
Differential MITM attacks on SLIM and LBCIoT

Peter Grochal∗ Martin Stanek†

Department of Computer Science
Faculty of Mathematics, Physics and Informatics

Comenius University

Abstract

SLIM and LBCIoT are lightweight block ciphers proposed for IoT applications. We
present differential meet-in-the-middle attacks on these ciphers and discuss several imple-
mentation variants and possible improvements of these attacks. Experimental validation
also shows some results that may be of independent interest in the cryptanalysis of other
ciphers. Namely, the problems with low-probability differentials and the questionable
accuracy of standard complexity estimates of using filters.

1 Introduction
We observe increasing applications of devices with limited resources, such as sensors, RFID
tags, and IoT devices. When data confidentiality, integrity, or authenticity is required, cryp-
tographic algorithms should be used. Constrained environments, whether it’s memory, com-
putation power, or battery, make conventional algorithms impractical in these scenarios.
Lightweight cryptography aims to address this issue and provide cryptographic algorithms
that can be implemented and operated on devices with limited resources. The importance of
lightweight cryptography is also highlighted in a standardization effort in the ISO/IEC 29192
series, and the NIST standardization process [12].

There are many different proposals for lightweight cryptographic algorithms, and new
ones are proposed every year [3, 6, 11]. Since these algorithms are optimized for resource
consumption, achieving cryptographic resilience is challenging. Hence, it is essential to analyze
them thoroughly.

Our contribution and related work

We study two lightweight block ciphers: SLIM [1], and LBCIoT [7]. These ciphers were
analyzed using differential cryptanalysis [5], and various cryptanalytic attacks were recently
tried in [10] – impossible differential, integral, etc. We apply differential meet-in-the-middle
(MITM) cryptanalysis on SLIM and LBCIoT. This attack was recently proposed as an exten-
sion of classical differential attack and was successfully used to attack multiple block ciphers
[2, 4, 8]. The main contribution of this paper:

∗pegro@protonmail.com
†martin.stanek@fmph.uniba.sk

1

• We present the first differential MITM attacks on SLIM and LBCIoT and compare them
with the best-known attacks on these ciphers. Our attacks on 25 and 26-round LBCIoT
are the best partial key recovery attacks on LBCIoT reported to date.

• We describe and experimentally verify a problem with low-probability differentials used
for cryptanalysis. In this case, the classical differential and the differential MITM
attacks do not work for a significant portion of encryption keys.

• We show that commonly used assumptions for complexity estimates of cryptanalytic
attacks are not always justified. We confirm this observation experimentally for reduced
variants of SLIM and LBCIoT.

The remainder of this paper is organized as follows. Section 2 introduces a notation and
high-level overview of differential MITM cryptanalysis. We describe SLIM and LBCIoT in
Section 3. The first part of Section 4 provides information about classical differential crypt-
analysis of SLIM and LBCIoT, and the problems we identified for low-probability differentials.
The main part of the section shows our differential MITM attack and its components: use-
ful bits and deterministic bits. The last section contains the results from the experimental
verification of the attack.

2 Preliminaries
Let E, D : {0, 1}l × {0, 1}n → {0, 1}n be the encryption and decryption functions of a block
cipher with the key length l and the block size n, i.e., for any key k ∈ {0, 1}l and plaintext
block x ∈ {0, 1}n we have D(k, E(k, x)) = x. In the rest of the paper we assume E can
be split into three consecutive transformations E = Eout ◦ Em ◦ Ein, i.e., first encrypting a
plaintext block with Ein, then Em, and finishing with Eout. For iterated block ciphers, e.g.,
SLIM and LBCIoT, various splits are possible using subsequent rounds. In such case, we
denote the number of rounds for the transforms by rin, rm, and rout.

A difference of two n bit vectors x1, x2 is a bitwise xor of these vectors, denoted as x1⊕x2.
We are interested in (sufficiently) high-probability differentials spanning the middle function
Em. A differential ∆ = (α→ β) is a pair of input and output differences. The probability of
the differential ∆ = (α→ β) is given by this formula:

Pr[Em(k, x)⊕ Em(k, x⊕ α) = β; for random k ∈ {0, 1}l and x ∈ {0, 1}n]. (1)

We show in Section 4.1 that for practical application of both differential attack and differential
MITM attack it is important to distinguish whether (1) is calculated for a random or fixed
k. Even for high-probability differentials we might observe large subset of keys, for which the
probability is zero, resulting in attack failure.

Given a differential ∆ = (α→ β), we denote by k∆
in the set of key bits that are sufficient

to compute a plaintext block P̃ from any block P , such that Ein(P)⊕Ein(P̃) = α. Similarly,
k∆

out is the set of key bits that are sufficient to compute a ciphertext block C̃ from any block
C, such that E−1

out(C)⊕E−1
out(C̃) = β. See Figure 1 for visual representation of these concepts.

The notion of deterministic bits allows us to detect situations when a particular differential
certainly did not occur, thus making the attack faster. Deterministic bits for a differential
∆ = (α→ β) and Eout are a subset of bits in a ciphertext block whose difference is constant,
provided that the difference before Eout is β. We denote this difference δ∆.

2

Since the attacks usually employ a single differential, we omit writing ∆ if it is obvious
from the context, e.g., for k∆

in, k∆
out or δ∆.

