
ZeroAuction: Zero-Deposit Sealed-bid Auction
via Delayed Execution

Haoqian Zhang1, Michelle Yeo2, Vero Estrada-Galinanes1, and Bryan Ford1

1 École Polytechnique Fédérale de Lausanne
{haoqian.zhang,vero.estrada,bryan.ford}@epfl.ch

2 National University of Singapore
mxyeo@nus.edu.sg

Abstract. Auctions, a long-standing method of trading goods and ser-
vices, are a promising use case for decentralized finance. However, due
to the inherent transparency property of blockchains, current sealed-bid
auction implementations on smart contracts requires a bidder to send at
least two transactions to the underlying blockchain: a bidder must first
commit their bid in the first transaction during the bidding period and re-
veal their bid in the second transaction once the revealing period starts.
In addition, the smart contract often requires a deposit to incentivize
bidders to reveal their bids, rendering unnecessary financial burdens and
risks to bidders. We address these drawbacks by enforcing delayed exe-
cution in the blockchain execution layer to all transactions. In short, the
blockchain only accepts encrypted transactions, and when the blockchain
has finalized an encrypted transaction, the consensus group decrypts and
executes it. This architecture enables ZeroAuction, a sealed-bid auction
smart contract with zero deposit requirement. ZeroAuction relies on the
blockchain enhanced with delayed execution to hide and bind the bids
within the encrypted transactions and, after a delay period, reveals them
automatically by decrypting and executing the transactions. Because a
bidder only needs to interact with the blockchain once instead of two
times to participate in the auction, ZeroAuction significantly reduces
the latency overhead along with eliminating the deposit requirement.

Keywords: Commit-and-Reveal · Auction · Blockchain · Decentralized
Finance.

1 Introduction

The auction, an ancient way of negotiating the exchange of goods and services,
enters the world of blockchains and decentralized finance powered by general
smart contracts [27]. While the blockchain provides an ideal platform for open
auctions in which every bidder can observe others’ bids during the bidding pe-
riod, it is notably challenging to implement sealed-bid auctions due to the in-
herent transparent property of blockchains.

A sealed-bid auction should hide the bids during the bidding phase, bind
them so they can not be modified, and reveal the bids during the revealing

2 H. Zhang et al.

phase. To implement a sealed-bids auction under a transparent blockchain, auc-
tioneers often rely on a commit-and-reveal approach in which a bidder first sends
a commit transaction which contains the hash of their bid during the bidding
phase, and the bidder propagates the reveal transaction to disclose their bid once
the bidding phase is over. Although this simple approach hides the bids, bidders
can choose not to pay if they win. In addition, it allows bidders to only reveal
the bids that financially benefit them, e.g., by committing multiple bids, but
only revealing the smallest one that can win the auction. Altogether, these types
of misbehaviour negatively impact the fairness of the protocol. To financially
discourage these actions, a sealed-bid auction smart contract often requires a
deposit from bidders during the bidding phase and returns the deposit when a
bidder honestly finishes the auction. Section 2 provides an example of such a
smart contract simplified from previous work [5,16,17].

However, this approach still has several drawbacks: (a) a bidder needs to
interact with the blockchain for at least two rounds causing excessive latency
overhead; (b) the smart contract needs to store the commitment of each bid
leading to unnecessary storage overhead; (c) the smart contract requires deposits
to incentivize the bidders to reveal their bids even for a bidder who only wants to
bid a little, rendering avoidable financial burdens; (d) as the smart contract keeps
the deposit, there are security risks of the deposits, such as the DAO attack [18];
(e) it is challenging for the auctioneer to decide the required deposit [23]; (f)
bidders can choose never to reveal their bids; (g) due to a network congestion
event [15] or deliberate denial-of-service (DoS) attack [10], the blockchain might
fail to include the revealed transaction; (h) the number of auctions in which a
bidder can participate is limited by the deposit requirement.

To overcome these drawbacks, we adopt delayed execution [29], a feature
embedded in the blockchain architecture. When executing transactions under
delayed execution, consensus nodes must execute all transactions with a global
delay time parameter, and consensus nodes should not observe the content of
any transaction during the delay time period to ensure the effectiveness of the
delay execution; thus, the blockchain has to accept the encrypted transactions
and the decryption and execution of the transaction can only happen after the
delay. A blockchain enhanced with delayed execution enables the optimization
of the commit-and-reveal scheme because the underlying blockchain, rather than
users, handles the bid reveals.

In reality, a recipient should only accept a transaction once the blockchain
finalizes the transaction after T block confirmations to mitigate double-spending
attacks. For example, Ethereum requires 64 block confirmations (2 epochs) for
a transaction to be finalized [11]. Our delayed execution adopts the same delay
time parameter as the required T block confirmations for all transactions so that
the blockchain executes and finalizes a transaction at the same time after a T
block delay, and the delayed execution does not increase the transaction latency.

We demonstrate ZeroAuction, a sealed-bid auction smart contract with zero
deposit requirement under our delayed execution. In ZeroAuction, a bidder only
needs to send one transaction in which the bidder pays for their bid if it is the

ZeroAuction: Zero-Deposit Sealed-bid Auction via Delayed Execution 3

current highest bid. The blockchain under delayed execution automatically hides
transactions; thus, bids are private during the bidding phase. When entering the
revealing phase, the blockchain executes the transactions one by one, charging
the current highest bid while returning other funds. Because a bidder only needs
to send one transaction instead of two to participate in the auction, ZeroAuction
reduces the latency for bidders by half and eliminates the deposit requirement.
We present ZeroAuction in detail in Section 3.

We stress that ZeroAuction mitigates the drawbacks mentioned above: (a)
a bidder only needs to interact with the blockchain once instead of two, signifi-
cantly reducing the latency overhead; (b) ZeroAuction does not need to store the
bids commitment from bidders in the smart contract; (c)-(e) ZeroAuction elim-
inates the deposit requirement; (f)-(g) the blockchain guarantees the revealing
of all bids regardless of the bidders’ behaviors and network environment; (h) a
bidder can use the same funds to bid in multiple auctions, as there is no deposit
requirement. To our knowledge, our solution is the first blockchain-based sealed-
bid auction solution without a deposit requirement. However, we note that these
advantages also come with an associated cost: auctioneers can not set up their
preferred bidding period for more than the fixed global delayed time.

