
THOR: Secure Transformer Inference with Homomorphic Encryption

Jungho Moon
Hanyang University

email: moonjungho@hanyang.ac.kr

Dongwoo Yoo
Yonsei University

email: aydw0507@yonsei.ac.kr

Xiaoqian Jiang
University of Texas,

Health Science Center at Houston
email: Xiaoqian.Jiang@uth.tmc.edu

Miran Kim
Hanyang University

email: miran@hanyang.ac.kr

Abstract—As language models are increasingly deployed in
cloud environments, privacy concerns have become a sig-
nificant issue. To address this, we design THOR, a secure
inference framework for transformer models on encrypted
data. Specifically, we first propose new fast matrix multipli-
cation algorithms based on diagonal-major order encoding
and extend them to parallel matrix computation through
the compact ciphertext packing technique. Second, we design
efficient protocols for secure computations of four non-linear
functions such as softmax, LayerNorm, GELU, and Tanh, by
integrating advanced underlying approximation methods with
tailored optimizations. Our matrix multiplication algorithms
reduce the number of key-switching operations in the lin-
ear layers of the attention block in the BERT-base model
by up to 14.5x, compared to the state-of-the-art HE-based
secure inference protocol (Park et al., Preprint). Combined
with cryptographic optimizations, our experimental results
demonstrate that THOR provides secure inference for the
BERT-base model with a latency of 10.43 minutes on a single
GPU, while maintaining comparable inference accuracy on the
MRPC dataset.

1. Introduction

The rapid advancement of transformer models has
changed the way machines understand and generate se-
quence data, such as human language. These models are
mainly based on attention mechanism [1], which allows the
model to focus dynamically on different entities in the input
sequence. This capability enables transformers to weigh the
importance of various entities in a sequence, regardless of
their position, thereby capturing long-range dependencies
more effectively than traditional recurrent neural networks
(RNNs) and long short-term memory networks (LSTMs).
The introduction of BERT (Bidirectional Encoder Repre-
sentations from Transformers) [2] exemplified the power of
transformer models, leading to significant advancements in
various natural language processing tasks, including ques-
tion answering, named entity recognition, and translation.

However, substantial computational demands of deep learn-
ing pose challenges for practical applications. As a result,
deploying transformer models in a cloud environment is a
natural choice.

However, this approach has significant concerns when
dealing with sensitive data, such as protected health infor-
mation. The main issue is the potential exposure of such data
during inference. Traditional methods of model deployment
on cloud computing platforms, such as OpenAI’s GPT-4o [3]
or Meta’s LLaMA [4], do not adequately address these
privacy concerns, highlighting the need for new approaches
to ensure data confidentiality.

To address privacy concerns, several cryptographic tech-
niques such as secure multi-party computation (MPC), ho-
momorphic encryption (HE), or their combination, have
been adopted to secure transformer inference. In their sce-
nario, the service provider holds a fine-tuned transformer
model and provides inference services to clients whose
input data is sensitive. Recent studies [5, 6, 7, 8, 9, 10]
utilize oblivious transfer-based or secret sharing-based MPC
techniques to protect private information across all layers,
including the clients’ input. Although these interactive ap-
proaches achieve faster execution times, they still incur high
communication costs due to the inherent overhead of MPC.

Several studies have explored secure transformer infer-
ence under HE. Although HE-based methods come with
a substantial performance overhead, they allow the service
provider (or server) to perform computations on encrypted
data without decryption. THE-X [11] is the first HE-based
transformer inference system; however, it sacrifices accu-
racy by employing HE-compatible replacements for non-
linear functions. Most notably, its protocol delegates the
computations of ReLU to the client, thereby revealing the
comparison results involved in softmax and GELU approx-
imations. Two recent works [12, 13] are HE-based non-
interactive systems that perfectly protect data privacy dur-
ing transformer inference. However, their works focus on
the BERT-tiny model (a distilled student model of BERT
with 4.4 million parameters), which limits the scalability
and efficiency of matrix multiplication algorithms when

extended to larger models. In addition, they do not fully
utilize all plaintext slots during matrix multiplications, lead-
ing to substantial performance overhead. Furthermore, their
non-linear approximation methods are restricted to a small
domain, reducing effectiveness for larger models. On the
other hand, NEXUS [14] evaluated the BERT-base model
(110M parameters [2]). Although NEXUS is capable of
making inferences with high throughput, it requires a sub-
stantial number of operations even for a single prediction,
resulting in high latency. This work employs various packing
methods, such as component-wise, row/column-wise, and
diagonal-wise packings; however, the details of changes
in the packing structure during secure inference are not
fully explained. In particular, the output of one encoder
layer is used as the input for the plaintext-ciphertext matrix
multiplication in the subsequent attention layer, requiring
substantial computational costs to convert it into component-
wise format.
Our contributions. The main challenges to achieving accu-
rate and low-latency inference for large transformer models
under HE are efficient homomorphic matrix multiplications
required for attention mechanisms and secure computation
of non-linear operations. In this study, we present THOR,
a secure Transformer inference framework that leverages
HomomOrphic encRyption to ensure data privacy. To the
best of our knowledge, this is the first fully non-interactive
secure transformer inference framework for the BERT-base
model. Our contributions are three-fold:

• Homomorphic matrix multiplication. We propose
computation-efficient homomorphic matrix multi-
plication algorithms optimized for transformer ar-
chitectures, aimed at reducing the computational
overhead associated with encrypted operations. In
a nutshell, we formulate matrix multiplication as
entrywise additions and multiplications along ma-
trix diagonals. In the context of HE, we leverage
all plaintext slots by compactly packing multiple
diagonal vectors and processing computations over
packed ciphertext. Based on this insight, we intro-
duce a plaintext-ciphertext matrix multiplication al-
gorithm that performs parallel matrix multiplications
between submatrices and aggregates the intermediate
results to produce the final output. We also design
a ciphertext-ciphertext matrix multiplication along
with a lazy rotation optimization that reduces the
number of rotations on input ciphertexts. Instead
of performing rotations directly on the inputs, we
defer these operations to the intermediate results by
applying rotations of the same amounts. As a result,
we can reduce the number of ciphertext rotations
by roughly half, thus enhancing the computational
efficiency.

• Accurate and efficient non-linear homomorphic
computations. Homomorphic evaluation of non-
linear functions is an important factor in achiev-
ing accurate inference. We first propose an effi-
cient method for evaluating the softmax function

over large intervals using a two-phase method: ap-
proximating the exponential function within a small
domain and then performing repeated squaring-
and-normalization operations. Specifically, we adopt
Goldschmidt’s iterative method to approximate the
inverse and adaptively adjust the relaxation coeffi-
cient to achieve faster convergence. This structured
approach enables efficient computation while pre-
serving high precision, even on large intervals. We
also apply the adaptive iterative method to efficiently
compute the inverse square root for the LayerNorm
evaluation. Another contribution is the evaluation
of the GELU function. We approximate it using
a composition of two low-degree polynomials and
leverage the Paterson-Stockmeyer algorithm for ef-
ficient polynomial evaluation.

• Enc-to-end transformer inference. We design an
end-to-end HE-based framework for secure trans-
former inference. The experimental results show that
THOR provides secure inference on n = 128 tokens
with the BERT-base model with a latency of 10.43
minutes on a single GPU, while maintaining a com-
parable inference accuracy.

2. Preliminaries

Notation. The binary logarithm will be denoted by log(·).
We denote by [n] the set {0, 1, . . . , n − 1}, where n ∈ N.
a (mod n) or [a]n denotes the unique integer r such that
r ∈ [n] and r = a (mod n). The entry of the i-th row and
j-th column of an m× n matrix A is denoted by A[i, j] or
Aij . Ai and Aj denote the i-th row and j-th column vectors.
⟨u, v⟩ denotes the inner product.

2.1. Homomorphic Encryption

Homomorphic Encryption (HE) is a cryptographic prim-
itive that allows computations to be performed directly on
encrypted data, without the need for decryption. Since Gen-
try’s breakthrough on HE [15], numerous HE schemes with
various properties have been proposed. Among them, the
Cheon-Kim-Kim-Song (CKKS) scheme [16] has received
significant attention due to its support for approximate arith-
metic on encrypted complex numbers. The CKKS scheme
also allows operations to be executed in a single instruction
multiple data (SIMD) manner, enabling efficient parallel
computation of large-scale datasets. Specifically, a plain-
text vector m ∈ Cs is first transformed into a plaintext
polynomial, which is then encrypted as a ciphertext, where
s = N/2 represents the number of plaintext slots for a ring
dimension N .

The CKKS scheme supports the following basic arith-
metic and advanced operations:

• Vectorized arithmetic operations: Element-wise ad-
dition and multiplication can be performed between
two ciphertexts (Add and Mult), or between a ci-
phertext and a plaintext (SAdd and SMult)

• Rotation: Given a ciphertext ct representing m ∈
Cs, it returns a ciphertext representing the left ro-
tation ρr(m) by r amounts. We abuse the same
notation for the operation on ciphertexts.

• Complex conjugation: This operation applies
element-wise complex conjugation to a ciphertext.

• Key-switching: One can transform a ciphertext with
a secret key s into a ciphertext that encrypts the
(approximately) same message but with a different
key s′. For example, ciphertext-ciphertext multipli-
cation involves a key switching operation to obtain a
normal ciphertext with respect to the original secret
key after performing the tensor product of the inputs.

• Bootstrapping: The bootstrapping operations [17]
refreshes a ciphertext by increasing its coefficient
modulus, allowing further operations without signif-
icant loss of precision.

2.2. Transformer

The transformer architecture [1] is designed to handle
sequence-to-sequence tasks effectively, particularly in nat-
ural language understanding (NLU) and generation. The
transformer is based on an encoder-decoder architecture,
with both parts having a similar structure. Therefore, we
mainly focus on the encoder below. The transformer takes
as input X ∈ Rn×d, where n indicates the number of tokens
and d denotes the model dimension.
Encoder. The encoder is composed of a stack of L lay-
ers, each comprising multi-head attention followed by two
normalizations, with feed-forward layers in between. Multi-
head attention operates as follows: (i) The input sequence
X ∈ Rn×d is linearly projected to H heads so that Qh =
XWQ,h,Kh = XWK,h, and Vh = XWV,h with the param-
eter matrices WQ,h,WK,h ∈ Rd×dk , and WV,h ∈ Rd×dv for
h ∈ [H]. (ii) The scaled dot-product attention is computed
in each head:

Atth = Softmax

(
QhKh

⊺

√
dk

)
× Vh.