P

C C̃

β

α

2−p

rin

rout

Ein

Eout

kin

kout

P̃

rm Em

Figure 1: Splitting a cipher for differential MITM attack

2.1 Overview of differential MITM cryptanalysis

Let us split E into three transformations Eout ◦ Em ◦ Ein. Let ∆ = (α→ β) be a differential
for Em with probability 2−p. The differential MITM attack is a chosen plaintext attack. The
main idea of the attack is to find any correct pair of plaintexts P , P̃ , with corresponding
ciphertexts C, C̃, such that the differential ∆ occurs for Em. The successful search will reveal
candidate key bits for kin and kout.

We find such correct pair P , P̃ using MITM approach (a precise description with deter-
ministic bits is provided in Algorithm 1 in Section 4.2):

1. For a fixed random P , we guess value i for kin, and compute P̃ such that the difference
of P and P̃ after the transformation Ein results in α.

2. We ask for the ciphertext C corresponding to P and ciphertext Ĉ corresponding to P̃ .
This is where chosen plaintext oracle is used. We store the pair (Ĉ, i) using a hash
table.

3. Independently, we guess value j for kout, and compute C̃ from C such that their dif-
ference after E−1

out is β. Then, for each pair (C̃, i) found in the hash table, we get a
candidate combination (i, j) for kin, and kout.

All candidate combinations have the property that the desired differences are achieved after
Ein and E−1

out. This is certainly also true for any correct pair P , P̃ . Hence, the correct key
bits are among our candidates.

Since the probability of the differential ∆ is 2−p, we repeat the procedure 2p times so that
we can expect the differential to occur for the correct (i, j) values. There is a possibility to
optimize the search procedure if kin and kout overlap.

3

The differential MITM cryptanalysis shares some similarities with a classical differential
cryptanalysis, see [8] for a detailed discussion and comparison.

3 SLIM and LBCIoT
SLIM and LBCIoT are designed as lightweight 32-bit block ciphers aimed at RFID in case of
SLIM [1], and IoT devices in case of LBCIoT [7]. We describe those parts of the ciphers that
are relevant for the subsequent cryptanalysis.

3.1 SLIM

SLIM is a Feistel cipher with 32-bit block divided into left and right 16-bit halves. The cipher
uses a 80-bit key to derive 32 round keys, each one 16 bits long. The round function of SLIM
is depicted in Figure 2. The cipher begins with initializing the state with the plaintext block
(L0, R0), and follows by iterating the round function 32 times using corresponding round keys.

Li Ri

P
S

S

S

S

16

Ki

Li

Ri+1

4

4

4

4

Li+1

Figure 2: SLIM round function

The round function uses the following operations to transform the state (Li, Ri) into
(Li+1, Ri+1):

• Xor-ing round key Ki with a copy of Ri. Being a Feistel cipher, SLIM does not change
Ri, which becomes Li+1 in the next round.

• Parallel substitution using a fixed 4× 4 substitution box S:

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S(x) C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

• Permuting bits with a fixed permutation P ; the proposal was not clear regarding the
bit order, we follow implementation used in [5], where 0 refers to the least significant
bit (the rightmost bit or, following Figure 2, the bit at the bottom):

x 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
P (x) 12 9 6 3 0 15 10 4 5 2 14 11 8 1 13 7

4

• Xor-ing the result with Li.

• Swapping the left and right halves of the state.

Remark. Since SLIM is a Feistel cipher, the decryption is performed using the same round
function with round keys applied in reverse order. In order to make this work, the last round
of the cipher should omit the final swap of halves. However, the proposal [1] does not mention
this at all.

The key schedule of SLIM has the following structure: the 80-bit master key is divided into
the first five 16-bit round keys, and the remaining round keys are computed by a deterministic
algorithm. This algorithm was not clearly defined in [1]. Our analysis does not use any
weaknesses of the key scheduling after the first five rounds. Therefore, we omit its description.
If there are any exploitable deficiencies in the key scheduling, they can improve our attacks.

3.2 LBCIoT

LBCIoT shares some similarities with SLIM: 80-bit key, 32-bit block, 32 rounds, and similar
internal components. It also splits the block into two 16-bit halves. Even though the round
function of LBCIoT resembles a Feistel cipher, it is not – both halves are transformed in each
round, see Figure 3.

Li Ri

P1

S

S

S

S

16
Ki

Li

Ri+1

4

4

4

4

Li+1

≪ 7

P2

Figure 3: LBCIoT round function

The round function uses the following operations to transform the state (Li, Ri) into
(Li+1, Ri+1):

• A cyclical rotation of Ri’s copy by 7 bits, followed by a parallel substitution using a
fixed 4× 4 substitution box S:

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S(x) 0 8 6 D 5 F 7 C 4 E 2 3 9 1 B A

• Xor-ing the result with Li and a round key Ki.

• Left and right halves are permuted using a fixed permutations P1 and P2 for the left
half and the right half, respectively. Similarly to SLIM, the proposal was not clear

5

regarding the bit order. We choose the order compatible with differentials from [5]. In
the following tables 0 refers to the least significant bit:

x 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
P1(x) 7 10 5 0 3 14 15 4 1 2 13 8 11 6 9 12
P2(x) 9 6 14 8 5 13 0 3 12 1 10 2 11 15 7 4

• Swapping the left and right halves of the state.

The decryption round function must invert the encryption round. Starting with inverse
permutations P −1

1 , P −1
2 . The inner transformation with rotation and substitutions is the

same, and the order of round keys is reversed.
The key schedule of LBCIoT starts, similarly to SLIM, by dividing the 80-bit master key

into the first five 16-bit round keys. The computation of other round keys is unclear from the
proposal [7]. However, our attacks do not use any weaknesses of the key scheduling after the
first five rounds.

