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Abstract—Fully Homomorphic Encryption (FHE) enables com-
putations on encrypted data, making it essential for privacy-
preserving applications. However, it involves computationally de-
manding tasks, such as polynomial multiplication, while Number
Theoretic Transform (NTT) is the state-of-the-art solution to
perform this task. Most FHE schemes operate over the negacyclic
ring of polynomials. We introduce a novel formulation of the
hierarchical Four-Step NTT approach for the negacyclic ring,
eliminating the need for pre- and post-processing steps found in
the existing methods. To accelerate NTT operations, the Field-
Programmable Gate Array (FPGA)s offer flexible and powerful
computing platforms. We propose an FPGA-based, parametric
and fully pipelined architecture that implements the improved
Seven-Step NTT algorithm (which builds upon the four-step).
Our design supports a wide range of parameters, including
ring sizes up to 216 and modulus sizes up to 64-bit. We focus
on achieving configurable throughput, as constrained by the
bandwidth of High-Bandwidth Memory (HBM) bandwidth, and
aim to maximize throughput through an IO parametric design on
the Alveo U280 FPGA. The implementation results demonstrate
a reduction in the area-time-product by 2.08× and a speed-up of
10.32× for a ring size of 216 and a 32-bit width compared to the
current state-of-the-art designs.

Index Terms—FHE, FPGA, Hardware Acceleration, Four-Step,
Seven-Step, Fully-pipelined, NTT, Negacyclic

I. INTRODUCTION

FHE is an advanced cryptographic solution that allows to
perform arithmetic operations, including addition and multi-
plication, directly on ciphertexts without requiring decryption.
This capability is particularly critical for applications such as
privacy-preserving machine learning. Existing FHE schemes
found in the literature are lattice-based [1]–[5], while security
of most of these schemes rely on the famous Ring Learning
With Errors (R-LWE) [6] problem which is resistant against
quantum computing attacks. On the other hand, existing FHE
solutions are computationally expensive, making the deploy-
ment of those in a real-world application a challenging task.

The core operation in Lattice-Based Cryptography (LBC)
is the polynomial multiplication and efficient implementations
employ the NTT algorithm to perform it, with a time com-
plexity of O(n log(n)). Here, n refers to the degree of the
polynomial modulus, which is typically between 210 and 216.
The polynomial modulus is generally the cyclotomic polyno-
mial of the form xn + 1 for FHE applications, leading to a
negacyclic ring. The prime coefficient modulus, which is the
other ingredient of the NTT, is generally 32 to 64-bit for
implementations that employ the Residue Number System [7].

In this wide range of parameter space, it is challenging to
come up with a generic solution that works well for multiple
parameter sets. Many solutions operate only with primes in
special form [8]–[13].

Recently, there has been a surge of interest among re-
searchers in hierarchical NTT algorithms. These methods are
based on the four-step approach [14], which treats the input as
a 2-D matrix and compute smaller NTTs on both the rows and
columns of that matrix. Building on this concept, the seven-
step NTT extends the idea by treating the input as a 4-D
hypercube. Hierarchical algorithms have garnered attention of
implementers due to their capacity to reduce data dependency
and create highly parallelizable NTT architectures [11], [15]–
[17]. An algorithmic drawback of existing four-step approach
is that it is tailored for the cyclic ring, where the polynomial
modulus is xn − 1. Consequently, using it for the negacyclic
case necessitates additional steps [11], [17]–[19]. On the other
hand, except for [16], existing solutions do not offer high
throughput, as they lack fully-pipelined implementations. Given
that the NTT is a highly data-intensive algorithm, the primary
bottleneck lies in FPGA-to-host communication. Accordingly,
throughput-oriented approaches are more feasible compared to
those focusing on low latency [20], [21].

To address the aforementioned challenges, our contributions
are listed as follows:

• We modify the four-step algorithm to work directly over
the negacyclic ring, removing the requirement for both
pre-processing and post-processing steps found in existing
methods. We show that our solution directly applies to
hierarchical NTT approaches in general with any dimen-
sional decomposition of the input polynomial.