(iii) The results of multiple heads are concatenated and
linearly transformed by WO ∈ RHdv×d to produce the
final result. Following the parameters from [1], we use
dk = dv = d/H . A feed-forward layer consists of two
linear transformations with a GELU (Gaussian Error Linear
Unit function) activation in between.
Pooler and classifier. The first token from the L encoder
layers (corresponding to the first row of the result matrix) is
fed into a pooler, which is a dense layer followed by a Tanh
activation. The output is then fed into a classifier, which is
another dense layer.

3. Basic Matrix Multiplication

In this section, we introduce HE-friendly matrix multi-
plication algorithms, which serve as the foundation of the
linear layers in secure transformer inference.

3.1. Definitions & Lemmas

Definition 1 (Upper diagonal vector). For a matrix A =
(aij) ∈ Ra×b and 0 ≤ k < min{a, b}, the k-th upper
diagonal vector Uk(A) ∈ Rmax{a,b} is defined by

Uk(A)[t] = A[t (mod a), k + t (mod b)]

for 0 ≤ t < max{a, b}.
Definition 2 (Lower diagonal vector). For a matrix B =
(bij) ∈ Rb×c and 0 ≤ ℓ < min{b, c}, the ℓ-th lower
diagonal vector Lℓ(B) ∈ Rmax{b,c} is defined by

Lℓ(B)[t] = B[ℓ+ t (mod b), t (mod c)]

for 0 ≤ t < max{b, c}.
We start with useful lemmas that characterize the upper

and lower diagonal vectors, which are later used for matrix
multiplications in private transformer inference.

Lemma 1. For any a, b ∈ Rn and r ∈ Z, we have ⟨a, b⟩ =
⟨ρr(a), ρr(b)⟩. That is, ρr(·) : Rn → Rn is an isometry on
the real inner product space Rn.

Lemma 2. For any A ∈ Ra×b and k ∈ Z ∩ [0,min{a, b}),
we have Uk(A) = Lk(A

⊺).

Lemma 3. For m ≤ n, we have

Lℓ(A) =

{
ρ−m+ℓ(Um−ℓ(A)) if A ∈ Rm×n,

ρ−n+ℓ(Um−ℓ(A)) if A ∈ Rn×m.

Lemma 4. For a square matrix A ∈ Rn×n and any t ∈ [n],
we have (Uk(A)[t])k∈[n] = At ∈ Rn.

3.2. Upper-lower Matrix Multiplication

We first propose matrix multiplication algorithms for the
case when the upper and lower diagonal vectors of two
input matrices are provided. In a nutshell, it follows from
Lemma 1 that given two square matrices of A and B of
size n, for any r, t ∈ [n], we have ⟨ρt(Ar+t), ρ

t(Bt)⟩ =
⟨Ar+t, B

t⟩ = C[r+t, t], which corresponds to the t-th entry
of Lr(C). In a SIMD fashion, ρt(Ar+t) is obtained from the
t-th entries of ρr(Uℓ−r(A)) for ℓ ∈ [n]. Similarly, ρt(Bt) is
obtained from the t-th entries of Lℓ(B) for ℓ ∈ [n]. Thus,
this can be formulated as the following propositions.

Proposition 1. For n ≥ m, suppose that n is divisible by
m. Given two matrices A ∈ Rn×m and B ∈ Rm×n, for
r ∈ [n], the r-th lower diagonal vector of the matrix AB
can be computed as follows:

Lr(AB) =
∑
ℓ∈[m]

ρr(U[ℓ−r]m(A))⊙ Lℓ(B). (1)

Proof. See Appendix A.1.

Proposition 2. For n ≥ m, suppose that n is divisible by
m. Given two matrices A ∈ Rm×n and B ∈ Rn×n, for

r ∈ [m], the r-th lower diagonal vector of the matrix AB
can be computed as follows:

Lr(AB) =
∑
ℓ∈[n]

ρr(U′
ℓ−r(A))⊙ Lℓ(B),

where the upper diagonal vector U′
k(A) ∈ Rn is defined by

U′
k(A) =

{
Uk(A) if k < m,

ρm·⌊k/m⌋(U(k mod m)(A)) if m ≤ k < n.

Proof. See Appendix A.2.

3.3. Lower-lower Matrix Multiplication

We now propose matrix multiplication algorithms for the
case when the lower diagonal vectors of two input matrices
are provided.

Definition 3. For a matrix A ∈ Rn×m with n ≥ m, the
lower diagonal vector L′k(A) ∈ Rn is defined by

L′k(A) =

{
Lk(A) if k < m,
ρm·⌊k/m⌋(L(k mod m)(A)) if m ≤ k < n.

Corollary 1. For n ≥ m, suppose that n is divisible by
m. Given two matrices A ∈ Rn×m and B ∈ Rm×n, for
r ∈ [n], the r-th lower diagonal vector of the matrix AB
can be computed as follows:

Lr(AB) =
∑
ℓ∈[m]

ρℓ(L′[n−ℓ+r]n
(A))⊙ Lℓ(B). (2)

Proof. See Appendix A.3.

Corollary 2. For n ≥ m, suppose that n is divisible by
m. Given two matrices A ∈ Rm×n and B ∈ Rn×n, for
r ∈ [m], the r-th lower diagonal vector of the matrix AB
can be computed as follows:

Lr(AB) =
∑
ℓ∈[n]

ρℓ(L[m−ℓ+r]m(A))⊙ Lℓ(B).

Proof. See Appendix A.4.

4. Homomorphic Matrix Multiplication

In this section, we explain how to evaluate the proposed
matrix multiplication algorithms using a combination of
compact ciphertext packing and SIMD techniques. The main
goal of our algorithms is to minimize the number of key-
switching operations, particularly rotations, which is the
dominant process in homomorphic operations.

4.1. Matrix Multiplication on Packed Ciphertexts

We introduce a compact packing method that packs
multiple diagonal vectors of an input matrix into a single
ciphertext, ensuring that the output diagonals of the matrix
product are efficiently packed within the resulting ciphertext.
Furthermore, multiple diagonals from different matrices fit
into a single plaintext to maximize the slot usage, enabling
parallel matrix computations in a SIMD manner.

4.1.1. Compact Matrix Packing. For simplicity of presen-
tation, we assume that the matrix A ∈ Rn×m is provided
in plaintext, while the matrix B ∈ Rm×n is provided in
encrypted form, with n ≥ m. If the number of plaintext
slots s is equal to n, each n-dimensional diagonal vector
of A and B can be encoded in a single ciphertext. Since it
requires m scalar multiplications to compute one diagonal
vector of the output matrix by evaluating Eq. (1), the total
computation requires mn scalar multiplications in total.

We now assume that the slot parameter s is larger than
n. A straightforward approach is to pad zeros after the n
slots and process with the algorithm as described above.
However, this method is space-inefficient since the slots after
n remain unused. To address this inefficiency, we aim to
produce multiple diagonal vectors of AB within a single ci-
phertext by utilizing all available slots. This can be achieved
by compactly packing multiple diagonal input vectors and
performing SIMD computations over the packed ciphertexts.
Specifically, given that s = cn for some integer c, we
assume that c many lower diagonal vectors of B are packed
into a single ciphertext. Let ct.Bj be an encryption of the
stacked diagonals (Lcj(B), Lcj+1(B), . . . , Lc(j+1)−1(B))
for j ∈ [m/c]. Then, for r ∈ [n/c], an encryption of
(Lcr(C), Lcr+1(C), . . . , Lc(r+1)−1(C)) can be obtained by
evaluating ∑

ℓ∈[c],j∈[m/c]

SMult(ρn·ℓ(ct.Bj), pt.Aj,ℓ,r), (3)

where pt.Aj,ℓ,r denotes a plaintext of the internally
rotated (ℓ + cj)-th upper diagonal (ρcr(Uℓ+cj(A)),
ρcr+1(Uℓ+cj(A)), . . . , ρc(r+1)−1(Uℓ+cj(A)). Although the
number of rotations is increased, the total number of scalar
multiplications is reduced to mn/c.

4.1.2. Parallel Matrix Multiplications. Assume that s is
divisible by n and let s̃ = s/n. Given that m ≤ n, we
aim to perform matrix multiplications of A(z) ∈ Rn×m

and B(z) ∈ Rm×n for z ∈ [s̃]. Let A = {A(z)}z∈[s̃] and
B = {B(z)}z∈[s̃]. For k ∈ [m], we define the k-th interlaced
upper diagonal vector Ũk(A) ∈ Rs as

Ũk(A)[t] = Uk(A
(t mod s̃))[⌊t/s̃⌋] (4)

for t ∈ [s]. In other words, the entries of the upper diagonal
vectors Uk(A

(z)) are interlaced within the slots. The ℓ-
th interlaced lower diagonal vector L̃ℓ(B) ∈ Rs can be
defined in a similar way. We then perform s̃-many matrix
multiplications to obtain the matrix C(z) = A(z)B(z) in one
shot by slightly modifying the single matrix multiplication
algorithm in Eq. (1). Specifically, the r-th interlaced lower
diagonal vector of the output matrices C(z) can be computed
as follows: L̃r(C) =

∑
ℓ∈[m] ρ

r·s̃(Ũℓ−r(A))⊙ L̃ℓ(B).
In practice, the BERT-base model has H = 12 heads,

so H many matrix multiplications are executed in parallel.
Given that each diagonal vector of the intermediate matrix
in transformer has a size of n = 128, we get a power of two
integer c that is less than s/(nH) = 215/(27 · 12), resulting
in c = 16.

4.2. Plaintext-ciphertext Matrix Multiplication

We observe that all the plaintext-ciphertext matrix mul-
tiplications in the linear layers of the BERT model can be
expressed as C = AB, where A ∈ Rd×d is provided in
plaintext (e.g., a large weight matrix) and B ∈ Rd×n is
provided in encrypted form (e.g., an encrypted output from
the previous layer), given that n ≤ d (see Section 6.2 for
details). Without loss of generality, we assume that d is
divisible by n and denote d̃ = d/n; otherwise, zeros can
be padded. Additionally, we assume s = cd, where c is an
integer that divides n, and we denote ñ = n/c.

4.2.1. Extension of Basic Matrix Multiplication. One
approach is to modify the basic upper-lower matrix mul-
tiplication algorithms in Section 3.2 to leverage the d-
dimensional diagonal vectors of A and B. For r ∈ [n],
the r-th lower diagonal of C can be computed as Lr(C) =∑

ℓ∈[d] ρ
r(Uℓ−r)(A)⊙L′ℓ(B), where L′ℓ(B) ∈ Rd is defined

by

L′ℓ(B) =

{
Lℓ(B) if ℓ < n,

ρn·⌊ℓ/n⌋(L(ℓ mod n)(B)) if n ≤ ℓ < d.