4 Attacking SLIM and LBCIoT

4.1 Differentials and prior attacks

SLIM and LBCIoT were analyzed and attacked in [5] using a differential cryptanalysis. The
authors found suitable differentials using CryptoSMT tool [9]. Tables 1 and 2 summarize a
selection of their differentials that we use for our subsequent attacks, see Appendix A for a
more extensive list of differentials. We have experimentally verified the probability of these
differentials. More precisely, we have confirmed the probability of ciphertexts having the
difference β, given a random key, and a random plaintext pair with difference α, see also (1)
in Section 2.

r α β 2−p

11 4827 0080 0020 08b4 2−26

12 0b82 000a 0a00 801b 2−28

13 a208 a000 a000 b208 2−31

Table 1: Differentials for SLIM

r α β 2−p

16 0006 0400 0020 1000 2−26

17 0006 0400 0100 2040 2−28

18 6000 0040 0000 0800 2−30

Table 2: Differentials for LBCIoT

The authors of differential cryptanalysis of SLIM and LBCIoT claim [5] the following results,
all attacking reduced versions of the ciphers:

• 13-round SLIM (using a 12-round differential): Reconstruction of 1-round subkey with
probability 98.2% and time complexity proportional to 231 encryptions.

• 14-round SLIM (using a 13-round differential): Using a full codebook as chosen plain-
texts, the final round key can be obtained with probability 63.2% and time complexity
proportional to 232 encryptions.

• 18-round LBCIoT (using a 17-round differential): The attack reconstructs the final
round subkey with probability 98.2% and time complexity proportional to 231 encryp-
tions.

6

• 19-round LBCIoT (using a 18-round differential): Time complexity is proportional to
231 encryptions, and the final round key can be found with probability 63.2%.

4.1.1 The problem with low-probability differentials

The probability of differential defined as in (1) does not guarantee the desired property for
each fixed key that we aim to reconstruct in the classical differential and differential MITM
attacks. This situation is especially problematic for differentials with small probabilities (close
to 2−n), where selection of plaintexts is no more independent when almost entire plaintext
space is exhausted.

Let us illustrate this problem on SLIM, where the authors [5] employ a 12-round differential
with probability 2−28, and a 13-round differential with probability 2−31. We propose a simple
experiment where a random key is tested on the entire plaintext space to find out, whether
the desired difference occurs at least once. The results presented in Table 3 show that for
a substantial portion of keys – each differential was tested with 10.000 random keys – the
output difference was never observed. For such keys, the classical differential cryptanalysis
and the differential MITM cryptanalysis can never succeed. The results of similar experiment
for LBCIoT are presented in Table 4.

r α β 2p % of keys
11 4827 0080 0020 08b4 2−26 0%
12 0b82 000a 0a00 801b 2−28 30.06%
13 a208 a000 a000 b208 2−31 40.61%

Table 3: Percentage of tested keys for which the differential never occurs in SLIM

r α β 2p % of keys
16 0006 0400 0020 1000 2−26 0%
17 0006 0400 0100 2040 2−28 0.01%
18 6000 0040 0000 0800 2−30 5.95%

Table 4: Percentage of tested keys for which the differential never occurs in LBCIoT

4.2 Differential MITM attack

This section presents the differential MITM attack with deterministic bits, its components
and complexity. We show how these are relevant for SLIM and LBCIoT, and what parameters
we obtain when analyzing these ciphers.

4.2.1 Computation of kin and kout – useful bits

Before we explain the attack itself, we need to address how kin and kout are computed for
given difference α and β, respectively. We want to identify useful bits. A key bit is called
useful, if it cannot be omitted in kin or kout. More precisely, a bit (position) is useful for kin
if there exists a key k and a plaintext P , such that flipping that bit in the key k alters the

7

result of E−1
in (k, (Ein(k, P)⊕α)). Similarly, a useful bit (position) for kout alters the result of

Eout(k, (E−1
out(k, C)⊕ β)), for some k and C, when the key bit is flipped.

A simple general procedure to find useful bits was proposed in [4, Appendix A]. Note
that the algorithm is probabilistic, and may not detect some of the rarely-useful bits. Tables
5 and 6 show masks for useful bits for SLIM and LBCIoT, with various numbers of rounds
considered for Ein, Em, and Eout. Let us remind that the number of rounds rm for Em
determines the differential used in useful bits calculation. We use a single differential for each
distinct rm, see Appendix A.
Remark. Another option is to look at the structure of a cipher, and see which bits are guar-
anteed to not be useful. This is usually straightforward, but obtained sets of remaining bits
might be larger than kin and kout obtained by the algorithm.

rin rm rout kin mask kout mask |kin| |kout|
1 4 1 e000 f007 3 7
2 4 2 ffff e000 f007 ffff 19 23
1 6 1 0d07 efb7 6 13
1 8 1 f0db 0df0 10 7
2 11 3 ffff b7df 07fb ffff ffff 29 42
3 11 2 ffff ffff b7df 07fb ffff 45 26
3 13 2 ffff ffff fd07 fd07 ffff 42 26

Table 5: Useful bits in SLIM for selected cipher splits. Masks contain 1 for bits that are
useful.

rin rm rout kin mask kout mask |kin| |kout|
2 8 2 a010 0000 0000 2021 3 3
3 8 3 bfbf a010 0000 0000 2021 777b 17 15
2 10 2 a8d0 0000 0000 2021 6 3
2 14 2 a8d0 0000 0000 2121 6 4
3 17 3 bfff a8d0 0000 0000 1658 ffff 21 22
4 17 4 ffff bfff a8d0 0000 0000 1658 ffff ffff 37 38
4 18 4 ffff efff 160b 0000 0000 2101 bdab ffff 37 30

Table 6: Useful bits in LBCIoT for selected cipher splits. Masks contain 1 for bits that are
useful.

