here a way to tweak the Blind Counting Sort algorithm
to sort only the first 𝑘 elements of a given LUT. This prefixed
version of the Blind Counting Sort algorithm is essentially the
same, except the first and last loops are truncated. This version
requires approximately 4𝑘 · 𝑡𝐵𝑅 + (𝑘 + 𝑝) · 𝑡𝐾𝑆 time.
Algorithm 4: Prefix Blind Counting Sort (PBCS)
Input :A LUT ciphertext ⟦𝑚0, . . . ,𝑚𝑝−1⟧LUT

A prefix length 𝑘
Output :A LUT whose 𝑘 first elements are sorted

1 ⟦𝑐𝑜𝑢𝑛𝑡⟧LUT ← ⟦0, . . . , 0⟧LUT
2 for 𝑖 ← 0 to 𝑘 − 1 do

// 𝑐𝑜𝑢𝑛𝑡𝑚𝑖
← 𝑐𝑜𝑢𝑛𝑡𝑚𝑖

+ 1
3 ⟦𝑚𝑖⟧LWE ← 𝐵𝐴𝐴([𝑖]LWE, ⟦𝑚0, . . . ,𝑚𝑝−1⟧LUT)
4 ⟦𝑐𝑜𝑢𝑛𝑡⟧LUT ← 𝐵𝐴𝐼 (⟦𝑚𝑖⟧LWE, ⟦𝑐𝑜𝑢𝑛𝑡⟧LUT, [1]LWE)
5 end
6 for 𝑖 ← 1 to 𝑝 − 1 do

// 𝑐𝑜𝑢𝑛𝑡𝑖 ← 𝑐𝑜𝑢𝑛𝑡𝑖 + 𝑐𝑜𝑢𝑛𝑡𝑖−1
7 ⟦𝑥⟧LWE ← 𝐵𝐴𝐴([𝑖 − 1]LWE, ⟦𝑐𝑜𝑢𝑛𝑡⟧LUT)
8 ⟦𝑐𝑜𝑢𝑛𝑡⟧LUT ← 𝐵𝐴𝐼 ([𝑖]LWE, ⟦𝑐𝑜𝑢𝑛𝑡⟧LUT, ⟦𝑥⟧LWE)
9 end

10 ⟦𝑟𝑒𝑠⟧LUT ← ⟦0, . . . , 0⟧LUT
11 for 𝑖 ← 𝑘 − 1 to 0 do

// 𝑐𝑜𝑢𝑛𝑡𝑚𝑖
← 𝑐𝑜𝑢𝑛𝑡𝑚𝑖

− 1
12 ⟦𝑚𝑖⟧LWE ← 𝐵𝐴𝐴([𝑖]LWE, ⟦𝑚0, . . . ,𝑚𝑝−1⟧LUT)
13 ⟦𝑐𝑜𝑢𝑛𝑡⟧LUT ← 𝐵𝐴𝐼 (⟦𝑚𝑖⟧LWE, ⟦𝑐𝑜𝑢𝑛𝑡⟧LUT, [−1]LWE)

// 𝑟𝑒𝑠𝑐𝑜𝑢𝑛𝑡𝑚𝑖
←𝑚𝑖

14 ⟦𝑚𝑖⟧LWE ← 𝐵𝐴𝐴([𝑖]LWE, ⟦𝑚0, . . . ,𝑚𝑝−1⟧LUT)
15 ⟦𝑐𝑜𝑢𝑛𝑡𝑚𝑖

⟧LWE ← 𝐵𝐴𝐴(⟦𝑚𝑖⟧LWE, ⟦𝑐𝑜𝑢𝑛𝑡⟧LUT)
16 ⟦𝑟𝑒𝑠⟧LUT ← 𝐵𝐴𝐼 (⟦𝑐𝑜𝑢𝑛𝑡𝑚𝑖

⟧LWE, ⟦𝑟𝑒𝑠⟧LUT, ⟦𝑚𝑖⟧LWE)
17 end
18 return ⟦𝑟𝑒𝑠⟧LUT

B KEY-VALUE BLIND COUNTING SORT
We decribe here a way to tweak the Blind Counting Sort algorithm
to sort any array of tuples by their first element. More precisely, it
can be used to sort a set of ℓ vectors of size 𝑝 by the first element
of each vector. This tensorized version of the Blind Counting Sort

algorithm is basically the same as the original one, except in the
last loop where we need to apply the permutation on all the other
elements of the tuples represented as LUT ciphertexts. This version
requires (4 + ℓ)𝑝 · 𝑡𝐵𝑅 + (2 + ℓ)𝑝 · 𝑡𝐾𝑆 .
Algorithm 5: Key-value Blind Counting Sort
Input :A vector of ℓ LUT ciphertexts(

⟦𝑚0
0, . . . ,𝑚

0
𝑝−1⟧LUT, . . . , ⟦𝑚

ℓ−1
0 , . . . ,𝑚ℓ−1

𝑝−1⟧LUT
)