As described in Section 4.1.1, we assume that c-
many d-dimensional diagonal vectors of B are fully
packed into a ciphertext. Let ct.Bj be an encryption of
(Lcj(B), Lcj+1(B), . . . , Lc(j+1)−1(B)) for j ∈ [ñ]. We first
need rotations within diagonal vectors to obtain encryptions
of L′ℓ(B). Specifically, we generate a ciphertext ct.Bñt+j of

(ρnt(Lcj(B)), ρnt(Lcj+1(B)), . . . , ρnt(Lc(j+1)−1(B)))

= (L′nt+cj(B), L′nt+cj+1(B), . . . , L′nt+c(j+1)−1(B))

for t ∈ [1, d̃). That is, we need to rotate within a subslot,
but the CKKS scheme only supports 1-dimensional rota-
tions. To achieve this, we perform an internal rotation1,
which requires two homomorphic rotations and two scalar
multiplications. Since we repeat this operation for each
rotation amount t ∈ [1, d̃] on ñ many input ciphertexts
ct.Bj , this step requires 2(d̃ − 1) · ñ ≈ 2d/c rotations and
2(d̃− 1) · ñ ≈ 2d/c scalar multiplications.

Similar to Eq. (3), we obtain ciphertexts for each set of
c-many output diagonals by evaluating∑

ℓ∈[c],j∈[d/c]

SMult(ρd·ℓ(ct.Bj), pt.Aj,ℓ,r),

for r ∈ [ñ], using appropriate plaintexts pt.Aj,ℓ,r from the
matrix A. For each j ∈ [d/c], the ciphertext ct.Bj is rotated
(c − 1) times, requiring (c − 1) · (d/c) ≈ d rotations. In
conclusion, this algorithm takes approximately 2d/c+ d =
O(d) rotations and 2d/c+ c · (d/c) · ñ = 2d/c+dn/c scalar
multiplications.

1. For example, given that a ciphertext representing the vector
(u0, u1, u2, u3, v0, v1, v2, v3), it can be rotated to the left by one
and right by three. Each ciphertext is applied by the mask to extract
(u1, u2, u3, 0, v1, v2, v3, 0) and (0, 0, 0, u0, 0, 0, 0, v0). At the end, we
get a ciphertext of (u1, u2, u3, u0, v1, v2, v3, v0) by summing the two
intermediate ciphertexts.

Figure 1. Diagonal block plaintext-ciphertext matrix multiplication. The
ciphertext ct represents a stacked vector of L̃0(X,Y) and L̃1(X,Y). For
simplicity, we do not include the complexification.

Algorithm 1 PLAINTEXT-CIPHERTEXT MATMUL

Input: Plaintexts pt.Ai,j,ℓ,r of the internally rotated upper
diagonal vectors of A ∈ Rd×d; ciphertexts ct.Bj of the
lower-diagonally stacked vectors of B ∈ Rd×n for i ∈
[d/n], j, r ∈ [n/c], ℓ ∈ [c]

Output: Ciphertexts ct.Cr of the lower-diagonally stacked
vectors of C for r ∈ [n/c]

1: d̃← d/n, ñ← n/c
2: for i = 0 to d̃− 1 do
3: for r = 0 to ñ− 1 do
4: for j = 0 to ñ− 1, ℓ = 0 to c− 1 do
5: cti,j,ℓ,r ← SMult(ρd·ℓ(ct.Bj), pt.Ai,j,ℓ,r)

6: cti,r ←
∑

ℓ∈[c],j∈[ñ] cti,j,ℓ,r

7: for r = 0 to ñ− 1 do
8: ct.Cr ← SMult(ct0,r, pt0)
9: for i = 1 to d̃− 1 do

10: cti,r,R ← SMult(cti,r, pti)
11: cti,r,L ← cti,r − cti,r,R
12: ct′i,r ← ρd(d̃−i)(cti,r,R) + ρ−di(cti,r,L)
13: ct.Cr ← ct.Cr + ct′i,r
14: return ct.Cr

4.2.2. Diagonal Block Matrix Computation. To further
enhance efficiency, we partition the two matrices into
n × n blocks and perform the matrix product using the n-
dimensional diagonal vectors from the submatrices. Specifi-
cally, we denote the (i, k)-th submatrix of A by Aik ∈ Rn×n

and the k-th submatrix of B by Bk ∈ Rn×n for i, k ∈ [d̃].
Then, the submatrices in the resulting matrix C are calcu-
lated by blockwise multiplication, where Ck =

∑
i AikBk

for k ∈ [d̃]. This blockwise computation is efficiently
implemented using HE through the following three steps: (i)
perform parallel matrix multiplications between submatrices
in the same diagonal direction, (ii) rotate the intermediate
results by an appropriate amount to align the partial results
for final submatrix output into the same slots, and (iii) sum
the aligned values to obtain the final blockwise product.

A concrete example is provided in Fig. 1, and the de-
tailed procedure is described in Algorithm 1. First, for each

TABLE 1. COMPARISON OF PLAINTEXT-CIPHERTEXT MATRIX
MULTIPLICATION METHODS OF AB WHERE A ∈ Rd×d AND B ∈ Rd×n

WITH n ≤ d AND s = cd.

Method #Smult #Rot

Basic 2d
c

+ dn
c

d+ 2d
c

DiagBlock d
c
+ dn

c
n+ 2d

c

ℓ ∈ [n], the ℓ-th lower diagonal vectors from the matrices
B0, . . . , Bd̃−1 are interlaced to form the vector L̃ℓ(B) ∈ Rd,
as shown in Eq. (4). Next, c such vectors are concatenated
to be fully-packed into a single ciphertext. Specifically, for
j ∈ [ñ], we define

L̃[cj:c(j+1)(B) = (L̃cj(B), . . . , L̃c(j+1)−1(B)) ∈ Rs

and denote the corresponding ciphertext as ct.Bj . Similarly,
we define A(i) = {Ai,0, Ai+1,1, . . . , Ai+d̃−1,d̃−1} as the
set of submatrices in the i-th diagonal order for i ∈ [d̃].
The plaintext of their interlaced compactly packed upper
diagonal vectors for A(i) is denoted as pt.Ai,j,ℓ,r for ℓ ∈ [c],
and j, r ∈ [ñ], as explained in Section 4.1.1.

Let Ci,k = Ai,kBk and C(i) = {Ci,0, Ci+1,1, . . . ,
Ci+d̃−1,d̃−1}. For each i ∈ [d̃] and r ∈ [ñ], we be-
gin by computing the concatenated lower diagonal vectors
L̃[cr:c(r+1)(C

(i)) (lines 5 and 6 in Algorithm 1). The parallel
submatix multiplication requires (c−1)·ñ ≈ n rotations and
n · d̃ · ñ = dn/c scalar multiplications. Similar to an internal
rotation operation, these results are internally rotated within
the output diagonals of the same order, yielding the product
result {C0,d̃−i, . . . , Ci,0, . . . , Cd̃−1,d̃−1−i} (lines 10 to 12).
This process involves 2(d̃ − 1) · ñ ≈ 2d/c rotations and
(d̃ − 1) · ñ ≈ d/c scalar multiplications to compute all the
aligned results of the submatrix products. Finally, each lower
diagonal vector of the intermediate results is added to pro-
duce the final output (line 13). We note that this ciphertext
ct.Cr represents the plaintext vector of L̃[cr:c(r+1)(C) where
C = {C0, C1, . . . , Cd̃−1}.

Although additional computations are required to rotate
plaintext slots for interactions between values of different
submatrices, intermediate submatrix products can be par-
allelized in a SIMD manner. Consequently, the number of
rotations is reduced to approximately n + 2d/c = O(n),
enabling the block matrix multiplication algorithm to out-
perform the naive method. We present the results in Table 1.

4.3. Ciphertext-ciphertext Matrix Multiplication

When two input matrices are provided in encrypted
form, the upper-lower matrix multiplication algorithms can
be directly applied in a similar manner to the plaintext-
ciphertext matrix multiplication method. However, it is
very challenging to generate encryptions of the plaintexts
pt.Aj,ℓ,r as explain in Section 4.1.1 from the stacked upper
diagonal vectors of A. For example, consider the product
AB with A ∈ Rm×n and B ∈ Rn×n. Suppose that

we are given the diagonally stacked ciphertext represent-
ing (Ucj(A),Ucj+1(A), . . . ,Uc(j+1)−1(A)) for j ∈ [m̃],
where m̃ = m/c. We apply the the internal rotation
method to generate ciphertexts that are internally rotated
by r ∈ [1, n) positions for each input ciphertext. This
procedure requires 2(n − 1)m̃ rotations and scalar mul-
tiplications. After that, it takes roughly mn scalar multi-
plications to generate the packed ciphertexts in the form
of (ρcℓ(Uk(A)), ρcℓ+1(Uk(A)), . . . , ρc(ℓ+1)−1(Uk(A))) for
each k ∈ [m] and ℓ ∈ [n/c]. Instead of this naive extension,
we leverage both the lower diagonals of the input matrices
and perform the matrix computation in parallel to enhance
performance.

4.3.1. Packed Lower-lower Matrix Multiplication. Sup-
pose that we are given the ciphertext ct.Aj representing the
lower-diagonally stacked vectors (Lcj(A), Lcj+1(A), . . . ,
Lc(j+1)−1(A)) for j ∈ [m̃]. First, two rotated ciphertexts
are generated as follows:

ctj,ℓ = ρ−n·[ℓ]c+ℓ(ct.Aj)

ct′j,ℓ = ρ−n·([ℓ]c+1)+ℓ(ct.Aj)

Then ctj,ℓ is applied by two masks µℓ,0 and µℓ,1 to
extract the first (n − ℓ) entries of ρℓ(Lcj+r(A)) for each
[ℓ]c ≤ r < c and 0 ≤ r < [ℓ]c, respectively. Similarly, ct′j,ℓ
is masked to extract the last ℓ entries of each ρℓ(Lcj+r(A))
using µℓ,2 and µℓ,3. This procedure requires approximately
2m̃n rotations and 4m̃n scalar multiplications. Next,
these ciphertexts are appropriately added together to
obtain the internally rotated ciphertext ct.Aj,ℓ representing
(ρℓ(Lcj−ℓ(A)), ρℓ(Lcj−ℓ+1(A)) . . . , ρℓ(Lc(j+1)−1−ℓ(A)), i.e.,

ct.Aj,ℓ = (ctj−1,ℓ · µℓ,0 + ctj,ℓ · µℓ,1)

+ (ct′j−1,ℓ · µℓ,2 + ct′j,ℓ · µℓ,3). (5)

We now assume that the ciphertext ct.Bℓ contains c copies
of the ℓ-th lower diagonal vector of B for ℓ ∈ [n]. Corol-
lary 2 implies that the diagonally stacked ciphertext of
(Lcj(C), Lcj+1(C), . . . , Lc(j+1)−1(C)) can be obtained by
evaluating

ct.Cj =
∑
ℓ∈[n]

Mult(ct.Aj,ℓ, ct.Bℓ). (6)

4.3.2. Lazy Rotation Technique. We introduce the lazy
rotation optimization, which reduces the required number of
rotations by roughly a factor of two. The main observation
is that the same rotation amount ℓ is used for the cipher-
texts ct.Aj,ℓ across different j. This consistency in rotation
amounts simplifies the computation and enables efficient
parallel processing.

