
Efficient Modular Multiplication Hardware for
Number Theoretic Transform on FPGA

Tolun Tosun, Selim Kırbıyık♦, Emre Koçer, Erkay Savaş, Ersin Alaybeyoğlu
Faculty of Engineering and Natural Sciences

Sabancı University
Istanbul, Turkey

Abstract—In this paper, we present a comprehensive analysis
of various modular multiplication methods for Number Theo-
retic Transform (NTT) on FPGA. NTT is a critical and time-
intensive component of Fully Homomorphic Encryption (FHE)
applications while modular multiplication consumes a significant
portion of the design resources in an NTT implementation.
We study the existing modular reduction approaches from
the literature, and implement particular methods on FPGA.
Specifically Word-Level Montgomery (WLM) for NTT friendly
primes [1] and K2RED [2]. For improvements, we explore the
trade-offs between the number of available primes in special
forms and hardware cost of the reduction methods. We develop
a DSP multiplication-optimized version of WLM, which we call
WLM-Mixed. We also introduce a subclass of Proth primes,
referred to as Proth-l primes, characterized by a low and fixed
signed Hamming Weight. This special class of primes allows us
to design multiplication-free shift-add versions of K2RED and
naive Montgomery reduction [3], referred to as K2RED-Shift and
Montgomery-Shift. We provide in-depth evaluations of these five
reduction methods in an NTT architecture on FPGA. Our results
indicate that WLM-Mixed is highly resource-efficient, utilizing
only 3 DSP multiplications for 64-bit coefficient moduli. On the
other hand, K2RED-Shift and Montgomery-Shift offer DSP-free
alternatives, which can be beneficial in specific scenarios.

Index Terms—Modular Reduction, FPGA, Montgomery,
K2RED, DSP, FHE, NTT

I. INTRODUCTION

FHE is an advanced encryption technique that allows com-
putations on encrypted data without needing to decrypt it first.
FHE emerged in recent years by pioneering work from Gentry
[4]. With FHE, data can remain secure even when processed
by third-party data centers.

Several FHE algorithms exist in the literature such as BFV
[5], [6], CKKS [7] and TFHE [8]. Existing FHE algorithms
are lattice-based schmes which is based on polynomial ring
arithmetic. The core operation is the polynomial multiplication
in the ring of polynomials. For FHE, the degrees of these
polynomials range from 212 to 216. Given the computational
expense associated with operating on polynomials of such high
degrees, there has been substantial research in the literature
focused on accelerating FHE using FPGAs.

The state-of-art algorithm for polynomial multiplication is
the well-known NTT, which reduces the complexity from
O(n2) to O(n log n) compared to the naive school-book
approach. The core component of the NTT is the butterfly unit,

♦: Tolun Tosun and Selim Kırbıyık declares equal contribution

which primarily involves modular multiplication. There exists
a variety of modular multiplication methods in the literature,
such as Montgomery [3], Barrett [9], Plantard [10], and
Montgomery-based methods like WLM [11], K2RED. These
methods have different characteristics in terms of hardware
complexity, latency, and throughput. In this paper, we study
different modular reduction methods in the context of NTT
implementations. Our contributions are outlined below.

• We evaluate existing modular reduction algorithms from
the literature, focusing on their implementation in NTT
for FHE applications on FPGAs.

• We propose an efficient architecture for K2RED and
demonstrate its application in the context of FHE for the
first time in the literature. Our study reveals that K2RED
can be effectively utilized in FHE implementations.

• We propose a novel variant of the WLM reduction
algorithm [1], referred to as WLM-Mixed. This approach
is particularly effective for 64-bit coefficient modulus as it
significantly reduces the number of DSP multiplications.

• We propose runtime configurable shift-add versions of
the K2-RED and naive Montgomery reduction algo-
rithms. These multiplication-free reduction algorithms
are achieved by introducing a special subclass of Proth
primes, referred to as Proth-l primes.

• We investigate the range of special primes utilized in this
study, particularly in relation to the number of primes
required for RNS representation in FHE applications. We
analyze the trade-offs between the number of primes and
the hardware cost of reduction algorithms.

• We implement the proposed modular reduction methods
on Alveo U280 (XCU280) FPGA as well as the state-
of-the-art techniques from the literature. We provide a
comprehensive analysis of the performances of different
modular multiplication methods studied in this paper on
FPGA. According to characteristics of these algorithms,
we present a general analysis for which modular multipli-
cation needs to be used for different goals. An example
analysis provided in the paper is the tradeoff between
DSP and distributed logic use for a given algorithm.
(Changed the sentence for readibility)

II. BACKGROUND

A. Notation

• Lowercase italic letters, such as a, represent integers. The
logarithm function (log) is base-2 and returns the ceiling
integer. Values of individiual bits of integers are shown
using square brackets, e.g., a[i].

• Bold lowercase letters, such as a, denote vectors. Ele-
ments of vectors are accessed using sub-indices, e.g., ai.

• The cyclotomic ring of polynomials Zq[x]/(x
n + 1) is

denoted by Rq,n. Polynomials are represented by bold
lowercase italic letters, such as a(x). To simplify the
narration, indeterminate x of polynomials are sometimes
omitted. Polynomial coefficients are represented by sub-
indices, such as ai.

