
Shifting our knowledge of MQ-Sign security

Lars Ran1 and Monika Trimoska2

1 Radboud Universiteit, Nijmegen, The Netherlands
2 Eindhoven University of Technology, The Netherlands

lran@cs.ru.nl, m.trimoska@tue.nl

Abstract. Unbalanced Oil and Vinegar (UOV) is one of the oldest,
simplest, and most studied ad-hoc multivariate signature schemes. UOV
signature schemes are attractive because they have very small signatures
and fast verification. On the downside, they have large public and secret
keys. As a result, variations of the traditional UOV scheme are usually
developed with the goal to reduce the key sizes. Seven variants of UOV
were submitted to the additional call for digital signatures by NIST,
prior to which, a variant named MQ-Sign was submitted to the (South)
Korean post-quantum cryptography competition (KpqC). MQ-Sign is
currently competing in the second round of KpqC with two variants. One
of the variants corresponds to the classic description of UOV with certain
implementation and parameter choices. In the other variant, called MQ-
Sign-LR, a part of the central map is constructed from row shifts of a
single matrix. This design makes for smaller secret keys, and in the case
where the equivalent keys optimization is used, it also leads to smaller
public keys. However, we show in this work that the polynomial systems
arising from an algebraic attack have a specific structure that can be
exploited. Specifically, we are able to find preimages for d-periodic targets
under the public map with a probability of 63% for all security levels.
The complexity of finding these preimages, as well as the fraction of d-
periodic target increases with d and hence provides a trade-off. We show
that for all security levels one can choose d = v

2
, for v the number of

vinegar variables, and reduce the security claim. Our experiments show
practical running times for lower d ranging from 0.06 seconds to 32 hours.

1 Introduction

The quest for cryptographic schemes that are secure even against attackers
equipped with a large-scale quantum computer is in full tilt, and a substantial
portion of the current focus is on developing secure digital signature schemes.
Even though digital signatures are not concerned by the store-now-decrypt-later
attack, it is still of great urgency to find practical solutions that replace the
non-post-quantum signature schemes that are currently deployed. For certain
applications, for instance issuing signatures for documents that have a long va-
lidity period, replacing the signatures once a quantum computer is available can
not bring back confidence in the validity of the signature. Furthermore, many
embedded devices are designed to have a long shelf-life and simply replacing the

cryptosystem in the future is not a viable option for these use-cases either. This
effort is further motivated by the various worldwide standardization initiatives.
The additional call for digital signatures by NIST recently came to the start
of its second round, where 14 candidates were selected to advance through the
selection process [12]. Another initiative that aims at encouraging the develop-
ment and advancing the field of post-quantum cryptography is the Korean post-
quantum Cryptography (KpqC) project [16]. Promoting innovative research and
broadening the field being the foremost goal of the KpqC project is also sym-
bolized in the acronym, where the lowercase letters ’p’ and ’q’ put together
resemble the Chinese character for ’door’. Most prominently, the KpqC project
is responsible for organizing the KpqC competition that started in 2022, calling
for submissions of post-quantum Key Encapsulation Mechanisms (KEMs) and
post-quantum digital signatures. The competition is currently moving towards
the end of round 2 and the work in this paper analyzes one of the candidates
that is competing for the win.

Multivariate digital signatures based on the trapdoor construction are an
appealing candidate solution because they commonly yield small signatures and
fast verification running times. On the other hand, they come with huge pub-
lic and secret keys. Hence, optimizations of signature schemes that follow this
paradigm focus primarily on reducing these sizes. One way to accomplish this is
public key compression, a method where the design of the system offers the pos-
sibility of having a part of the public map generated from a seed. Employing such
a method is not always possible, and depends on the concrete construction of
the cryptosystem. Another approach is to incorporate an additional structure to
the secret/public quadratic maps that allows us to generate them from a smaller
input. This second approach also needs a novel design, but moreover, it requires
extensive security analysis to ensure that the additional structure does not ren-
der the problem of inverting the public maps easier, which would implicitly put
in jeopardy the security of the cryptosystem. The latter approach is explored in
MQ-Sign, a digital signature scheme that was submitted to the KpqC competi-
tion. The initial idea rested on sparseness, i.e. having only few nonzero entries
in the central map. This design was attacked first in [2] and shortly after in [9],
which lead to the idea being abandoned and replaced by a different approach in
the round 2 proposal of MQ-Sign. In round 2, a new variant of MQ-Sign, called
MQ-Sign-LR, was introduced. This variant uses linear forms to generate a part
of the central map, which makes it significantly more compact. In this work,
we take a closer look at the underlying structure and the security of this new
variant.

Our contributions. In this work we analyse the security claim of the newly
proposed MQ-Sign variant called MQ-Sign-LR. As a first contribution, we give
an alternative description of the cyclic systems appearing in the public key of
this variant by using row-shift matrices. Then, armed with this reformulation,
we observe that we can make quadratic maps coincide by using periodic input.
This leads to our discovery of weak targets, namely periodic targets, of which we

2

can find preimages faster. Furthermore, we show that we are able to practically
find preimages for a substantial subset of them, with running times ranging from
a second to 32 hours. The fact that these weak targets exists and are practically
invertible for all security levels of MQ-Sign-LR is already a security concern.

Our second contribution is turning these findings into a universal forgery
attack that challenges the security claims for all security levels. More precisely,
we show that the class of weak targets is big enough for an attacker to enumerate
salts until a weak target is found.

Our third contribution is isolating a hardness assumption, the Shifted MQ
problem, SMQ(n, q), underlying this attack, and providing a novel method for
solving it. The proposed algorithm is a variant of FXL, whereby care is taken in
which variables, or actually linear constraints in this case, are fixed. It turns out
that, fixing one linear constraint can lead to two quadratic equations devolving
into linear equations, hence simplifying the system considerably. We show that
this can be done once per distinct nth root of unity in Fq.

