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Abstract

In this paper, we construct new t-server Private Information Retrieval (PIR) schemes with communi-
cation complexity subpolynomial in the previously best known, for all but finitely many t. Our results are
based on combining derivatives (in the spirit of Woodruff-Yekhanin [WY05]) with the Matching Vector
based PIRs of Yekhanin [Yek08] and Efremenko [Efr09]. Previously such a combination was achieved in
an ingenious way by Dvir and Gopi [DG15], using polynomials and derivatives over certain exotic rings,
en route to their fundamental result giving the first 2-server PIR with subpolynomial communication.

Our improved PIRs are based on two ingredients:
• We develop a new and direct approach to combine derivatives with Matching Vector based PIRs.

This approach is much simpler than that of Dvir-Gopi: it works over the same field as the original
PIRs, and only uses elementary properties of polynomials and derivatives.

• A key subproblem that arises in the above approach is a higher-order polynomial interpolation
problem. We show how “sparse S-decoding polynomials”, a powerful tool from the original con-
structions of Matching Vector PIRs, can be used to solve this higher-order polynomial interpolation
problem using surprisingly few higer-order evaluations.

Using the known sparse S-decoding polynomials from [Efr09, IS08, CFL+13] in combination with our

ideas leads to our improved PIRs. Notably, we get a 3-server PIR scheme with communication 2Õ((logn)1/3),

improving upon the previously best known communication of 2Õ(
√

logn) due to Efremenko [Efr09].
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1 Introduction

Private Information Retrieval (PIR), introduced in [CKGS98] by Chor, Kushilevitz, Goldreich and Sudan,
is a method for a user to interact with t non-colluding servers and read some part of a database without
revealing to the servers which part of the database was read. Specifically, a database (a1, . . . , an) ∈ {0, 1}n
is known to all the t servers, and the user wants to find the value of aτ without revealing any information
about τ to any server. PIRs are typically studied with t being a constant, and we will only consider this
case. There is a trivial protocol which works even for t = 1: some server just sends the entire database to
the user – this uses n bits of communication. With more servers it is (surprisingly) possible to use much
less communication. The main problem, which has been extensively studied in the subsequent years, is to
design PIR schemes with as little total communication as possible.

The first generation of PIR schemes were based on Reed-Muller codes, also known as multivariate polynomial
evaluation codes, over finite fields F. We give a quick taste of the most elementary such PIR scheme. The
original data a1, . . . , an is used to specify a multivariate polynomial F (X1, . . . , Xk) ∈ F[X1, . . . , Xn] of degree
t − 1 in k = n1/(t−1) variables by ensuring that the value of F at a certain point ui ∈ Fk equals ai. When
the user wants to access aτ , it chooses a uniformly random line ℓ through uτ , picks points b1, . . . , bt on ℓ,
and asks server j for the value of F at bj . Using the fact that uniformly random lines through ui cover the
space Fk uniformly, we get that each bi is uniformly distributed, and thus no server learns anything about
τ . Using the fact that the restriction F |ℓ of the low degree multivariate polynomial F to the line ℓ is a low
degree univariate polynomial, we get that the univariate polynomial F |ℓ can be completely recovered from
its values at the bi – and thus aτ , the value of F at uτ can be recovered by the user. This gives a PIR scheme
with O(k) = O(n1/(t−1)) communication, and is nontrivial for t ≥ 3.

With more sophisticated ideas, [CKGS98] gave a 2-server PIR scheme with communication O(n1/3), and
even lower communication for t-server PIR for t ≥ 3. Further improvements to this were given by [Amb97,

BI01, BIKR02], leading to a nO( log log t
t log t )-communication protocol for large t.

Then in 2007, the breakthrough result of Yekhanin [Yek08] completely changed the landscape by giv-

ing 3-server PIR schemes with subpolynomial (nO( 1
log log n )) communication (assuming the infinitude of

Mersenne primes). Soon after, building on a greatly clarifying presentation and reinterpretation of [Yek08]
by Raghavendra [Rag07], a beautiful result of Efremenko unconditionally achieved significantly smaller com-

munication 2Õ(
√
logn) for 3-server PIR, and even lower communication (of the form 2Õ((logn)εt ) for more

servers).

There are two key ingredients in these constructions: S-Matching Vector Families (SMVF), and Sparse
S-Decoding polynomials (SSD) for a set S ⊆ Zm with 0 ∈ S. S-Matching Vector Families are collections
of vectors (ui, vi) ∈ Zk

m × Zk
m with certain restrictions on the inner products ⟨ui, vj⟩ ∈ Zm: all ⟨ui, vj⟩

should lie in S, with ⟨ui, vj⟩ = 0 if and only if i = j. The challenge is to get as large a collection as possible.
Sparse S-Decoding polynomials are sparse polynomials that take certain prescribed values at the set of points
{γs : s ∈ S}, where γ is a primitive mth root of 1 in some field. The challenge is to get the sparsity (=
number of monomials) as small as possible. Yekhanin’s original construction took m being prime, and was
based on moderately large S-Matching Vector Families but astonishingly sparse S-decoding polynomials.
Efremenko’s construction was based on m being composite, and was based on very large S-Matching Vector
Families (originating in the work of Grolmusz [Gro00] and Barrington-Beigel-Rudich [BBR94]) and slightly
nontrivially sparse S-decoding polynomials. Subsequent work by Itoh-Suzuki [IS08] and Chee-Feng-Ling-
Wang-Zhang [CFL+13] improved the sparsity of S-decoding polynomials, which led to quasipolynomial
reduction in the communication over Efremenko’s result) for t-server PIR for all t ≥ 9.