B. Number Theoretic Transform (NTT)

NTT is the state-of-the-art method for polynomial multipli-
cation. For two polynomials a(x), b(x) ∈ Rq,n, multiplication
using the NTT algorithm is performed as follows:

a(x) · b(x) = iNTT
(

NTT
(
a(x)

)
⊙ NTT

(
b(x)

))
(1)

where ⊙ represents element-wise multiplication of vectors
in NTT domain. For NTT to be defined over Rq,n, it is
required that q ≡ 1 (mod 2n). In this context, there exists
a primitive 2n-th root of unity in Zq , denoted as ψ, such
that ψn ≡ −1 (mod q). The forward NTT corresponds to the
evaluation â[i] = a(ψ2i+1) for every coefficient i < n. The
NTT can be efficiently implemented using butterfly circuits.
Forward NTT is usually implemented with Cooley-Tukey (CT)
[12] butterflies while the backward NTT is implemented with
Gentleman-Sande (GS) [13] butterflies. For two coefficients
ai and aj , the CT butterfly is defined as follows:

(a′i, a′j) = (ai + ajζ, ai − ajζ) (2)

where ζ is the twiddle factor, which is a power of ψ. NTT
with CT or GS butterflies have log n stages and performs n/2
butterflies at each stage, resulting in a time complexity of
O(n log n).

C. Residue Number System (RNS)

FHE applications require performing large integer arith-
metic due to security needs of the underlying computationally
expensive Learning With Errors (LWE) [14] problem. RNS
improves the efficiency of arithmetic operations in FHE,
by representing large integers as a set of relatively smaller
integers, called residues. Handling smaller integers reduces the
complexity of modular arithmetic significantly. Let a ∈ Zq̃ and
q̃ =

∏λ−1
i qi. Then, the set of residues is defined as {ai}λ−1

i

where ai = a (mod qi). By utilizing Chinese Remainder
Theorem (CRT), addition and multiplication between two
integers a, b ∈ Zq̃ can be performed in the RNS domain
element-wise. Multiplication is performed as follows:

ab = {ai}λ−1
i ⊙ {bi}λ−1

i = {aibi mod qi}λ−1
i (3)

logn log q̃ # 32-bit qi # 64-bit qi

12 109 4 2
13 218 7 4
14 438 14 7
15 881 28 14
16 1761 55 28

TABLE I: The relationship between q̃ and n for 128-bit
security [15], showing the number of 32-bit and 64-bit primes
qi required with RNS.

Naturally, the isomorphism extends to the polynomials,
Rq̃,n ≃

∏λ−1
i Rqi,n. The polynomial arithmetic involving the

NTT is performed in the RNS domain, operating in eachRqi,n

independently. In practice, qi are usually around 32 to 64 bits,
depending on the implementation choices and requirements of
FHE schemes.

D. Modular Reduction Algorithms

1) Montgomery Reduction: Montgomery reduction [3] is
a widely used method for modular reduction in crypto-
graphic applications, detailed in Algorithm 1. It requires two
β × β multiplications and eliminates the division by using
a modulus-dependent pre-computed factor, q′. The key idea
is that by adding tq to the input a in Line 2, the lower β
bits of a+ tq become 0. As a result, shifting it right by β bits
reduces the bit-length of the result to β bits. The Montgomery
reduction requires a final correction as illustrated in Line 3.
Note that the result of the Montgomery reduction includes a
constant factor of 2−β .

Algorithm 1 Naive Montgomery Reduction [3]

Input: modulus q < 2β , pre-computed factor q′ = −q−1

(mod 2β), operand a < q2

Output: b = a2−β (mod q)
1: t← q′a (mod 2β)
2: b← (a+ tq)≫ β
3: if b ≥ q then b← b− q
4: return b

2) Word-Level Montgomery Reduction for NTT Friendly
Primes: Instead of performing the reduction entirely at once,
a word-by-word reduction approach also exists. In this case,
the word size ω-bit is reduced from the input operand at
each iteration while ⌈β/ω⌉ iterations are performed. The
pre-computed factor q′ is computed as −q−1 (mod ω). This
approach is particularly advantageous for the NTT friendly
primes as the pre-computed factor q′ becomes −1. Consider
the case ω = 2 log n where q = 1 (mod ω). As a result,
the multiplication by q′ is eliminated. The word-level Mont-
gomery reduction for NTT friendly primes [1] is detailed in
Algorithm 2.

3) K2RED: K2RED [2] is a reduction algorithm originally
developed for Crystals-Kyber. K2RED requires the modulus
to be a proth prime, which are in the form of q = qh2

ω + 1

Algorithm 2 WLM; Word-Level Montgomery Reduction for
NTT-friendly primes [1]

Input: modulus q < 2β , word-size ω such that q = 1
(mod ω) and qh = q ≫ ω, operand a < q2

Output: b = a2−ωλ mod q
1: t← a
2: for i = 0→ ⌈ βω ⌉ do
3: tl ← t (mod 2ω), th ← t≫ ω
4: t′ ← −tl (mod 2ω)
5: c← t′[ω − 1] ∨ t[ω − 1]
6: t← th + qhtl + c

7: if t ≥ q then b← t− q
8: else b← t
9: return b

where ω ≥ log q/2. For Kyber, the multiplications by qh in
(Algorithm 3) Lines 2 and 4 can be efficiently performed
by fixed shifts and summations as the modulus q is known
in design time [16]. Either the input operand needs to be
pre-processed or the result needs to be post-processed to
correct the 2−2ω term. Adaption of K2RED in FHE context is
unexplored.