Previously, F3B utilized the idea of delayed execution to mitigate front-
running attacks with a negligible latency overhead [29]. Tuxedo uses delayed
execution to scale computations on blockchains [9]. This paper demonstrates
the potential of delayed execution from the point of optimizing sealed-bid auc-
tion smart contracts.

Finally, we discuss a number of promising approaches for implementing de-
layed execution. We conclude that the threshold encryption method achieves
the best trade-off within the existing toolbox in terms of achieving the proper-
ties of delayed execution, providing compatibility with existing blockchains, and
inducing a reasonable latency overhead [29,19].

2 Preliminaries

In this section, we briefly introduce the properties of a sealed-bid auction, the
commit-and-reveal scheme with a sealed-bid auction example and the delayed
execution abstraction.

2.1 Sealed-bid Auction Properties

We require a sealed-bid auction smart contract to satisfy at least the following
properties (formal definitions in Appendix A):

– Hiding: No bidder knows the bid of any other bidder during the bidding
period.

– Binding: A bidder can not change their bid once the blockchain finalizes
the bidding transaction.

– Revealing: All the sealed bids will be revealed during the revealing period.

4 H. Zhang et al.

Algorithm 1: Commit-and-reveal auction smart contract

1 Init Upon creating the auction smart contract:
2 Set d as required deposit for the auction
3 highest← 0, winner ← ∅, hash← []

4
5 Bid Upon receiving i’s commitment ci first time in bidding period :
6 Assert(i transfers d)
7 hash[i]← ci
8
9 Reveal Upon receiving i’s bid bi and salt ri first time in revealing period :

10 Assert(Hash(bi, ri) = hash[i])
11 Assert(bi ≤ d)
12 if bi > highest then
13 Distribute highest to winner when winner ̸= ∅;
14 Distribute d− bi to i
15 highest← bi
16 winner ← i

17 else
18 Distribute d to i;
19 end

– Non-malleability: No bidder can alter any encrypted bid from others into
another form such that the plaintext of the altered encrypted bid is related
to the original bid.

The non-malleability property ensures that simply observing one bidder’s
encrypted bid does not give another bidder an unfair advantage, for example, to
prevent a malicious bidder from altering an existing bid’s ciphertext to bid 1 coin
more than the value in the encrypted bid. Specifically, we consider the notion of
NM-CPA security commonly used in the context of sealed-bid auctions [7,20,6].
Intuitively, NM-CPA security states that the plaintext decryptions of encrypted
bids produced by an adversarial bidder must be indistinguishable.

To illustrate the benefit of delayed execution, we did not consider the poste-
rior privacy property, which hides the losing bids from the public. We note that
additional cryptographic tools like Zero-Knowledge Proofs (ZKP) or Multi-Party
Computation (MPC) are needed for sealed-bid auctions ensuring the posterior
privacy property [13,12,3].

2.2 Commit-and-Reveal Smart Contract for Sealed-bid Auction

Algorithm 1 illustrates implementing a commit-and-reveal smart contract simpli-
fied from real-world examples on the blockchain for a sealed-bid auction [5,16,17].
The smart contract contains two phases: (a) the bidding phase (Bid function),
where each bidder submits their hidden bid commitment. This implements the
commit stage of the commit-and-reveal scheme. (b) the revealing phase (Reveal

ZeroAuction: Zero-Deposit Sealed-bid Auction via Delayed Execution 5

function), where every bidder reveals his bid and the contract determines the
winning bidder. This implements the reveal stage of the commit-and-reveal
scheme.

In the bidding phase, bidders submit their hidden bid commitment ci, and
to ensure that bidders have enough funds to pay for what they bid, each bid-
der needs to transfer a deposit d. For simplicity, the contract requires any bid
must be equal or smaller than the required deposit3. The array hash stores the
commitments for all bidders.

In the revealing phase, each bidder submits their bid bi and random salt ri.
The smart contract first checks that the hash of the bid and salt is identical to
the commitment ci sent in the bidding phase. If the hash is not equal to the hash
of ci, the function terminates with the bidder losing their deposit. Otherwise,
if bi is the current highest bid, the contract keeps bi of the bidder’s deposit
and returns the remainder d − bi portion of the deposit to the ith bidder and
the fund of the previous winner, if any. If bi is not the current highest bid, the
contract returns all his deposit d. When all bidders reveal their bids, the contract
determines the winner, which is the bidder who submitted the highest bid and
can pay for their bid.

This commit-and-reveal auction smart contract can satisfy the hiding, bind-
ing, and non-malleability properties, but it only partially satisfies the revealing
property. The hiding and binding property directly follows from the underlying
cryptographic commitment scheme. The non-malleability property may or may
not be satisfied depending on the underlying commitment scheme (i.e., whether
the commitments are non-malleable [8]). Finally, the revealing property is en-
forced by fact that the deposit held by the smart contract is larger than the bids
as well as the check done by the smart contract (Line 10) to ensure that the
smart contract will slash the deposit if bidders do not reveal their bids or re-
veal an incorrect bid. Therefore, rational bidders will choose to reveal their bids
during the reveal phase. Nevertheless, this revealing guarantee does not hold for
malicious bidders.

We note, however, that this contract has several notable drawbacks:

(a) Each bidder has to interact with the blockchain for two rounds, increasing
the latency overhead.

(b) The contract needs to store the bid commitment for each bidder, which
increases the storage overhead.

(c) The deposit acts as an additional financial threshold for participating in the
auction. Even a bidder who only wants to bid a small amount of funds could
have to pay a high deposit to even participate in the auction.

(d) As the smart contract keeps the deposit, the deposits are exposed to security
risks, such as the DAO attack [18].