We observe from Eq. (5) that the ciphertext ct.Aj,ℓ can
be computed as

ct.Aj,ℓ = ctj−1,ℓ · µℓ,0 + ctj,ℓ · µℓ,1

+ ρ−n(ctj−1,ℓ) · µℓ,2 + ρ−n(ctj,ℓ) · µℓ,3

= ctj−1,ℓ · µℓ,0 + ctj,ℓ · µℓ,1

+ ρ−n(ctj−1,ℓ · ρn(µℓ,2) + ctj,ℓ · ρn(µℓ,3)).

Figure 2. Ciphertext-ciphertext matrix multiplication. We denote cijk =
aijbjk . For simplicity, we do not include the complexification.

The first equality follows from the fact that ct′j,ℓ =
ρ−n(ctj,ℓ). By substituting this into Eq. (6), the ciphertext
ct.Cj can be expressed as follows:∑
ℓ∈[n]

Mult(ctj−1,ℓ · µℓ,0 + ctj,ℓ · µℓ,1, ct.Bℓ)+∑
ℓ∈[n]

Mult(ρ−n(ctj−1,ℓ · ρn(µℓ,2) + ctj,ℓ · ρn(µℓ,3)), ct.Bℓ).

Let ct.Cj,ℓ = Mult(ctj,ℓ, ct.Bℓ). Then the first term can be
expressed as follows:∑
ℓ∈[n]

(Mult(ctj−1,ℓ, ct.Bℓ) · µℓ,0 +Mult(ctj,ℓ, ct.Bℓ) · µℓ,1)

=
∑
ℓ∈[n]

(ct.Cj−1,ℓ · µℓ,0 + ct.Cj,ℓ · µℓ,1).

The second term can be expressed as follows:

ρ−n(
∑
ℓ∈[n]

Mult(ctj−1,ℓ · ρn(µℓ,2) + ctj,ℓ · ρn(µℓ,3), ct.Bℓ))

= ρ−n(
∑
ℓ∈[n]

ct.Cj−1,ℓ · ρn(µℓ,2) + ct.Cj,ℓ · ρn(µℓ,3))

The first equation follows from the fact that ct.Bℓ =
ρ−n(ct.Bℓ).

We visualize the high-level idea of the lazy rotation
technique in Fig. 2, and the detailed procedure is provided
in Algorithm 2. The cost of the lazy rotation method is
as follows. First, we apply one rotation to compute ctj,ℓ
for each j ∈ [m̃] and 1 ≤ ℓ < n (line 5). Next, we
perform m̃n homomorphic multiplications between ctj,ℓ
and ct.Bℓ (line 6). After that, we carry out 4m̃n scalar
multiplications of the resulting ciphertexts with the masks
µℓ,0, µℓ,1, ρ

n(µℓ,2), and ρn(µℓ,3) (lines 9 to 11). We note
that the number of scalar multiplications can be reduced by
3m̃n using the fact that ct.Cj,ℓ ·ρn(µℓ,3) = ct.Cj,ℓ−ct.Cj,ℓ ·
µℓ,0− ct.Cj,ℓ ·µℓ,1− ct.Cj,ℓ · ρn(µℓ,2) (line 12). Finally, the
output ciphertexts are appropriately summed with rotations
by n positions (lines 14 to 16).

The main advantage of the lazy rotation technique is
the reduction in the number of rotations from 2m̃n to m̃n.

Algorithm 2 CIPHERTEXT-CIPHERTEXT MATMUL

Input: Ciphertexts ct.Aj of the lower-diagonally stacked
vectors of A ∈ Rm×n for j ∈ [m/c]; ciphertexts ct.Bℓ

of the replicated lower diagonal vectors of B ∈ Rn×n

for ℓ ∈ [n]
Output: Ciphertexts ct.Cj of the lower-diagonally stacked

vectors of C
1: m̃← m/c
2: for j = 0 to m̃− 1 do
3: ct.Cj ← Mult(ct.Aj , ct.B0)
4: for ℓ = 1 to n− 1 do
5: ctj,ℓ ← ρ−n·[ℓ]c+ℓ(ct.Aj)
6: ct.Cj,ℓ ← Mult(ctj,ℓ, ct.Bℓ)

7: for ℓ = 1 to n− 1 do
8: for j = 0 to m̃− 1 do
9: ctj,ℓ,0 ← SMult(ct.Cj,ℓ, µℓ,0)

10: ctj,ℓ,1 ← SMult(ct.Cj,ℓ, µℓ,1)
11: ctj,ℓ,2 ← SMult(ct.Cj,ℓ, ρ

n(µℓ,2))
12: ctj,ℓ,3 ← ct.Cj,ℓ − ctj,ℓ,0 − ctj,ℓ,1 − ctj,ℓ,2
13: for j = 0 to m̃− 1 do
14: ct.C′

j ←
∑

1≤ℓ<n(ctj−1,ℓ,0 + ctj,ℓ,1)
15: ct.C′′

j ←
∑

1≤ℓ<n(ctj−1,ℓ,2 + ctj,ℓ,3)
16: ct.Cj ← ct.Cj + ct.C′

j + ρ−n(ct.C′′
j)

17: return ct.Cj

TABLE 2. COMPARISON OF CIPHERTEXT-CIPHERTEXT MATRIX
MULTIPLICATION METHODS OF AB WHERE A ∈ Rm×n AND

B ∈ Rn×n WITH n ≥ m AND s = cn.

Method Cplx #Smult
#Mult

#Rot

#TProd #KS

Basic ✗ 4mn
c

mn
c

m
c

2mn
c

Lazy rotations
✗ 3mn

c
mn
c

2m
c

mn
c

✓ 3mn
2c

mn
2c

2m
c

m(n+2)
2c

When combined with the lazy relinearization technique (will
be explained in Section 4.5), the number of key-switching
operations during homomorphic multiplication is doubled to
2m̃ compared to the naive approach. However, this increase
is relatively small compared to the reduction in rotations, so
it does not result in significant efficiency degradation. We
also remark that the ciphertext-ciphertext matrix multiplica-
tion can be parallelized in a SIMD manner without incurring
additional costs, as explained in Section 4.1.2.

4.4. Row-wise Computation over Diagonal Repre-
sentation

Assume that the upper diagonal vectors of A are given in
encrypted form, where ct.Ak denotes the encryption of the
k-th upper diagonal vector Uk(A). It follows from Lemma 4
that the vector formed by the t-th entries of the upper
diagonal vectors corresponds to the t-th row of the matrix

TABLE 3. COMPARISON OF HOMOMORPHIC MATRIX MULTIPLICATIONS. THE CONCRETE NUMBERS ARE BASED ON THE BERT-BASE PARAMETERS:
n = 128, d = 768, dk = 64, H = 12, AND s = 215 .

Operation Method
#KeySwitch

Equation Number

BOLT 63nd
s

+ (s
64n

− 1) · ndk
s

· 3H 297

{XWQ,h, XWK,h, XWV,h}h∈[H] NEXUS 6ddkH 3538944

(X ∈ Rn×d,W∗ ∈ Rd×dk) Powerformer
(√

3n+ dk + (
√
3n+ dk + log(n

dk
)) · 3H

2

)
· d
n

2612

THOR n
2
+ 6(d

2dk
− 1) dk

c
+ 3 · dk

c
180

BOLT (2n− 2 + n log(n
2
)) ·H 12264

{QhK
⊺
h}h∈[H] NEXUS n2H 196608

(Qh,Kh ∈ Rn×n/2) Powerformer (5n
2

+ 4
√
n) · H

2
2196

THOR (6n
c

+ 2) + n
8
(log c+ 3) + 2n

c
+ 2(n− 1) + 3n

2c
444

BOLT (2n− 1) logn ·H 21420

{αhVh}h∈[H] NEXUS − −
(αh ∈ Rn×n, Vh ∈ Rn×n/2) Powerformer (4n+ 3

√
14n+ 8

√
n+ 2

√
2n) · H

2
4614

THOR n
4
(log c+ 3) + n

c
(1 + n+2

4
) 492

BOLT 31nd
s

+ (s
32n

− 1) · ndk
s

·H 177

Concat(Att0, . . . ,AttH−1)W
O NEXUS 2d2H 14155776

(Atth ∈ Rn×n/2,WO ∈ Rd×d) Powerformer 4
√
n · (d

n
)2 1656

THOR dk
2

+ 2 · (d
n
− 1) · n

c
118

A. Therefore, if the target function f(X) is applied row
by row to A and can be approximated by a function p(X),
this function can be used to approximate f for each row of
A. Specifically, let α = f(A) be the row-wise application
of f to A. The homomorphically evaluated result p(ct.Ak)
corresponds to an approximate result for the upper diagonal
vectors of α. This approach can be extended to a packed
implementation, making it applicable for approximations
such as the softmax and LayerNorm in secure transformer
inference.

4.5. Optimization

Lazy homomorphic operations. We apply a lazy rescal-
ing technique during plaintext-ciphertext multiplications by
adjusting a scaling factor only once within the resulting
ciphertext after multiple multiplications and additions (e.g.,
lines 5 and 6 in Algorithm 1). Additionally, we rely on a lazy
key-relinearization technique during ciphertext multiplica-
tions, which enables tensor products between ciphertexts
and summation over the extended ciphertexts, along with
only a single relinearization via key-switching operation.
For example, we perform key-switching operations after the
computations in lines 14 and 15 of Algorithm 2. Conse-
quently, by using this optimized approach, we reduce the
number of key-switching operations during homomorphic
multiplications from m̃n to 2m̃ (Table 2).

Complexification. For simplicity of presentation, we focus
on Proposition 1 given that m is even. Eq. (1) can be

reformulated as follows:

Lr(C) =
∑

ℓ∈[m/2]

ρr(U[ℓ−r]m(A))⊙ Lℓ(B)

+ ρr(U[ℓ+m/2−r]m(A))⊙ Lℓ+m/2(B))

=
∑

ℓ∈[m/2]

Re(ρr(U[ℓ−r],(Ā))⊙ Lℓ(B̄))

= Re(
∑

ℓ∈[m/2]

ρr(U[ℓ−r]m(Ā))⊙ Lℓ(B̄)),

where Uk(A) = Uk(A) −
√
−1Uk+m/2(A) and Lℓ(B) =

Lℓ(B) +
√
−1Lℓ+m/2(B). Since Re(2x) = x+ conj(x), we

have Lr(AB) = X + conj(X) where

X =
∑

ℓ∈[m/2]

ρr(U[ℓ−r]m(A)/2))⊙ Lℓ(B).