Finally, we back up all our claims by running and documenting an extensive
array of experiments.

2 Background

Let Fq be the finite field of q elements. We use bold letters to denote vectors,
e.g. x, t, and matrices, e.g. P,F. We write (column) vectors as a = (a1, . . . , an)
and the entries of a vector a are denoted by ai, or, if a itself has a subscript, e.g.
ab, by (ab)i. When we use indices in superscript they will always be enclosed in
parentheses, for example P(i).

2.1 Quadratic forms

Let p(x1, . . . , xn) =
∑

1⩽i⩽j⩽n

γijxixj be a quadratic form over Fq. Then, for fields

of odd characteristic, p can be represented by a symmetric matrix P where
Pij = γij/2 for i ̸= j, and Pii = γii. There is a one-to-one correspondence
between quadratic forms and symmetric matrices, since for x = (x1, . . . , xn) it
holds that

p(x1, . . . , xn) = x⊤Px.

With this representation, all operations on quadratic forms naturally trans-
form into operations on matrices since the one-to-one correspondence between
quadratic forms and symmetric matrices is actually an isomorphism. Over fields
Fq of even characteristic, this relation does not hold, since for a symmetric ma-
trix P we have (Pij +Pji)xixj = 2Pijxixj = 0. Thus, in even characteristic we
associate to p an upper-triangular matrix with coefficients Pij = γij for i ⩽ j.
With this representation, some nice computational properties of the symmetric
matrix representation break down, but in practical applications this can be over-
come and the upper-triangular representation is used when working with fields
of even characteristic. The operation Upper is used to transform any matrix
representing a quadratic form to upper-triangular form.

3

2.2 The UOV construction

A trapdoor construction is a combination of a function and a trapdoor whereby
computing the function is easy for everyone, but inverting it is hard for parties
that do not have knowledge on the trapdoor. The oil and vinegar construction,
first proposed in [13], is a leading example of such a trapdoor construction. Un-
fortunately, the initial proposal of this construction was broken one year later in
[11]. However, one more year later, Kipnis, Patarin, and Goubin in [10] proposed
the Unbalanced Oil and Vinegar construction that is still considered secure to
this day.

This construction can be specified as a sequence of m quadratic maps

F = (f (1), . . . , f (m)) ∈ Fq[x1, . . . , xn]

in n variables. However, these maps are of a specific shape, in the sense that not
all quadratic monomials are present. This shape can be described by splitting
the variables into vinegar variables (x1, . . . , xv) and oil variables (xv+1, . . . , xv+o)
where o = m = n− v. Then the quadratic maps are given as

f (k) =
∑

1≤i≤v
i≤j≤n

α
(k)
ij xixj +

∑
i

β
(k)
i xi + γ(k). (1)

Knowing this structure, it is easy to find preimages for any target t ∈ Fm
q by

fixing all vinegar variables and solving the remaining linear system. Therefore,
we apply an invertible linear map S to define the public key P = F ◦ S. This
linear transformation hides the special structure of the central map and the
security of UOV relies on the assumption that the public map obtained in such
a way is indistinguishable from a random quadratic map.

UOV follows the standard signature generation and verification process of a
trapdoor-based multivariate signature scheme. In the following, we summarize
the two algorithms. For simplicity, we omit the use of the linear transformation
of the output, as this is not used in UOV or MQ-Sign.

Signature Generation. To generate a signature for a message M , the signer
uses a hash function H : {0, 1}⋆ → Fm

q and a salt r to compute the hash
value t = H(M ||r) ∈ Fm

q , and computes recursively y = F−1(t) ∈ Fn
q , and

z = S−1(y). The signature of the message M is z ∈ Fn
q . Here, F−1(t) means

finding one (of possibly many) preimages of t under the central map F .

Verification. To check if z ∈ Fn
q is indeed a valid signature for a message M ,

one computes t = H(M ||r) and t′ = P(z) ∈ Fm
q . If t′ = t holds, the signature is

accepted, otherwise it is rejected.
For cryptographic schemes in the UOV family, the linear and constant parts

of Equation (1) are usually dropped and we work only with quadratic forms.
The shape of the quadratic forms that form the central map in upper-triangular
form is

F(k) =

(
F

(k)
1 F

(k)
2

0 0

)
, (2)

4

where the F
(k)
1 are upper-triangular. We use this block matrix notation to dis-

tinguish between the so-called vinegar-vinegar part and vinegar-oil part of the

secret key. The matrices F
(k)
1 hold the coefficients of monomials comprised of

two vinegar variables, whereas the matrices F
(k)
2 hold the coefficients of the

monomials that are a product of one vinegar and one oil variable. Note that the
lower-right corner is the zero matrix because there are no oil-oil monomials in
the central map. Using this notation the public maps can be computed as

P(k) =

(
P

(k)
1 P

(k)
2

0 P
(k)
4

)
= ST

(
F

(k)
1 F

(k)
2

0 0

)
S. (3)

Equivalent keys. It was shown in [15] that for any instance of a UOV secret
key (F ′,S), there exists an equivalent secret key (F ,S) with

S =

(
Iv×v S1

0m×v Im×m

)
. (4)

For an attacker, it is not necessary to find the original secret key that was
obtained at key generation, i.e. the one that a valid signer is in possession of. The
goal is rather to find any of the equivalent keys as they can all be used to forge
a signature. Since finding a secret key where S is of the form as in Equation (4)
seems to be the least computationally intensive, we consider the complexity
of this as a baseline for a key recovery attack that aims at finding the secret
matrix S. As a consequence, a key of this specific form can be used as part of
the specification of the cryptosystem, in which case the matrix S can be stored
using fewer entries. We refer to this as the equivalent-keys optimization, and this
optimization is used in most modern instantiations of UOV. Note however that
this optimization technique introduces vulnerabilities when we consider physical
attacks [1].