Algorithm 3 K2RED [2]

Input: a Proth prime modulus q < 2β where q = 1 (mod ω)
for ω ≥ β/2 and qh = q ≫ ω, operand a < q2

Output: b = a2−2ω mod q
1: al ← a (mod 2ω), ah ← a≫ ω
2: t← qhal − ah
3: tl ← t (mod 2ω), th ← t≫ ω
4: t′ ← qhtl − th
5: if t′ ≥ q then b← t′ − q
6: else if t′ < 0 then b← t′ + q
7: else b← t′

8: return b

4) Barrett Reduction: Barrett reduction [9] is another clas-
sical reduction algorithm widely used in cryptographic ap-
plications, detailed in Algorithm 4. Similar to Montgomery
reduction, it requires 2 multiplication and uses a pre-computed
factor. Note that the multiplication in Line 1 is 2β × β. Also,
the output of the Barrett reduction does not involve a constant
factor compared to Montgomery reduction.

Algorithm 4 Barrett Reduction [9]

Input: modulus q < 2β , pre-computed factor q′ = ⌊22β/q⌋,
operand a < q2

Output: b = a (mod q)
1: t← (aq′)≫ (2β)
2: b← (a− tq)
3: if b ≥ q then b← b− q
4: return b

log q log qh Proth- #primes

64 32 3l 421
64 17 3l 44

64 32 2l 16
64 17 2l 5

32 16 3l 80
32 15 3l 64

32 16 2l 7
32 15 2l 6

TABLE II: Number of proth-l primes for different bit-widths.

5) Plantard Reduction: Plantard reduction [10] is a rel-
atively newer reduction algorithm, detailed in Algorithm 4.
Similar to Barrett and Montgomery, Plantard reduction also
uses a pre-computed factor q′. However, the multiplication bq′

in Line 1 can be pre-computed, making Plantard reduction
particularly advantageous for constant multiplications, such
as those involving twiddle factors in butterfly circuits. As a
drawback, the multiplication (a)(bq′) needs to be performed
with double-word precision, a 2β × β multiplication. The
overall multiplication complexity for the case of multiplication
by a constant is (2β × β) + (β × β).

Algorithm 5 Plantard Modular Multiplication [10]

Input: modulus q < 2β , pre-computed factor q′ = q−1

mod (22β), operands a, b < q
Output: c = ab(−2−2β) mod q

1: c′ ← (abq′ (mod 22β))≫ β
2: c← ((c′ + 1)q)≫ β
3: if c = q then c = 0

4: return c

III. PROPOSED MODULAR REDUCTION ALGORITHMS

A. Proth-l Primes

In this section, we present Proth-l primes, which are a subset
of Proth primes. Recall that Proth primes are in the form of
qhω + 1 where log qh ≤ ω. Proth-l primes require that the
number of non-zero terms in the signed binary representation
of qh is small. To clarify the number of non-zero terms, we
provide the following definitions:

Definition: Proth-2l prime. A Proth prime q is also a Proth-
2l prime if q = 2β−1+(2l1 −2l2)2ω+1 where 0 ≤ l2 ≤ l1 <
β − 1.

Definition: Proth-3l prime. A Proth prime q is also a Proth-
3l prime if q = 2β−1 + (2l1 − 2l2 + 2l3)2ω + 1 where 0 ≤
l2 ≤ l1 < β − 1 and 0 ≤ l3 < β − 1.

We write Proth-l to refer both Proth-2l or Proth-3l primes.
Recall that the RNS representation requires use of multiple
primes of relatively smaller sizes (in practice, usually 32-bit or
64-bit). Therefore, it is essential to know the number of Proth-
l primes that can be found for these parameters. As shown in
Table II, the number of Proth-l primes is sufficient for FHE

applications that employ 32-bit or 64-bit RNS arithmetic. For
instance, consider the ring dimension n = 216 which requires
log q̃ ≈ 1800 for 128-bit security level. This case can be
achieved by Proth-3l primes and 32-bit RNS arithmetic, as 64
such primes are found and 64× 32 > 1800. Also, recall from
Section II-B that NTT with n = 216 requires ω ≥ 17 as a 2n-
th root of unity is needed. In the next two sections, we present
modular reduction algorithms that replace multiplications with
shift-adds using Proth-l primes.

B. Montgomery with Barrel Shifters

In this section, we present a shift-add variant of naive
Montgomery reduction algorithm (Algorithm 1) for Proth-l
primes, referred to as Montgomery-Shift.

For a β-bit Proth prime q which is of the form q = qh2
ω+1,

the Montgomery factor q′ is qh2ω − 1:

q′q = (qh2
ω + 1)(qh2

ω − 1) = q2h2
2ω − 1 = −1 (mod 2β)

(4)
Recall that 22ω ≥ 2β is satisfied for Proth primes. For a

Proth-3l prime q:

q′ = 2β−1 + (2l1 − 2l2 + 2l3)2ω − 1 (5)

As a result, the multiplications in Line 1 and Line 2 of
Algorithm 1 can be implemented with 3 barrel shifters for
Proth-3l primes. Algorithm 6 presents the revised Montgomery
reduction algorithm. Similarly, for Proth-2l primes, the mul-
tiplications can be achieved using 2 barrel. We would like to
note that the shifts with l1, l2 and l3 are run-time configurable
while the shift with β and ω is known at the design-time. The
bit-lengths of l1, l2, and l3 are log (qh − 1), which is a critical
factor for the hardware cost of the shifts in Line 2 and Line
3. For example, when 9 < log qh ≤ 17, log li = 4. Similarly,
when 17 < log qh ≤ 33, log li = 5. Recall from Section III-A
that the number of Proth-l primes increase with log qh, which
is a trade-off between the number of primes and the hardware
cost of the shifts. When log qh = 2x+1 the number of primes
is maximized for log li = x.