Thus, the number of scalar multiplications is reduced by
half. A similar approach can be applied to all the proposed
matrix multiplication algorithms.

4.6. Comparison

In Table 3, we compare the computational complexity
of the proposed matrix multiplication algorithms for multi-
head attention in the BERT-base model with BOLT [6],
NEXUS [14], and Powerformer [13]. Since the key-
switching operation turns out to be the dominant process
in homomorphic operations [18], we count the number
of the required key-switching operations during ciphertext
multiplications and rotations in each matrix computation. To

ensure a fair comparison, we assume that all methods use the
same HE parameters, with the ring dimension of N = 216

and the number of plaintext slots s = 215. Specifically,
THOR uses the diagonal packing parameter c = 16 as noted
in Section 4.1.2. THOR consistently outperforms the state-
of-the-art HE-based approaches, BOLT and Powerformer,
across all matrix operations.

5. Secure Non-linear Computations

5.1. Softmax

For a vector x = (xi) ∈ Rn, the softmax function is
defined as

Softmax(x) =

(
exp(xi)∑

j∈[n] exp(xj)

)
i∈[n]

.

5.1.1. Our Approach at a High Level. To approximate the
exponential function ex over a given interval [a, b], we can
directly approximate it by minimizing the least squares error.
However, for larger intervals, direct polynomial approxima-
tion becomes less effective due to the rapid growth of the
exponential function. To address this issue, we approximate
the scaled exponential function ex/δ over the scaled interval,
and the result is then raised to the power of δ.

After computing the exponential function, we aggregate
the results and compute their inverse using Goldschmidt’s
division algorithm [19]. Specifically, Goldschmidt’s algo-
rithm uses an iterative process of repeatedly refining the
inverse approximation using the update formula f(x) =
x(2−x). The Adaptive Successive Over-Relaxation (aSOR)
method [20] enhances this process by dynamically adjusting
relaxation factors ki in each iteration. These factors are
applied as xi+1 = kixi(2− kixi), where ki = 2/(1 + ϵi) is
chosen to maximize the rate of convergence by efficiently
reducing the error range. Here, ϵi represents the minimum
value in the current iteration. We consistently apply this
approach to the inverse operations throughout the paper.

5.1.2. The Two-phase Method. A large input range can
introduce another significant computational challenges be-
yond stability issues, as it requires a substantial number
of fractional bits. This makes it computationally intensive
to maintain a necessary high precision within ciphertext.
To address this issue and achieve accurate softmax results
efficiently, we propose a new two-phase method which
consists of the following steps.

We begin by shifting the input vector to enhance numer-
ical stability during exponentiation. Given that the elements
of the input vector are within the range [a, b], each element is
adjusted by subtracting the constant b. As a result, the shifted
elements are within the interval [−M, 0], where M = b−a.
This adjustment prevents the exponential of large positive
numbers, making it more manageable to approximate nu-
merically. We then introduce three scaling factors: δ0, δ1,
and δ2. The factor δ0 is selected to define the range for the

Algorithm 3 ASOFTMAX(x)

Input: x = (xi) ∈ [−M, 0]n, δ1, δ2 ∈ Z+

Output: An approximated softmax of x
1: zi ← (AExp(xi/(δ1δ2)))

δ1 , i = 0..n− 1
2: S(0) ←

∑
i∈[n] zi

3: y
(0)
i ← zi · AInv(S(0)), i = 0..n− 1

4: for j = 1 to log(δ2) do
5: zi ← (y

(j−1)
i)2, i = 0..n− 1

6: S(j) ←
∑

i∈[n] zi

7: y
(j)
i ← zi · AInv(S(j)), i = 0..n− 1

8: return y = (y
(log(δ2)
i)

exponential approximation, δ1 is used to manage the power
of the initial scaled exponentiation, and δ2 determines the
number of repeated squaring-and-normalization operations.
In practice, δ2 is calculated as δ2 = 2⌈log2(M/(δ0δ1))⌉.

• Phase 1: The input vector is scaled by a factor of
1/(δ1 · δ2). Then each element of the scaled input
vector lies within the interval [−M/(δ1 · δ2), 0] ≈
[−δ0, 0], enabling stable exponential computations in
the subsequent steps. Specifically, the exponentials
of the scaled inputs are approximated to a small-
degree polynomial using the least squares method.
Then, we compute the δ1-th power of these values.
Finally, the resulting exponentials are normalized to
form the initial probability distribution by dividing
each value by the sum of all exponentials.

• Phase 2: To enhance numerical stability and accu-
racy, the probabilities are refined through an iterative
process of squaring and normalization for log δ2
iterations.

Algorithm 3 provides an explicit description of our
softmax approximation. Here, AExp and AInv refer to the
approximated exponential and inverse functions. The output
y(0) = (y

(0)
i) from the first phase is an approximation of

Softmax(x/δ2) over [−δ0, 0]n (line 3). Since

Softmax(2x)i =
y2i∑

j∈[n] y
2
j

for y = (yi) = Softmax(x), the j-th update y(j) = (y
(j)
i) in

the second phase is approximate to Softmax(2jx/δ2). After
log δ2 iterations, this process yields an approximate result
of Softmax(x).

5.2. LayerNorm

In LayerNorm, the normalized output is computed as
follows: for i ∈ [n] and j ∈ [d],

LayerNorm(X)i,j = γj ·
Xi,j − µi√

σ2
i + ϵ

+ βj ,

where Xi,j is the input vector, µi is the mean, σ2
i is the

variance, ϵ is a small constant for numerical stability, and

γj and βj are parameters that scale and shift the normal-
ized output, respectively. We integrate the Goldschmidt’s
algorithm with the aSOR technique to approximate the
inverse square root operation. Goldschmidt’s inverse square
root algorithm refines the approximation iteratively using
the update formula f(x) = x(3 − x)2/4. Similar to the
softmax approximation, aSOR is applied to these factors
as xi+1 = kixi(3 − kixi)

2/4, where ki is selected to
maximize the rate of convergence by reducing the error
range efficiently.

5.3. GELU & Tanh

We employ a two-step approach to approximate the
GELU and Tanh functions using a composition of low-
degree polynomials. We first derive a small-degree polyno-
mial f1(x) that approximates the function by minimizing the
least squares error. While this polynomial effectively cap-
tures the overall behavior of the input function, it may lack
precision in certain regions, especially near the boundaries.
To enhance the accuracy, the output of f1(x) is used as the
input for the polynomial f2(x). This second polynomial is
optimized through least squares fitting to refine the approx-
imation, correcting any residual errors. The resulting com-
posite function f2(f1(x)) offers a close approximation of
the target function over large ranges, providing an efficient
and accurate approximation method. We apply the Paterson-
Stockmeyer algorithm to efficiently evaluate the polynomials
in terms of both running time and depth consumption. In
our implementation, GELU is approximated using degree-
31 and degree-27 polynomials, while Tanh is approximated
using two degree-15 polynomials.

6. Secure Transformer Inference

6.1. System Setup & Threat Model

THOR is a secure inference protocol for transformer
models. Our system involves two parties: the client and the
service provider (or server). The service provider holds a
fine-tuned transformer model, while the client seeks infer-
ence services from this model. We use BERT to demonstrate
the efficiency of our system. Given that the original BERT
model is trained on a public dataset, its tokenization process
is robust and effectively maps sentences into a BERT-
optimized space. We freeze the tokenization process during
private fine-tuning.

The threat model of this paper is similar to that of
previous private transformer inference works of NEXUS
and Powerformer. We assume that the server is honest-but-
curious. In other words, it follows the defined protocol pre-
cisely but may attempt to infer information from legitimately
received messages during the interaction. Our security goal
is to ensure that the server does not learn any information
about the client’s private input.

Figure 3. Overview of secure transformer inference in BERT.

6.2. THOR

Figure 3 provides an overview of secure transformer
inference within the BERT architecture. In this setup, the
client first computes the embeddings for a tokenized sen-
tence using the embedding tables. The resulting output is
then encrypted and securely fed into the transformer model
for inference.

We consider the computation of C = AB, where the
matrix B can be provided in the clear. According to the
original matrix multiplication algorithm for C = AB, the
encrypted lower diagonal vectors of C are computed using
the rotated ciphertexts of the upper diagonal vectors of
A and the plaintexts of the lower diagonal vectors of B.
For square matrix multiplication as in Eq. (1), this process
requires n2 rotations to compute ρr(Uℓ−r(A)) from the
encryptions of Uk(A). Alternatively, the encrypted lower di-
agonal vectors of the transposed matrix C⊺ can be obtained
using the rotated plaintexts of the upper diagonal vectors
of B⊺ and the ciphertexts of the lower diagonal vectors of
A⊺. This approach can be implemented without rotations
by precomputing ρr(Uℓ−r(B

⊺)) in cleartext. As a result,
the transposed approach achieves better computation effi-
ciency than the original method. Throughout the paper, the
THOR protocol relies on this encoding format in attention
mechanism during transformer inference.
Attention layer: query, key, and value. Given the weight
matrices WQ,h ∈ Rd×dk for h ∈ [H], each query matrix is
computed as Qh = XWQ,h ∈ Rn×dk , and these matrices
are horizontally stacked to form the query matrix Q ∈ Rn×d.
In other words, we have Q⊺ = W ⊺

QX
⊺, where W ⊺

Q ∈ Rd×d

is a matrix formed by vertically stacking WQ,h’s for h ∈
[H]. This formulation enables secure computation using the
diagonal block matrix multiplication method described in
Section 4.2.2. This process generates the compactly packed
ciphertexts ct.Qj for j ∈ [dk/c], which correspond to the
stacked lower diagonals of Q⊺. We repeat this procedure to
generate ciphertexts ct.Kj and ct.Vj for j ∈ [dk/c], which
represent the lower diagonals of the transposed key matrix

K⊺ = {K⊺
h = W ⊺

K,hX
⊺}h∈[H] and the transposed value

matrix V ⊺ = {V ⊺
h = W ⊺

V,hX
⊺}h∈[H], respectively.