4.2.2 Attack inputs and deterministic bits

Algorithm 1 shows a general pseudocode for differential MITM attack that uses deterministic
bits. Let us discuss the inputs first. The cipher is split according to the given rounds numbers
rin, rm, and rout. We additionally expect an rm-round differential ∆ = (α, β) with probability
2−p. The number of input rounds rin and the difference α determine the set of useful bits kin;
similarly, kout is determined by rout and β.

8

Algorithm 1 Differential MITM attack with deterministic bits
Inputs: rin, rm, rout – number of rounds how cipher is split into Ein, Em, and Eout, respectively

∆ = (α, β) – rm-round differential with probability 2−p

kin, kout – set of key bits for given ∆, rin, and rout, respectively
δ – difference of deterministic bits for given rout and β
κ – positive integer

Output: set of candidates – key bits for kin and kout

1: Candidates = ∅ . Initialize mutliset for candidate keys
2: repeat κ · 2p times
3: H = ∅ . Initialize the hash table
4: P ∈R {0, 1}n . Choose a random plaintext
5: C = E(P) . Query the oracle
6: for each guess i for kin do
7: Compute P̃ from P and i, such that Ein(P)⊕ Ein(P̃) = α.
8: Ĉ = E(P̃) . Query the oracle
9: Let D and D̂ be the deterministic bits of C and Ĉ respectively.

10: if D ⊕ D̂ = δ then . Filter on deterministic bits
11: H[Ĉ]← i . Store in the hash table
12: if H 6= ∅ then . Guess for kout only if some suitable i exists
13: for each guess j for kout do
14: Compute C̃ from C and j, such that E−1

out(C)⊕ E−1
out(C̃) = β

15: for each i ∈ H[C̃] do . (i, j) is consistent with differential ∆
16: Candidates.add((i, j)) . Add (i, j) to the multiset
17: return the most frequent (i, j) values from Candidates

Next input is δ, a difference of deterministic bits for given rout and β. We use a simple
algorithm to find the deterministic bits. It takes a few random ciphertext blocks. For each
ciphertext C and all possible values of key bits in kout, it computes the corresponding cipher-
text C ′, such that C and C ′ have difference β before Eout. A deterministic bit must have a
constant difference of its values for each pair (C, C ′). A set of all constant differences forms
the resulting δ. The complexity of this algorithm is exponential in |kout|. Table 7 shows
positions of deterministic bits (in ciphertext) and the difference δ in SLIM and LBCIoT for
selected rout and β.
Remark. When a bit is not deterministic for Eout and β, the algorithm usually recognizes
this situation fast. A non-constant bit difference in any corresponding (C, C ′) is a definitive
proof.

The last input parameter of Algorithm 1 is κ. We repeat the main cycle for κ · 2p random
plaintexts, in order to expect the differential ∆ to occur κ times for the correct values of key
bits in kin and kout. Although the attack requires the differential to occur only once, multiple
occurrences, for κ > 1, help the correct key bits to appear more frequently in the Candidates
set. This is important if only the most frequent candidates are used for further attack. For
practical evidence, see the experiments in Section 5.

9

β rout deterministic bits D |D |

SLIM 1000 a008 1 101000000000100000..00..1.00.0.0 25
1000 a008 2 00..00..1.00.0.0................ 9
8000 1d48 1 0001110101001000........1...1... 18
9000 02d0 1 0000001011010000..01..0000..0.0. 24
0020 08b4 2 ...0..0..0.10................... 5
a000 b208 2 .0..0...1.0..0.................. 5

LBCIoT 2000 0a40 2 00..000.00..00..00.....0...00... 14
0000 0800 2 0000000100.000..001....0...0000. 21
0020 1000 2 0100000000.0001.00.........100.. 19
0020 1800 2 0100000100.000..00.........100.. 18

Table 7: Deterministic bits for SLIM and LBCIoT. D contains ‘.’ if the bit is not deterministic,
otherwise it shows the difference for the deterministic bit.

4.2.3 Attack description

The algorithm consists of two main steps. First, for each guess i for kin bits, we compute
P̃ from P , such that α occurs after Ein assuming our guess is correct. This can be done by
computing in constant time P̃ = E−1

in (Ein(P)⊕α). The knowledge of kin bits is sufficient, since
kin contains the useful bits, and all other key bits can be set arbitrarily for this calculation.
Afterwards, we use the deterministic bits as a |D |-bit filter to detect some incorrect guesses,
and thus lower the number of candidate entries for i in H.

The second step is executed only when H is not empty, i.e., when at least one i passed the
deterministic bits check in the first step. Our experiments in Section 5 confirm that for SLIM
and LBCIoT this check significantly reduces the overall number of second steps performed.

We search for the “correct” guess j for kout bits in the second step. A correct guess means
we can find a pair (i, j) that is consistent with the differential ∆. We compute C̃ from C, such
that β occurs before Eout: C̃ = Eout(E−1

out(C)⊕ β), where the knowledge of useful kout bits is
sufficient for this calculation. A consistent pair (i, j) is recognized when C̃ = Ĉ. Therefore,
we perform the lookup H[C̃] to collect matching i values.
Remark. A consistent pair (i, j) for kin and kout does not imply that by encrypting P and P̂
the differential ∆ occurred. We just know, that using these key fragments we get difference
α after Ein, starting from the plaintexts, and difference β before Eout, starting from the
ciphertexts. Certainly, the correct values are among these consistent pairs.