We refer to this entire approach as the SMVF+SSD framework. We will give a detailed overview of this
framework soon.

In the other direction, there are only very weak lower bounds known for PIR. Wehner and de Wolf [WdW05]
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showed a 5 log n lower bound on communication for 2-server PIR. It is possible (but would be very surprising
if so) that there are 2-server PIR schemes with O(log n) communication.

PIR schemes are closely related to Locally Decodable Codes (LDCs), and progress on both has often come
together. Indeed, Reed Muller codes are the original LDCs, and the SMVF+SSD framework is also the
engine behind the record holding Matching Vector Code constant query LDCs. In the non-constant query
regime, local decoding is still very interesting, and Matching Vector Codes are LDCs in this setting too
– this was shown by Dvir-Gopalan-Yekhanin [DGY10] and Ben-Aroya-Efremenko-Ta-Shma [BAETS10] –
whose work also shed further light on the SMVF + SSD framework. For the formal connections between
PIR schemes and LDCs, see Katz-Trevisan [KT00] and Trevisan [Tre04].

One basic question that remained open for a while was whether 2-server PIR could be done with subpoly-
nomial communication. This was resolved by the beautiful work of Dvir-Gopi [DG15], which is also the
starting point for our work. Dvir-Gopi developed a way to reduce the number of servers in Matching Vector
Family based PIRs by increasing the amount of communication being sent by the servers. This required an
ingenious new adaptation of an idea of Woodruff-Yekhanin [WY05], originally for the setting of Reed-Muller
code based PIRs, to the setting of Matching Vector Family based PIRs. The Woodruff-Yekhanin idea in
the setting of the Reed-Muller based PIR scheme described earlier, is to make the servers also return all the
higher order partial derivatives of the multivariate polynomial F at all the queried points bi. This higher
order evaluation information for the multivariate polynomial F will let the user deduce, via the chain rule,
higher order evaluations of the univariate degree t − 1 polynomial F |ℓ from each server– and leads to less
servers being needed overall. To get an analogue of this in the setting of Matching Vector Family based PIRs,
Dvir-Gopi worked over an exotic ring Rm = Zm[γ]/⟨γm − 1⟩ in place of a base finite field, and developed
some theory of derivatives and interpolation from higher order evaluations over Rm. Not all facts from the
finite field case carry over, but enough facts did, and this enabled the reduction of the number of servers
needed for subpolynomial communication from 3 to 2.

For 2 servers this gives PIR schemes with 2Õ(
√
logn) communication. The method of Dvir-Gopi also gener-

alized to a larger number of servers, and led to communication complexity subpolynomial in the previous
best bounds, whenever the number of servers t lies in {2} ∪ {4, 5, 6, 7, 8} ∪ {16, . . . , 23}. (Specifically the
previous communication complexity were quasipolynomial, but not polynomial, in the new communication
complexity.)

For the remaining t (which includes all t ≥ 27), the previous PIR schemes of Efremenko instantiated with
the sparse S-decoding polynomials of [IS08, CFL+13] remained the best known.

In this paper, we construct t-server PIR schemes with communication complexity that is subpolynomial in
the previously best known bound, for all but finitely many t (in fact, our improvements are for precisely the
t where the Dvir-Gopi scheme did not improve the state of the art). Notably, we get a 3-server PIR scheme

with communication 2Õ((logn)1/3), improving upon the previously best known communication of 2Õ(
√
logn)

due to Efremenko [Efr09]. A key part of our improvement is a new and simpler method to apply derivatives
(in the spirit of Woodruff-Yekhanin) to reduce the number of servers in Matching Vector based PIRs – and
in particular giving a simpler proof of the Dvir-Gopi results. This method works natively over the finite field
Fp and only uses elementary properties of polynomials over finite fields.

As a by product of our simpler approach to applying derivatives, we are able to formulate a higher multiplicity
analogue of the problem of having a sparse S-decoding polynomial. Miraculously, it turns out that whenever
there is an unusually sparse S-decoding polynomial in the original sense, it automatically translates into an
unusually sparse higher multiplicity analogue of the S-decoding polynomial – thus leading to an immediate
reduction, using the existing results on sparse S-decoding polynomials from [Efr09, IS08, CFL+13], in the
number of required servers (beyond the improvement that derivatives already gave).

We believe our result is the more natural way to use derivatives to improve the communication in the
SMVF+SSD framework. The total communication of our new PIR scheme can be very succinctly stated as
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follows: If the SMVF+SSD framework yields a t-server PIR scheme with communication exp(Õ((log n)
1
r ),

then we get a t-server PIR scheme with communication exp(Õ((log n)
1

r+1 )).

In terms of concrete parameters, the net result is that we improve the communication complexity to a
subpolynomial in the previously best known, for the state of the art t-server PIR for all t except t ∈
{2}∪{4, 5, 6, 7, 8}∪{16, 17, . . . , 23} (for these exceptions our bound is no better than that of Dvir and Gopi,
although our protocol and the proof of correctness is simpler).

For concrete comparison, we give a table listing the number of servers needed to achieve exp(Õ((log n)1/c))
communication for different integers c. We list this below (for a few small values c) for our PIR scheme, the
Dvir-Gopi scheme and the original Efremenko scheme (using the best known S-decoding polynomials from
[Efr09, IS08, CFL+13]).