1) Further Discussion on Barrett and Plantard: We would
like to note that the optimization presented in this section
does not apply to the Barrett and Plantard algorithms. For
Plantard reduction, q′ is computed modulo 22β which will
avoid disappearance of the term q2h2

2ω in Equation (4). For
Barrett reduction, although the factor q′ is approximately β-
bit, the result of the division by a Proth-l modulus q does not
lead to a term with low signed Hamming weight.

C. K2RED with Barrel Shifters

In this section, we present shift-add variant of the run-time
configurable version of the K2RED algorithm (Algorithm 3)
for Proth-l primes, referred to as K2RED-Shift.

The trade-off between the number of primes and the hard-
ware cost through log qh and using l3, directly applies to
K2RED-Shift. In Algorithm 7 the terms l1, l2, l3 are run-
time configurable and terms β and log qh are design-time

Algorithm 6 Montgomery-Shift; Montgomery Reduction with
Shift-Adds
Input: a proth-l prime modulus q = 2β−1 + (2l1 − 2l2 +

2l3)2ω + 1, operand a < q2

Output: b = a2−β (mod q)
1: al ← al (mod 2β), ah ← a≫ β

2: t←
(
al ≪ (β − 1)

)
+

((
(al ≪ l1)− (al ≪ l2) + (al ≪

l3)
)
≪ ω

)
− al (mod 2β)

3: t′ ←
(
t ≪ (β − 1)

)
+

((
(t ≪ l1) − (t ≪ l2) + (t ≪

l3)
)
≪ ω

)
+ t

4: t′h ← t′ ≫ β, c← t′[β − 1] ∨ al[β − 1]
5: b′ ← (ah + t′h + c)
6: if b′ ≥ q then b← b′ − q
7: else b← b′

8: return b

Algorithm 7 K2RED-Shift; K2RED with Shift-Adds

Input: proth-l prime modulus q = 2β−1+(2l1−2l2+2l3)2ω+
1 where ω ≥ β/2, operand a ≤ (q − 1)2

Output: b = a2−2ω (mod q)
1: al ← a (mod 2ω), ah ← a≫ ω
2: t← ((al ≪ β−1−ω)+(al ≪ l1)+(al ≪ l2))− ((al ≪
l2) + ah)

3: tl ← t (mod 2ω), th ← t≫ ω
4: t′ ← ((tl ≪ β− 1−ω)+ (tl ≪ l1)+ (tl ≪ l2))− ((tl ≪
l2) + th)

5: if t′ ≥ q then b← t′ − q
6: else if t′ < 0 then b← t′ + q
7: else b← t′

8: return b

configurable, as in Montgomery-Shift. Recall that this flexi-
bility allows for efficient reduction using barrel shifters with
a specified range of primes which we can utilize in NTT. Al-
though Algorithm 7 explicitly uses Proth-3l primes, it trivially
applies to Proth-3l primes by removing l3 terms. Using Proth-
3l provides additional primes at the cost of increased area.
Algorithm 7 requires 6 barrel shifters for Proth-3l primes and
4 barrel shifters for Proth-2l primes.

D. Mixed-Radix Word-level Montgomery Reduction

In this section, we present an improved word-level Mont-
gomery reduction algorithm that significantly reduces the num-
ber of DSP multiplications compared to Algorithm 2. This is
achieved by using a mixed-radix approach with two reduction
iterations and the regular Proth primes. The term mixed-radix
indicates that the iterations are performed with varying word
sizes. Algorithm 8 details the approach, referred to as WLM-
Mixed. The word sizes for each iteration, ω0 and ω1, are
determined based on the DSP operand sizes and log qh. Notice
that the assignments in Line 1 aims to fit the multiplication
in the second iteration into a single DSP by selecting the
appropriate word size ω1. Then, ω0 is set accordingly. Lines

3-8 perform the reduction iterations as in Algorithm 2. The
shift by δi is needed to align the multiplication output with
the one in Line 6 of Algorithm 2. Note that for Algorithm 2,
ω + log qh = β. Similarly, for Algorithm 8, the relationship
ωi + log qh + δi = ω + log qh = β holds.

The requirement for q to be a Proth prime ensures that ω0 ≤
ω (see Line 1 of Algorithm 8). Otherwise, the first iteration
would require explicit computation of the Montgomery factor
q′ and therefore the existing definition would be incorrect.