(e) The auctioneer must set up the required deposit as an upper bound for all
bids. Determining a minimal upper bound is extremely difficult when initi-

3 By allowing a bidder to bid more than his deposit, they may choose not to pay for
their bid at a cost of losing his deposit.

6 H. Zhang et al.

: Executing

Tx

Tx

: Waiting

T block confirmation

T block delay

Commit Finalization

Tx
Tx

: Without Delayed Execution
: With Delayed Execution

Fig. 1. In a blockchain without delayed execution, the consensus nodes execute the blue
transaction upon its commitment, but recipients must wait for T block confirmation
until its finalization. In the blockchain with delayed execution, the consensus nodes first
wait for a T block delay before decrypting and executing the green transaction when
the blockchain finalizes the transaction. Both transactions have the same finalization
time; thus, the delayed execution does not increase transaction latency.

ating the contract as it relies on external knowledge of bidders’ preferences
and solvency status[23].

(f) Users can choose never to reveal their bids. In particular, unless we impose
stronger assumptions on the adversarial model of the users in the system
(e.g., deposit slashing with only rational users, which would make it irrational
to withhold revealing of bids), there is no guarantee that Algorithm 1 can
implement a commit-and-reveal smart contract with revealing property.

(g) The revealed bid might be missed due to network congestion [15] or a delib-
erate denial-of-service (DoS) attack [10], violating the revealing property.

(h) The deposit requirement limits the number of auctions in which a bidder
can participate, as the coins used in the deposit for one auction cannot be
used as a deposit for another auction.

2.3 Delayed Execution Abstraction

A delayed execution is an abstraction on the execution layer to ensure block-
chains execute transactions with a delay [29,9]. We require that consensus nodes
must execute all transactions with a fixed delay time. Furthermore, consensus
nodes should not observe the content of any transaction during the delayed
period to ensure the effectiveness of the delay execution. Hence, the blockchain
has to accept encrypted transactions, and the decryption and execution of the
transactions can only happen after the delay.

We formally define an abstraction of a delayed execution protocol on an
underlying blockchain as follows:

Definition 1 (Delayed Execution Abstraction). A delayed execution ab-
straction Π of some other protocol Π ′ is a tuple (T0, T, T

′, Π ′, (Enc,Dec)) where

ZeroAuction: Zero-Deposit Sealed-bid Auction via Delayed Execution 7

∞ > T ′ > T > 0, T0 is the time of execution of Π ′, and (Enc,Dec) are the en-
cryption and decryption functions of a committing encryption scheme. Π takes
the same inputs as Π ′ and encrypts the inputs using Enc. Π ensures that its out-
puts are the same as Π ′, and that any decryption of encrypted ciphertexts and
outputs occur before T0 + T w.p. ϵ for some negligible ϵ > 0 and after T0 + T ′

w.p. 1.

In the context of blockchains, Π ′ could refer to the execution of transactions
or smart contracts running on the blockchain. For instance, Π ′ can be an open
auction smart contract, and T0 would denote the block’s height in the blockchain
containing the committed smart contract. The T parameter represents the delay
time in blocks to delay the transaction outputs. T ′ denotes the upper bound
on the execution time of Π, i.e., the time it takes to obtain the outputs of Π ′

considering the delay time and the execution time of the underlying protocol Π ′.
Choosing Confirmation Time as Delay Time: Although transactions

are delayed as ciphertexts, we can choose a specific delay time so that adding
delayed execution does not increase the transaction latency of the underlying
blockchain. In practice, we note that all blockchains require recipients to wait for
certain number of block confirmations before accepting a transaction to mitigate
double-spending attacks. For instance, Ethereum requires 64 block confirmations
(2 epochs) for a transaction to be finalized [11]. Without loss of generality, we
assume that our underlying blockchain requires T block confirmation4 to finalize
a transaction into the blockchain. If we adopt the same T for the delayed time,
the blockchain with delayed execution can finalize a transaction at the same time
as the underlying blockchain. Figure 1 illustrates this process: in the underlying
blockchain without delayed execution, the consensus nodes immediately execute
the blue transaction upon its commitment, but then recipients must wait for
T block confirmation until its finalization. In contrast, for the blockchain with
delayed execution, the consensus nodes first wait for the T block delay before
decrypting and executing the green transaction when the blockchain finalizes
the transaction. Therefore, both transactions have the same finalization time,
and the delayed execution with a T block delay does not increase transaction
latency.

3 Auction Smart Contract with Delayed Execution

This section introduces ZeroAuction, an auction smart contract under the de-
layed execution, with a pseudocode and running examples. We argue how Ze-
roAuction satisfies the properties of the sealed-bid auction informally and show
how ZeroAuction can overcome the drawbacks mentioned in Section 2.

3.1 Pseudocode

Algorithm 2 describes the ZeroAuction smart contract. When the auctioneer
creates the smart contract, the consensus nodes run the Init function, which
4 T can be 1 for the blockchains with instant finalization.

8 H. Zhang et al.

Algorithm 2: ZeroAuction smart contract with delayed execution

1 Init Upon creating the auction smart contract:
2 highest← 0, winner ← ∅
3
4 Bid Upon receiving i’s bid bi in the bidding period :
5 if bi > highest then
6 Assert(i transfers bi)
7 Distribute highest to winner when winner ̸= ∅;
8 highest← bi
9 winner ← i

10 end

initializes two valuables: highest, which indicates the value of the current highest
bid, and winner, which records the current winner of the auction. During the
biding period, each bidder can submit his bid by calling Bid function, which
encapsulates both commit and reveal phases. The function checks whether this
bid is more than the current highest. If so, the smart contract asks the bidder to
transfer the amount of his bid to itself, refunds the current winner, and finally
update the current highest and winner. If not, the bidder loses the auction.

3.2 Under the Delayed Execution Environment

ZeroAuction, as presented in Algorithm 2, implements an open auction, as none
of the bids are hidden. However, it becomes a sealed-bid auction when employed
in a delayed execution environment. Bidders submit their bids within the delay
time, so the delayed execution guarantees hiding the bids during the bidding
period and revealing them during the revealing period.