Total communication # servers for our PIR scheme # servers for [DG15] # servers for [Efr09]

exp(Õ((log n)1/2)) 2 2 3

exp(Õ((log n)1/3)) 3 4 8

exp(Õ((log n)1/4)) 8 8 9

exp(Õ((log n)1/5)) 9 16 24

exp(Õ((log n)1/6)) 24 32 27

exp(Õ((log n)1/7)) 27 64 72

exp(Õ((log n)1/8)) 72 128 81

exp(Õ((log n)1/9)) 81 256 216

1.1 Overview

We now give a quick introduction to PIR schemes based on the SMVF+SSD framework, discussing the impor-
tant ideas of Yekhanin [Yek08], Raghavendra [Rag07], Efremenko [Efr09] and Dvir-Gopalan-Yekhanin [DGY10].

Our presentation is slightly more algebraic than usual. For the expert, the main point is that it treats F (·),
the multivariate function encoding the data, as a genuine polynomial with natural number exponents, and
not as an exponential polynomial with Zm exponents. We then consider its restriction to a parametrized
curve C(Z), leading to a univariate polynomial A(Z) = F (C(Z)) of quite large degree. It is only at this
stage where we restrict ourselves to evaluations at mth roots of unity, by reducing the univariate polynomial
A(Z) mod Zm − 1. This change in viewpoint will greatly help when considering derivatives: it is the key
reason our PIR scheme and its proof are simpler than that of Dvir-Gopi, and also underlies our improved
PIR schemes.

Let F be a field, and let (a1, . . . , an) ∈ Fn be the database for which we want a PIR scheme. The key
ingredient that we need is a matching vector family. For an integer m and a set S ⊆ Zm with 0 ∈ S, an
S-matching vector family is a collection of pairs (u1, v1), . . . , (un, vn), where each ui and vi lies in Zk

m such
that the inner products obey the following restrictions:

⟨ui, vj⟩ ∈

{
{0} i = j

S \ {0} i ̸= j
.

We will also view the ui and vi as vectors in {0, 1, . . . ,m − 1}k ⊆ Nk. A key fact is that whenever m is
composite, superpolynomial size matching vector families exist.

Next we choose a field F of characteristic p relatively prime to m which contains a set Hm of all m mth roots
of unity.

The database is used to specify a multivariate polynomial F (X) ∈ F[X1, . . . , Xk] as follows:

F (X) =

n∑
i=1

aiX
ui .
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The ui, which are a-priori in Zk
m, are treated here as elements of Nk. This is part of the change in viewpoint

that will help us later.

Now if the user wants to recover aτ , it will use vτ to pick a random parametrized curve C(Z) ∈ (F[Z])k

(a k-tuple of univariate polynomials) as follows: for uniformly random β = (β1, . . . , βk) ∈ Hk
m, it sets

C(Z) = (β1Z
vτ,1 , . . . , βkZ

vτ,k).

Because of the randomness of β, for any h ∈ Hm, C(h) is distributed uniformly at random in Hk
m. Thus

asking each server for the value of F at a single C(h) will maintain privacy perfectly. This will give us access
to values of the composed polynomial A(Z) = F (C(Z)) at some points h ∈ Hm.

The key point in the definition of C is that A(Z) has the following nice form:

A(Z) =

n∑
i=1

aiβ
uiZ⟨ui,vτ ⟩,

where the inner products ⟨ui, vτ ⟩ are treated as inner products of nonnegative integer vectors (and thus A(Z)
is of huge degree ≈ k ·m2).

To utilize the matching vector property, which talks about the inner products ⟨ui, vτ ⟩ mod m and not the
integer ⟨ui, vτ ⟩, we will only substitute Z to be an element of Hm. Equivalently, we can talk about the
remainder of A(Z) mod the polynomial Zm − 1, which has the effect of reducing all the exponents of Z mod
m. This is the view we take, and this is the point of difference alluded to earlier.

Define A1(Z) = A(Z) mod (Zm − 1). By the matching vector property and the above discussion, A1(Z) is
of the form:

A1(Z) = aτβ
uτ +

∑
s∈S\{0}

csZ
s,

and thus the aτ we seek can be found from the constant term of A1(Z). Further, since the polynomial Zm−1
has all the elements of Hm as roots, the values of A1 on Hm equal the values of A on Hm. Thus the user
gets access to A1 at some points h ∈ Hm.

What remains for the user is to solve an interpolation problem: given evaluations of a polynomial of the form
A1(Z) at some points in Hm, find the constant term of A1. The number of evaluations needed determines the
number of servers - and this is where sparse S-decoding polynomials come in – sometimes this interpolation
problem can be solved using surprisingly few evaluation points.

Using Derivatives: Now we will see how to improve this using derivatives.

Following the idea of Woodruff-Yekhanin in the setting of Reed-Muller code based PIR schemes, Dvir and
Gopi [DG15] suggested asking the servers for not only the value of F at points C(h), but also for higher order
derivatives of F at these points. The hope was that fewer higher-order evaluations are needed to solve the
interpolation problem, and thus fewer servers are needed for the PIR scheme. This created several technical
complications. Most significantly, taking derivatives of a polynomial whose exponents are in Zm seemed to
require (since (Zi)′ = i ·Zi−1 – the i came down from the exponent to the coefficient) the coefficient ring of
the polynomials to accommodate elements of Zm. This was handled by Dvir and Gopi through an ingenious
idea – to replace the coefficient field F for the polynomials with a ring Rm which by design contains the mth
roots of 1 and also Zm; namely Rm = Zm[γ]/⟨γm − 1⟩.

