
High Speed High Assurance implementations of
Mutivariate Quadratic based Signatures

Extended Abstract

Samyuktha M1,2, Pallavi Borkar1, and Chester Rebeiro1

1 Indian Institute of Technology, Madras
2 Society for Electronic Transactions and Security, Chennai

samyuktha@setsindia.net
{pallavi,chester}@cse.iitm.ac.in

Abstract. In this poster, we present a Jasmin implementation of Mayo2,
a multivariate quadratic(MQ) based signature scheme. Mayo overcomes
the disadvantage of the Unbalanced oil and vinegar(UOV) scheme by
whipping the UOV map to produce public keys of sizes comparable to
ML-DSA . Our Jasmin implementation of Mayo2 takes 930 µs for key-
gen, 3206 µs for sign, 480 µs for verify based on the average of 1,00,000
runs of the implementation on a 2.25GHz x86 64 processor with 256 GB
RAM. To this end, we have a multivariate quadratic based signature
implementation that is amenable for verification of constant-time, cor-
rectness, proof of equivalence properties using Easycrypt. Subsequently,
the results of this endeavor can be extended for other MQ based schemes
including UOV.

Keywords: Formal Verification · Mayo · Jasmin

1 Introduction

With the widespread migration of security protocols to post-quantum, various ef-
ficient and architecture-specific optimized implementations have emerged. These
implementations can be considerably complex and their correctness not easily
verifiable due to larger input spaces. Thus, these implementations need to be
proven correct and equivalent to their corresponding algorithmic specification in
order to achieve the high levels of assurance needed for critical embedded system
applications like root of trust, remote attestation and secure communication.

In the context of the NIST PQC competition, it is essential to formally
investigate the security of the submissions and their implementations against
side-channel attacks. These attacks can compromise a mathematically strong al-
gorithm by exploiting information leaked through side channels such as power
consumption and electromagnetic radiation of the device executing the crypto-
graphic operation. A potent side-channel variant called the timing attack utilizes
execution differences to reveal information about the secret key. Thus, it is cru-
cial not only to verify the correctness of the cryptographic implementation but
also ensure constant time execution.

2 Samyuktha et al.

Multivariate cryptographic schemes based on the oil and vinegar (OV) prob-
lem have been well studied and are of interest to the research community as they
offer shorter signatures and faster verification times. With NIST standardizing
ML-DSA, ML-KEM and an additional call for proposals to focus on signatures
based on hardness other than lattices, evaluation of these schemes is relevant.

We plan to carry out the following three-fold approach: (i) developing high-
speed formally verified MQ based signature scheme implementations, (ii) verifica-
tion for functional correctness, and (iii) verification for constant-time execution.
In line with the strategy, we have implemented the Keygen, Sign and Verify
primitives of a MQ based signature scheme (Mayo2 [7]) in Jasmin, the specifics
of which will be detailed in the later sections. Hence we make the following
contributions in this article:

1. Bitsliced implementation of the underlying finite field arithmetic
2. Bitsliced implementation of the linear algebra operations
3. Bitsliced Echelon form implementation to solve the linear system of equa-

tions
4. Jasmin implementation of the Keygen, Sign and Verify primitives of Mayo2

The code is made available at https://github.com/samyukthasets/Mayo2-Jasmin

Related Work. Formally verified implementations, often called high-assurance
cryptographic software, exist for classical algorithms and have been widely adopted
in libraries. It is imperative to extend these notions to post-quantum schemes for
arguing robust security guarantees. Frameworks like Easycrypt [6] utilize model
checking and have demonstrated effectiveness in the formal verification process.
In their research on a formally verified implementation of SHA-3, Almeida et
al. [3] advocate for mechanized proofs of functional correctness, provable se-
curity, and resistance to timing attacks, employing a toolchain that combines
Jasmin [4] and Easycrypt. Furthermore, Almeida et al in [5] present a formally
verified proof of the functional correctness and IND-CCA security of ML-KEM,
the Kyber-based Key Encapsulation Mechanism (KEM).

2 Preliminaries

Multivariate Quadratic based Schemes. Signature schemes based on the
hardness of multivariate quadratic(MQ) problem offer shorter signature sizes
and faster verification times. UOV is one such well-studied MQ based scheme
but it suffers from the disadvantage of larger public key sizes. Mayo can be
considered as a variant of UOV offers public keys whose size are comparable to
that of ML-DSA. However, it is to be noted that the cryptographic security of
Mayo depends on the security of UOV.

Mayo. The keygen(1λ) of Mayo starts by sampling a random matrix O and the

column space of
[
O
I0

]
forms the secret oil space O with dim(O) = o; number

of variables ’n’, number of equations ’m’ and o < m. A random multivariate

https://github.com/samyukthasets/Mayo2-Jasmin

Title Suppressed Due to Excessive Length 3

quadratic map P(x): Fn
q → Fm

q which vanishes on this subspace O is generated
as the public key.