Output :A vector of ℓ LUT ciphertexts sorted by the first one(
⟦𝑚0

𝜋 (0) , . . . ,𝑚
0
𝜋 (𝑝−1)⟧LUT, . . . , ⟦𝑚

ℓ−1
𝜋 (0) , . . . ,𝑚

ℓ−1
𝜋 (𝑝−1)⟧LUT

)
1 ⟦𝑐𝑜𝑢𝑛𝑡⟧LUT ← ⟦0, . . . , 0⟧LUT
2 for 𝑖 ← 0 to 𝑝 − 1 do

// 𝑐𝑜𝑢𝑛𝑡𝑚𝑖
← 𝑐𝑜𝑢𝑛𝑡𝑚𝑖

+ 1
3 ⟦𝑚0

𝑖
⟧LWE ← 𝐵𝐴𝐴([𝑖]LWE, ⟦𝑚0

0, . . . ,𝑚
0
𝑝−1⟧LUT)

4 ⟦𝑐𝑜𝑢𝑛𝑡⟧LUT ← 𝐵𝐴𝐼 (⟦𝑚0
𝑖
⟧LWE, ⟦𝑐𝑜𝑢𝑛𝑡⟧LUT, [1]LWE)

5 end
6 for 𝑖 ← 1 to 𝑝 − 1 do

// 𝑐𝑜𝑢𝑛𝑡𝑖 ← 𝑐𝑜𝑢𝑛𝑡𝑖 + 𝑐𝑜𝑢𝑛𝑡𝑖−1
7 ⟦𝑥⟧LWE ← 𝐵𝐴𝐴([𝑖 − 1]LWE, ⟦𝑐𝑜𝑢𝑛𝑡⟧LUT)
8 ⟦𝑐𝑜𝑢𝑛𝑡⟧LUT ← 𝐵𝐴𝐼 ([𝑖]LWE, ⟦𝑐𝑜𝑢𝑛𝑡⟧LUT, ⟦𝑥⟧LWE)
9 end

10 for 𝑗 ← 0 to ℓ − 1 do
11 ⟦𝑟𝑒𝑠 𝑗⟧LUT ← ⟦0, . . . , 0⟧LUT
12 end
13 for 𝑖 ← 𝑝 − 1 to 0 do

// 𝑐𝑜𝑢𝑛𝑡𝑚𝑖
← 𝑐𝑜𝑢𝑛𝑡𝑚𝑖

− 1
14 ⟦𝑚0

𝑖
⟧LWE ← 𝐵𝐴𝐴([𝑖]LWE, ⟦𝑚0

0, . . . ,𝑚
0
𝑝−1⟧LUT)

15 ⟦𝑐𝑜𝑢𝑛𝑡⟧LUT ← 𝐵𝐴𝐼 (⟦𝑚0
𝑖
⟧LWE, ⟦𝑐𝑜𝑢𝑛𝑡⟧LUT, [−1]LWE)

// 𝑟𝑒𝑠𝑐𝑜𝑢𝑛𝑡𝑚𝑖
←𝑚𝑖

16 ⟦𝑐𝑜𝑢𝑛𝑡𝑚0
𝑖
⟧LWE ← 𝐵𝐴𝐴(⟦𝑚0

𝑖
⟧LWE, ⟦𝑐𝑜𝑢𝑛𝑡⟧LUT)

17 for 𝑗 ← 0 to ℓ − 1 do
18 ⟦𝑚 𝑗

𝑖
⟧LWE ← 𝐵𝐴𝐴([𝑖]LWE, ⟦𝑚 𝑗

0, . . . ,𝑚
𝑗

𝑝−1⟧LUT)
19 ⟦𝑟𝑒𝑠 𝑗⟧LUT ←

𝐵𝐴𝐼 (⟦𝑐𝑜𝑢𝑛𝑡𝑚0
𝑖
⟧LWE, ⟦𝑟𝑒𝑠 𝑗⟧LUT, ⟦𝑚 𝑗

𝑖
⟧LWE)

20 end
21 end
22 return (⟦𝑟𝑒𝑠 𝑗⟧LUT)ℓ𝑗=0

9

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 The TFHE Cryptosystem

	3 Related Work
	4 Oblivious sorting algorithm
	4.1 Read and Write operations
	4.2 Blind Counting Sort
	4.3 Blind Top-k selection

	5 Private k-Nearest Neighbors classification
	5.1 Pipeline and threat model
	5.2 Distances computation using TFHE
	5.3 Selecting the k-Nearest Neighbors

	6 Experiments
	6.1 Sort algorithm
	6.2 Private k-Nearest Neighbors inference

	7 Conclusion
	Acknowledgments
	References
	A Prefix Blind Counting Sort
	B Key-value Blind Counting Sort