• We present an FPGA-based NTT architecture that tar-
gets FHE applications, based on the enhanced seven-step
algorithm. Our design is optimized for high throughput
and I/O efficiency to maximize FPGA-to-host bandwidth
utilization. It is configurable at design time, supporting
a wide range of parameters, offering flexibility to meet
different throughput requirements.

• We provide implementation results for the proposed archi-
tecture, targeting the Alveo U280 data center accelerator.
Implementation results evidence that the proposed solution
significantly outperforms the existing work, by more than
two orders of magnitude in terms of average latency for
certain scenarios.



II. BACKGROUND

A. Notation

• Lowercase italic letters denote integers, such as a. Γl(·)
stands for the bit-reversing function for l-bit integers. The
logarithm function (log) is base-2.

• Bold uppercase letters denote matrices, such as A. Sim-
ilarly, bold lowercase letters are used to denote vectors,
such as a. Elements of matrices (vectors) are accessed
using the square brackets, such as A[i][j] (a[i]). ⊙ is
used to represent element-wise multiplication of vectors
or matrices, such as a⊙ b.

• Rq,n denotes the cyclotomic ring of polynomials
Zq[x]/(x

n+1). Polynomials are represented by lowercase
italic letters, such as a(x). Coefficients of polynomials are
represented by the sub-index, such as ai.

B. Number Theoretic Transform (NTT)

NTT is the state-of-the-art approach for polynomial multipli-
cation. For two polynomials a(x), b(x) ∈ Rq,n, multiplication
using the NTT algorithm is performed as follows:

a(x) · b(x) = INTTn

(
NTTn

(
a(x)

)
⊙ NTTn

(
b(x)

))
(1)

The multiplication in Rq,n is also known as the negative
wrapped convolution. Similarly, the NTT in Rq,n is referred
to as negacyclic NTT, which requires q = 1 mod 2n. Then, a
primitive 2n-th root of unity, denoted by ψ, exists in Zq , where
ψn = −1 mod q. For â = NTTn(a(x)), the transformation
is equivalent to the evaluation â[i] = a(ψ2i+1). Forward and
backward NTT can be efficiently implemented using so-called
butterfly circuits. Most applications use Cooley-Tukey (CT) [22]
butterflies for NTTn and Gentleman-Sande (GS) [23] butterflies
for INTTn.

For two coefficients ai, aj , CT butterfly is defined as
follows:

a′i = ai + aj · ζ a′j = ai − aj · ζ (2)

where ζ is called the twiddle factor which is a power of ψ. NTT
algorithm utilizing CT or GS butterflies, commonly referred to
as the iterative form of the NTT [24]. At each iteration, also
known as a stage, n/2 butterflies are computed, and there are
log n stages, resulting in O(n log n) time complexity. Note that
a traditional schoolbook multiplication has a time complexity
of O(n2).

1) Four-Step NTT: Bailey’s four-step NTT, widely adopted
in various studies [11], [15]–[17], [25], is a hierarchical
approach that transforms the larger NTT into smaller and
independent NTTs. Particularly, the input polynomial with n
coefficients is decomposed into a matrix of size n2 × n1. The
four steps constituting this algorithm, and which form the basis
of its name, are outlined below:

1) Perform n2 independent NTTn1
.

2) Transpose the matrix.
3) Multiply every element by twiddle factors, element at

(i, j) is multiplied by ωij

4) Perform n1 independent NTTn2 .