Requirements: We require the delay time in the delayed execution to be
the same as the confirmation time T of the underlying blockchain. Thus, when
the blockchain with delayed execution decrypts and executes the transaction, it
also finalizes the transaction without extra latency overhead. We also require the
bidding time in any sealed-bid auction to be ≤ T . Observe that a bidding time
of more than T reveals the plaintext of encrypted bids submitted at the start of
the bidding period to other bidders before the bidding period is over. We further
demand that the blockchain delay executes all transactions by T time, including
non-auction transactions, such as transfer transactions. This requirement ensures
that no user can make quick transfers to another account during the auction to
affect the outcome of the auction, given information revealed about others’ bids
during the revealing period.

Non-malleability: To guarantee the non-malleability property of the auc-
tion, a bidder first encrypts their transaction using a symmetric non-malleable
encryption scheme, and the delayed execution ensures the release of the sym-
metric key after the delay so that consensus nodes can decrypt and execute the
transaction. Specifically, when committing a ZeroAuction contract under delayed

ZeroAuction: Zero-Deposit Sealed-bid Auction via Delayed Execution 9

highest = 20
winner = bidder 2

highest = 10
winner = bidder 1

Bidder 1 Bidder 2 Consensus
Group

Commit Tx
Tx={Enc(bid=10,…)}

Commit Tx’
Tx’={Enc(bid=20,…)}

T Block
Delay

T Block
Delay

Decrypt & Execute
Tx

Return 10 coins

Prepare

Prepare

Determine Winner

highest = 0
winner = ∅

Bidding
Phase

Revealing
PhaseDecrypt & Execute

Tx’

Fig. 2. A running example with two bidders. Both bidders commit their encrypted
transactions to the blockchain during the bidding phase. After T block delay of each
transaction, the consensus group decrypts and executes the transaction. At the end of
the execution phase, the smart contract can determine the final auction winner.

execution, participating bidders first need to encrypt their entire original signed
transaction (which contains their bid) under a symmetric CPA-secure encryp-
tion scheme (e.g., block cipher with CBC mode of operation) and then append
a strongly-unforgeable message authentication code (MAC) onto the resulting
ciphertext. This encrypt-then-MAC composition is NM-CPA secure under these
assumptions on the encryption scheme and MAC [2]. Next, bidders also further
encrypt all relevant keys used to encrypt-then-MAC their bid transaction under
the delayed execution (further discussion in Section 4.1) and send the encrypted
symmetric keys as well as the encrypted transactions to the blockchain. Finally,
the delayed execution decrypts and releases the symmetric keys after T blocks
so that consensus nodes can decrypt and execute the transaction.

3.3 Single Auction Running Examples

This subsection provides examples with two bidders under the delayed execution
with T as the global delayed parameter. For simplicity, we assume the bidding
period is T in this example. We logically create two phases: the first T blocks as
the bidding phase and the second T blocks as the revealing phase.

Two successful bids: In the first example, we demonstrate two legitimate
bidders, presented in Figure 2. Assuming there are two bidders, bidder 1 and
bidder 2, with their bids being 10 and 20 coins, respectively. We further assume
they have enough cryptocurrency in their account balances to support their
bids if they win. During the bidding phase, both bidders must seal and hide
their bids by encrypting their signed transactions. We assume that both bidders

10 H. Zhang et al.

prepare their encrypted transactions, and the blockchain successfully commits
them, with bidder 1’s transaction ordered before that of bidder 2.

T blocks after committing the encrypted transactions on the blockchain,
consensus nodes begin to decrypt and execute the transactions. Upon executing
bidder 1’s transaction, the value highest is 0, and bidder 1’s bid is more than
highest; thus, the following things happen: (a) Bidder 1 needs to transfer 10 coins
to the smart contract, (b) highest updates to 10, (c) winner changes to bidder
1. Upon executing bidder 2’s transaction, the value highest is 10 and, bidder 2’s
bid is more than highest; thus, the following things happen: (a) Bidder 2 needs
to transfer 20 coins to the smart contract, (b) Bidder 1 receives the refund of 10
coins from the smart contract, (c) highest updates to 20, (d) winner changes to
bidder 2. At the end of the revealing phase, the blockchain has executed all the
bidding transactions. The value winner records bidder 2 as the auction’s final
winner, and bidder 2 has already paid for what he bids.

One failed bid: In the second example, we assume that bidder 2 does not
have enough balance to support his bid. The procedure is the same as before
until the blockchain executes the bidder 2’s transaction. However, as bidder 2
does not have enough balance to transfer 20 coins to the smart contract, the
transaction failed in the assertion, and consensus nodes then revert and discard
the transaction. At the end of the revealing phase, we can be sure that bidder 1
is the final winner, and bidder 1 has already paid what he bids.

3.4 Auction with Transfer Transactions

As the consensus nodes cannot verify the transaction until its decryption and
execution, the bidder could submit a bid with a value that is more than their
balance during the bidding period. If the bidder wants to make the bidding trans-
action valid, they can make transactions to transfer more coins to their balance.
However, the bidder must commit the transfer transaction before the commit-
ment of the bidding transaction so that the blockchain executes the transfer
transaction before the bidding transaction, as the blockchain delays all trans-
actions by T blocks. In contrast, if, by the time of the execution, the bidder
still does not have enough funds, the bidding transaction will fail as in Line 6
of Algorithm 2.

When the revealing phase starts, the bidder can observe the bids from other
bidders and accordingly make a transfer transaction to change their balance.
However, we argue that the bidder can not benefit from it. Because the block-
chain delays all transactions by T blocks, it will execute the transfer transaction
committed during the revealing phase after the execution of the bidding trans-
action. Thus, the transfer transaction does not affect the auction.

3.5 Multiple Auctions

Because ZeroAuction does not need deposit, a bidder can use the same funds to
participate in multiple auctions. For example, suppose there are two auctions,
with auction A happening before auction B. A bidder thus can bid all their funds

ZeroAuction: Zero-Deposit Sealed-bid Auction via Delayed Execution 11

for both auctions. If the bidder wins auction A, they will not have enough funds
to support their bid for auction B; thus, auction B fails the assertion (Line 6). If
the bidder does not win auction A, they can still use the same funds for auction
B. The blockchain delaying all transactions guarantees that, even though the
bidder’s available fund for auction B may change because of auction A, such
change happens without knowing any of the bids in auction B.