4.2.4 Complexity of the attack

We discuss time, space and data complexity of the proposed attack. For each of the κ · 2p

iterations, the expected number of candidates added is the number of all possible candidate
pairs |H| · 2|kout| reduced by the application of the n-bit filter, where Ĉ and C̃ must match on
all n bits. Moreover, the expected size of H is 2|kin| reduced by the application of the |D | bit
filter.

To calculate the effect of these filters, we assume the uniformity of the filters, which is a

10

standard assumption used in similar analyses [2, 4, 8]. More precisely, we assume a uniform
distribution of ciphertexts Ĉ and C̃ for incorrect (i, j) pairs. As a consequence, a (Ĉ, C̃) pair
passes the n-bit filter with probability 2−n. Similarly, a random Ĉ passes the |D | bit filter
with probability 2−|D |. Hence, the expected size of H is 2|kin|−|D |, and the expected number
of candidates added in one iteration is 2|kin|−|D |+|kout|−n.

Remark. The uniformity assumption for the filters lowers the complexity of the attacks, it
works “in our favor”. The real ciphers can behave differently. We show the experimental
evaluation of the attacks for SLIM and LBCIoT in Section 5.

Time complexity. The complexity depends on the iterations in two for-loops, i.e., |kin|, |kout|,
and on the number of candidates added, since we need to build each one candidate from (i, j).
Therefore, the time complexity is1

T = κ · 2p · (2|kin| + 2|kout| + 2|kin|−|D |+|kout|−n).

Space complexity. The complexity depends both on |H|, and on the overall number of candi-
dates stored in the multiset Candidates. We do not take into account that many candidates
added are already present in the multiset, and require no additional space. The space com-
plexity is therefore bounded from above:

S ≤ 2|kin|−|D | + κ · 2p · 2|kin|−|D |+|kout|−n.

Data complexity. We query the oracle for the entire codebook and cache the results – in-
creasing the space complexity by 2n – in case when the default attack would query the oracle
more times than 2n. Otherwise, we can trivially calculate the data complexity. Hence, the
data complexity is

D = min{κ · 2p+|kin|, 2n}.

Remark. Deterministic bits allow us to detect candidates for which the differential cannot
occur, and reject them in advance. Hence, we can use the complexity estimate with deter-
ministic bits even for an attack variant that does not use them. Moreover, we expect that
using deterministic bits does not affect the number of candidates. It is because each cipher-
text Ĉ, which has the difference with C on the deterministic bits different from δ, cannot
match any ciphertext C̃ computed in the second for loop, since we know that all C̃ are such
that their difference with C on the deterministic bits is δ.

4.3 Comparison with previous attacks

We denote by DM(rin, rm, rout) the differential MITM attack on (rin +rm +rout)-round cipher
split into rin-round Ein, rm-round Em, and rout-round Eout. In our case, the attack is applied
on SLIM or LBCIoT, and the split carries information on various component of the attack:

• Differential ∆ = (α, β) for rm rounds according to Tables 1 and 2.

• Useful bits kin and kout for given ∆ and cipher split, based on Tables 5 and 6.

• Deterministic bits according to Table 7.
1We do not consider any potential performance gains from the H 6= ∅ test in this estimate.

11

We use complexity estimates from Section 4.2.4 for differential MITM attacks. Table 8
shows the best attacks of each type on SLIM and LBCIoT, including classical differential
attacks [5], and the best known linear attack on SLIM [10]. The differential MITM attack on
LBCIoT is the best attack according to our knowledge.

bits recovered
cipher rounds attack T S D |kin| |kout|

SLIM 13∗ differential [5] 231 212 231 - 12
14∗ differential [5] 232 212 232 - 12
16 DM(3, 11, 2) κ · 271 κ · 265 232 45 26
18∗ DM(3, 13, 2) κ · 273 κ · 267 232 42 26
19 linear [10] 264.4 238 232 - 36

LBCIoT 18 differential [5] 231 28 231 does not work†

19 differential [5] 232 23 231 does not work†

25 DM(4, 17, 4) κ · 271 κ · 271 232 37 38
26∗ DM(4, 18, 4) κ · 267 κ · 265 232 37 30

(∗) the attack fails for a substantial portion of keys, see Section 4.1.1
(†) see explanation in the text

Table 8: Selected attacks on reduced versions of SLIM of LBCIoT

Classical differential attack works by decrypting the final round on both Ĉ and C̃ and
asking whether the difference is β. In case of LBCIoT, the final round key is simply XOR-ed
with the left half, and thus the difference is the same for all keys. Hence, no candidate will
be more frequent then any other, i.e., we extract 0 bits of information. In other words, there
are 0 useful bits for LBCIoT if rout = 1.
Remark. The problem can certainly be fixed by using shorter differential and decrypting two
final rounds. We do not analyze this variant, since the proposed differential MITM attacks
work for more cipher rounds.

4.4 Extending the attack to full key recovery

The key schedule of both SLIM and LBCIoT has the following structure, the 80-bit master
key is divided into the first five 16-bit round keys, and the remaining round keys are computed
by a deterministic algorithm. Therefore, in our attacks, bits in kin correspond to specific bits
in the master key.

A simple approach to full key recovery is to guess the remaining 80 − |kin| bits of the
master key, run the key scheduling, and filter out incorrect keys using known kout bits. We
can also consider skipping the filtering part and use only the master keys with prescribed
kin. Resulting keys are then verified by checking correctness of encryption on a few known
plaintext-ciphertext pairs. The success of this approach depends on the number of candidates
m and the number of unique candidates for the kin part (let us denote this number by min;
trivially min ≤ m and min ≤ 2|kin|). We call an attack successful, if it is faster than brute-force
attack trying all 280 keys.