Algorithm 8 WLM-Mixed; DSP-Optimized Mixed-Radix
Word-Level Montgomery Reduction with two iterations

Input: a Proth prime modulus q < 2β ; DSP operand bit-
lengths ΓA, ΓB such that ΓA ≥ ΓB ; log qh such that for
ω = β − log qh, q = 1 (mod ω), log qh ≤ ΓB , ω ≥ β/2
and qh = q ≫ ω; operand a < q2

Output: b = a2−β mod q
1: ω1 ← min(ΓA, ω), ω0 ← β − ω1

2: t← a
3: for i = 0→ 2 do
4: δi ← ω − ωi

5: th ← t≫ ωi, tl ← t (mod 2ωi)
6: t′ ← −tl (mod 2ωi)
7: c← t′[ωi − 1] ∨ t[ωi − 1]
8: t← th +

(
(qhtl)≪ δi

)
+ c

9: if t ≥ q then b← t− q
10: else b← t
11: return b

As an example, consider 26×17-bit DSP multipliers (ΓA =
26, ΓB = 17), and a 64-bit Proth prime q where log qh = 17.
Then, the second reduction iteration is performed with ω1 =
26 and the second iteration is performed with ω1 = 38. Notice
that both are feasible since log q − log qh = 47 ≥ 26, 38. The
first iteration involves a 17× 38-bit multiplication, which can
be executed using 2 DSPs, while the second iteration involves
a 17 × 26-bit multiplication, utilizing 1 DSP. Consequently,
the total number of DSP multiplications is 3. the number of
DSP multiplications is significantly greater for the classical
word-level Montgomery reduction (Algorithm 2) using general
NTT-friendly primes. Consider ther case n = 216 therefore
ω = 17. Then, 4 iterations are needed where a 47 × 17-bit
multiplication is performed in each iteration, resulting in 8
DSP multiplications in total. For lower ring dimensions, the
difference in the number of DSP multiplications becomes even
more significant.

Naturally, the WLM-mixed approach limits the range of
primes. Specifically, the non-zero bits in the prime modulus q
are constrained by the DSP operand sizes. However, there are
still enough Proth primes that satisfy these constraints for FHE
applications. For example, when log q = 64 and log qh = 17,
there are 2986 such primes available, which is far more than
what is needed for FHE applications.

IV. IMPLEMENTATION

In this section, we provide implementation details for the
proposed algorithms, WLM-Mixed (Algorithm 8), K2RED-
Shift (Algorithm 7) and Montgomery-Shift (Algorithm 6). We
also implement WLM (Algorithm 2), WLM-Mixed (Algo-
rithm 8), K2RED (Algorithm 3) from the literature and provide
the architectural details in this section. We do not implement
naive Montgomery reduction, Barrett reduction and Plantard
reduction as these algorithm are theoretically more costly than
the implemented algorithms, as detailed in Section V-A.

A. Architecture

Evaluated algorithms are implemented with Verilog HDL.
The implementations are highly parametric such that the
parameters log q, log qh, or enabling l3 for shift-add designs,
can be provided in design-time to generate the corresponding
hardware.

In Algorithm 2, Algorithm 3, and Algorithm 8, the multipli-
cations are performed using a multiply-accumulate approach.
Initially, the operands are partitioned according to the DSP
word sizes to generate partial products. These partial products
are then accumulated along with the corresponding terms
specific to each algorithm. For example, in WLM-Mixed
(Algorithm 8), the partial products from qhtl are summed
together with th and the carry c. Architectures implemented
implemented for WLM-Mixed and K2Red for log q = 64 are
detailed in Figure 1 and Figure 2, respectively. The architecture
implemented for WLM implemented for WLM follows [1].

The implementations are pipelined. Note that the pipeline
steps are not illustrated in Figure 1 and Figure 2. Specifically,
we place Flip-Flops (FFs) to the partial products from the
computation of qhtl in Line 6, the output of summation t in
Line 6, and b in Lines 7-8 of Algorithm 2 for WLM. As a
result, the latency of WLM is 2⌈β/ω⌉+ 1 clock cycles (ccs).
We use the same pipeline strategy for WLM-Mixed and the
latency is equal to 5 ccs. In a similar manner, for K2RED,
we put FFs to the partial products from qhal and the output
of summation t in Line 2; the partial products from qhtl and
the output of summation t′ in Line 4; and b in Lines 6-8 of
Algorithm 3, resulting in 5 ccs latency. For K2RED-Shift and
Montgomery-Shift, we implement two pipeline configurations.
ρA, ρB . For ρA, the barrel shifters and additions are performed
in different ccs while these are performed in single cc for ρB .
This demonstrates thetrates the trade-off between speed and
area. For Montgomery-Shift and ρA, we put FFs for t in Line
2; t′ in Line 3; b′ in Line 4; and b in Lines 6-7 of Algorithm 6,
resulting in 4 ccs latency. Latency of Montgomery-Shift is
increased to 6 cc by using ρA. Similarly for K2RED-Shift
and ρB we put FFs for t in Line 2; t′ in Line 4; b′ in Line 4;
and b in Lines 5-7 of Algorithm 7, resulting in 3 ccs latency.
Using ρA increases the latency of K2RED-Shift to 5.