As mentioned in Section I, the existing literature on the
four-step NTT focused on the cyclic NTT case, where the
reduction polynomial is (xn − 1). In particular, the NTT of
a(x) ∈ Zq[x]/(x

n − 1) satisfies â[i] = a(ωi), where ω is
a primitive n-th root of unity, with ωn/2 = −1 mod q. To
use a cyclic NTT algorithm for performing negative wrapped
convolution, such as the above described four-step NTT, ad-
ditional steps are necessary [18]. To compute c = a · b for
a, b, c ∈ Rq,n, the following pre-processing steps must be
carried out:

āi = ai · ψi, b̄i = bi · ψi for 0 ≤ i < n (3)

Next, ā and b̄ are multiplied according to Equation (1) but
using the cyclic NTT routines, with ω = ψ2. Let c̄ represent
the result of the multiplication after applying the inverse NTT.
Following this, post-processing is done:

ci = c̄i · ψ−i, for 0 ≤ i < n (4)

2) Seven-Step NTT: In general, the input of the NTT can be
decomposed into any dimensional hyperplane, allowing smaller
NTTs to be performed at each dimension. The seven-step NTT
is a specific case involving 4-D decomposition, which can be
viewed as a one-level recursive application of the previously
described four-step approach. Figure 1 provides and outline of
the seven-step NTT.

4S-NTTn1
n

4S-NTTn11
n1

It-NTTn11 It-NTTn12

4S-NTTn21
n2

It-NTTn21 It-NTTn22

Fig. 1: Illustration of seven-step NTT with recursive four-step
NTTs, with 4-D decomposition n = n11 × n12 × n21 × n22.
4S-NTTn1

n denotes four-step NTT where n = n1 × n2 while
It-NTT denotes the iterative NTT. Twiddle multiplications are
not visualized.

C. Memory types and hierarchical memory in FPGA

In contemporary computing, both GPUs and FPGAs are
equipped with on-chip and off-chip memories. FPGAs feature
an on-chip memory component referred to as Block RAM
(BRAM), as well as off-chip memory known as HBM. BRAM
enables read/write operations to be completed in a single clock
cycle (cc), whereas HBM requires multiple cc for read/write
operations. Specifically for Alveo U280, HBM offers a storage
of 8 GB, while the on-chip BRAM can hold up to 41 MB of
data. Since FHE applications handle large data volumes, the use
of HBM is essential for FPGA-based implementations, though
HBM bandwidth can be a bottleneck for data movement. Alveo
U280’s HBM provides a bandwidth of 8192-bit (4096-bit read
and 4096-bit write) at 450 MHz.



III. NEGACYCLIC FOUR-STEP NTT

To address the pre- and post-processing overhead associated
with the four-step algorithm described in Section II-B1, we
present modified version that directly operates in Rq,n. For
completeness, Algorithm 1 details the negacyclic four-step
NTT. A key aspect of our solution is the formulation of the
twiddle factors (Line 7) used during the multiplication loop
between two sets of NTTs.

Algorithm 1 Negacyclic Four-Step NTT

Input: a(x) ∈ Rq,n

Input: a primitive 2n-th root of unity ψ ∈ Zq , n1 · n2 = n
Output: â ∈ Zn

q where â = NTTn(a(x))
1: A ∈ Zn1×n2

q ← a ▷ represent a as a matrix s.t.
A[i][j] = ai·n2+j

2: for i = 0→ n2 − 1 do
3: AT [i] = NTTn1(A

T [i]) ▷ using ψn2

4: end for
5: for i = 0→ n1 − 1 do
6: for j = 0→ n2 − 1 do
7: A[i][j] = A[i][j] · ψ(2·i−n1+1)·j

8: end for
9: end for

10: for i = 1→ n1 − 1 do
11: A[i] = NTTn2

(A[i]) ▷ using ψn1

12: end for
13: â← A ▷ flatten A s.t. â[i · n2 + j] = A[i][j]
14: return â

IV. PROPOSED IO-OPTIMIZED SEVEN-STEP NTT
ARCHITECTURE

This section presents a IO-optimized and pipelined hardware
architecture that implements the seven-step NTT algorithm
detailed in Section II-B2 incorporating the negacyclic four-step
approach outlined in Algorithm 1.

A. Design Principles

1) Row Independence: Recall that the four-step algorithm
leverages the independence of rows by processing them sepa-
rately, meaning there is no dependency between different rows
in the matrix representation (see Lines 2-4 and Lines 10-12 in
Algorithm 1). This characteristic enables the parallelization of
multiple NTT stages. In this work, the advantage of this feature
is fully exploited, which is critical for achieving the primary
design goal of maximizing throughput.