2.3 The MQ-Sign digital signature scheme

MQ-Sign is a UOV-based signature scheme, where the main focus is to reduce
the size of the public and secret key compared to traditional UOV. In the first-
round proposal of MQ-Sign, this was achieved by using sparse polynomials for
the quadratic part of the central map. In the central map, we distinguish two
main parts: the vinegar-vinegar part, which consists of monomials that contain
two vinegar variables, and the vinegar-oil part, comprised of the monomials
containing one vinegar variable and one oil variable. There were initially four
variations of the scheme: MQ-Sign-SS, MQ-Sign-RS, MQ-Sign-SR and MQ-Sign-
RR, where the suffix specifies, for the two parts of the quadratic maps, whether
they are defined with sparse or random polynomials.

Three attacks on MQ-Sign were published during the first round of the com-
petition, which eliminated all but the last variant of MQ-Sign, denoted MQ-Sign-
RR. This is the most conservative variant as it is built on the UOV trapdoor

5

without any additional structure. The first algebraic attack on MQ-Sign was
proposed by Aulbach, Samardjiska, and Trimoska [2], and it exploits the sparse-
ness of the vinegar-oil part of the secret key. The attack also relies on the fact
that the map S is chosen to be given by a matrix of the form as in Equation (4).
Recall that, this typically does not reduce the security of a UOV-based scheme
because it was shown in [15] that for any instance of a UOV secret key (F ′,S′),
there is an equivalent key (F ,S) where S has the form as in (4). However, cou-
pling this optimization technique with the specific structure of the central map
in MQ-Sign yields many linear constraints that allow for a polynomial-time key
recovery. The attack was fully implemented, and it was reported to run in 0.6
seconds for the proposed parameters for security level I, 2.3 seconds for security
level III and 6.9 seconds for security level V.

Following this, Ikematsu, Jo, and Yasuda proposed another algebraic attack
that also targets the MQ-Sign-{S/R}S variants but is not dependent on S having
the equivalent keys structure [9]. These two attacks eliminated both variants
where the vinegar-oil part of the secret key is sparse.

Another algebraic attack was proposed in [2] which targets specifically the
variant where only the vinegar-vinegar part of the secret key is sparse. This
attack is not practical, but shows that the security of MQ-Sign-SR does not
meet the required security level and this variant is also removed from the updated
submission in round 2.

MQ-Sign advanced to the second round of KpqC and the second-round sub-
mission includes the variant corresponding to traditional UOV, MQ-Sign-RR,
and a new design that leads to an additional variant called MQ-Sign-LR. This
new non-conservative variant of MQ-Sign has smaller secret keys, while main-
taining the same signature size as MQ-Sign-RR. This variant reportedly yields
better performance for both key generation and signing. Note that since the
reduction of the size of the secret key is in the vinegar-vinegar part, when the
equivalent-keys optimization is used, this yields a reduction in the public key size
as well. This is because when S is of the form as in Equation (4), the vinegar-
vinegar part of the public key is equal to the vinegar-vinegar part of the secret
key. This will be explained in more detail in the following section.

The main difference between the two MQ-Sign variants is in the structure
of the vinegar-vinegar part of the central map. In MQ-Sign-LR, the vinegar-
vinegar part of the central map is constructed as a product of a circulant matrix
where the entries are the vinegar variables (x1, . . . , xv) and a vector whose entries
are linear combinations of the vinegar variables. Specifically, the central map is
defined as

x1 x2 ... xv

xv x1 . . . xv−1

.

xv−m+2 xv−m+3 . . . xv−m+1

 ·

L1

L2

. . .

Lv

 , (5)

where Li =
∑v

j=1 γijxj , for i ∈ {1, . . . , v} and each row of the product matrix
gives a polynomial in F . As a result, the vinegar-vinegar part of the central map

6

can be represented with v2 field elements3, instead of the v2m
2 field elements that

are required in the MQ-Sign-RR variant.
For reference for the rest of the paper, we recall here the parameters of

MQ-Sign for all security levels. The parameter choices are the same between
the two variants MQ-Sign-LR and MQ-Sign-RR. They are chosen such that the
cryptosystem resists all generic attacks againts the UOV family.

Table 1. The parameters of MQ-Sign.

Level q v m

I 28 72 46

III 28 112 72

V 28 148 96

2.4 Multivariate system solving

A problem that comes up naturally in analyzing such UOV-like systems is that
of solving multivariate (quadratic) systems. In these problems, one is presented
with a system consisting of m equations in n variables over Fq and one would
like to find a solution to the system. In this work, we will only consider such
problems with m ≥ n, also known as (over-)determined systems. Current state-
of-the-art algorithms for computing such solutions are, for example, F4 [8], F5
[7], XL, and FXL [5]. All of these algorithms are extensions of the Buchberger
algorithm [3]. These algorithms have the same underlying theory for deriving
their asymptotic complexity. We give a simple overview here, focusing on the
complexity of XL as this algorithm behaves most predicatively.

The central parameter indicating the complexity is the operating degree dsolv.
This is the maximal degree of the monomials considered during the algorithm and
hence limits the amount of monomials. In the case of a semi-regular sequence of
quadratic equations, we can predict the maximal necessary degree as the degree
of the first non-positive coefficient of the power series

(1− t2)m

(1− t)n
.

For structured systems, this estimation may not hold. Still, regardless of how
one obtained the correct dsolv, the complexity of XL for this system is now given
as

CXL(n,m,q) = 3

(
n+ dsolv
dsolv

)2(
n+ 2

2

)(
log2(q)

2 + log2(q)
)
.

3 The submission counts v(v+m) elements, which corresponds to the evaluation costs,
but not to the number of stored elements.