The use of the exotic ring Rm enabled many aspects of this idea to go through; however the interpolation
properties of values and derivatives do not behave as nicely as they do over fields. Here [DG15] tackle the
resulting interpolation problem hands on, and the final proof ultimately relies on nonvanishing (but not
noninvertibility!) of some mysterious 4×4 determinants over Rm in the 2-server case, and an explicit solving
of a certain linear system over Rm by reducing to rings of the form Zp[γ]/⟨γm−1⟩ and the Chinese remainder
theorem for the general t-server case.
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We remark that some further simplifications are possible in the 2-server case. For 2-servers and when m = 6,
Dvir-Gopi find a homomorphism from the ring R6 to the field F3 which preserves the vital nonvanishing
determinant in their proof – thus the entire protocol can be made to work directly over F3. For a larger
number of servers there does not seem to be an analogue of this. In a recent striking result, Alon, Beimel and
Lasri [ABL24] find an extremely elementary protocol and proof of the 2-server PIR result of [DG15], without
ever mentioning polynomials (but still using Matching Vector Families). This is also only for 2 servers.

We now describe our approach to using derivatives to improve the communication of the matching vector
PIR schemes. It works over the original field F itself and uses only classical derivatives over fields. We will
set M = mp and take the matching vector family (ui, vi) over the ring ZM . Then again we encode the data
(a1, . . . , an) ∈ Fn in the polynomial

F (X) =
∑
i

aiX
ui .

Since M has one more prime factor than m, the size of the matching vector family that we take can be
quasipolynomially larger than what can be done in the original Efremenko scheme. We will still only be
evaluating F at points of Hm, the mth roots of 1.

Now suppose the user wants to recover aτ . It will again pick a random curve C(Z) just as before: C(Z) =
(β1Z

vτ,1 , . . . , βkZ
vτ,k), where β ∈ Hk

m. Because of the randomness of β, for any h ∈ Hm, C(h) is distributed
uniformly at random in Hk

m. Thus asking each server for the value and higher order derivatives of F at a
single C(h) will maintain privacy perfectly. Via the chain rule for derivatives, this will give the user access
to values and higher order derivatives of the the composed polynomial A(Z) = F (C(Z)) at some points
h ∈ Hm.

Again, the key point in the definition of C is that A(Z) has the following nice form:

A(Z) =

n∑
i=1

aiβ
uiZ⟨ui,vτ ⟩.

To utilize the matching vector property, which talks about the inner products ⟨ui, vτ ⟩ mod M and not the
integer ⟨ui, vτ ⟩, we will reduce A(Z) mod (ZM − 1).

Define A1(Z) = A(Z) mod (ZM − 1). By the matching vector property and the above discussion, A1(Z) is
of the form:

A1(Z) = aτβ
uτ +

∑
s∈S\{0}

csZ
s,

and thus the aτ we seek can be found from the constant term of A1(Z).

Now for the crucial point. Since we are in characteristic p,

ZM − 1 = Zmp − 1p = (Zm − 1)p,

which vanishes at each of the m points of Hm with multiplicity p.

Thus the evaluations of A1(Z) and its first p− 1 derivatives agree with the evaluations of A(Z) and its first
p − 1 derivatives at the points of Hm. Since we have access to these higher order evaluations of A(Z) at
the points of Hm, we now find ourself faced with a higher-order interpolation problem: Given higher order
evaluations of a polynomial of the form A1(Z) at some points in Hm, find the constant term of A1. The
number of higher order evaluations determines the number of servers, and it seems reasonable to hope that
we will need fewer higher order evaluations to find the constant term (because we get more information from
a higher order evaluation).

This brings us to the final ingredient. We want a small set of points in Hm which suffice for the above higher
order interpolation problem. We show how to get unusually small such sets from unusually small sets of
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points which suffice for the original interpolation problem – namely, from sparse S-decoding polynomials.
This is again done using some algebraic insights; most crucially that the order p evaluation of A1(Z) at the
point b is completely determined by A1(Z) mod (Z − b)p, and using the identity (Z − b)p = Zp − bp gives
us concrete handle on A1(Z) mod (Z − b)p.

2 Main Result

In order to state our main theorem, we need two quick definitions to set up the infrastructure of the
SMVF+SSD framework.

Definition 2.1 (Canonical set). Let m ∈ Z be a positive integer. We define the canonical set for m to be
the following set:

S = {x ∈ Zm s.t. x2 ≡ x mod m}

Definition 2.2 (S-decoding polynomial). Let S ⊆ Zm be a set containing 0, Let F be a field containing an
element γm which is a primitive m’th root of 1: namely γm

m = 1 and γi
m ̸= 1 for i = 1, 2, ...,m− 1.

A polynomial P (Z) ∈ F[Z] is called an S-decoding polynomial if the following conditions hold:

• ∀s ∈ S \ {0} : P (γs
m) = 0

• P (γ0
m) = P (1) = 1

Theorem 2.3 (Main Theorem). Let m be a positive integer with r distinct prime factors, and let p be a
prime not dividing m.

Suppose F is a field of characteristic p such that, for S∗ ⊆ Zm being the canonical set for m, there is an
S∗-decoding polynomial over F with sparsity ≤ t.