Attention score. As mentioned in Section 4.2.2, the re-
sulting ciphertext ct.Kj corresponds to the plaintext vec-
tor of (L̃cj(K

⊺), L̃cj+1(K
⊺), . . . , L̃c(j+1)−1(K

⊺)), where
each lower diagonal entries of K⊺

h are interlaced within
L̃k(K

⊺). Using the property in Lemma 3 that Lℓ(A) =
ρ−n+ℓ(Um−ℓ(A)) = ρ−n+ℓ(Lm−ℓ(A

⊺)) for A ∈ Rn×dk ,
we first securely compute the lower diagonals of Kh’s,
denoted the output ciphertexts as ct.K′

j for j ∈ [dk/c]
(see Appendix B.1 for details). On the other hand, the
ciphertexts of ct.Qj are transformed to contain c copies
of the lower diagonal vectors of Q⊺

h’s, denoted as the
output ciphertexts ct.Q′

ℓ for ℓ ∈ [dk] (see Appendix B.2 for
more detail). Finally, to compute the transposed dot-product
S⊺
h = KhQ

⊺
h ∈ Rn×n in parallel, we apply the ciphertext-

ciphertext matrix multiplication on ct.K′
j and ct.Q′

ℓ, yield-
ing the ciphertexts ct.Sr for r ∈ [n/c]. These ciphertexts
represent the stacked lower diagonals of S⊺

h’s, which are
equivalent to its upper diagonals of Sh’s.
Soft weights. Let αh = Softmax(Sh) ∈ Rn×n be
the row-wise application of the softmax operation of the
matrix Sh. The row-wise homomorphic evaluation de-
scribed in Section 4.4 can extended to compute on com-
pactly packed upper diagonals across multiple input ma-
trices. Specifically, for an approximation p of the soft-
max function, the homomorphically evaluated result of
p(ct.S0, ct.S1, . . . , ct.Sn/c−1) represents an approximate re-
sult of the upper diagonal vectors of αh’s.
Attention heads. From the softmax evaluation, we ob-
tain compactly packed ciphertexts of ct.αr for r ∈ [n/c],
which represent the lower diagonal vectors of α⊺

h. Let
Atth = αhVh ∈ Rn×dk be the h-th context matrix. First, we
transform ct.αr to contain c copies of the lower diagonal
vectors of α⊺

h’s, resulting in the output ciphertexts ct.α′
ℓ

for ℓ ∈ [n]. We then perform ciphertext-ciphertext matrix
multiplication on the ciphertexts ct.Vj and ct.α′

ℓ. The re-
sulting ciphertexts, ct.Attj for j ∈ [dk/c], correspond to the
compactly packed lower diagonals of Att⊺h.
Multi-head attention. The multi-head attention is computed
as A = Concat(Att0, . . . ,AttH−1)W

O ∈ Rn×d with WO ∈
Rd×d. Here, the projection parameter WO can be considered
as a horizontal concatenation of WO,h ∈ Rdk×d for h ∈ [H].
Let Hh = AtthWO,h ∈ Rn×d. Then the multi-head attention
A can be computed by summing Hh over h ∈ [H].

Let Att be the matrix obtained by vertically stacking the
matrices Att⊺h. We apply diagonal block matrix multiplica-
tion on ct.Attj to compute (WO)⊺Att ∈ Rd×n, resulting in
a matrix formed by vertically concatenating H⊺

h ’s. Finally,
we sum up the output ciphertexts ct.Hr over r ∈ [d/c],
which correspond to the upper diagonals of the matrix A.
LayerNorm1. We start with computation of the row-wise
mean of the matrix A, given the encryptions of its upper
diagonals. Similar operations can be applied to compute the
mean of squares, and the variance can be obtained by sub-
tracting the square of the means from the mean of squares.

The subsequent computation, involving an approximation
of the inverse square root, is performed entrywise over
the encrypted data. In the end, we obtain the ciphertexts
ct.Ar for r ∈ [d/c], which correspond to the upper diagonal
vectors of the normalized matrix A.
FC1. Let B = AW1 with W1 ∈ Rd×fd. The weight matrix
W1 is partitioned into f submatrices W1,t ∈ Rd×d. Let
Bt = AW1,t ∈ Rn×d. We apply diagonal block plaintext-
ciphertext multiplication on ct.Ar to compute the compactly
packed lower diagonals of B⊺

t , denoted as ct.Bt,r for r ∈
[d/c].
GELU. The approximation of the GELU is performed entry-
wise over the encrypted data, enabling it to be implemented
using the SIMD homomorphic operations on the input ci-
phertexts, denoted as ct.Gt,r.
FC2. For t ∈ [f], let Ct = GtW2,t, where Gt = GELU(Bt),
W2,t ∈ Rd×d, and C =

∑
t∈[f] Ct ∈ Rn×d. We apply

diagonal block matrix multiplication on ct.Gt,r to compute
the compactly packed lower diagonals of C⊺

t . Finally, we
sum up the ciphertexts ct.Ct,r over t ∈ [f] to generate the
ciphertexts ct.Cr, which correspond to the lower diagonals
of C⊺.
LayerNorm2. Similar operations can be applied to obtain
the normalized ciphertexts ct.Xr for r ∈ [d/c], which
represent the lower diagonals of X⊺. These are used as input
for the next attention layer.
Pooler & classification. Finally, the dense layers are com-
puted on ct.Xr by applying the plaintext-ciphertext multi-
plication algorithm.

We remark that our architecture is carefully designed
to eliminate the need for repacking or reshaping the output
from one encoder layers to match the input format of the
subsequent layer. This seamless alignment enables our ma-
trix multiplication algorithms to perform efficiently during
secure transformer inference without incurring additional
computational costs.

7. Evaluation

7.1. Experimental Setup

BERT Model and Dataset. We follow the BERT-base
model with the number of encoding blocks L = 12, the
number of multi-heads H = 12, the embedding dimension
d = 768, the number of input tokens t = 128. We fix the
number of self-attention heads to H = d/64 (i.e., dk = 64)
and the size of the feed-forward features to 4d (i.e., f = 4).
We follow the default fine-tuning hyper-parameters in [21],
e.g., batch size 16, learning rate 5× 10−5 and epoch 5.

We use the MRPC (Microsoft Research Paraphrase Cor-
pus) dataset [22] from the GLUE tasks as our dataset.
We performed fine-tuning on the training set and evaluated
accuracy on the official validation set.
Libraries and Configurations. THOR is evaluated using
the Liberate.FHE library [23], which implements the RNS
variant of the CKKS scheme [24]. The ciphertext dimension

TABLE 4. SOFTMAX COMPARISON BETWEEN [26] AND OUR METHOD.

Method #Iter. Depth #Mult Precision (bits)

[26] 5 40 106 11
Ours 3 30 30 8

was set as N = 216 to support the bootstrapping operation,
providing plaintext slots of length s = 215. The ciphertext
modulus q was chosen to ensure a 128-bit security level [25].
Under these HE parameters, 13 multiplicative levels are
available before bootstrapping is needed. All experiments
were conducted on an Intel Platinum 8462 CPU at 2.8GHz
and a single NVIDIA A100 GPU.

7.2. Micro-benchmark Evaluation of Softmax

In Table 4, we compare our softmax approximation
algorithm with that of Cho et al. [26] in terms of the number
of iterations (i.e., the number of approximate normaliza-
tion operations), multiplicative depth, and the number of
homomorphic multiplications required for softmax evalua-
tion excluding initial exponentiation computations. We also
measured the worst-case accuracy of the approximations.
The input data for this evaluation was extracted from 12,800
samples from the third layer of the MRPC dataset, with
xi ∈ [−70, 70] and n = 128.

It follows from [26, Theorem 3.4] that the softmax
approximation requires k = ⌈log 140− log ln 128⌉ = 5 it-
erations of repeated normalization-and-squaring operations.
Since their experimental results were based on random
inputs, we made slight adjustments to the inverse square
root approximations used in the normalization procedure to
fit the MRPC dataset. Specifically, the first and last iterations
require depths of 7 and 11 for the inverse square roots,
while the intermediate iterations require a depth of 4. In
contrast, our algorithm achieves similar accuracy with only
3 iterations of squaring and normalization by the inverse
root approximation. For this evaluation, the scaling factors
are chosen as follows: δ0 = 140

8 = 17.5, δ1 = 2, and δ2 = 4.
Since each iteration in both algorithms requires a sin-

gle bootstrapping, the reduced number of iterations in
our method lowers the required bootstrapping operations,
thereby reducing the overall computational time and re-
source usage. Additionally, we optimize depth consumption
and minimize multiplications for normalization by applying
the aSOR-based Goldschmidt inverse algorithm. The exper-
imental results show that our approach achieves substantial
efficiency gains without compromising accuracy, making it
suitable for applications that requires rapid and resource-
efficient computation, particularly in Machine Learning as
a Service (MLaaS) models.

7.3. End-to-enc Inference Evaluation

Performance Breakdown. Table 5 shows a detailed break-
down of the execution time for the BERT-base model. Due to
the significant cost of bootstrapping, THOR’s architecture

TABLE 5. BREAKDOWN OF THE EXECUTION TIME OF THOR.

Operation Input Time
(sec)

Attention layer 3× (R128×768 × R768×64) 49.77
Attention score 12× (R128×64 × R64×128) 32.53

Softmax 12× (R128×128) 15.53
Attention heads 12× (R128×128 × R128×64) 20.63

Multi-head attention R128×768 × R768×768 27.43
LayerNorm1 R128×768 7.13

FC1 R128×768 × R768×3072 49.80
GELU R128×3072 29.42
FC2 R128×3072 × R3072×768 49.19
LN2 R128×768 4.10

Pooler & Classification R128×768 2.70
Bootstrappings - 337.86

Total - 104.35

TABLE 6. PERFORMANCE FOR THE BASELINE AND OUR METHOD.

Metrics Baseline Unencrypted Encrypted
G G-LN G-LN-S

Accuracy 85.29 85.54 85.54 85.78 84.80
F1-score 89.90 90.05 90.05 90.24 89.49

is designed to perform bootstrapping operations when the
number of intermediate or output ciphertexts is minimal.
Nevertheless, it turns out that more than 53.96% of the total
runtime is attributed to bootstrapping operations. Since the
complexity of basic homomorphic operations, such as ad-
ditions, multiplication, and rotations, scales almost linearly
with the ciphertext level, we perform homomorphic matrix
multiplications at the lowest possible level. The linear layers
in the attention mechanism and the fully connected layers
account for 36.70% of the total runtime. Our optimized
matrix multiplication algorithms provide performance gains,
resulting in a relatively lower runtime. While the total
inference time of THOR is 10.43 minutes in a single GPU
setting, NEXUS takes approximately 37.3 sec×128 inputs ≈
78.93 minutes with four A100 GPUs to process a single
prediction request on the BERT-base model.

Accuracy. In Table 6, we present the performance of the
BERT-base model across five different settings to evalu-
ate the effectiveness of our approximation components: (a)
Baseline: fine-tuning the pre-trained model with no approx-
imation, (b) G: fine-tuning the model with GELU replaced
by our GELU approximation, (c) G-LN: additionally fine-
tuning the model with layer normalization operation re-
placed by our layer normalization approximation, (d) G-LN-
S: implementing full approximation, including the softmax
replaced by our approximation model, and (e) Encrypted:
applying the full approximation to encrypted data for se-
cure inference. As in previous works, we report the accu-
racy and the F1 score. Overall, the accuracy achieved by
THOR matches that of the plaintext model, with an accu-
racy drop of 0.49% compared with the baseline. We attribute
this not to approximations of the non-linear functions but
rather to computational error from homomorphic operations.