2) NTT-unrolling: NTT-unrolling involves assigning dedi-
cated BUs to each stage of the iterative NTT, allowing each
stage to be processed in every clock cycle, as shown in Figure 2.
Ideally, this results in one output per clock cycle with no stalls.
However, this approach demands an impractically large number
of BUs for large NTT sizes (e.g., n = 212 would require
211 ·12 BUs, which is unfeasible with current technology). The
four-step and seven-step NTTs reduce resource requirements by
breaking down the NTT into smaller, more manageable stages,
as discussed earlier.
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Fig. 2: Loop unrolling, as illustrated for iterative NTTn, re-
quires log n · (n/2) Butterfly Units (BUs).

3) Coefficient Throughput: Our solution introduces a unique
feature: a parametric hardware generator that operates based
on the throughput, denoted by Tp , as well as the seven-step
parameters n11, n12, n21, n22 for any givenRq,n. As previously
mentioned, modern FPGAs with HBM face limited bandwidth,
which restricts the throughput of the NTT engine. Our approach
addresses this issue by considering the I/O bandwidth during
the generation of throughput-optimized hardware, aiming to
fully utilize the available communication bandwidth.

4) Address Generation: Existing methods in the literature
[8], [13], [17], [26]–[29] entail complex address generation
units for computing NTTs. In this study, we focus on smaller
NTTs compared to previous works, allowing twiddle factors to
be efficiently stored in registers.

5) Reduced Twiddle Storage: FHE applications necessitate
performing NTT with multiple primes. For instance for n =
216, 60 distinct primes with log q = 32 are used in RNS
representation for the R-LWE instance to ensure a promising
level of security. Consequently, the set of twiddle factors must
be computed for each prime modulus. Our design employs an
on-the-fly twiddle generation strategy reducing the cost of the
pre-computation.

B. Modular Multiplication

For integer multiplication, we adopt the uneven partitioning
technique proposed in [30]. Given that the DSPs in the targeted
FPGA, Alveo U280, support 26x17 unsigned multiplication, we
partition the multiplication operands into 26-bit and 17-bit parts
accordingly. For 64x64-bit multiplication, this approach uses 12
DSPs. For the modular reduction, several approaches have been
proposed in the literature. In this work, we adopt Montgomery
reduction [31] and its specialized word-level variant, the Word-
Level Montgomery (WLM) [24]. This technique is particularly
well-suited for efficient hardware implementations.

We employ the WLM as it significantly reduces the number
of required multiplications. This approach exploits the fact that
the Montgomery factor is −1 for NTT friendly primes which
are in the form q = qH .2

log 2n + 1. For log q = 64 and
n = 216, the word size is set to 17, requiring a total of 8
DSP multiplications. Modular Multiplication Units (MMUs)
are fully pipelined. The latency of the integer multiplication
is 2 cc. Similarly, each iteration in the word-level reduction
takes 2 cc. Consequently, for 64-bit, the latency of MMU is
2 ·

⌈
64

logn+1

⌉
+ 2 clock cycles.



C. On-the-fly Twiddle Generation

Recall that the four-step algorithm includes a twiddle mul-
tiplication step, where each matrix element is multiplied by a
power of ψ, as described in Line 7 of Algorithm 1. It uses n
twiddle factors, which are subsequently used. For large values
of n, precomputing these factors may become impractical
due to the significant memory demands. Consider that FHE
applications usually work with multiple values of q, and one
needs the set of twiddle factors for all q. Several works can
be found in the literature that discusses on-the-fly generation
of these twiddle factors. We adapt the strategy discussed in
[32] to a fully pipelined design and negacyclic NTT. Let
pj [i] denotes ψ(2·i−n1+1)·j . Then, pj+1[i] = pj [i] · p1[i] =
ψ(2·i−n1+1)·(j+1). Notice that one can compute pj for all
j > 2 by only pre-computing p1. This approach reduces
storage requirements to only n1 twiddle factors. For pipelined
designs such as ours, the number of pre-computed twiddle
factors can be slightly more in practice. In order to produce Tp
twiddle factors in each cc using the above explained strategy,
p1 to pk are pre-computed where k = ⌈(Tp · L)/n1⌉ and
L denotes the latency of the MMU. Then, the On-the-fly
Twiddle Generation Unit (TGU) outputs pj+k[i