7

Then, the FXL algorithm improves on this by fixing k variables first. Choos-
ing the correct k is part of a trade-off and depends on n,m, q. Note that dsolv is
now generally dependent on k. The complexity of the algorithm is now given by

CFXL(n,m,q) = min
k≤n

qkCXL(n−k,m,q).

3 A forgery attack

We show in this section how a forgery attack can be mounted against MQ-Sign-
LR. The attack relies on the specific structure arising from the new design, as
well as on the use of the equivalent keys optimization. Recall that when this
optimization is used, the secret matrix S is of the form as in Equation (4),
in which case the matrices representing the public and the secret map share a
common block. Following the notation in this paper, the common block is the
upper-left block that corresponds to the vinegar-vinegar part of the maps. This
can be observed from the equation defining the computation of the public key

(
P

(k)
1 P

(k)
2

0 P
(k)
4

)
=

(
I 0

S⊤
1 I

)(
F

(k)
1 F

(k)
2

0 0

)(
I S1

0 I

)
,

which in upper-triangular matrix form simplifies to(
P

(k)
1 P

(k)
2

0 P
(k)
4

)
=

(
F

(k)
1 (F

(k)
1 + F

(k)⊤
1)S1 + F

(k)
2

0 Upper(S⊤
1 F

(k)
1 S1 + S⊤

1 F
(k)
2)

)
.

In the following, we show how an attacker can forge a signature of a message
M , which consists in finding a preimage of t = H(M ||r) under the public map
P. We will write in block matrix representation since we are using the specific
structure of the upper-left block of the public map. The goal is to find a vector
(xv,xm) ∈ Fn

q such that

(xv,xm)

(
P

(k)
1 P

(k)
2

0 P
(k)
4

)(
xv

xm

)
= xT

v P
(k)
1 xv + xT

v P
(k)
2 xm + xT

mP
(k)
4 xm = tk

holds for every k ∈ {1, . . . ,m}. Note here that P
(k)
1 has the same shape as F

(k)
1

because of the equivalent keys form of S, and we will use this structure in the
attack. Let us denote by V (t) the variety (the set of solutions) of the ideal
generated by P(x) = t. Since we have m equations in n variables with n > m,
we can afford to add another v = n − m affine constraints and still expect,
heuristically, to have a solution. We use only m (recall that m < v) of those
to eliminate the non-structured part of this system. Specifically, we assign all
variables in xm to zero. We are then left with the system

xT
v P

(k)
1 xv = tk (6)

that contains only the block P
(k)
1 , and thus inherits the structure depicted in

Equation (5).

8

3.1 Quadratic maps in MQ-Sign-LR

Since our focus is on solving polynomial systems arising from the constraint in
Equation (6), we first take a closer look into the structure of these systems. Recall
that the polynomials in this system are obtained as in Equation (5). Hence, we
have the following system of equations

x1L1 + x2L2 + · · ·+ xvLv = t1,

x1L2 + x2L3 + · · ·+ xvL1 = t2,

. . .

x1Lm + x2Lm+1 + · · ·+ xvLm−1 = tm.

(7)

Let us denote by σ the mapping that sends Li to its coordinate vector, i.e.

σ : Li =

v∑
j=1

γijxj 7→ σ(Li) = (γi,1, . . . , γi,v).

When we rewrite the equations from (7) in matrix form we obtain

x⊤
v P

(1)
1 xv = t1,

x⊤
v P

(2)
1 xv = t2,

. . .

x⊤
v P

(m)
1 xv = tm,

where

P
(1)
1 =

σ(L1)

σ(L2)

. . .

σ(Lv)

 , P
(2)
1 =

σ(L2)

σ(L3)

. . .

σ(L1)

 , . . . , P
(m)
1 =

σ(Lm)

σ(Lm+1)

. . .

σ(Lm−1)

 . (8)

This is because the i-th row of the matrix contains the coefficients of all monomi-
als containing xi, which for the k-th polynomial, is exactly given by the coordi-
nates of Li+kmod v. Note that these matrices are not the canonical representation
of the polynomials, as they are not symmetric. Nevertheless, they are a valid rep-
resentation of the corresponding polynomials, since we have that the sum of the
entry {i, j} and the entry {j, i} is equal to the coefficient of the monomial xixj .
We will keep this non-canonical representation, as it facilitates the exposition.

From Equation (8), it is easy to spot that the matrices representing these
quadratic forms are equal up to cyclic row-shifts. Specifically, we have that

P
(k+1)
1 is obtained from a cyclic upward shift of the rows of P

(k)
1 . Let us de-

note by T the matrix representing the permutation corresponding to a cyclic
upward row shift. Then, Ti represents a cyclic upward row shift by i steps. The

9

system of equations that we aim to solve takes the following form

x⊤
v P

(1)
1 xv = t1,

x⊤
v TP

(1)
1 xv = t2,

. . .

x⊤
v T

m−1P
(1)
1 xv = tm.

(9)

Since we can now express all equations in terms of P
(1)
1 , we will write P = P

(1)
1 .

3.2 Computing preimages of weak targets

The specific structure of the quadratic maps described in the previous section
allows us to find preimages of certain target vectors t more easily. We will refer
to these vectors as weak targets. The reason it is easier to find preimages for
these weak targets is that, because of the cyclic structure of the maps, we can
construct our input vectors in such a way that they fulfill some constraints by
design. To explain this idea, we will start by looking at the homogenous case,
i.e. finding preimages of 0. The vector 0 is indeed one of the weak targets.

We start again from the observation that in the system in Equation (9),

every subsequent matrix P
(k)
1 is obtained by a cyclic row-shift of the previous

one. Equivalently, we can imagine that we have the same matrix m times, but
the permutation is on the x⊤

v vectors on the left side, performing cyclic shifts on
vector entries (a permutation on columns of x⊤

v , since T acts on the right). It is
then evident that for vectors xv where all the entries are equal to each other, if
xv is a solution to the first equation, then xv is a solution to the entire system.
We generalize this observation to other specific vectors that have a repeating
subsequence.