Then there is a t-server PIR scheme with communication exp(Õ((log n)
1

r+1 )).

The proof appears in Section 5.1.

For comparison, the main result of Efremenko concerning PIRs is below: it takes the exact same hypothesis
and produces a PIR scheme with quasipolynomially larger communication.

Theorem 2.4 ([Efr09]). Let m be a positive integer with r distinct prime factors, and let p be a prime not
dividing m.

Suppose F is a field of characteristic p such that, for S∗ ⊆ Zm being the canonical set for m, there is an
S∗-decoding polynomial over F with sparsity ≤ t.

Then there is a t-server PIR scheme with communication exp(Õ((log n)
1
r )).

Instantiating Theorem 2.3 with arbitrary m and p, and using the fact that every S has a trivial S-decoding
polynomial over Fp of sparsity |S|, we recover the main result of Dvir and Gopi giving 2r-server PIR schemes

with communication exp(Õ((log n)
1

r+1 )) for all r ≥ 1.

Instantiating Theorem 2.3 with knownm, p for which unusually sparse S∗-decoding polynomials are known [Efr09,
IS08, CFL+13], we get new PIR schemes better than previously known. In particular, we get a 3-server PIR
scheme with exp(Õ((log n)1/3)) communication, improving upon the exp(Õ((log n)1/2)) communication for
3-server PIR first proved by Efremenko [Efr09].

For larger t, this improves the state of the art communication for t-server PIR for all t except1 t ∈ {2} ∪
1For these exceptional t, the PIR scheme of Theorem 2.3 matches the communication of the Dvir-Gopi scheme, while being

simpler to describe and analyze.
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{4, 5, . . . , 8} ∪ {16, 17, . . . , 23} . Formally, the parameters we get for t-server PIR using the best known
S-decoding polynomials from [CFL+13] are given by the following corollary.

Corollary 2.5. For each r ≥ 2, there is a t-server PIR with communication exp(Õ(log n)
1

r+1 ) according to
the following table:

r t
r = 1 2

r even, r ≤ 102
(√

3
)r

r odd, 3 ≤ r ≤ 103 8 ·
(√

3
)r−3

r ≥ 104 (3/4)
51 · 2r

The proof appears in Section 5.1.

3 Preliminaries

We use Fq to denote a finite field of q elements and Zm to denote the ring of integers modulo m. The inner

product between two vectors u = (u1, ..., uk), v = (v1, ..., vk) is denoted by ⟨u, v⟩ =
∑k

i=1 ui · vi.

The pointwise product, ⊙, of two vectors u = (u1, . . . , uk) and v = (v1, . . . , vk), denoted u⊙ v is the vector
(u1 · v1, u2 · v2, . . . , uk · vk).

Definition 3.1 (S-Matching Vector Family). Let S ⊂ Zm, 0 ∈ S and F = (U ,V) where U = (u1, ..., un) ,V =
(u1, ..., un) with ui, vi ∈ Zk

m. Then F is said to be an S-matching vector family of size n and dimension k if
the following conditions hold:

• ⟨ui, vi⟩ = 0 for every i ∈ [n]

• ⟨ui, vj⟩ ∈ S \ {0} for every i ̸= j

Remark 3.2. We changed the definition to have 0 ∈ S (traditionally 0 is not included), as we felt it made
things more convenient notationally.

In particular, our definition makes all values of ⟨ui, vj⟩, where i, j ∈ [n], lie in S.

Theorem 3.3 (Large Matching Vector Families, Theorem 1.4 in [Gro00]). Let m = p1p2...pr where p1, p2, ..., pr
are distinct primes and r ≥ 2. Then, there exists an explicitly constructible S-matching vector family F in

Zk
m of size n ≥ exp

(
Ω
(

(log k)r

(log log k)r−1

))
where S is the canonical set for m.

Theorem 3.4 (Sparse S-Decoding Polynomials, Theorem 4.1 in [CFL+13]). Let r be a positive integer.
Then, there exists an integer m = p1...pr , product of r distinct odd primes, such that the S-decoding
polynomial for m has the following number of monomials where S is the canonical set for m , and the
corresponding field has characteristic 2.

• r = 1:
number of monomials = 2

• 2 ≤ r ≤ 103:

number of monomials =

{
(
√
3)r if r is even

8 · (
√
3)r−3 if r is odd

• r ≥ 104:
number of monomials = ( 34 )

51 · 2r

We now define (Hasse) derivatives of polynomials and recall some important properties. Let F be a field
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and F[X] = F[X1, ..., Xk] be the ring of polynomials. Also, for a vector i = (i(1), ..., i(k)) of non-negative

integers, denote its weight by wt(i) =
∑k

j=1 i(j) and denote the monomial
∏k

j=1 X
i(j)
j by Xi.

Definition 3.5 (Hasse derivatives). For a multivariate polynomial F (X) ∈ F[X] and a non-negative vector
i = (i(1), ..., i(k)), we denote the i-th Hasse derivative of F by F (i)(X) , and it is the coefficient of Yi in the
polynomial F (X+Y) ∈ F[X,Y] . Therefore, we have,

F (X+Y) =
∑
i

F (i)(X)Yi

We use the notation F (<m)(a) to be the vector of all the evaluations of i-th Hasse derivative of F at
point a for all vectors i such that wt(i) < m. We note that Hasse derivatives are just a simple scaling of
standard iterated derivatives whenever the order of derivative is smaller than the characteristic of the field.
In particular, for the univariate polynomial A(Z) = Zs, we have a simple formula for the Hasse derivative:
A(j)(Z) =

(
s
j

)
Zs−j .