′] in each cc,
computed based on pj [i

′] in L clock cycles, for j > k,
Tp · t ≤ i′ < min(Tp · (t + 1), n1) and some integer
t ≤ ⌊n1/Tp⌋.

D. Architecture Overview

In the proposed architecture, there are 11 main modules.
These are namely the Iterative NTT Units (INUs) 1-4, Autho-
morphism (Rotator) Units (AUs) 1-3, Twiddle Multiplication
Units (TMUs) 1-3, and TGU. The details of this structure can
be found in Figure 3. All the implementation is fully pipelined
to maximize the throughput. Generally speaking, INUs perform
relatively small NTT operations. TMUs are responsible for
multiplying the intermediate coefficients by powers of ψ in
between iterative NTTs. AUs are responsible for rotating coeffi-
cient outputs for providing correct BRAM read/write addresses
for the subsequent iterative NTTs. TGU generates the twiddles
used by TMU 2 by implementing the strategy discussed in
Section IV-C. Observe that INUs 1-2, along with TMU 1 and
AU 1, form a four-step NTT as described in Algorithm 1,
referred to as Four-Step NTT Unit (4NU) 1. Similarly, INUs 3-
4, TMU 3, and AU 3 constitute another four-step NTT, referred
to as 4NU 2. As shown in Figure 1, the seven-step approach is
essentially a recursive application of the four-step algorithm.

The proposed seven-step architecture is designed for high
throughput. In each cc, the proposed seven-step NTT architec-
ture takes Tp new coefficients as its input and produces Tp
coefficients as the result of the corresponding NTT operation.
The throughput of all the above-mentioned units matches this
value, Tp . Naturally, the output stream becomes valid after a
certain number of cc, depending on the architecture’s latency.

1) Iterative NTT Units (INUs): INUs 1-4 implement a
number of parallel iterative NTTs of size n11, n12, n21 and
n22, respectively. The number of parallel NTTs are decided by
the parameter Tp and the decomposition. For instance, the INU

instantiates Tp/n11 iterative NTTs. For the sake of simplicity,
we assume Tp is a multiple of all n11, n12, n21, n22. As
previously explained, NTT stages are unrolled. Consequently,
for INU 1 as en example, there are (n11/2) · log(n11)·Tp/n11

BUs. Twiddle factors are also stored in registers. INU 1 does
not use BRAMs while INUs 2-4 stores output of the preceding
AUs from the pipeline in BRAMs to efficiently and correctly
operate. As explained in the previous section, the reason to
utilize BRAMs is to perform a set of iterative NTTs on
transpose of the matrix compared to the preceding INU. For
instance, INU 4 operates on rows while INU 3 operates on
columns. As the preceding INU must complete producing all
the input coefficients to start the operation. Additionally, newly
produced coefficients must be stored in BRAMs. In particular,
the size of BRAMs is two times the number of points in the
implemented iterative NTT (e.g. 2n12 for INU 2). At a given
time, one half of BRAM blocks are in read mode and the other
half of BRAM blocks are in write mode.

2) Twiddle Multiplication Units (TMUs): TMUs implement
the twiddle multiplication loop presented in Line 8 of Algo-
rithm 1. TMU 1 and 3 contain a set of Flip-flop (FF)s to store
necessary pre-computed twiddle factors. For TMU 1 and 3; n1,
and n2 twiddles are stored in FFs, respectively. On the other
hand, TMU 2 receives the set of twiddles to multiply from
TGU, which reduces its twiddle storage requirement signifi-
cantly. We would like to note that, the on-the-fly generation
is not advantageous for TMU 1 and 3, since the number
of pre-computed twiddle factors would be close to the case
without the on-the-fly generation (see the computation of k in
Section IV-C). To implement the multiplication by twiddles,
each TMU contains Tp independently operating and pipelined
MMUs to align with the Tp constraint.