Let us denote by ∼ the binary relation on Fv
q described informally as “a

is equal to b up to a cyclic right-shift (without loss of generality)”. We add a
further restriction that if b is obtained by performing a right-shift of k entries
on a, then k is the smallest number for which this holds. This is indeed an
equivalence relation because (i) a ∼ a by a shift of zero, (ii) if a is obtained by
performing a right-shift of k on b, then b can be obtained by a right-shift of
v−k on a, and (iii) if a is a k-shift away from b and b is an l-shift away from c,
then a is a ((k+ l)mod v)-shift away from c. We further know that, for a given v,
the number and size of such equivalence classes in Fv

q can be derived by looking

at the divisors of v. For each divisor d of v, we have up to qd equivalence classes
of size d. We now make the following observation for the system in Equation (7).
If x belongs to an equivalence class of size d and x is a solution to the first d
equations in (7), then x is a solution to the entire system. We also have that
all the vectors in the equivalence class are a solution to the first equation. This
observation tells us that the system does not behave like a random system and
that there are some vectors that are probabilistically more likely to be a solution
to the system than others, as they only need to satisfy a subset of the equations.
We exploit this by looking for such solutions using the following strategy.

10

For each divisor d of v, excluding v 4 and taken in ascending order, build a
smaller system by taking the first d equations of the initial system in Equation (7)
and replacing the unknown xv = (x1, . . . , xv) by

x = (x1, . . . , xd, x1, . . . , xd, . . . , x1, . . . , xd).

This is a quadratic system of d equations in d variables. Denote xd = (x1, . . . , xd).
To concretely describe the structure, we introduce the matrices

Jd,n = (Id, . . . , Id) ∈ Md×n(Fq)

for d | n. For simplicity, we define Jn,d = JT
d,n. This allows us to write

x = (x1, . . . , xd, x1, . . . , xd, . . . , x1, . . . , xd) = Jn,d(x1, . . . , xd) = Jn,dxd.

Also note how this commutes with the cyclic shift matrices

Ti
nJn,d = Jn,dT

i
d = Jn,dT

imod d
d .

Now let us take a closer look at the equations that we obtain if we look for
solutions x that map to 0

0 = x⊤Ti−1Px

= x⊤
d Jd,vT

i−1PJv,dxd

= x⊤
d T

i−1Jd,vPJv,dxd.

(10)

Since these type of equations are central in the rest of this work we will define
the following problem to aid the discussion.

Problem 1. SMQ(n, q) (Shifted MQ problem)
Let P ∈ Mn×n(Fq) be a matrix and let t ∈ Fm

q be a vector. The Shifted MQ
problem asks to find — if any — a solution x ∈ Fn

q to the following system of
equations

x⊤Ti−1Px = ti for all 1 ≤ i ≤ n. (11)

Here, P is called the initial matrix and t the target vector.

Now, Equation (10) depicts exactly the shifted MQ problem SMQ(d, q) with
initial matrix Jd,vPJv,d and target vector t = 0.

Remark 1. With this attack, we are able to find one (or a few) out of many
elements in V (0). The secret oil subspace, denoted O, is contained in V (0) and
in the case that the obtained vector is part of the oil subspace this would lead
to a full key recovery. It is well known from the reconciliation attack [6] that
finding the first oil vector is the bottleneck of recovering the secret oil space,
and recently it was shown, first in [1] and then in [14], that once we have found
the first oil vector, the remaining steps to recover the entire oil space can be
done in polynomial time. However, since V (0) is of dimension n −m and O is
of dimension m, the probability that the vector we obtain is in O is negligibly
small, concretely q−n+2m. Hence, we conclude that this forgery attack does not
lead to a key-recovery attack.
4 In fact, we also need d < m. However, for the systems considered, this holds for all
divisors d of v except v itself.

11

Periodic targets. The reason why the above discussion worked so well is be-
cause 0 is periodic. In fact, it is even 1-periodic. We can extend the above
algorithm to any periodic t. Let d | v with d ≤ m and let t be a d-periodic
vector, in other words ti = ti+d for all 1 ≤ i ≤ m − d. Then for any d′ with
d | d′ and d′ | v we can apply the same trick and look for d′-periodic solutions
x = (xd′ , . . . ,xd′). Building the same equations as above, we obtain the following
system of equations

x⊤
d′Ti−1Jd′,vPJv,d′xd′ = ti for all 1 ≤ i ≤ d′. (12)

This is again the SMQ(d′, q) problem with initial matrix Jd,vPJv,d, but now
with a target vector t = (t1, . . . , td′).

3.3 Forging a signature

Given that we can find solutions to quite a bit of weak targets, the question is
if we can build a signature forgery attack from these findings. In this section,
we respond in the affirmative, showing that we can sign any message using
this technique, without any knowledge of the secret key. For the MQ-Sign-LR
parameter sets, this can be done with a complexity that breaks the security
claims for all three levels of security.