We will need the following facts about Hasse derivatives.

• Let A(Z) ∈ F[Z] be a univariate polynomial, and let b ∈ F. Then knowing A(Z) mod (Z − b)m is
exactly equivalent to knowing A(<m)(b).

Concretely, given A(<m)(b) we can construct the polynomial

A∗(Z) =

m−1∑
i=0

A(i)(b)(Z − b)i,

which is easily seen to be the remainder of A(Z) mod (Z − b)m. This connection goes in the other
direction too.

• Chain rule: Suppose F (X1, ..., Xk) ∈ F[X1, ..., Xk] be a multivariate polynomial and C = (P1(Z), ..., Pk(Z))
be a tuple of univariate polynomials in the single variable Z. Denote their composition by the polyno-
mial A(Z) = F (C(Z)) . Then, the i-th Hasse derivative of A , A(i) , can be expressed as a polynomial

in F (j)(C(Z)) for wt(j) ≤ i and P
(j)
t (Z) for 1 ≤ t ≤ k, j ≤ i.

Definition 3.6 (PIR Scheme). A one-round t-server PIR protocol involves t servers, S1, ...,St, each holding
the same n-bit database a = (a1, ..., an) ∈ {0, 1}n , such that these t servers do not communicate with each
other, and there is a user U who knows n and wants to retrieve some bit ai for i ∈ [n] , without revealing i.
It consists of a randomized algorithm for the user, and t deterministic algorithms for the servers such that:

• On input i ∈ [n], U obtains a random string rand and produces k random queries q1, ..., qt and send
them to the respective servers.

• Each server j produces a response rj = Sj(a, qj) such that a is the database, and send it back to the
user.

• The user based on the randomness, i, r1, ..., rt calculates ai, the i bit of the database.

The protocol should satisfy the following conditions:

• Correctness : For any database a, index i, user should output the value of ai with probability 1, where
the probablity is over the random string rand.

• Privacy : Each server individually learns nothing about i i.e. for any fixed database a, and for any
server, the distributions of qj(i1, rand), qj(i2, rand) for all i1, i2 ∈ [n] are identical.

9



4 The 0-interpolation property, with multiplicity

In this section, we express the property of having a sparse S-decoding polynomial in terms of having a
small interpolating set for a certain interpolation problem. We then define a multiplicity version of that
interpolation problem that will be useful for the improved PIR scheme, and give a general way to get small
interpolating sets for this high multiplicity interpolation problem from small interpolating sets for the original
interpolation problem without multiplicities (and thus from sparse S-decoding polynomials).

Definition 4.1 (0-interpolation property). Let S ⊆ N with 0 ∈ S. We say B ⊆ F has the 0-interpolating
property for S if there is a map E : FB → F, such that for every polynomial R(Z) of the form

R(Z) =
∑
s∈S

csZ
s,

we have E(R|B) = R(0). In words, the evaluations of R at the points of B determine R(0).

Definition 4.2 (0-interpolation property with multiplicity e). Let S ⊆ N with 0 ∈ S. We say B ⊆ F has
the 0-interpolating property with multiplicity e for S if there is a map E : (Fe)B → F such that for every
polynomial R(Z) of the form

R(Z) =
∑
s∈S

csZ
s,

we have E(R(<e)|B) = R(0). In words, the order e evaluations of R at the points of B determine R(0).

Lemma 4.3 (Having sparse S-decoding polynomials is the same as having a small set with the 0-interpolation
property). Suppose p is a prime and m is relatively prime to p. Let F be a field of characteristic p containing
all m mth roots of 1. Let Hm denote this set of mth roots of 1.

Then the following are equivalent:

• There is an S-decoding polynomial over F for Zm with ≤ t monomials.

• There exists a subset B of Hm with |B| ≤ t which has the 0-interpolation property for S.

Proof. Suppose P (Y ) =
∑t

j=1 ejY
dj is an S-decoding polynomial over F for Zm. So P (γs

m) = 0 for s ∈
S \ {0}, and P (1) = 1.

Define B = {γdj
m | j ∈ [t]}.

Let R(Z) be a polynomial given by:

R(Z) =
∑
s∈S

csZ
s.

Then we can use the following expression for computing c0 from R|B :∑
j∈[t]

ejR(γdj
m ) =

∑
j∈[t]

ej
∑
s∈S

cs · (γdj
m )s

=
∑
s∈S

cs
∑
j∈[t]

ej · (γs
m)dj

=
∑
s∈S

csP (γs
m)

= c0P (γ0
m) +

∑
s∈S\{0}

csP (γs
m)

= c0.
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This implies that B has the 0-interpolation property for S.

Now we show the other direction. Suppose B ⊆ Hm has the 0-interpolation property for S. Let E : FB → F
be the corresponding map. First observe that E must be a linear map; this is because for polynomials
R1(Z), R2(Z) we have (R1 +R2)|B = (R1)|B + (R2)|B and (R1 +R2)(0) = R1(0) +R2(0).

This means that any polynomial R(Z) of the form
∑

s∈S csZ
s that vanishes on all points in B must also

vanish at 0.