12

• Only kin is used, no filtering: The attack is successful if min < 2|kin|, since we have
min · 280−|kin| < 280 candidates for the master key.

• Both kin and kout are used: The expected number of keys that requires final verification
is m · 280−|kin|−|kout|. We can run the key scheduling for min · 280−|kin| master keys and
filter out incorrect keys using corresponding kout values. Again, the attack is successful
if min < 2|kin|. Note, that if there is a significant complexity imbalance between key
scheduling and encryption, it still might be useful to perform the attack, even if min is
close or equal to 2|kin|.

Remark. Assuming a cipher with independent round keys, the attack is trivially successful.
There is nothing to filter on, since both kin and kout bits correspond to specific bits in the
master key.

An alternative approach to full key recovery is to iteratively attack a reduced round version
of the cipher. The choice of the attacks depends on many details, such that the probability
of the differentials or |kin| + |kout| value, i.e., the number of already known bits of the key.
Rather than searching through the space of all combinations of the attack’s variants to find
the optimal mix, we recommend to find multiple differentials for a fixed number of rounds to
be able to attack as many bits of each round key as possible, preferably all.

5 Experiments
We implemented several variants of the differential MITM attack to experimentally validate
their performance and various assumptions they make. This section presents the most in-
teresting observations. All variants were run 100 times for random keys and the presented
numbers are averages of obtained results. Exceptions are mentioned explicitly when relevant.

The attacks are computationally demanding, therefore our experiments cover variants that
are computationally feasible, i.e., with reduced number of rounds.

5.1 Candidates

The number of candidates for kin and kout dictates the complexity of subsequent extension of
the attack to full key recovery. Ideally, we get only few candidates. The Candidates multiset
can contain multiple occurrences of a candidate. An interesting question is whether we can
focus on the most frequent candidates and ignore the other candidates.

Table 9 shows a simple statistic for candidates, most frequent candidates, unique candi-
dates, total number of candidates, and theoretical expectation of the total number of candi-
dates based on the estimate from Section 4.2.4. We can make the following observations:

• Theoretical estimates that use the standard and commonly used assumptions of filter
uniformity, are completely off for small attacks. This affects overall complexity estimates
for these attacks as well. It remains an open problem whether the estimates hold for
more rounds.

• Collecting and proceeding with only unique candidates, compared to trying each one as
it is discovered in the algorithm (including duplicates), reduces the complexity moder-
ately (up to factor 2). However, the importance of not repeating candidates increases
with increasing κ, since κ is positively correlated with the total number of candidates.

13

• A much more promising heuristic is to focus only on the most frequent candidates,
since the number of most frequent candidates is significantly lower. Again, increasing
κ should help even more.

• Using longer differentials (increasing rm) is more efficient than increasing kin or kout
when attacking SLIM or LBCIoT.

cipher attack most frequent(∗) unique total expected

SLIM DM(1, 6, 1) 2.1 75.5 127.1 κ · 2−19

DM(2, 4, 2) 10.6 10 021 490.7 10 067 302.4 κ · 27

DM(1, 8, 1) 4.7 103.2 157.2 κ · 2−21

LBCIoT DM(2, 8, 2) 1.1 5.6 21.2 κ · 2−35

DM(2, 10, 2) 1.1 15.2 42.4 κ · 2−28

DM(2, 14, 2) 2.2 26.2 70.4 κ · 2−18

(∗) when the occurrence of the correct key is at least 2

Table 9: Number of candidates (experiments with κ = 7)

Increasing the parameter κ

The size of the set of the most frequent candidates seems to be negatively correlated with
their multiplicity. It supports the theory, that the greater the occurrence of the correct key,
the “more difficult” it is for a random candidate to occur that many times.

The value of κ controls how many times we expect our differential in the attack. In our
experiments, with κ = 7, we expected 7 occurrences of the differential. However, we got from
1 to 17 occurrences. Increasing κ to 14 changed this range to the minimum value 4 and the
maximum value 25.

We observed few attacks where the set of most frequent candidates was the entire set of
candidates, i.e., all had occurrence 1. In such case, using most frequent candidates instead of
all candidates is irrelevant. Hence, we count the average over those attacks in which the most
frequent candidates have multiplicity at least 2. Note that this occurred in 98.8% of attacks
with κ = 7, and always for κ = 14.

5.2 Deterministic bits

The main motivation for deterministic bits is to skip guessing kout in when unnecessary. This
happens when H = ∅, see line 12 of Algorithm 1. Table 10 shows experimental results which
count the situations when the attack did not skip the second for-loop: the first column shows
an average of 100 runs, the third column is the theoretical estimate for this quantity, which we
compute as κ ·2p ·2min(0,|kin|−|D |), i.e., we reduce the number of iterations by the expected size
of H, again, assuming the uniformity of D-bit filter. The second column “out of” displays,
for comparison, how many times was this condition tested, i.e., κ · 2−p.
Let us discuss the main observations:

14

cipher attack recorded “out of” expected

SLIM DM(1, 6, 1) 11.8 28 672 7.0
DM(2, 4, 2) 445.9 448 448.0
DM(1, 8, 1) 39.8 1 835 008 112.0

LBCIoT DM(2, 8, 2) 7.1 7 168 0.1
DM(2, 10, 2) 12.1 114 688 14.0
DM(2, 14, 2) 2 693.2 29 360 128 7 168.0

Table 10: H 6= ∅ (experiments with κ = 7)

• The hash table H is non-empty very rarely. Hence, when using deterministic bits, we
often skip over the second for-loop.