B. Parameter Selection

In this section, we explain the parameter selection for
each algorithm. Since WLM supports general NTT-friendly
primes, we implement it from ω ranging from 13 to 17, which

Fig. 1: WLM-Mixed Architecture for log q = 64 and log qh =
17. DSP operand sizes are ΓA = 26, ΓB = 17.

corresponds to ring sizes n = 212 to n = 216, respectively.
Recall that finding a primitive 2n-th root of unity requires
2 log n ≥ ω. For WLM-Mixed, we set log qh = 17 (ω = 47) as
ΓB = 17. As a result, the reduction requires only 3 DSPs while
a sufficient number of primes are available as discussed in
Section III-D. For 32-bit case, we set log qh = 15 to cover ring
dimensions up to n = 216. The WLM-Mixed implementation
also supports log qh = 16, but we skip it as the ATP results
would be theoretically very similar to the previous case, with
no effective difference in the number of primes.

For K2RED, we implement a classical configuration where
log qh = 32 for 64-bit as well as a DSP-optimized parameter
selection where log qh = 38. With the latter, the number of
DSPs is reduces to 6 from 8. Note that, log q − log qh =
26 ≤ ΓA and ⌈64/ΓB⌉ = 3, leading to 3 DSP multiplications
for Line 2 and Line 4 of Algorithm 3. For the 32-bit case,
we include log qh = 15 which corresponds to n = 216 and
log qh = 16 to cover log n ≤ 16. Recall that log qh must be
satisfy log qh ≥ β/2 with respect to the definition of Proth
primes.

For the K2RED-Shift and Montgomery-Shift, we implement
log qh = 17 and log qh = 32 for 64-bit. Recall from Section III
that the cost of shift operations as well as the number of
available primes for both algorithms directly depends on
log qh. For the 32-bit case, same with the K2RED, we include
log qh = 15, which corresponds to n = 216, and log qh = 16

Fig. 2: K2RED Architecture for log q = 64 and log qh = 26.
DSP operand sizes are ΓA = 26, ΓB = 17. Correction step in
Lines 5-7 of Algorithm 3 is skipped.

to cover log n ≤ 16. Our shift-add based reduction implemen-
tations support both Proth-2l and Proth-3l primes as it also
leads to a trade-off between the available primes and resource
consumption. Recall from Table I that the number of available
primes is a crucial factor for the RNS representation.

V. EVALUATION

In this section, we evaluate the resource efficiency of
the proposed reduction algorithms in addition to the stud-
ied ones from the literature. First, we provide a theoretical
analysis of the DSP usage by naive Montgomery (Algo-
rithm 1), Barrett (Algorithm 4) and Plantard (Algorithm 4).
Then, we provide practical results for the implemented reduc-
tion algorithms, namely WLM (Algorithm 2), WLM-Mixed
(Algorithm 8), K2RED (Algorithm 3), K2RED-Shift (Algo-
rithm 7) and Montgomery-Shift (Algorithm 6). We use the
Area-Time-Product (ATP) as our assessment metric, which
is widely used in the literature [17]. ATP is calculated as

Average Latency (µs)× (LUT + FF/2 + 100×DSP + 300×
BRAM). We target the AMD-Xilinx Alveo U2801 (XCU280)
FPGA for our evaluations, using Vivado 2023.22 for synthesis
and implementation. The XCU280 FPGA features 1303680
Look-Up Table (LUT)s, 2607360 FFs, 9024 DSPs3, and 2016
BRAM36E1s. The DSP48E2 unit supports 26 × 17 unsigned
multiplication with accumulation (ΓA = 26, ΓB = 17).

A. Theoretical Analysis of Montgomery, Barrett and Plantard

Figure 3 shows that the required number of DSP mul-
tiplications are significantly smaller for WLM compared to
naive Montgomery, Barrett and Plantard. Recall that it elim-
inates the multiplication by a pre-computed factor such as q′

which is the main reason behind its superiority. The number
of DSP multiplications are counted by assuming standard
tiling. In particular, to perform a β × β-bit multiplication,
⌈β/ΓA⌉⌈β/ΓB⌉ DSP multiplications are needed. Moreover,
for multiplications involving q, only qh is considered as an
operand as the lower bits of NTT friendly primes is fixed.
For instance, the multiplication tq in Line 2 of Algorithm 1
is considered as a β × log qh-bit multiplication. Also note
that we report the DSP usage for a modular multiplication,
involving the multiplication part as well. Recall that the
Plantard reduction is particularly effective for multiplication
by a constant situation, such as in a butterfly circuit of NTT.
Therefore, to make a fair comparison, we include the cost of
integer multiplication. For instance, for Montgomery, the total
cost of modular multiplications is the summation of β×β for
the integer multiplication part, and β× β+ β× log qh for the
reduction part which is based on Algorithm 1. In this case, the
integer multiplication requires 12 DSP multiplications while
the reduction part requires 12+8 DSP multiplications, leading
to 28 DSPs in total. The DSP usage is counted in the same
manner for the compared algorithms. Note that we did not
include K2RED and WLM-Mixed in the theoretical analysis
as provide a practical anaylsis in the next section. This section
aims to provide a rationale for comparing WLM-Mixed with
WLM.

B. Standalone Implementation Evaluations

Next, we evaluate the resource-efficiency of implemented
reduction algorithms in a standalone manner. Table III presents
the ATP results for both 32-bit and 64-bit. Observe that the
proposed WLM-Mixed leads to the lowest ATP scores for the
64-bit class, as it is designed for minimizing the number of
DSP multiplications. It achieves 2.45× and 1.39× lower ATP
compared WLM and K2-RED. On the other hand for 32-bit
class, K2-RED and WLM-Mixed leads to comparable results
while K2-RED slightly performs better. The performance of
WLM is also align with these two algorithms for log qh = 15
and log qh = 16. However with log qh ≥ 17, the number
of iterations for WLM increases to 3 (see Algorithm 2),
increasing its ATP.