Let the elements of B be b1 = γd1
m , . . . , bt = γdt

m . Define the [t] × S matrix W with (j, s) entry equal to

bsj = γ
sdj
m . Expressing the above information in terms of W we get that for any vector c ∈ FS , if Wc = 0,

then we must have w0 · c = 0, where w0 ∈ FS is the vector with 1 in coordinate 0 and 0 in all the remaining
coordinates S \ {0}.

This means that the rows of W span w0. Suppose e ∈ Ft is such that eW = w0. Then it is easy to check
that the polynomial

P (Y ) =

t∑
j=1

ejY
dj

is an S-decoding polynomial over F for Zm.

Lemma 4.4 (0-interpolation property with multiplicity from the 0-interpolation property without multi-
plicity). Suppose p is a prime and m is relatively prime to p. Let M = mp. Let ϕ : Zm × Zp → ZM be the
Chinese remainder isomorphism.

Suppose Sm ⊆ Zm, SM ⊆ ZM and e ∈ {1, 2, . . . , p} ∈ N satisfy:

0 ∈ SM ⊆ ϕ(Sm × {0, 1, . . . , e− 1}).

Let F be a field of characteristic p containing all m mth roots of 1. Let Hm denote this set of mth roots of 1.

Suppose B ⊆ Hm is a 0-interpolating set for Sm. Then B is a 0-interpolating set of multiplicity e for SM .

Proof. Let R(Z) be a polynomial of the form
∑

s∈SM
csZ

s.

We first prove this for e = p.

The key fact that we will use is that for an element b ∈ F, specifying R(<p)(b) is exactly equivalent to
specifying the remainder R(Z) mod (Z − b)p.

Then R(Z) mod (Z − b)p = R(Z) mod (Zp − bp) can be computed as:∑
s∈SM

cs(Z
s mod (Zp − bp))

=
∑

s∈SM

cs(Z
s mod p · bp·⌊s/p⌋)

=
∑

s′′∈[e]

( ∑
s′∈Sm

cϕ(s′,s′′)b
p·⌊ϕ(s′,s′′)/p⌋

)
Zs′′

=

( ∑
s′∈Sm

cϕ(s′,0)b
p·⌊ϕ(s′,0)/p⌋

)
Z0 +

∑
s′′∈{1,...,e−1}

( ∑
s′∈Sm

cϕ(s′,s′′)b
p·⌊ϕ(s′,s′′)/p⌋

)
Zs′′
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Note that ϕ(s′, 0) is a multiple of p in ZM , and thus p · ⌊ϕ(s′, 0)/p⌋ = ϕ(s′, 0). Now ϕ(s′, 0) ≡ s′ mod m,
and thus for any b ∈ H, we have bϕ(s

′,0) = bs
′
. Thus, if we define R1(Z) by:

R1(Y ) =
∑

s′∈Sm

cϕ(s′,0)Y
s′ ,

the constant term of R(Z) mod (Z − b)p equals:∑
s′∈Sm

cϕ(s′,0)b
ϕ(s′,0) =

∑
s′∈Sm

cϕ(s′,0)b
s′ = R1(b).

Thus the order p evaluations of R at B determines the evaluations of R1 at B. By the 0-interpolation
property of B for Sm, we know that R1|B determines the constant coefficient of R1, namely cϕ(0,0) = c0.
This completes the proof for e = p.

To get the result for any e ≤ p, we note that R(j)(Z) = 0 for any j ∈ {e, e + 1, . . . , p − 1}. This is because
our hypothesis about SM means that for any s ∈ SM , s is either 0, 1, . . . or e − 1 mod p – and so the j’th
Hasse derivative of Zs,

(
s
j

)
Zs−j , is 0 mod p by Lucas’s theorem. This means that the derivatives of order

≥ e are not providing any information. Thus knowledge of R(<e)(b) is equivalent to knowledge of R(<p)(b),
and thus the previous result implies that we may just take order e evaluations instead of order p evaluations
to recover c0.

5 The PIR scheme

In this section, we give our improved PIR scheme.

To specify the PIR scheme, we need:

• A prime p and a natural number m relatively prime to p. Define M = mp.

• An integer e with 1 ≤ e ≤ p – this will govern the multiplicity of interpolation we need.

• A finite field F of characteristic p containing the set Hm of m different mth roots of 1.

• A set SM ⊆ ZM .

• An SM -Matching Vector Family (ui, vi) ∈ (Zk
M )2 for i ∈ [n].

• An set B = {b1, . . . , bt} ⊆ Hm with the 0-interpolating property with multiplicity e for SM (over F).

When we instantiate this for a given k, we would like B to be small (this governs the number of servers) and
n to be big (this governs the size of the database that can be handled with poly(k) communication). As we
will see, we will eventually instantiate this by taking an Sm ⊆ Zm for which there is a sparse Sm-decoding
polynomial over F, and then take SM = Sm × {0, 1} ⊆ Zm × Zp ≃ ZM – and fortunately there happens to
be a large SM -Matching Vector Family for this set SM .

Suppose the user is interested in finding the value of aτ . The PIR scheme works as follows:

1. The user picks a random β ∈ Hk
m.

2. Define the parametrized curve C to be the tuple of polynomials:

C(Z) = β ⊙ Zvτ ∈ F[Z]k.

Here vτ is viewed as a vector in {0, 1, . . . ,M − 1}k ⊆ Nk. Observe that C maps Hm to Hk
m. For every

i ∈ {1, . . . , t}, the user sends C(bi) ∈ Hk
m to server i.