Given a message M and a salt r the probability that t = H(M ||r) is d-
periodic is quite small. In fact, this probability is given by qd−m. However, as an
attacker, we can simply keep on choosing random salts r until we find a hash that
is d-periodic. For example, for level I, with d = v/2 = 36 and m = 46, we only
need to resample the salt 280 times on average. Note that the salt is 32 bytes, so
for a cryptographic hash function, we will certainly be able to find a good one.
Note however that having a d-periodic target is not the only requirement. We also
need the corresponding SMQ(d, q) problem to have a solution. In contrast to the
signing procedure where the common approach is to resample the chosen values
for the v arbitrarily assigned variables, our attack requires that the variables in
xm are fixed to zero and the rest are chosen as described in the previous section.
Let pd,q be the probability that an SMQ(d, q) problem has a solution, and we
denote by CSMQ(d,q) and CH the complexity of solving an SMQ(d, q) instance
and of computing one hash respectively. We can compute the complexity of
forging a signature as

min
d|v,d<m

p−1
d,q(CSMQ(d,q) + qm−dCH). (13)

In Section 5 we find that, empirically, pd,q is 0.63 and this value is largely
independent of d and q = 2r. Furthermore, it turns out that for all parameter
sets, the only viable d would be v/2. For other d values, the cost of sampling
salts would dominate the costs and surpass the security requirement. For this
choice of divisor, the amount of salts to generate in the different levels is given
in the following table.

12

Table 2. The average number of salts to try before finding a v/2-periodic hash.

Level q v m salts

I 28 72 46 280

III 28 112 72 2128

V 28 148 96 2176

4 Analysis of the attack

As we saw in the last section, the bottleneck of the forgery attack is based on
finding solutions to the SMQ problem for random t. In this section we turn to
the analysis of this problem.

4.1 Solving SMQ(n, q) using FXL

Since the problem at hand consists of a multivariate quadratic system of n
equations in n variables, we are going to approach this using a Gröbner basis
algorithm. With these parameters, m ≈ n and q = 28, employing a guessing
strategy improves the complexity of solving the system. The FXL algorithm [5]
is an algorithm that exactly fills that role. The resulting complexities can be
found in the left column of Table 3 for several values of n. This is a standard
approach and the background section contains further explanations on how these
complexities are computed.

Table 3. The theoretical complexity of solving SMQ(n, 256) using FXL with and
without improved guessing. The ordinary enumeration due to FXL is denoted by g,
whereas the number of guesses made with the improved guessing strategy is denoted
by k.

FXL Improved guessing FXL

n (g, dsolv) log2 cost (k, g, dsolv) log2 cost

24 (2, 13) 94 (3, 0, 8) 78

36 (3, 16) 125 (3, 0, 14) 111

56 (4, 23) 178 (1, 3, 22) 172

74 (6, 27) 225 (1, 4, 28) 219

4.2 An improved guessing strategy

Due to the structure of the problem, it turns out that our guessing can be made
more effective than usual. Let ζ ∈ Fq be an nth root of unity in Fq. Define

13

the vectors vζ ,wζ ∈ Fn
q as (vζ)i = ζi and (wζ)i = ζ−i. Then we can make the

following observation ∑
i

ζiTi = vζw
T
ζ .

Now we can take and manipulate the following linear equations∑
i

ζiti =
∑
i

ζix⊤TiPx

= x⊤

(∑
i

ζiTi−1

)
Px

= x⊤vζw
T
ζ Px

=

(∑
i

ζixi

)
·

∑
i,j

ζ−iPijxj

 .

Example 1. Pick ζ = 1. Then we get the following equation∑
i

ti =

(∑
i

xi

)
·

(∑
i

(Px)i

)
.

If we now guess the constraint
∑

i ζ
ixi = γ ∈ F∗

q , then we get the linear con-

straint
∑

i ζ
−i(Px)i = γ−1

∑
i ζ

iti for free. To be more precise, using this guess,
we were able to turn a quadratic equation into a linear equation. A common
technique when we have a linear equation is to trade it to remove one variable.
For instance, an equation γ1x1 + γ2x2 + · · · + γnxn + γ0 = 0 is rewritten as
x1 = −γ−1

1 (γ2x2 + · · · + γnxn + γ0) and used to substitute x1 in the system.
Hence, when using k different such roots of unity, we get a system of n − k
equations in n− 2k variables using k guesses. Here we assume that the guessed
and induced constraints are all linearly independent, which happens with over-
whelming probability if 2k < n.

Remark 2. One might think that certain guesses lead to, a priori, inconsistent
systems due to linear dependency. However, using the theory of Vandermonde
matrices we see that the guesses are linearly independent regardless of our
guesses.

Something interesting happens when 2 | n in even characteristic. We define
the vectors

(v̄ζ)i =

{
ζi if i ≡ 0 mod 2

0 if i ≡ 1 mod 2
(w̄ζ)i =

{
ζ−i if i ≡ 0 mod 2

0 if i ≡ 1 mod 2.

In that case we have the following observation:∑
i≡1 mod 2

ζiTi = vζw̄
T
ζ + v̄ζw

T
ζ . (14)

14

So now if we guess x⊤vζ = γ ∈ F∗
q with induced wT

ζ Px = β we get:∑
i≡1 mod 2

ζiti =
∑

i≡1 mod 2

ζix⊤TiPx (15)

= x⊤ (vζw̄
T
ζ + v̄ζw

T
ζ

)
Px (16)

= x⊤vζw̄
T
ζ Px+ xv̄ζw

T
ζ Px (17)

= γw̄T
ζ Px+ x⊤v̄ζβ (18)

And this is a linear constraint again! A consequence is that in this case, we can
guess k constraints (up to the amount of distinct nth roots of unity) to obtain
a quadratic system of n− 2k equations in n− 3k variables.

Remark 3. Note that in even characteristic ζ2 = ζ ′2 if and only if ζ = ζ ′. So the
resulting constraints are again linearly independent among each other.

Given the above solving strategy, we want to compute the complexity of
solving the remaining system using a Gröbner basis approach. To use the usual
XL complexity estimation we have to find the solving degree. Normally we would
assume that our system (after guessing variables) is semi-regular and compute
the solving degree from that assumption. However, given the amount of structure
in the system this seems unlikely, and experimental results suggest that it is not.
Nevertheless, as we will see in Section 5, this assumption still seems to be a good
estimator for the solving degree. Therefore, we will base our complexities around
this estimation.