3) Authomorphism (Rotator) Units (AUs): Each AU has an
internal counter and rotates its input by some pre-defined offset
input with respect to the current value of its counter. The bit-
length of the counters are distinct for each AU and depends
on the parameters decomposition of n, and Tp . Rotation of
the coefficients ensure that these coefficients are stored in the
desired locations of BRAMs for the subsequent INUs. Thanks
to the rotation, the input set of coefficients to be processed by
INUs, are stored in independent BRAMs, and therefore they
can be accessed in a single cc. The working principle of AUs
are exemplified in Figure 4.

V. EVALUATION

In this section, a comprehensive evaluation of our proposed
solution is presented.

A. Implementation
The presented seven-step architecture is implemented using

Verilog HDL. For configurability, Python scripts that automates
generation of RTL designs are created with respect to given
n, n11, n12, n21 q and the desired throughput Tp . Implemented
ring sizes vary from n = 210 to n = 216 for coefficient moduli
log q = 32 to log q = 64. As previously mentioned, the target
FPGA is AMD-Xilinx Alveo U2801 (XCU280) and Vivado

1https://www.xilinx.com/products/boards-and-kits/alveo/u280.html

https://www.xilinx.com/products/boards-and-kits/alveo/u280.html
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Fig. 3: Pipelined Seven-Step NTT architecture. At each cc, Tp coefficients (each of them are log q-bit) are passed to the next
stage in the pipeline, represented by the solid array.
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Fig. 4: A sample execution for the pipelined Seven-Step NTT
architecture for n = 16, n11 = n12 = n21 = n22 = 2.
Rows denote data in the pipeline at different points in time and
between the different modules. Thick boxes highlight samples
for the rotations performed by AUs, ensuring that the input of
following INUs are stored in independent BRAMs.

2023.22 is used for synthesis and implementation. XCU280
contains 1303680 Look-up Table (LUT)s, 2607360 FFs, 9024
DSPs3, and 2016 BRAM36E1s.

For the decomposition of n, we use a symmetric partition
where n11 = n12 = n21 = n22 if such a configuration
is feasible. Otherwise, we prioritize assigning a larger size
towards the first dimension. For example, in the case of
n = 213, we set n11 = 24 and n12 = n21 = n22 = 23.
Similarly, for n = 215, we assign n11 = n12 = n21 = 24, while
n22 = 23. This approach is motivated by the observation that
the initial blocks carry a smaller computational load compared
to subsequent ones.

B. Results and Comparison

Table I summarizes comparison results with our imple-
mentations and state-of-art designs. Average latency is com-
puted among 100 subsequent NTT operations. The Area-Time-

2https://www.xilinx.com/products/design-tools/vivado.html
3https://docs.amd.com/r/en-US/ug958-vivado-sysgen-ref/DSP48E2

Product (ATP) is a metric used in literature [35], computed as
Latency (µs)× (LUT + FF/2 + 100× DSP + 300× BRAM).
Average latency is used in ATP computation since the main
consideration of this study is to maximize throughput. Most
of the compared implementations are based on iterative NTT
architectures [13], [28], [33], [34] while some recent works
are based on hierarchical approaches [11], [15]–[17], [32] as
ours. In all cases, our proposed design provides better timing
and ATP results. For each class, we report the design for the
maximum value of Tp that is implementable in the target
FPGA.