In a smaller subspace where o < m, with larger probability the system will
not have any solution. Addressing this during sign, a parameter ’k’ is fixed with
ko ≥ m, the UOV map P(x): Fn

q → Fm
q is whipped to P∗(x1, x2, ..xk): Fkn

q → Fm
q

using public matrices called emulsifier maps Eij as

P∗(x1, . . . , xk) :=

k∑
i=1

EiiP (xi) +

k∑
i=1

k∑
j=i+1

EijP
′(xi, xj)

With ko degrees of freedom, a solution is guaranteed to be found. The whipped
map P∗ is constructed in such a way that it vanishes on the subspace Ok =
(o1, ..., ok), ∀ i ∈ k, oi ∈ O. The target t is computed as H(M ||Salt). The signer
at random chooses (v1, ..., vk) ∈ Fkn

q and solves for (o1, ..., ok) ∈ Ok such that
P∗(v1+o1, ..., vk+ok) = t. The solution (si = vi+oi where i ∈ k) along with the
salt is shared as signature. For verification, message M with the salt is hashed
to obtain t and the signature is accepted if and only if P∗(si) = t where i ∈ k

3 Implementation Details

The implementation follows largely the structure and implementation strategies
of the Reference implementation of Mayo team, as included in the NIST sub-
mission package. Bitslicing in the Jasmin implementations follows as that of the
C implementation. Bitslicing is done based on the parameter ’m’, the number of
equations in the Mayo2 specification.

Finite Field Implementation. At the bottom is the implementation of the
GF(16) arithmetic. The field elements are obtained as Z2[x]/(x

4+x+1). Bitsliced
arithmetic for carrying out 64 field additions, multiplications is implemented. A
simple finite field arithmetic using 64-bit registers in Jasmin without slicing is
also implemented. The simple arithmetic is only used towards the end of the sig-
nature generation in putting together the obtained values of the oil and vinegar
variables to construct the signature. The rest of the Mayo2 implementation uses
the bitsliced arithmetic.

Linear Algebra Operations. This layer of implementation includes the matrix-
matrix multiplication, addition, and matrix-vector multiplications for operating
on large bitsliced matrices of finite field elements.

SHAKE256 Implementation. The Mayo specification indicates the use of
SHAKE256 at various places of its design. This includes expanding the secret
key seed bytes to the public key seed bytes and the bytes to generate the matrix
O, hashing the message to the digest etc. SHAKE-256 jasmin implementation as
available in the libjade library [1] has been modified to suit the requirement and
has been used. Wrapper functions have been written in jasmin with the required
input and output lengths of the SHAKE256 call.

4 Samyuktha et al.

PK-PRF Implementation. AES-128-CTR based PK PRF is used in the jas-
min implementation as specified. These are used to expand the block matrices P1

and P2 in the public key. We have constructed the PK PRF in jasmin on top of
the AES-128-CTR code available in the formosa-crypto website [2]. The counter
initialised to zero is encrypted using AES-128 and are concatenated to fill the
required buffer size. It can be noted that the AES-128-CTR implementation uses
AES-NI instructions for its rounds.

Randombytes Generation. The random bytes for the initial seed_sk and the
salt for randomising signatures are using the #randombytes primitive in Jasmin
which derives random bytes from the linux CSPRNG /dev/urandom.

Keygen, Sign and Verify. Keygen and Verify modules have been implemented
using bitsliced operations as in the C reference implementation.The compact
secret key is expanded as specified. The OV map is whipped to a larger map
using the emulsifier maps. Vinegar values are sampled in the whipped up map
and are solved for the oil variables. The echelon form is implemented in a bitsliced
fashion.

Benchmarking The Table 1 included in appendix A, denotes the average exe-
cution time computed over 100 runs of the implementation on a 2.25GHz x86_64
processor with 256 GB RAM. The benchmarked C Reference implementation is
without AES-NI enabled in the NIST submission package. We plan to perform
detailed benchmarking of the Jasmin implementation of Mayo2 against the C
Reference implementation with and without AES-NI enabled over 1,00,000 runs.

4 Future Work

We plan to (i) formally verify the Jasmin implementation for functional correct-
ness and prove functional equivalence to the C reference implementation using
Easycrypt and Z3 (ii) formally verify the implementation for constant-time ex-
ecution through logically reasoned machine-checked proofs using Easycrypt at
the software level.

References

1. https://github.com/formosa-crypto/libjade, libjade
2. https://formosa-crypto.org/news/2022-06-07/sibenik, formosa Crypto
3. Almeida, J.B., et. al.: Machine-checked proofs for cryptographic standards: Indif-

ferentiability of sponge and secure high-assurance implementations of sha-3. In:
Proceedings of the 2019 ACM SIGSAC Conference (2019)

4. Almeida, J.B., Barbosa, M.: Jasmin: High-assurance and high-speed cryptography.
In: Proceedings of the ACM SIGSAC Conference on Computer and Communications
Security. pp. 1807–1823 (2017)

5. Almeida, J.B., Barbosa, M., Barthe, G.: Formally verifying kyber episode iv: Im-
plementation correctness (2023)

https://github.com/formosa-crypto/libjade
https://formosa-crypto.org/news/2022-06-07/sibenik

Title Suppressed Due to Excessive Length 5

6. Barthe, G., Dupressoir, F., Grégoire, B., Kunz, C., Schmidt, B., Strub, P.Y.: Easy-
Crypt: A Tutorial, pp. 146–166. Springer International Publishing, Cham (2014)

7. Beullens, W.: Mayo: Practical post-quantum signatures from 0il-and-vinegar maps.
In: International Conference on Selected Areas in Cryptography. pp. 355–376.
Springer (2021)

6 Samyuktha et al.

A Appendix

The Mayo2 parameters, as elaborated in Section 2, utilized in our implementa-
tion are m = 64, n = 78, k = 4, o = 18 with a secret key size of 24B, public key
size of 5488B and signature size of 180B.
Table 1. Execution time consumed for Jasmin and Reference Implementations in µsec.

Primitive Jasmin Impl. C Reference Impl.
Keygen 930 1629
Sign 3206 2749
Verify 480 665

	High Speed High Assurance implementations of Mutivariate Quadratic based Signatures