Since Fq has at most gcd(q − 1, n) distinct nth roots of unity, we can guess
only that many variables in the way described above. Therefore, for some n we
would instead like to guess g additional variables for the best trade-off in the
FXL algorithm. Then, we can compute the complexity, for even n, as

min
k≤gcd(q−1,n)

qkCFXL(n−3k,n−2k,q). (19)

Here CFXL(n,m,q) is the cost of FXL over Fq with m quadratic equations in n
variables. The summary of these results can be found in Table 3.

4.3 Complexity of forging signatures for MQ-Sign-LR

Now, almost everything is in place to compute the complexity of forging a signa-
ture for MQ-Sign-LR. We will assume that pd,q = 0.63 as found experimentally
in Section 5. Furthermore, we will assume that CH ≤ 230. Generally, for crypto-
graphic hashes, this is a huge overestimation. However, for this attack, picking
this bound, makes sure that solving SMQ dominates the complexity. The com-
plexities that result can be found in Table 4.

5 Experiments

As we saw in Section 3, we are interested in the probability that a random
SMQ system has a solution. Furthermore, our analysis on the solving complexity

15

Table 4. The theoretical complexity of forging MQ-Sign-LR signatures.

Level q v m log2 cost

I 256 72 46 112

III 256 112 72 173

V 256 148 96 220

of SMQ is based on some heuristics. Therefore, we also provide experimental
evidence backing up our claims.

5.1 Probability of SMQ having a solution

First, let us consider the probability of a random SMQ system to be solvable.
As explained in Section 3, when faced with the problem of finding a preimage of
a vector t, the setup of the attack does not allow for any choice of the assignment
of the variables in xm. If the corresponding polynomial system does not have a
solution, the only option an attacker has is to search for another weak target t.
As a result, the probability of an SMQ instance having a solution intervenes in
the asymptotic complexity of the attack, and we need to obtain an estimate of
this probability.

As the systems are structured, we can not use existing theoretical analysis to
derive the probability, and thus we take an experimental approach. We generate
and solve many instances of the SMQ problem for different values of n and for
q fixed as in the parameters of MQ-Sign. We find empirically that such an SMQ
instance has a 0.63 chance to have a solution, independent of n ≥ 3. The first
row in Table 5 shows the number of runs that we performed for a given n, and
the second row shows the derived probability, averaged over all runs. The results

Table 5. Probability of a random SMQ(n, 256) system having a solution.

5 6 7 8 9 10 11 12

Experiments 106 106 106 106 105 104 104 2000

Probability 0.630 0.630 0.631 0.631 0.631 0.623 0.628 0.633

were consistent, and we use this empirically obtained probability to calculate
the overall complexity of the forgery attack.

5.2 Solving SMQ

Now let us turn to experiments of actually solving SMQ systems. We first aim
to confirm our theoretical findings in Section 4, focusing on the solving degree of

16

such systems. As we noted before, these systems are not semi-regular. However,
we can still use the Hilbert Series estimation to predict the solving degree and
determine if and how far off it is from the actual value obtained from experiments.
In these experiments we generate a random SMQ system and solve it using
MAGMA’s [4] GroebnerBasis(). We found the solving degree as the highest
degree in the computation of GroebnerBasis(). Following the notation from
Section 4, the experiment was done for several values of n and k, and in all
experiments we have g = 0. We chose to limit ourselves to 1 ≤ k ≤ 3 and n
that are divisors of the different v in MQ-Sign-LR. The results can be found in
Table 6.

Table 6. The experimental solving degrees for SMQ instances with different n and k.
The solving degrees are formatted as experimental/theoretical.

n 3 4 6 7 8 9 12 14 16 18 24

k = 1 1/2 1/2 3/4 4/6 4/6 5/8 6/10 7/12 7/14 9/16 —

k = 2 1/1 — 1/1 — — 4/4 4/5 — — 7/8 8/11

k = 3 1/1 — 1/1 — — 3/3 3/3 — — 5/6 6/8

Examining Table 6, we see that in all experiments, the actual solving degree
was lower than the predicted solving degree. This can be explained by the extra
structure that is present in the system, even after the improved guessing of linear
constraints. It would be interesting to better understand, theoretically, how the
actual solving degree behaves. However, practically, this means that algorithms
for solving these systems have a lower complexity than anticipated. In other
words, the proposed attacks are probably faster than expected, and the security
claims are challenged even more.

Finally, we turn to solving some instances of weak targets in practice, and
we derive average running times. Our experiments include both weak instances
that can be solved in practical time on our machine and weak instances of the
scale required for mounting a universal forgery attack. For the latter case, since
it is not feasible to perform the entire computation, we opted for simulating the
enumeration steps of our algorithm by fixing the variables that are supposed
to be enumerated to the correct value. We then account for the enumeration
step by multiplying with the corresponding value. Since the enumeration step
has predictable complexity, this approach gives us the closest estimate to real
running times. Similarly, for practical reasons, the choice of number of variables
to enumerate does not necessarily coincide with the choice that yields the optimal
trade-off asymptotically.

Again, we use MAGMA’s GroebnerBasis() to solve the randomly generated
instances. Due to the overhead of solving small systems in MAGMA, in these
experiments k = 1 was optimal. For the values of n for which this was infeasible,
we report the time for solving a system with higher k and g, and then we ex-

17

trapolate the enumeration cost. Note that, especially in these cases, being able
to pick a lower g would decrease the overall time of the algorithm. Table 7 shows
running times for forging signatures having d-periodic hashes, essentially finding
preimages of weak targets. We choose d to be a divisor of v = 72, so that these
experiments correspond exactly to the weak targets of MQ-Sign-LR parameters
intended for the first security level. For reference, we also included the fraction
of such hashes occurring for the level I parameters. This is an indication of the
expected number of times we need to re-salt and hash until we find a weak tar-
get. Specifically, the last column contains the period for which it is feasible to
perform a universal forgery in time less than the time required to reach the first
security level. These experiments show that we are able to find preimages of a

Table 7. Running times for forging signatures having d-periodic hashes. † These forg-
eries were found after fixing some correct variables, hence the predicted enumeration
cost is added in parentheses.

d 4 8 9 12 18 24† 36†

Time 0.06 s 0.38 s 2.61 s 20.5 s 32 h 1.6 h (·216) 5.2 d (·256)

Level I 2−336 2−304 2−296 2−272 2−224 2−176 2−80

considerable fraction of weak targets in up to 32 hours for the parameters of
MQ-Sign-LR.