8. Related Work

8.1. Privacy-preserving Transformer Inference

Several studies have investigated how to preserve data
privacy during transformer inference. In the MPC-based
approach, MPCFormer [8] introduces a private inference
system for the BERT-base model using secret-sharing tech-
niques. More recently, PrivFormer [9] and PUMA [10]
have proposed secure inference for transformers in a 3PC
setting. In the hybrid approach using HE, Iron [5] and
BOLT [6] present HE-based matrix multiplication algo-
rithms that utilize ciphertext packing techniques. Despite
these advancements in the protocol, they still incur a high
communication cost; for example, BOLT requires 25.74 GB
of communication for an end-to-end inference on the BERT-
base model under one of the WAN settings.

In the HE-based approach, THE-X [11] proposed crypto-
friendly approximation methods for non-linear functions
in transformer inference. Specifically, THE-X replaces the
softmax function with a combination of ReLU and a three-
layer linear neural network, substitutes GELUs with ReLUs,
and replaces LayerNorm with an affine transformation with
learnable parameters. However, their scenario is different
from ours: intermediate results of non-linear layers (input of
ReLU) are sent to the client, who then performs computation
on the decrypted results and re-encrypts them before sending
them back to the server. This approach introduces two sig-
nificant issues: (i) the frequent back-and-forth data exchange
between the client and server increases communication costs
significantly and (ii) the inputs to RELU are exposed to
the client during this process, leading to potential privacy
leakages. Recent works of [12, 13] have focused on the
BERT-tiny model. Thus, cryptographic techniques includ-
ing homomorphic matrix multiplication algorithms are not
scalable to larger transformer models with high embedding
dimensions and a large number of layers.

The intersection of HE and BERT was investigated
in [27], where BERT embeddings are used for training
a HE-based logistic regression model. However, since the
primary focus is on implementing the logistic regression
model, the BERT inference is performed by the client rather
than the server, and only the text classification is conducted
on encrypted data.

8.2. Homomorphic Matrix Multiplication

Various approaches have been investigated to opti-
mize plaintext-ciphertext matrix multiplication (PC-MM).
Gazelle [28] and Iron [5] rely on inner dot products of
input matrices, resulting in a non-compact output packing on
plaintext slots or coefficients after computation. BOLT [6],
the current state-of-the-art for PCMM, still suffers from
computational complexity in large transformer models. Fur-
thermore, it aims to minimize the multiplicative depth for
ciphertext-ciphertext matrix multiplication due to limitations
in the HE parameters when integrated with MPC. As a

result, the computation is suboptimal, and its computational
complexity is significantly higher than ours.

The algorithms proposed in [12, 29] perform inner dot
products over packed ciphertexts, requiring numerous slot
permutations to accumulate values located in different plain-
text slots. This approach relies on repetitive rotate-and-sum
operations, leading to wasted slots in the resulting cipher-
text after homomorphic matrix multiplication. Consequently,
this increases computational overhead due to the need for
repacking the non-compact output into multiple ciphertexts.

NEXUS [14] employs various packing methods similar
to BOLT [6], including component-wise, row-wise, column-
wise, and diagonal-wise packings. However, the details of
changes in the packing structure during secure inference are
not fully explained. On the other hand, PowerFormer [13]
leverages the state-of-the-art ciphertext-ciphertext matrix
multiplication algorithms of Jiang et al. [30]. Despite these
algorithmic improvements, the matrix multiplication algo-
rithms remain suboptimal for rectangular matrix multiplica-
tion, as they result in redundant entries after computation
and these sparsely packed ciphertexts are then used as input
for the subsequent matrix computations.

The recent work of Bae et al. [31] proposed the MaMBo
(Matrix Multiplication Bootstrapping) framework, which
performs PC-MM by leveraging multi-secret variants of
RLWE to compactly represent multiple ciphertexts. How-
ever, this approach does not address the challenge of per-
forming multiplication between ciphertexts, which is a nec-
essary operation for tasks such as transformer inference. In
contrast, THOR introduces a unified concept that not only
retains the efficiency of multiplication between plaintext
and ciphertext, but also supports multiplication between
ciphertexts in an efficient manner, along with other complex
operations required for implementing large language models
in homomorphic encryption.

8.3. Softmax Computation

In NEXUS [14], the softmax is approximated using the
Taylor series expansion of the exponential function and
Goldschmidt’s division algorithm. To improve numerical
stability of the exponential function, the maximum value
of each row in the input matrix is subtracted from each
element. In their implementation, this maximum value is
taken as a constant for efficiency, which is impractical in
real-world applications. As explained in [32], this value
should be computed through a substantial number of com-
parison operations on encrypted data, leading to significant
computational overhead.

An alternative method for computing softmax on en-
crypted data is to replace it with a more HE-friendly
function, avoiding unstable approximation methods. For
instance, PowerFormer [13] replaced the softmax function
with a ReLU-based function, while [33] substituted it with
Gaussian kernels to enable secure computation without di-
vision. However, these methods achieve only comparable
performance to the original softmax in small BERT models
(e.g., two-layer BERT model) on encrypted data.

9. Conclusion

In this study, we present THOR, a fast and secure
transformer inference system on encrypted data. THOR
leverages efficient homomorphic matrix multiplication algo-
rithms, achieving a significant speedup in attention mecha-
nisms compared to previous approaches. With recent ad-
vancements in algorithmic efficiency of HE and imple-
mentation optimization through hardware accelerators, we
believe that performance can be significantly accelerated
and parallelized, further enhancing THOR’s performance.
The cryptographic techniques in THOR are applicable to
the other transformer encoders that utilize different non-
linear approximations from ours, such as [13, 33], as well
as transformer decoders such as GPT [34]. Additionally, our
fundamental developments can be extended to other privacy-
preserving machine learning applications, including neural
network models and transfer learning.

References

[1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin,
“Attention is all you need,” Advances in neural infor-
mation processing systems, vol. 30, 2017.

[2] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova,
“BERT: Pre-training of deep bidirectional transformers
for language understanding,” in Proceedings of the
2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human
Language Technologies, 2019, pp. 4171–4186.

[3] Openai, “chatgpt,” https://openai.com/blog/chatgpt,
2022.

[4] H. Touvron, T. Lavril, G. Izacard, X. Martinet,
M.-A. Lachaux, T. Lacroix, B. Rozière, N. Goyal,
E. Hambro, F. Azhar et al., “LLaMA: Open and ef-
ficient foundation language models,” arXiv preprint
arXiv:2302.13971, 2023.

[5] M. Hao, H. Li, H. Chen, P. Xing, G. Xu, and T. Zhang,
“Iron: Private inference on transformers,” Advances in
neural information processing systems, vol. 35, pp.
15 718–15 731, 2022.

[6] Q. Pang, J. Zhu, H. Möllering, W. Zheng, and
T. Schneider, “BOLT: Privacy-preserving, accurate and
efficient inference for transformers,” in 2024 IEEE
Symposium on Security and Privacy (SP). IEEE, 2024,
pp. 4753–4771.

[7] W.-j. Lu, Z. Huang, Z. Gu, J. Li, J. Liu, C. Hong,
K. Ren, T. Wei, and W. Chen, “BumbleBee: Secure
two-party inference framework for large transformers,”
Manuscript, to appear in Network and Distributed
System Security Symposium 2025, p. available at https:
//eprint.iacr.org/2023/1678.

[8] D. Li, H. Wang, R. Shao, H. Guo, E. Xing, and
H. Zhang, “MPCFORMER: Fast, performant and pri-
vate transformer inference with MPC,” in The Eleventh
International Conference on Learning Representations,
2023.

[9] Y. Akimoto, K. Fukuchi, Y. Akimoto, and J. Sakuma,
“Privformer: Privacy-preserving transformer with
MPC,” in 2023 IEEE 8th European Symposium on
Security and Privacy (EuroS&P). IEEE, 2023, pp.
392–410.

[10] Y. Dong, W.-j. Lu, Y. Zheng, H. Wu, D. Zhao, J. Tan,
Z. Huang, C. Hong, T. Wei, and W. Chen, “PUMA:
Secure inference of LLaMA-7B in five minutes,” arXiv
preprint arXiv:2307.12533, 2023.

[11] T. Chen, H. Bao, S. Huang, L. Dong, B. Jiao,
D. Jiang, H. Zhou, J. Li, and F. Wei, “THE-X: Privacy-
preserving transformer inference with homomorphic
encryption,” in Findings of the Association for Compu-
tational Linguistics: ACL 2022, 2022, pp. 3510–3520.

[12] L. Rovida and A. Leporati, “Transformer-based lan-
guage models and homomorphic encryption: An in-
tersection with bert-tiny,” in Proceedings of the 10th
ACM International Workshop on Security and Privacy
Analytics, 2024, pp. 3–13.

[13] D. Park, E. Lee, and J.-W. Lee, “Powerformer:
Efficient privacy-preserving transformer with batch
rectifier-power max function and optimized homo-
morphic attention,” Cryptology ePrint Archive, Paper
2024/1429, 2024.

[14] J. Zhang, J. Liu, X. Yang, Y. Wang, K. Chen, X. Hou,
K. Ren, and X. Yang, “Secure transformer infer-
ence made non-interactive,” Manuscript, to appear in
Network and Distributed System Security Symposium
2025, p. available at https://eprint.iacr.org/2024/136,
2025.

[15] C. Gentry, “Fully homomorphic encryption using ideal
lattices,” in Proceedings of the forty-first annual ACM
symposium on Theory of computing, 2009, pp. 169–
178.

[16] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Ho-
momorphic encryption for arithmetic of approximate
numbers,” in International Conference on the Theory
and Application of Cryptology and Information Securi-
tybossuat2024security. Springer, 2017, pp. 409–437.

[17] J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song,
“Bootstrapping for approximate homomorphic encryp-
tion,” in Annual International Conference on the The-
ory and Applications of Cryptographic Techniques.
Springer, 2018, pp. 360–384.

[18] M. Kim, D. Lee, J. Seo, and Y. Song, “Accelerating HE
operations from key decomposition technique,” in An-
nual International Cryptology Conference. Springer,
2023, pp. 70–92.

[19] R. E. Goldschmidt, “Applications of division by con-
vergence,” Ph.D. dissertation, Massachusetts Institute
of Technology, 1964.