• Deterministic bits seem to have no actual impact on the number of candidates, unique
candidates, and even the most frequent candidates. Table 11 summarizes statistics
where no deterministic bits are used and allows a direct comparison with Table 9.

• The previous observation confirms our expectation that the notion of deterministic bits
allows us to better approximate the number of candidates regardless of whether they
are implemented or not (since their sole purpose is to prematurely detect bad pairs).

cipher attack most frequent(∗) unique total expected

SLIM DM(1, 6, 1) 2.2 72.5 119.2 3.5
DM(2, 4, 2) 16.0 9 047 210.1 9 102 387.2 458 752.0
DM(1, 8, 1) 4.2 104.6 166.4 56.0

LBCIoT DM(2, 8, 2) 1.1 5.6 21.7 κ · 2−16

DM(2, 10, 2) 1.2 14.4 39.8 κ · 2−9

DM(2, 14, 2) 2.1 27.8 72.1 κ · 20

(∗) when the occurrence of the correct key is at least 2

Table 11: Number of candidates without deterministic bits (experiments with κ = 7)

5.3 Identical bits

We noticed the following phenomenon: few bits were identical among all of the most frequent
candidates. Based on this observation, we propose the following modification: The attack
outputs just one candidate – a vector of the identical bits, and a mask informing where the
identical bits are located. Table 12 presents the average number of identical bits in various
attacks, and compares it with overall bits guessed in candidates, i.e., |kin|+ |kout|.

15

If multiple differentials are known, we can repeat the attack for each differential, hopefully
covering the majority of round key bits for the first rin rounds and the last rout rounds. The
remaining few bits can be brute-forced.

We present the following observations:

• By using the identical bits, we often lose little information, but we may lose a lot –
when there are only few identical bits. Therefore, we propose the following test. If the
number of most frequent candidates is much smaller than the number of candidates
satisfying the identical bits 2|kin|+|kout|−l (2 to the power of not identical bits), then the
attack should output the exact set of candidates.

• We observe that the number of identical bits is negatively correlated with increasing
number of most frequent candidates.

• By increasing κ, we often increase the number of identical bits, up to a limit. For attack
DM(2, 4, 2) on SLIM, by changing κ from 7 to 14, the average number of identical bits
changed from 37.8 to 39.7. However, increasing κ further did not increase the number
beyond 40, even though |kin|+ |kout| is 42.

• Use of deterministic bits does not significantly change the number identical bits. In our
experiments, the average changed by ±0.2. Table 12 uses algorithm with deterministic
bits.

cipher attack identical bits |kin|+ |kout|

SLIM DM(1, 6, 1) 15.9 19
DM(2, 4, 2) 37.8 42
DM(1, 8, 1) 11.7 17

LBCIoT DM(2, 8, 2) 5.9 6
DM(2, 10, 2) 8.8 9
DM(2, 14, 2) 7.9 10

Table 12: Number of identical bits (experiments with κ = 7)

6 Conclusion
We have applied the differential MITM attack, with improvements, on lightweight ciphers
SLIM and LBCIoT. Firstly, we proposed that the attack returns only the most frequent
candidates. We have shown, experimentally for small cases, that it can significantly lower
the resulting number of candidates. Secondly, based on the results of our experiments, we
proposed the notion of identical bits, i.e., instead of returning a set of candidates, we return
one partial candidate consisting of such bits (and their values), which have the same value
across all most frequent candidates. We believe that these modifications may prove useful in
attacks on other ciphers.

16

Our attacks on 25 and 26-round LBCIoT are the best partial key recovery attacks on
LBCIoT reported to date.

We have also discussed the problem with low-probability differentials. There might be keys
for which no plaintext pair can produce that differential. We have experimentally verified this
for ciphers SLIM and LBCIoT. Indeed, for a differential with probability close to 2−n, there
is a significant percentage of keys such that the differential does not occur for any plaintext
pair. Whether this occurs for other ciphers is left as an open problem.

Our experiments have shown a problem with the complexity implications of l-bit filters.
It is often assumed that a random candidate passes through an l-bit filter with probability
2−l. We have shown, that for small cases2, these approximations are incorrect. Whether this
problem is universal for attacks on other ciphers, and when exactly the assumption holds is
left for further investigation.

Acknowledgment

The computational resources were provided by the project ITMS2014+:313021X329 – Ad-
vancing University Capacity and Competence in Research, Development and Innovation
(ACCORD), co-financed by the European Regional Development Fund.

References
[1] Bassam Aboushosha et al. “SLIM: A Lightweight Block Cipher for Internet of Health

Things”. In: IEEE Access 8 (2020), pp. 203747–203757. doi: https://doi.org/10.
1109/ACCESS.2020.3036589.

[2] Zahra Ahmadian et al. Improved Differential Meet-In-The-Middle Cryptanalysis. Cryp-
tology ePrint Archive, Paper 2024/351. 2024. url: https://eprint.iacr.org/2024/
351.

[3] Vijesh Bhagat et al. “Lightweight cryptographic algorithms based on different model
architectures: A systematic review and futuristic applications”. In: Concurrency and
Computation: Practice and Experience 35.1 (2023), e7425. doi: https://doi.org/10.
1002/cpe.7425.

[4] Christina Boura et al. Differential Meet-In-The-Middle Cryptanalysis. Cryptology ePrint
Archive, Paper 2022/1640. 2022. url: https://eprint.iacr.org/2022/1640.