6 Countermeasures

The universal forgery attack proposed in this paper has an exponential time
complexity. In fact, Table 4 shows how far the current MQ-Sign-LR parameters
are from reaching the required security level. Considering only the theoretical
complexity of the forgery attack, it might be tempting to increase the parameter
choices for all three security levels so that the system reaches the corresponding
security requirements. However, this is not a sufficient countermeasure, as we
have shown that the system suffers from other vulnerabilities like the many
weak targets that we detect in Section 3. This means that if MQ-Sign-LR is
deployed in real world applications, a verifier can never accept signatures that
are build from a weak target, as the preimages of those can be computed in
faster running times, sometimes even seconds, as shown in Section 5.

The design of the system needs to be modified in such a way that our attack
is countered and the existence of weak targets is completely eliminated. Looking
at the requirements that we define in Section 3 for a vector being a weak target,
a straightforward countermeasure for this attack would be to choose parameters
such that v is a prime number. Note that it is also possible to adjust the param-
eter v in such a way that the inverse of the probability of hashing into a weak

18

target surpases the security threshold. For parameters of the scale of MQ-Sign
for instance, it would be enough to take v odd, as even if the greatest divisor is
v/3, the probability to find a v/3-periodic hash is negligibly low. We do not pro-
pose this countermeasure because of the same reasons exposed in the previous
paragraph. A verifier must never accept such weak targets and hence a different
solution that involves substantially changing the specification of the protocol
behind the trapdoor construction needs to be developed. This in turn evokes a
substantial study on the provable security analysis of the system. We conclude
that choosing v prime is the only countermeasure that successfully counters the
vulnerabilities found in this work.

Since out attack also relies on the equivalent-keys optimization, excluding
its use would protect agains this concrete attack. However, further analysis is
required to gain confidence in the security of using the cyclic structure of the
central map. Indeed, the work in this paper also highlights that the underlying
hardness assumptions of MQ-Sign-LR are substantially different than for classic
UOV. Furthermore, in this case only the secret key benefits from reduced sizes,
whereas for most use cases, it is more advantageous to reduce the public key
size.

References

[1] T. Aulbach, F. Campos, J. Krämer, S. Samardjiska, and M. Stöttinger. Separating
oil and vinegar with a single trace side-channel assisted kipnis-shamir attack on
UOV. 2023(3):221–245, 2023.

[2] T. Aulbach, S. Samardjiska, and M. Trimoska. Practical key-recovery attack on
MQ-sign and more. pages 168–185, 2024.

[3] B. B. Ein algorithmus zum auffinden der basiselemente des restklassenringes nach
einem nulldimensionalen polynomideal. Ph. D. Thesis, Math. Inst., University of
Innsbruck, 1965.

[4] W. Bosma, J. Cannon, and C. Playoust. The Magma Algebra System. I. The User
Language. J. Symbolic Comput., 24(3-4):235–265, 1997. Computational algebra
and number theory (London, 1993).

[5] N. Courtois, A. Klimov, J. Patarin, and A. Shamir. Efficient algorithms for solving
overdefined systems of multivariate polynomial equations. pages 392–407, 2000.

[6] J. Ding, B.-Y. Yang, C.-H. O. Chen, M.-S. Chen, and C.-M. Cheng. New
differential-algebraic attacks and reparametrization of Rainbow. pages 242–257,
2008.

[7] J. C. Faugère. A new efficient algorithm for computing gröbner bases without
reduction to zero (f5). In Proceedings of the 2002 International Symposium on
Symbolic and Algebraic Computation, ISSAC ’02, page 75–83, New York, NY,
USA, 2002. Association for Computing Machinery.

[8] J.-C. Faugére. A new efficient algorithm for computing gröbner bases (f4). Journal
of Pure and Applied Algebra, 139(1):61–88, 1999.

[9] Y. Ikematsu, H. Jo, and T. Yasuda. A security analysis on MQ-Sign. Cryptology
ePrint Archive, Paper 2023/581, 2023. https://eprint.iacr.org/2023/581.

[10] A. Kipnis, J. Patarin, and L. Goubin. Unbalanced Oil and Vinegar signature
schemes. pages 206–222, 1999.

19

https://eprint.iacr.org/2023/581

[11] A. Kipnis and A. Shamir. Cryptanalysis of the Oil & Vinegar signature scheme.
pages 257–266, 1998.

[12] NIST. Post-Quantum Cryptography: Additional Digital Sig-
nature Schemes. Round 2 Additional Signatures, 2024.
https://csrc.nist.gov/Projects/pqc-dig-sig/round-2-additional-signatures.

[13] J. Patarin. The oil and vinegar signature scheme. Dagstuhl Workshop on Cryp-
tography, 1997.

[14] P. Pébereau. One vector to rule them all: Key recovery from one vector in UOV
schemes. pages 92–108, 2024.

[15] A. Petzoldt. Selecting and reducing key sizes for multivariate cryptography. PhD
thesis, Darmstadt University of Technology, Germany, 2013.

[16] The KpqC project. Korean post-quantum Cryptography, 2022.
https://www.kpqc.or.kr/.

20

	Shifting our knowledge of MQ-Sign security