[20] J. Moon, Z. Omarov, D. Yoo, Y. An, and H. Chung,
“Adaptive successive over-relaxation method for a
faster iterative approximation of homomorphic oper-
ations,” Cryptology ePrint Archive, Paper 2024/1366,
2024.

[21] Bert, https://github.com/google-research/bert, 2019,
google.

[22] B. Dolan and C. Brockett, “Automatically constructing
a corpus of sentential paraphrases,” in Third interna-
tional workshop on paraphrasing (IWP2005), 2005.

[23] DESILO, “Liberate.FHE: A new FHE library for
bridging the gap between theory and practice with
a focus on performance and accuracy,” https://github.
com/Desilo/liberate-fhe, 2023.

[24] J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song,
“A full RNS variant of approximate homomorphic
encryption,” in International Conference on Selected
Areas in Cryptography. Springer, 2018, pp. 347–368.

[25] J.-P. Bossuat, R. Cammarota, J. H. Cheon, I. Chillotti,
B. R. Curtis, W. Dai, H. Gong, E. Hales, D. Kim,
B. Kumara et al., “Security guidelines for imple-
menting homomorphic encryption,” Cryptology ePrint
Archive, 2024.

[26] W. Cho, G. Hanrot, T. Kim, M. Park, and D. Stehlé,
“Fast and accurate homomorphic softmax evaluation,”
in Proceedings of the 2024 ACM SIGSAC conference
on computer and communications security, 2024.

[27] G. Lee, M. Kim, J. H. Park, S.-w. Hwang, and
J. H. Cheon, “Privacy-preserving text classification
on BERT embeddings with homomorphic encryption,”
in Proceedings of the 2022 Conference of the North
American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies,
2022, pp. 3169–3175.

[28] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan,
“GAZELLE: A low latency framework for secure
neural network inference,” in 27th USENIX security
symposium (USENIX security 18), 2018, pp. 1651–
1669.

[29] E. Crockett, “A low-depth homomorphic circuit for
logistic regression model training,” Cryptology ePrint
Archive, 2020.

[30] X. Jiang, M. Kim, K. Lauter, and Y. Song, “Secure out-
sourced matrix computation and application to neural
networks,” in Proceedings of the 2018 ACM SIGSAC
conference on computer and communications security,
2018, pp. 1209–1222.

[31] Y. Bae, J. H. Cheon, G. Hanrot, J. H. Park, and
D. Stehlé, “Plaintext-ciphertext matrix multiplication
and FHE bootstrapping: Fast and fused,” in Annual
International Cryptology Conference. Springer, 2024,
pp. 387–421.

[32] S. Lee, G. Lee, J. W. Kim, J. Shin, and M.-K. Lee,
“HETAL: Efficient privacy-preserving transfer learn-
ing with homomorphic encryption,” in International
Conference on Machine Learning. PMLR, 2023, pp.
19 010–19 035.

[33] D. Rho, T. Kim, M. Park, J. W. Kim, H. Chae, J. H.
Cheon, and E. K. Ryu, “Encryption-friendly LLM
architecture,” arXiv preprint arXiv:2410.02486, 2024.

[34] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei,
I. Sutskever et al., “Language models are unsupervised
multitask learners,” OpenAI blog, vol. 1, no. 8, p. 9,
2019.

Appendix A.
Proofs of Main Results

A.1. Proof of Proposition 1

Proof. Let C = AB ∈ Rn×n. For ℓ ∈ [m] and r, t ∈ [n],
the elements A[r+ t, ℓ+ t] and B[ℓ+ t, t] correspond to the
t-th entries of the r-th shifted vector ρr(Uℓ−r(A)) and the
lower diagonal vector Lℓ(B), respectively. Therefore, the t-
th entry of the vector

∑
ℓ∈[m] ρ

r(Uℓ−r(A)) ⊙ Lℓ(B) is as
follows:

(
∑
ℓ∈[m]

ρr(Uℓ−r(A))⊙ Lℓ(B))[t] =
∑
ℓ∈[m]

Ar+t,ℓ+t ·Bℓ+t,t

= Cr+t,t

= Lr(AB)[t].

A.2. Proof of Proposition 2

Proof. Let C = AB ∈ Rm×n. We first consider the t-th
entry of the r-th shifted vector ρr(U′

ℓ−r(A)) for r ∈ [m]
and ℓ, t ∈ [n] If ℓ − r < m, this entry corresponds to the
t-th entry of ρr(Uℓ−r(A)), which is equal to the element
A[r + t (mod m), ℓ+ t (mod n)]. Otherwise, suppose that
ℓ− r = mQ+R for some integers Q ∈ Z and R ∈ [m]. In
this case, the entry corresponds to the t-th entry of

ρr(U′
ℓ−r(A)) = ρr(ρm·⌊(ℓ−r)/m⌋(U((ℓ−r) mod m)(A)))

= ρr(ρmQ(UR(A))

= ρr+mQ(UR(A)).

We note that

ρr+mQ(UR(A)) = ρr+mQ(A0,R, A0,R+1, . . .)

= (Ar,r+mQ+R, Ar+1,r+mQ+R+1, . . .)

= (Ar,ℓ, Ar+1,ℓ+1, . . .).

Thus, the t-th entry of ρr+mQ(UR(A)) is A[r + t
(mod m), ℓ + t (mod n)]. Similarly, the element B[ℓ + t
(mod n), t (mod n)] corresponds to the t-th entry of the
lower diagonal vector Lℓ(B). Therefore, for each r ∈ [m],
the t-th entry of

∑
ℓ∈[n] ρ

r(U′
ℓ−r(A))⊙Lℓ(B) is as follows:

(
∑
ℓ∈[n]

ρr(U′
ℓ−t(A))⊙ Lℓ(B))[t] =

∑
ℓ∈[n]

Ar+t,ℓ+t ·Bℓ+t,t

= Cr+t,t

= Lr(AB)[t].

A.3. Proof of Corollary 1

Proof. By definition 3, we have

L′n−k = ρm·(n/m−1)(Lm−k) = ρn−m(Lm−k)

for k ∈ [m]. It follows from Lemma 3 that

Uk(A) = ρ−m+k(Lm−k(A))

= ρ−m+k(ρ−n+m(L′n−k(A)))

= ρk(L′n−k)

for k ∈ [m]. Therefore, we have

ρr(Uℓ−r) = ρr(ρℓ−r(L′n−(ℓ−r))) = ρℓ(L′n−ℓ+r(A)),

as desired.

A.4. Proof for Corollary 2

Proof. The upper diagonal vector U′
k(A) ∈ Rn is equal

to Uk(A) when ℓ − r < m. By Lemma 3, we have
ρr(U′

ℓ−r(A)) = ρr(Uℓ−r(A)) = ρr(ρℓ−r(Lm−ℓ+r(A))) =
ρℓ(L[m−ℓ+r]m(A)). Now, suppose that ℓ− r ≥ m. Then we
have

ρr(U′
ℓ−r(A)) = ρr

(
ρm·⌊(ℓ−r)/m⌋(U[ℓ−r]m(A))

)
= ρr

(
ρm·⌊(ℓ−r)/m⌋+[ℓ−r]m(Lm−[ℓ−r]m(A)

)
= ρr(ρℓ−r(Lm−[ℓ−r]m(A))

= ρℓ(L[m−ℓ+r]m(A)).

Appendix B.
Homomorphic Matrix Operations

B.1. Matrix Transposition

Algorithm 4 performs matrix transposition which trans-
forms the upper-diagonally stacked vectors of a matrix B
into the upper-diagonally stacked vectors of B⊺. Equiv-
alently, the output ciphertexts can be also considered as
the lower-diagonally stacked vectors of B. We define two
masking vectors µj,k,0, µj,k,1 ∈ Rs which have entries as
follows:

µj,k,0[i] =

{
1 if a ≤ i < a+ n− b,

0 otherwise,

µj,k,1[i] =

{
1 if [a− b]s ≤ i < [a− b]s + b,

0 otherwise,

where a = [−kn]s and b = [n − k − cj]n. This transposi-
tion procedure requires (2n− 1) scalar multiplications and
(n−1+n/c) rotations in total. By leveraging both real and
complex numbers for rotation, the total computational cost
changes to 4n scalar multiplications and (c+2)n

2c rotations.

Algorithm 4 TRANSPOSE

Input: Ciphertexts ct.Bj of the upper-diagonally stacked
vectors of B ∈ Rn×n for j ∈ [n/c]

Output: Ciphertexts ct.B′
ℓ of the upper-diagonally stacked

vectors of B⊺ for ℓ ∈ [n/c]
1: for j = 0 to n/c− 1 do
2: ct′ ← ρ[n−cj]n(ct.Bj)
3: l← −j (mod n/c)
4: ctℓ,0 ← SMult(ct′, µj,0,0)
5: ctℓ,1 ← SMult(ct′, µj,0,1)

6: for j = 0 to n/c− 1 do
7: ℓ← n/c− 1− j
8: for k = 1 to c do
9: ct′ ← ρ(n−cj−k+2kn−cn)(ct.Bj)

10: ctℓ,0 ← Add(ctℓ,0,SMult(ct′, µj,k,0))
11: ctℓ,1 ← Add(ctℓ,0,SMult(ct′, µj,k,1))

12: for ℓ = 0 to n/c− 1 do
13: ct.B′

ℓ ← Add(ctℓ,0, ρ
−n(ctℓ,1))

14: return ct.B′
ℓ

Algorithm 5 MERGE-COPY

Input: Ciphertexts ct.Bj of the lower-diagonally stacked
vectors of B ∈ Rn×n for j ∈ [n/c]

Output: Ciphertexts ct.B′
ℓ of the replicated lower diagonal

vectors of B for ℓ ∈ [n]
1: for j = 0 to n/c− 1 do
2: for k = 0 to c/2− 1 do
3: ctj,k ← SMult(ct.Bj , µk)
4: for r = 0 to log(c/2)− 1 do
5: ctj,k ← ctj,k + ρ−2n·2r (ctj,k)

6: ct.B′
cj+2k ← SMult(ctj,k, µL)

7: ct.B′
cj+2k+1 ← ctj,k − ct.Bcj+2k

8: for k = 0 to c− 1 do
9: ct.B′

cj+k ← ct.B′
cj+k + ρ−n(ct.B′

cj+k)

10: return ct.B′
ℓ

B.2. Merge-and-copy

Algorithm 5 provides the detailed procedure for generat-
ing replicated lower diagonal vectors from the stacked lower
diagonal vectors of a matrix B. We define two masking
vectors µk, µL ∈ Rs which have entries as follows:

µk[i] =

{
1 2kn ≤ i < 2(k + 1)n,

0 otherwise.

µL[i] =

{
1 0 ≤ i < n,

0 otherwise.

This merge-and-copy procedure requires n scalar multipli-
cation and n

2 · (log c+ 1) rotations in total.