In a common setting for FHE where n = 212 and
logq = 32, our design provides 1.76× and 2.29× lower ATP
compared to the existing solutions [28] and [17], respectively.
The reason behind our superiority is that our solution is
based on the seven-step NTT architecture which allows better
throughput. Accordingly, proposed design completes an NTT in
0.52 µs on average, providing 4.42× speed-up. The advantage
of our design is maintained in the 64-bit scenario, with an
average latency improvement of 2.23× over [15] which is the
solution with minimum average latency among the existing
work. It is important to note that, aside from [15], none of
the other existing implementations offers a fully pipelined
architecture. In comparison with the iterative NTT architectures
in this category, our design demonstrates 7.26× and 26.33×
lower average latency compared to [13] and [33], respectively.
Additionally, while accelerating NTT operation this scale, our
design achieves over 1.22× better ATP than the state-of-art
implementations in this category which shows that our speed-
optimized design is resource efficient.

Meeting with our design goal, the effectiveness of our design
scales to ring dimension from n = 210 to n = 216. Compared
to the leading existing solutions for log q = 32, specifically [11]
for n = 213 and [29] for n = 214, our design exhibits 4.47×
and 4.79× better average latency, respectively. Similarly for
log q = 64, our solution offers more than 4.18× speed-
up for these ring sizes. Similarly, for n = 215 and 64-bit,



TABLE I: Comparison with Literature

Work Arch. Platform log q n Tp LUT / FF / DSP / BRAM F Lat. / Avg. Avg. ATP
MHz cc µs ·10−3

[33] Iter. Virtex-7 28 210 - 6.4 / 3.7 / 18 / 2 150 2113 / 1035 6.9 (26.1x) 0.073 (1.28x)
[26] Iter. XCU200 28 210 32 95 / 104 / 640 / 80 210 236 1.12 (4.25x) 0.264 (4.60x)
Ours 7-Step XCU280 32 210 16 76.1 / 94.6 / 864 / 24 250 260 / 66 0.26 (1.00x) 0.057 (1.00x)
[28] Iter. Virtex-7 32 212 - 24.6 / 23.9 / 352 / 80 207 777 3.75 (7.22x) 0.359 (1.76x)
[17] 4-Step Virtex-7 32 212 - 70 / 70 / 599 / 129 200 460 2.3 (4.42x) 0.468 (2.29x)
Ours 7-Step XCU280 32 212 32 137 / 160 / 1632 / 40 250 404/130 0.52 (1.00x) 0.204 (1.00x)
[13] ‡ Iter. V.Ultrascale+ 60 212 - 74.5 / 61.4 / 288 / 155 250 951 3.804 (7.26x) 0.687 (1.22x)
[33] Iter. Virtex-7 60 212 - 21.8 / 19 / 220 / 16 150 4251 / 2070 13.8 (26.33x) 0.802 (1.43x)
[34] Iter. Virtex-7 60 212 - 19.1 / 17.86 / 216 / 88 270 6144 22.75 (43.43x) 1.730 (3.09x)
[35] Iter. Virtex-7 60 212 - 17 / 11 / 286 / 24.5 150 8937 / 4125 27.5 (52.48x) 1.607 (2.87x)
[16] 4-Step Virtex-7 64 212 - 18.9 / 26.7 / 266 / 24 211 2490 11.80 (22.52x) 0.779 (1.39x)
[16] 4-Step Virtex-7 64 212 - 9.2 / 12.6 / 133 / 24 241 4596 19.07 (36.39x) 0.687 (1.22x)
[15] 4-Step XCU280 64 212 - 523 / 1478 / 6518 / 34.5 300 351 1.17 (2.23x) 2.251 (4.01x)
Ours 7-Step XCU280 64 212 32 356.2 / 375.5 / 5040 / 72 250 464 / 131 0.52 (1.00x) 0.560 (1.00x)
[29] Iter. XCU280 32 213 - 29.1 / 21.5 / 224 / 64 181.8 1690 9.29 (4.47x) 0.84 (1.60x)
Ours 7-Step XCU280 32 213 16 89.8 / 107.9 / 1008 / 32 250 1188 / 518 2.07 (1.00x) 0.53 (1.00x)
[29] Iter. XCU280 32 214 - 29.1 / 21.5 / 224 / 96 181.8 3612 19.87 (4.79x) 1.81 (1.61x)
[11] ‡ 4-Step Virtex-7 32 214 - 26.9 / 26.9 / 144 / 32.5 200 4320 21.6 (5.21x) 1.39 (1.24x)
Ours 7-Step XCU280 32 214 16 94.2 / 112.2 / 1056 / 48 250 2224 / 1036 4.14 (1.00x) 1.12 (1.00x)
[13] ‡ Iter. V.Ultrascale+ 60 214 - 74.5 / 61.4 / 288 / 155 250 4340 17.36 (4.18x) 3.13 (1.05x)
Ours 7-Step XCU280 64 214 16 234.1 / 255.7 / 3280 / 96 250 2292 / 1036 4.14 (1.00x) 2.97 (1.00x)
[13] ‡ Iter. V.Ultrascale+ 60 215 - 74.5 / 61.4 / 288 / 155 250 8435 33.74 (8.14x) 6.09 (1.09x)
Ours 7-Step XCU280 64 215 32 444.6 / 459.6 / 6160 / 176 250 2300 / 1036 4.14 (1.00x) 5.56 (1.00x)
[36] Iter. Virtex-6 30 216 - 72.6 / 63.1 / 250 / 84 100 47795 477.95 (57.7x) 73.77 (17.38x)
[11] ‡ 4-Step Virtex-7 30 216 - 30.8 / 36.2 / 160 / 128 196 16758 85.5 (10.32x) 8.83 (2.08x)
Ours 7-Step XCU280 32 216 32 169.5 / 191.5 / 2016 / 152 250 4288 / 2070 8.28 (1.00x) 4.24 (1.00x)
[13] ‡ Iter. V.Ultrascale+ 60 216 - 74.5 / 61.4 / 288 / 155 250 16627 66.5 (7.96x) 12.00 (1.01x)
[33] Iter. XCVX485T 64 216 - 31.3 / 30 / 300 / 255 135 59400 440 (52.7x) 67.23 (5.7x)
[32] 3-D† XCU250 64 216 - 267.1 / 328.4 / 2736 / 2126 165 62700 380 (45.5x) 510.2 (43.3x)
Ours 7-Step XCU280 64 216 32 460 / 470 / 6320 / 280 248 4364 / 2070 8.34 (1.00x) 11.78 (1.00x)