3.6 ZeroAuction Properties

We informally reason how the ZeroAuction achieves the sealed-bid auction prop-
erties. Correctness: After all executions, winner is the bidder who submits the
highest bid with the ability to pay; Hence, winner is the legitimate winner of
the auction. Hiding: As all transactions submitted during the bidding period
are encrypted, no entity can observe the bids. Binding: Once the blockchain
finalizes the bidding transaction, the consensus nodes firmly writes the transac-
tion into the blockchain; thus, no entity can change the bid. Revealing: The
blockchain guarantees the revealing of the bids during the revealing period. Non-
malleability: As the encrypt-then-MAC composition used in our delayed exe-
cution is NM-CPA secure [2], no bidder can benefit from copying and changing
other bidders’ ciphertexts. We formally prove these properties in Section 5.

We acknowledge that ZeroAuction only achieves a weak version of binding
in that a bidder can bid more than they have without consequence. We stress,
however, that this is a feature and not a bug of ZeroAuction. In doing so, we
eliminate the deposit requirement and allow a bidder to participate in multi-
ple auctions using the same funds. Additionally, although the balance of the
bidder may change before the execution of their bidding transaction and conse-
quently alter the result of the auction due to the transactions committed before
the bidding transaction, we note that such behavior only happens without the
knowledge of other revealed bids due to all transactions being delayed for the
same T blocks.

In addition, ZeroAuction addresses the drawbacks mentioned in Section 2:

(a) Each bidder only needs to interact with the blockchain once only during the
bidding period (see Bid function in Algorithm 2), decreasing the latency
overhead.

(b) ZeroAuction does not need to store bid commitments from each bidder as
in the array of hashed commitments (hash) in Algorithm 1, reducing the
storage overhead.

(c)–(e) ZeroAuction does not require any deposit; hence, ZeroAuction mitigates the
security risk of the deposited funds and relieves the auctioneer from deter-
mining the deposit amount.

(f)–(g) The blockchain guarantees the revealing of bids regardless of the bidders’
behaviors and network environment.

(h) As ZeroAuction does not require a deposit, a bidder can participate in mul-
tiple auctions using the same fund.

However, achieving those advantages brings an inflexibility: ZeroAuction can-
not have a bidding period of more than T blocks.

12 H. Zhang et al.

4 Discussion

In this section, we discuss possible implementations of the delayed execution
methods and apply the delayed execution to optimize all the commit-and-reveal
smart contracts.

4.1 Possible Encryption Methods for Delayed Execution

There are multiple approaches to implement a delayed execution. This subsec-
tion briefly discusses those approaches and argues that threshold encryption,
though imperfect, is the best approach to implement delayed execution within
the existing toolbox.

Encryption and Decryption by a Centralized Authority: A central-
ized authority can help to reveal the transaction. When committing a transaction
to the blockchain, a user first encrypts the transaction with a symmetric key and
then uses the public key of the centralized authority to encrypt this symmetric
key. After the delay, the centralized authority reveals the symmetric key. How-
ever, this approach brings the single-point-of-failure issue to the system that the
centralized authority might be malicious or offline.

Time-lock Puzzle: Alternatively, a user can use a time-lock puzzle to blind
the transaction. For example, blockchain can use a verifiable delay function [4,21]
to implement a proof-of-elapsed-time, and consensus nodes have to compute the
function to decrypt the transaction. However, it is still an open challenge to link
the computational time to real-time, and the variance of the solving time can
pose a security issue to delayed execution, e.g., a lucky node solves the puzzle
fast, thus observing the bid during the bidding period.

Trusted Execution Environment: Instead of trusting an authority, we
can utilize a trusted execution environment achieved by hardware, such as Intel
SGX [28]. The hardware guarantees the delayed execution of transactions. Nev-
ertheless, this method is subject to a single point of failure or compromise [22,25].

Threshold Encryption: Instead of relying on a centralized authority, we
can rely on a group of nodes to decrypt a transaction. Specifically, t out of n
nodes can decrypt the transaction after the delay. However, t − 1 out of n can
not reveal anything about the transaction, even if they collude. While it is nat-
ural to deploy this method for a permissioned blockchain, it is unclear how to
offer compatibility to a proof-of-work blockchain without changing its security
assumption. In addition, running threshold decryption increases the overhead of
the underlying blockchain system.

In conclusion, each method has its pros and cons, and none of the methods
are entirely satisfactory. We hope that as scientific research advances in this
domain, better methods will emerge. Nevertheless, from a practical perspective
within the existing toolbox, we argue that the threshold encryption method
achieves the properties of the delayed execution (guaranteed by its security as-
sumption), provides maximum compatibility to various blockchain systems’ secu-
rity assumptions (not relying on any centralized component), and demonstrates

ZeroAuction: Zero-Deposit Sealed-bid Auction via Delayed Execution 13

a reasonable latency delay [29,19]. We note that existing work F3B uses delayed
execution based on threshold encryption to mitigate front-running attacks, and
its threshold encryption component only induces a negligible (0.026%) increase
in transaction latency on Ethereum [29], demonstrating that the threshold en-
cryption solution is practical in real-world scenarios.

4.2 Optimizing Other Commit-and-Reveal Smart Contracts

Although we only discuss optimizing the sealed-bid auction example under the
delayed execution, such a technique can generally be applied in other smart
contract on blockchains relying on the commit-and-reveal scheme, such as voting,
quizzes, random number generations, and games. In general, a user no longer
needs to interact with the blockchain for two rounds to commit and reveal the
value, but the blockchain, by default, hides and reveals the value (and the entire
transaction). Thereby, other commit-and-reveal smart contracts can benefit in
many ways similar to ZeroAuction: (a) reducing the latency cost that a user
only writes data to the blockchain once; (b) preventing the output bias that
a user may choose not to reveal his value in the traditional commit-and-reveal
approach; (c) eliminating the deposit requirement in the committing phase, as
the blockchain guarantees the revealing of the secret value. We leave the proof
and demonstration of this generalization as future work.