12



3. The servers define a polynomial F (X1, ..., Xk) ∈ F[X1, ..., Xk] representing the data as follows:

F (X1, ..., Xk) =
∑

aiX
ui

Here the ui are viewed as vectors in {0, 1, . . . ,M − 1}k ⊆ Nk.

Each server evaluates F (<e) at the point in Hk
m that it received, and returns that to the user. Thus

server i sends
F (<e)(C(bi)) ∈ F(

k+e−1
e−1 ).

4. The user will now use all the received information to deduce aτ .

The plan: Define A(Z) = F (C(Z)), which is a polynomial of degree at most (M − 1)2k. Define
A1(Z) = A(Z) mod (ZM − 1). Observe that A1(Z) has degree < M and is of the form:

βuτaτ +
∑

s∈S\{0}

wsZ
s.

(Here we view each s ∈ S ⊆ ZM as an integer in {0, . . . ,M − 1}.

The user will find A1(0) = βuτaτ , from which aτ can be computed.

To do this, using the fact that B is a 0-interpolating set with multiplicity e, it suffices for the user to

find (A
(<e)
1 (bi))

t
i=1.

How do we find A
(<e)
1 (bi)? We now note that it is the same as A(<e)(bi). Indeed, since (Z− bi) divides

Zm − 1, we have that (Z − bi)
p divides (Zm − 1)p = (ZM − 1), and so:

A(<p)(bi) = A
(<p)
1 (bi),

and in particular,

A(<e)(bi) = A
(<e)
1 (bi).

Finally A(<e)(bi) can be computed by the user from F (<e)(C(bi)) and knowledge of C.

The implementation: From the chain rule, the user can take the servers’ answers, F (<e)(C(bi)),
and knowledge of C(<e)(bi), to compute A(<e)(bi) for each i ∈ [t].

By the earlier observation, A(<e)(bi) = A
(<e)
1 (bi), and so the user knows order e evaluations of A1 at

each point of B.

Finally, by the 0-interpolation property with multiplicity e of B, the user can recover A1(0) = βuτaτ ,
and thus (since all coordinates of β are nonzero) compute aτ , as desired.

This concludes the description of the PIR scheme.

Theorem 5.1. The protocol described above gives a t-server PIR scheme for a database of size n with the
communication cost O(k + ke−1).

Proof. The above procedure shows that the user can recover the value of aτ for any τ ∈ [n] with probability

1. In the protocol, the user sends a vector in Fk , and each server sends a vector in F(
k+e−1
e−1 ). Therefore,

the total communication is O(k + ke−1). For the privacy, note that β is a uniformly random vector in Hk
m,

independent of τ . Hence for every i, the query C(bi) has the same distribution for every pair of possible
message indices τ and τ ′.
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5.1 Instantiating the PIR Scheme: proof of the main theorem

We are ready to prove Theorem 2.3.

Theorem 2.3. Let m be a positive integer with r distinct prime factors, and let p be a prime not dividing
m.

Suppose F is a field of characteristic p such that, for S∗ ⊆ Zm being the canonical set for m, there is an
S∗-decoding polynomial over F with sparsity ≤ t.

Then there is a t-server PIR scheme with communication exp(Õ((log n)
1

r+1 )).

Proof. By our assumption about F, we know that F is a finite field of characteristic p which contains all m
mth roots of 1 (i.e., m|(|F| − 1)). Let Hm ⊆ F denote this set of mth roots of 1 in F.

Let M = mp , and let SM be the canonical set (recall Definition 2.1) for M . Use Theorem 3.3 to obtain an

SM -matching vector family F of size n and dimension k, where k = exp(Õ((log n)
1

r+1 )) , and r + 1 comes
from the fact that M is the product of r + 1 distinct primes.

By Lemma 4.3 applied to the S∗-decoding polynomial given by our hypothesis, we get a subset B ⊆ Hm,
with |B| ≤ t, which has the 0-interpolation property for S∗.

We will now apply Lemma 4.4 to B to get that it is a 0-interpolating set with multiplicity e = 2. The key
point is that the canonical set for M , namely SM , is a cartesian product of the canonical set for m, namely
S∗, under the Chinese remainder isomorphism. Indeed:

0 ∈ SM ⊆ ZM ,

and that
ϕ(S∗ × {0, 1}) = SM

where ϕ is the Chinese remainder isomorphism ϕ : Zm × Zp → ZM and S∗ is the canonical set for m. Thus
by Lemma 4.4 with e = 2, we get that B is a 0-interpolating set of multiplicity 2 for SM .
Now applying Theorem 5.1 to B and F (with e = 2), we get a PIR scheme with communication O(k+ke−1) =

O(k) = exp(Õ((log n)
1

r+1 )).

With the main theorem in hand, we now give a proof of the main corollary which simply plugs in the best
known sparse S-decoding polynomials.

Corollary 2.5. For each r ≥ 2, there is a t-server PIR with communication exp(Õ(log n)
1

r+1 ) according to
the following table:

r t
r = 1 2

r even, r ≤ 102
(√

3
)r

r odd, 3 ≤ r ≤ 103 8 ·
(√

3
)r−3

r ≥ 104 (3/4)
51 · 2r

Proof. For every positive r, by using Theorem 3.4, we get an Sm-decoding polynomial over a field of charac-
teristic 2 with t monomials for the corresponding t as in the table and m product of r distinct odd primes.
Now by applying Theorem 2.3, to p = 2,m, we get the result.
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