†: employs 3-D decomposition of n as 26 · 26 · 24. ‡: restricted to special primes.

8.15× speed-up is achieved. For the relatively smaller ring
size, n = 210 and 32-bit, our design outperforms the literature
by 4.25× in average latency. The ATP of the proposed design
is slightly advantageous over the mentioned implementations,
further demonstrating the resource-efficiency of our solution.

For n = 216, [13] is the closest competitor to our solu-
tion. However, our design achieves 7.96× improvement in
the average latency while maintaining a comparable ATP. It
is important to note that [13] supports only special primes,
which offer advantages in resource utilization over general
NTT primes. Additionally, the prime modulus in that design
is fixed, preventing operation with multiple prime moduli, a
key requirement in FHE applications. In contrast, our pro-
posed design allows the prime modulus and twiddle factors
to be set at run-time, providing a more practical solution for
FHE scenarios. Considering more generic designs, our solution
presents 10.32× and 45.5× reduction in average latency for
log2 q = 32 and log2 q = 64, when compared to [11] and
[32], respectively. Note that our design also outperforms these
designs in terms of ATP, in accordance with the rest of the
discussion.

VI. CONCLUSION

In this paper, we presented a modified four-step NTT algo-
rithm that directly operates in the negacyclic ring Rq,n. Then,

we proposed an FPGA-based hardware accelerator that imple-
ments the seven-step NTT algorithm. Our solution supports a
wide-range of q and n employed by FHE. Our implementa-
tion prioritizes high throughput, low BRAM utilization, and
scalability for diverse FHE applications. This architecture has
been implemented on the Alveo U280 FPGA, achieving up
to two orders of magnitude speed-up compared to the existing
literature. Future research will focus on optimizing the resource
efficiency by applying different dimensional decompositions of
the ring dimension n and integrating modular reduction for
special primes.
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