5 Analysis of Delayed Execution

In this section, we formally show that ZeroAuction achieves all the necessary
properties of a sealed-bid auction. For ease of exposition, we defer the formal
definition of a commit-and-reveal scheme as well as the non-malleability property
in Appendix A.

Let Π be a delayed execution abstraction with delay parameter T and execu-
tion time upper bound T ′ of a ZeroAuction protocol Π ′ for a single bid. Recall
that T0 is the time of execution of the underlying protocol Π ′.

Theorem 1. Π is ϵ1-hiding in the time period [T0, T0 + T], ϵ2-binding, and
T ′-revealing for ϵ1, ϵ2 > 0, ϵ1, ϵ2 negligible, and finite T ′ > 0.

Proof. Recall that the ZeroAuction protocol Π ′ does not alter the input bid in
any form and the output of Π ′ is simply the input bid.

We first show that Π is ϵ1-hiding for the duration [T0, T0 + T]. Let m be
the input of Π ′ (the bid). Π runs Enc(m, r) = c for input m and some random
value r. As (Enc,Dec) is CPA secure, and decryption of c only occurs before
time T0 + T w.p. ϵ, the probability ϵ1 that the message m can be retrieved from
the ciphertext c during the time interval [T0, T0 + T] is ϵ1 < ϵ + ϵ′ where ϵ′ is
the probability of a PPT adversary breaking the underlying encryption scheme.
Since ϵ and ϵ′ are both negligible, ϵ1 is also negligible.

14 H. Zhang et al.

We now show that Π is ϵ2-binding. Since (Enc,Dec) is a committing en-
cryption scheme, for any distinct m,m′, P[Dec(Enc(m)) = m′] < ϵ2 for some
negligible ϵ2. Thus Π is ϵ2-binding.

Finally, we show that Π is T ′-revealing. From Definition 1, Π outputs the
same outputs as Π ′ almost surely within T ′ time from the execution of Π for
finite T ′. Thus, Π is T ′-revealing. ⊓⊔

Theorem 2. Π with a CPA secure symmetric ecryption scheme and strongly
unforgeable MAC is NM-CPA secure.

Proof. Follows as per Theorem 4.4 in [2].

Theorem 3. Π satisfies all 4 sealed-bid auction properties.

Proof. Follows directly as a consequence of Theorems 1 and 2.

6 Related Work

Many papers have proposed to implement sealed-bid auctions on blockchains.
Depending on who reveals the bids, we can classify the sealed-bid auction designs
into two types: relying on bidders or a trusted third party(e.g., an auctioneer)
or group.

For the auction designs relying on bidders to reveal the bids [5,16,17] (simi-
lar to our commit-and-reveal design in Section 2.2), the bidders must first com-
mit their bids and then reveal them, with two rounds of interactions with the
blockchain causing excessive latency overhead. Further, such design requires to
incentivize bidders to reveal their bids.

A trusted third party(group) can help to reveal the bids. Galal and Youssef
proposed a sealed-bid auction that relies on an auctioneer to determine the win-
ner with verifiability using zero-knowledge proofs (ZKP) [13,12]. Nevertheless,
it still requires bidders to interact with the blockchain for two rounds. Strain
utilizes the two-party computation to compare pairs of bids and uses ZKP to
prove the outcome is correct [3]. However, its complexity grows as bidders in-
crease, and it is too costly to use on the Ethereum blockchain. Trustee [14] relies
on Intel SGX [28] to implement a sealed-bid auction while reducing the gas
cost on Ethereum. However, it brings the concerns of a single point of failure
or compromise. Riggs uses time-based cryptography on the application layer to
achieve a non-interactive auction, but the high gas cost makes it not practical
on Ethereum [24].

We propose ZeroAuction to demonstrate how delayed execution optimizes
sealed-bid auction smart contracts. Unlike previous work, a bidder does not
need a deposit to participate in the auctions and only needs to interact with the
blockchain once. However, our solution has an upper bound of possible bidding
duration.

Limited works have explored the delayed execution on blockchains. Tuxedo
uses delayed execution to scale computations on blockchains [9]. F3B utilizes

ZeroAuction: Zero-Deposit Sealed-bid Auction via Delayed Execution 15

delayed execution to mitigate front-running attacks with a negligible latency
overhead and addresses the spamming and incentive issues when a blockchain
adopts the delayed execution [29].

7 Conclusion

In this paper, we first introduce a technique that delay executes transactions
on the blockchain and also outline a protocol named ZeroAuction that demon-
strates the utility of our delay execution technique to sealed-bid auctions. We
show that if the delay time is the same as the confirmation time of the underlying
blockchain, delay executing transactions does not increase transaction latency.
Further, we demonstrate that when executing ZeroAuction under delayed exe-
cution, bidders do not need a deposit and only require one round of interaction
with the blockchain to participate in a sealed-bid auction. However, our solution
brings a major inflexibility: the bidding period can be at most the global delay
time.