1https://www.xilinx.com/products/boards-and-kits/alveo/u280.html
2https://www.xilinx.com/products/design-tools/vivado.html
3https://docs.amd.com/r/en-US/ug958-vivado-sysgen-ref/DSP48E2

12 14 16

5

10

logn

#
D

SP

WLM

Montgomery

Plantard

Barrett

(a) log q = 32

12 14 16

10

20

30

40

logn

#
D

SP

WLM

Montgomery

Plantard

Barrett

(b) log q = 64

Fig. 3: DSP multiplication counts compared for Montgomery
(Algorithm 1), Barrett (Algorithm 4), Plantard (Algorithm 4),
WLM (Algorithm 2).

It is worth noting that while the shift-add methods,
Montgomery-Shift and K2RED-Shift, result in higher ATPs,
they can be advantageous in scenarios where the system has
a limited number of available DSPs and the implementer
prefers to trade DSPs for LUTs. The ATP performances of
Montgomery-Shift and K2RED-Shift are comparable.

Table III also presents the maximum supported ring dimen-
sion n for each algorithm and parameter, which is particularly
important for Montgomery-Shift and K2RED using Proth-
l primes. It is computed based on the number of available
primes considering the RNS representation (see Table I) and
the availability of the 2n-th root of unity (see Section II-B).

VI. CONCLUSION

In this paper, we studied the resource efficiency of various
modular reduction algorithms, targeting NTT implementations
on FPGA. Particularly, we explored the optimization opportu-
nities through the trade-offs between the number of primes
available in special forms and the hardware costs. Our pro-
posed WLM-Mixed outperformed WLM [1] and K2RED [2]
significantly in 64-bit modulus, as it only requires 3 DSP
multiplications by design. Therefore, our study reveals that

https://www.xilinx.com/products/boards-and-kits/alveo/u280.html
https://www.xilinx.com/products/design-tools/vivado.html
https://docs.amd.com/r/en-US/ug958-vivado-sysgen-ref/DSP48E2

log q log qh #
primes

max.
logn

LUT FF DSP Freq.
(MHz)

ATP

WLM (Algorithm 2)

64 47 * 16 487 1177 8 416 4.5
64 48 * 15 518 1195 8 416 4.59
64 49 * 14 566 1450 10 434 5.26
64 50 * 13 579 1478 10 434 5.33
64 51 * 12 583 1506 10 434 5.37
32 47 * 16 136 226 2 526 0.85
32 48 * 15 130 210 2 526 0.82
32 49 * 14 152 315 3 526 1.15
32 50 * 13 156 320 3 526 1.17
32 51 * 12 160 325 3 526 1.18

WLM-Mixed (Algorithm 8)

64 17 ✈ 16 315 522 3 476 1.83
32 15 * 16 131 211 2 526 0.82

K2RED (Algorithm 3)

64 26 ✈ ≥ 16 411 424 6 476 2.56
64 32 ✈ ≥ 16 432 483 8 476 3.09
32 15 * 16 151 201 2 588 0.76
32 16 * 15 154 210 2 588 0.78

pipe.
conf.

l3 en.

K2RED-Shift (Algorithm 7)

ρA 64 17 ✓ 44 16 1259 979 0 476 3.67
ρB 64 17 ✓ 44 16 1295 409 0 370 4.04
ρB 64 17 ✗ 5 13 1079 397 0 454 2.81
ρA 64 32 ✓ 421 ≥ 16 1287 1071 0 500 3.64
ρB 64 32 ✓ 421 ≥ 16 1340 465 0 344 4.56
ρA 64 32 ✗ 16 15 945 953 0 588 2.41
ρB 64 32 ✗ 16 15 1048 449 0 416 3.05
ρA 32 15 ✓ 64 16 611 537 0 588 1.49
ρB 32 15 ✓ 64 16 617 245 0 434 1.7
ρB 32 15 ✗ 6 13 510 232 0 555 1.12
ρA 32 16 ✓ 64 16 595 537 0 555 1.55
ρB 32 16 ✓ 80 16 598 248 0 416 1.73
ρA 32 16 ✗ 7 13 462 466 0 714 0.97
ρB 32 16 ✗ 7 13 488 235 0 526 1.15

Montgomery-Shift (Algorithm 6)

ρA 64 47 ✓ 44 16 1114 954 0 526 3.02
ρB 64 47 ✓ 44 16 1002 591 0 416 3.11
ρB 64 47 ✗ 5 13 671 583 0 416 2.31
ρA 64 32 ✓ 421 ≥ 16 1545 1101 0 500 4.19
ρB 64 32 ✓ 421 ≥ 16 1391 642 0 416 4.1
ρB 64 32 ✗ 16 15 945 632 0 416 3.02
ρA 32 17 ✓ 64 16 665 558 0 625 1.49
ρB 32 17 ✓ 64 16 603 329 0 434 1.76
ρB 32 17 ✗ 6 13 411 321 0 476 1.2
ρA 32 16 ✓ 80 16 667 564 0 588 1.61
ρB 32 16 ✓ 80 16 639 332 0 454 1.77
ρB 32 16 ✗ 7 13 420 324 0 476 1.22

✈: More than 1K. *: All NTT primes w.r.t. max. logn.