[5] Yen Yee Chan et al. “On the resistance of new lightweight block ciphers against differ-
ential cryptanalysis”. In: Heliyon 9.4 (2023). issn: 2405-8440. doi: https://doi.org/
10.1016/j.heliyon.2023.e15257.

[6] Sumit Singh Dhanda, Brahmjit Singh, and Poonam Jindal. “Lightweight Cryptogra-
phy: A Solution to Secure IoT”. In: Wireless Personal Communications 112.3 (2020),
pp. 1947–1980. doi: https://doi.org/10.1007/s11277-020-07134-3.

[7] Rabie A. Ramadan et al. “LBC-IoT: Lightweight Block Cipher for IoT Constraint De-
vices”. In: Computers, Materials & Continua 67.3 (2021), pp. 3563–3579. issn: 1546-
2226. doi: https://doi.org/10.32604/cmc.2021.015519.

2those that we were able to verify experimentally

17

https://doi.org/https://doi.org/10.1109/ACCESS.2020.3036589
https://doi.org/https://doi.org/10.1109/ACCESS.2020.3036589
https://eprint.iacr.org/2024/351
https://eprint.iacr.org/2024/351
https://doi.org/https://doi.org/10.1002/cpe.7425
https://doi.org/https://doi.org/10.1002/cpe.7425
https://eprint.iacr.org/2022/1640
https://doi.org/https://doi.org/10.1016/j.heliyon.2023.e15257
https://doi.org/https://doi.org/10.1016/j.heliyon.2023.e15257
https://doi.org/https://doi.org/10.1007/s11277-020-07134-3
https://doi.org/https://doi.org/10.32604/cmc.2021.015519

[8] Ling Song, Qianqian Yang, and Huimin Liu. Revisiting the Differential Meet-In-The-
Middle Cryptanalysis. Cryptology ePrint Archive, Paper 2023/1302. 2023. url: https:
//eprint.iacr.org/2023/1302.

[9] Stefan Kölbl. CryptoSMT: An easy to use tool for cryptanalysis of symmetric primitives.
url: https://github.com/kste/cryptosmt.

[10] Nobuyuki Sugio. “Bit-Based Evaluation of Lightweight Block Ciphers SLIM, LBC-IoT,
and SLA by Mixed Integer Linear Programming”. In: IET Information Security 2024.1
(2024), p. 1741613. doi: https://doi.org/10.1049/2024/1741613.

[11] Vishal A. Thakor, Mohammad Abdur Razzaque, and Muhammad R. A. Khandaker.
“Lightweight Cryptography Algorithms for Resource-Constrained IoT Devices: A Re-
view, Comparison and Research Opportunities”. In: IEEE Access 9 (2021), pp. 28177–
28193. doi: 10.1109/ACCESS.2021.3052867.

[12] Meltem Sonmez Turan et al. Status Report on the Final Round of the NIST Lightweight
Cryptography Standardization Process. NIST Interagency/Internal Report (NISTIR),
National Institute of Standards and Technology. 2023. doi: https://doi.org/10.
6028/NIST.IR.8454.

A Differentials for SLIM and LBCIoT
We present a comprehensive set of differentials found in [5]. We have verified all listed
differentials experimentally.

r α β 2−p

3 8d10 0400 0000 0d00 2−4

4 1000 b000 1000 a008 2−6

5 d804 0040 0040 d804 2−8

6 0208 4700 8000 1d48 2−12

7 09a6 001a 001a 4982 2−16

8 9024 0090 9000 02d0 2−18

9 0b82 000a 000a 0a82 2−21

10 0020 00b0 0080 4823 2−24

11 4827 0080 0020 08b4 2−26

12 0b82 000a 0a00 801b 2−28

13 a208 a000 a000 b208 2−31

Differentials for SLIM

r α β 2−p

3 0010 0000 2000 0a40 2−4

4 0020 0000 0000 0800 2−4

5 0002 0000 4000 0002 2−6

6 0002 0400 0000 2000 2−8

7 0002 0000 0000 0800 2−8

8 0002 0000 0020 1000 2−10

9 2000 0040 0020 1000 2−12

10 0006 0400 0020 1000 2−14

11 0006 0400 0120 3800 2−16

12 2000 0040 0120 3000 2−18

13 0006 0400 0000 0800 2−20

14 0006 0400 0020 1800 2−22

15 0006 0400 0000 0800 2−24

16 0006 0400 0020 1000 2−26

17 0006 0400 0100 2040 2−28

18 6000 0040 0000 0800 2−30

Differentials for LBCIoT

18

https://eprint.iacr.org/2023/1302
https://eprint.iacr.org/2023/1302
https://github.com/kste/cryptosmt
https://doi.org/https://doi.org/10.1049/2024/1741613
https://doi.org/10.1109/ACCESS.2021.3052867
https://doi.org/https://doi.org/10.6028/NIST.IR.8454
https://doi.org/https://doi.org/10.6028/NIST.IR.8454

	Introduction
	Preliminaries
	Overview of differential MITM cryptanalysis

	SLIM and LBCIoT
	SLIM
	LBCIoT

	Attacking SLIM and LBCIoT
	Differentials and prior attacks
	The problem with low-probability differentials

	Differential MITM attack
	Computation of kin and kout – useful bits
	Attack inputs and deterministic bits
	Attack description
	Complexity of the attack

	Comparison with previous attacks
	Extending the attack to full key recovery

	Experiments
	Candidates
	Deterministic bits
	Identical bits

	Conclusion
	Differentials for SLIM and LBCIoT