References

1. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of
symmetric encryption. In: FOCS. pp. 394–403. IEEE Computer Society (1997)

2. Bellare, M., Namprempre, C.: Authenticated encryption: Relations among notions
and analysis of the generic composition paradigm. J. Cryptol. 21(4), 469–491
(2008)

3. Blass, E.O., Kerschbaum, F.: Strain: A secure auction for blockchains. In: Com-
puter Security: 23rd European Symposium on Research in Computer Security,
ESORICS 2018, Barcelona, Spain, September 3-7, 2018, Proceedings, Part I 23.
pp. 87–110. Springer (2018)

4. Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay functions. In: Annual
international cryptology conference. pp. 757–788. Springer (2018)

5. Chen, B., Li, X., Xiang, T., Wang, P.: Sbrac: Blockchain-based sealed-bid auction
with bidding price privacy and public verifiability. Journal of Information Security
and Applications 65, 103082 (2022)

6. Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: A black-box construction of
non-malleable encryption from semantically secure encryption. J. Cryptol. 31(1),
172–201 (2018)

7. Coretti, S., Dodis, Y., Tackmann, B., Venturi, D.: Non-malleable encryption: Sim-
pler, shorter, stronger. IACR Cryptol. ePrint Arch. p. 772 (2015)

8. Crescenzo, G.D., Katz, J., Ostrovsky, R., Smith, A.D.: Efficient and non-interactive
non-malleable commitment. In: EUROCRYPT. Lecture Notes in Computer Sci-
ence, vol. 2045, pp. 40–59. Springer (2001)

9. Das, S., Awathare, N., Ren, L., Ribeiro, V.J., Bellur, U.: Better late than
never; scaling computation in blockchains by delaying execution. arXiv preprint
arXiv:2005.11791 (2020)

10. Eskandari, S., Moosavi, S., Clark, J.: Sok: Transparent dishonesty: front-running
attacks on blockchain. In: Financial Cryptography and Data Security: FC 2019
International Workshops, VOTING and WTSC, St. Kitts, St. Kitts and Nevis,
February 18–22, 2019, Revised Selected Papers 23. pp. 170–189. Springer (2020)

16 H. Zhang et al.

11. Gasper (2022), https://ethereum.org/en/developers/docs/consensus-
mechanisms/pos/gasper/, accessed: 2022-10-03

12. Galal, H.S., Youssef, A.M.: Succinctly verifiable sealed-bid auction smart con-
tract. In: Data Privacy Management, Cryptocurrencies and Blockchain Technology:
ESORICS 2018 International Workshops, DPM 2018 and CBT 2018, Barcelona,
Spain, September 6-7, 2018, Proceedings 13. pp. 3–19. Springer (2018)

13. Galal, H.S., Youssef, A.M.: Verifiable sealed-bid auction on the ethereum
blockchain. In: International Conference on Financial Cryptography and Data Se-
curity. pp. 265–278. Springer (2018)

14. Galal, H.S., Youssef, A.M.: Trustee: full privacy preserving vickrey auction on top
of ethereum. In: Financial Cryptography and Data Security: FC 2019 International
Workshops, VOTING and WTSC, St. Kitts, St. Kitts and Nevis, February 18–22,
2019, Revised Selected Papers 23. pp. 190–207. Springer (2020)

15. Kharif, O.: Cryptokitties mania overwhelms ethereum network’s process-
ing (2017), https://www.bloomberg.com/news/articles/2017-12-04/cryptokitties-
quickly-becomes-most-widely-used-ethereum-app

16. Król, M., Sonnino, A., Tasiopoulos, A., Psaras, I., Rivière, E.: Pastrami: privacy-
preserving, auditable, scalable & trustworthy auctions for multiple items. In: Pro-
ceedings of the 21st International Middleware Conference. pp. 296–310 (2020)

17. Lu, G., Zhang, Y., Lu, Z., Shao, J., Wei, G.: Blockchain-based sealed-bid domain
name auction protocol. In: Applied Cryptography in Computer and Communica-
tions: First EAI International Conference, AC3 2021, Virtual Event, May 15-16,
2021, Proceedings 1. pp. 25–38. Springer (2021)

18. Mehar, M.I., Shier, C.L., Giambattista, A., Gong, E., Fletcher, G., Sanayhie, R.,
Kim, H.M., Laskowski, M.: Understanding a revolutionary and flawed grand exper-
iment in blockchain: the dao attack. Journal of Cases on Information Technology
(JCIT) 21(1), 19–32 (2019)

19. Momeni, P.: Fairblock: Preventing blockchain front-running with minimal over-
heads. Master’s thesis, University of Waterloo (2022)

20. Pass, R., Shelat, A., Vaikuntanathan, V.: Relations among notions of non-
malleability for encryption. In: ASIACRYPT. Lecture Notes in Computer Science,
vol. 4833, pp. 519–535. Springer (2007)

21. Pietrzak, K.: Simple verifiable delay functions. In: ITCS. LIPIcs, vol. 124, pp.
60:1–60:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)

22. Ragab, H., Milburn, A., Razavi, K., Bos, H., Giuffrida, C.: Crosstalk: Speculative
data leaks across cores are real. In: 2021 IEEE Symposium on Security and Privacy
(SP). pp. 1852–1867. IEEE (2021)

23. Schwartzbach, N.I.: Deposit schemes for incentivizing behavior in finite games of
perfect information. CoRR abs/2107.08748 (2021)

24. Tyagi, N., Arun, A., Freitag, C., Wahby, R., Bonneau, J., Mazières, D.: Riggs:
Decentralized sealed-bid auctions. In: Proceedings of the 2023 ACM SIGSAC Con-
ference on Computer and Communications Security. pp. 1227–1241 (2023)

25. Van Bulck, J., Minkin, M., Weisse, O., Genkin, D., Kasikci, B., Piessens, F., Sil-
berstein, M., Wenisch, T.F., Yarom, Y., Strackx, R.: Foreshadow: Extracting the
keys to the intel {SGX} kingdom with transient {Out-of-Order} execution. In:
27th USENIX Security Symposium (USENIX Security 18). pp. 991–1008 (2018)

26. Wee, H.: One-way permutations, interactive hashing and statistically hiding com-
mitments. In: TCC. Lecture Notes in Computer Science, vol. 4392, pp. 419–433.
Springer (2007)

27. Wood, G., et al.: Ethereum: A secure decentralised generalised transaction ledger.
Ethereum project yellow paper 151(2014), 1–32 (2014)

ZeroAuction: Zero-Deposit Sealed-bid Auction via Delayed Execution 17

28. Xing, B.C., Shanahan, M., Leslie-Hurd, R.: Intel® software guard extensions (in-
tel® SGX) software support for dynamic memory allocation inside an enclave.
Proceedings of the Hardware and Architectural Support for Security and Privacy
2016 pp. 1–9 (2016)