TABLE III: Implementation results for different reduction
Algorithms.

significant improvements are possible by reducing the number
of free bits in the modulus while leaving sufficient number

of free bits to meet the requirements of RNS representation.
On the other hand, we presented multiplication-free variants
of the Naive Montgomery algorithm and K2RED, namely
Montgomery-Shift and K2RED-Shift. To construct modular
reduction through shifts and adds, we presented a special
subclass of Proth primes, which we referred to as Proth-l
primes. These algorithms offer opportunities for further trading
DSPs with programmable logic considering target platforms
with low number of multiplication resources. Although we
concentrated on FPGA implementations, our methodology
applies to ASICs as well. We leave the in-depth analysis of
ASIC implementations of our proposed algorithms for future
work.

REFERENCES

[1] A. C. Mert, E. Öztürk, and E. Savaş, “Design and implementation
of encryption/decryption architectures for bfv homomorphic encryption
scheme,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 28, no. 2, pp. 353–362, 2019.

[2] M. Bisheh-Niasar, R. Azarderakhsh, and M. Mozaffari-Kermani, “High-
speed ntt-based polynomial multiplication accelerator for post-quantum
cryptography,” in 2021 IEEE 28th symposium on computer arithmetic
(ARITH), pp. 94–101, IEEE, 2021.

[3] P. L. Montgomery, “Modular multiplication without trial division,”
Mathematics of computation, vol. 44, no. 170, pp. 519–521, 1985.

[4] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in
Proceedings of the forty-first annual ACM symposium on Theory of
computing, pp. 169–178, 2009.

[5] Z. Brakerski, “Fully homomorphic encryption without modulus switch-
ing from classical gapsvp,” in Annual cryptology conference, pp. 868–
886, Springer, 2012.

[6] J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic
encryption,” Cryptology ePrint Archive, 2012.

[7] M. K. J. H. Cheon, A. Kim and Y. Song., “Homomorphic encryption for
arithmetic of approximate numbers,” in Asiacrypt 2017, pp. 409–437,
Springer, 2017.

[8] I. Chilotti, N. Gama, M. Georgieva, and M. Izabachène, “TFHE: Fast
fully homomorphic encryption over the torus,” in Journal of Cryptology,
Springer, 2019.

[9] P. Barrett, “Implementing the rivest shamir and adleman public key en-
cryption algorithm on a standard digital signal processor,” in Conference
on the Theory and Application of Cryptographic Techniques, pp. 311–
323, Springer, 1986.

[10] T. Plantard, “Efficient word size modular arithmetic,” IEEE Transactions
on Emerging Topics in Computing, vol. 9, no. 3, pp. 1506–1518, 2021.

[11] A. C. Mert, E. Karabulut, E. Öztürk, E. Savaş, M. Becchi, and A. Aysu,
“A flexible and scalable ntt hardware: Applications from homomorphi-
cally encrypted deep learning to post-quantum cryptography,” in 2020
Design, Automation & Test in Europe Conference & Exhibition (DATE),
pp. 346–351, IEEE, 2020.

[12] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation
of complex fourier series,” Mathematics of computation, vol. 19, no. 90,
pp. 297–301, 1965.

[13] W. M. Gentleman and G. Sande, “Fast fourier transforms: for fun and
profit,” in Proceedings of the November 7-10, 1966, fall joint computer
conference, pp. 563–578, 1966.

[14] O. Regev, “On lattices, learning with errors, random linear codes, and
cryptography,” Journal of the ACM (JACM), vol. 56, no. 6, pp. 1–40,
2009.

[15] M. R. Albrecht, R. Player, and S. Scott, “On the concrete hardness of
learning with errors,” Journal of Mathematical Cryptology, vol. 9, no. 3,
pp. 169–203, 2015.

[16] D. N. Nguyen, H. L. Pham, V. T. D. Le, D. K. Lam, T. H. Tran,
Y. Nakashima, et al., “Hyperntt: A fast and accurate ntt/intt accelerator
with multi-level pipelining and an improved k2-red module,” in 2024
International Technical Conference on Circuits/Systems, Computers, and
Communications (ITC-CSCC), pp. 1–6, IEEE, 2024.

[17] Z. Ye, R. C. Cheung, and K. Huang, “Pipentt: A pipelined number
theoretic transform architecture,” IEEE Transactions on Circuits and
Systems II: Express Briefs, vol. 69, no. 10, pp. 4068–4072, 2022.

	Introduction
	Background
	Notation
	Number Theoretic Transform (NTT)
	Residue Number System (RNS)
	Modular Reduction Algorithms
	Montgomery Reduction
	Word-Level Montgomery Reduction for NTT Friendly Primes
	K2RED
	Barrett Reduction
	Plantard Reduction

	Proposed Modular Reduction Algorithms
	Proth-l Primes
	Montgomery with Barrel Shifters
	Further Discussion on Barrett and Plantard

	K2RED with Barrel Shifters
	Mixed-Radix Word-level Montgomery Reduction

	Implementation
	Architecture
	Parameter Selection

	Evaluation
	Theoretical Analysis of Montgomery, Barrett and Plantard
	Standalone Implementation Evaluations

	Conclusion
	References