29. Zhang, H., Merino, L.H., Qu, Z., Bastankhah, M., Estrada-Galiñanes,
V., Ford, B.: F3B: A Low-Overhead Blockchain Architecture with
Per-Transaction Front-Running Protection. In: Bonneau, J., Weinberg,
S.M. (eds.) 5th Conference on Advances in Financial Technologies
(AFT 2023). Leibniz International Proceedings in Informatics (LIPIcs),
vol. 282, pp. 3:1–3:23. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl, Germany (2023). https://doi.org/10.4230/LIPIcs.AFT.2023.3,
https://drops.dagstuhl.de/opus/volltexte/2023/19192

A Cryptographic primitives and definitions

A.1 Commit-and-Reveal Scheme

A commit-and-reveal scheme is a pair of algorithms (Commit,Reveal) run be-
tween two parties S and R in two stages, where the sender S wants to commit
a message m to the receiver R. In the following, we adapt the notation and def-
inition of commitment scheme from previous work [26]. Both parties receive a
security parameter (1n) as input. In the commit stage, Commit(m, r) takes as a
plaintext message m from a message spaceM, a random string r, and outputs a
commitment string c. In the reveal stage, Reveal(c, r,m∗) takes as input a com-
mitment string c, randomness r and an auxiliary parameter m∗5. The sender S
sends a single message m∗ as well as r to R and R either outputs m and accepts
or rejects.

In the context of sealed-bid auctions, we require a commit-and-reveal scheme
to satisfy 3 additional properties: ϵ1-hiding, ϵ2-cryptographic binding, and τ -
revealing for positive but negligible values of ϵ1 and ϵ2, and some τ > 0. We
define these properties as follows:

Definition 2 (ϵ-hiding). Let Π = (Commit,Reveal) be a commit-and-reveal
scheme. Let us define the following game played between PPT R and honest S
during the commit stage of the commit-and-reveal protocol.

– R chooses m0,m1 ∈M and gives m0,m1 to S
– S runs c0 ←− Commit(m0, r0) and c1 ←− Commit(m1, r1)

– S samples a random bit b $←− {0, 1} and gives cb to R
– R outputs a guess bit b′

We say Π is ϵ-hiding if ∀ m0,m1, P[b′ = b] < 1
2 − ϵ for some ϵ > 0.

5 We use m∗ as a placeholder for auxiliary information that S might have to send
R depending on how the commit-and-reveal scheme is actually implemented. For
instance, in hash-based commitment schemes m∗ would be the message that S com-
mitted to in the commit stage.

18 H. Zhang et al.

The ϵ-hiding property of commit-and-reveal schemes in the context of sealed-
bid auctions guarantee that once a bid is committed, any adversary can only
uncover the bid with negligible probability during the commit stage. This guar-
antees that the bids are hidden from others during the bidding period.

Definition 3 (ϵ-binding). Let Π = (Commit,Reveal) be a commit-and-reveal
scheme. We say Π is ϵ-cryptographic binding if for all PPT S, S succeeds in the
following game with honest R with negligible probability.

– S produces a commitment c during the commit stage of Π
– S outputs two distinct messages m0,m1 such that for both b = 0 and b = 1,

R on input (c, rb,m∗) accepts and outputs mb.

The ϵ-binding property of commit-and-reveal schemes in the context of sealed-
bid auctions guarantee that once a bid is committed, the commitment can only
open to two different messages with negligible probability. This ensures that
committed bids cannot be modified.

Definition 4 (τ-revealing). Let τ > 0 be some time parameter, S,R PPT,
and Π = (Commit,Reveal) be a commit-and-reveal scheme. We say Π is τ -
revealing if for all m ∈M, S and honest R running Reveal(Commit(m, r), r,m∗)
results in R accepting and outputting m in time at most τ .

We are interested in commit-and-reveal schemes that satisfy the τ -revealing
property for finite τ . This ensures that all committed bids will be revealed during
the revealing period, and guarantees that participants cannot selectively and
indefinitely withhold bids.

A.2 NM-CPA security

Init
k ← K; b← {0, 1};S ← ∅$ $

LR(m0,m1)
if pdec then C ← ⊥
else C ← Enc(k,mb);S ← S ∪ {C}
return C

Enc(m)
C ← Enc(k,m)
return C

$

$

Dec∗(C∗)
pdec ← true
for i ∈ [|C∗|]:
if C∗[i] ∈ S then M∗[i]← ⊥
else M∗[i]← Dec(k,C∗[i])
return M∗

Finalise(d)
Return (d = b)

Fig. 3. NM-CPA security game Γ nm-cpa for symmetric key encryption schemes

We use the definition of NM-CPA security for symmetric encryption schemes
from [2], which we will reiterate here for completeness. NM-CPA security is

ZeroAuction: Zero-Deposit Sealed-bid Auction via Delayed Execution 19

defined via the following game Γ nm-cpa(refer to Figure 3). The game begins with
the initialization step that chooses a symmetric encryption key k randomly from
some keyspace K, as well as a fixed random bit b. The adversary is allowed access
to a special left-or-right (LR) encryption oracle that takes in a pair of messages
(m0,m1) and always encrypts the left (m0) or the right (m1) message depending
on the choice of b [1]. In parallel, the adversary also has access to a one-time-use
decryption oracle Dec∗ which takes as input a vector of ciphertexts and outputs
the plaintext decryption of each ciphertext. After querying Dec∗, the adversary
does not have access anymore to the LR oracle; however, it continues to have
access to the plaintext encryption oracle Enc. Finally, the adversary outputs a
guess bit d, and we say the adversary wins the game (output of game is 1) if
d = b. For any adversary A, we define the advantage of the adversary to be the
following: Advnm-cpa(A) = 2 · P[Γ nm-cpa outputs 1]− 1.

NM-CPA security is shown by comparing the advantage of the adversary in
the NM-CPA security game to an adversary with the same resources in another
game and then using a known security reduction to show NM-CPA security.
We omit the details in this write-up for clarity of exposition, but we refer the
interested reader to [2] for a thorough overview.

