
HomeRun: High-efficiency Oblivious Message Retrieval,

Unrestricted

Yanxue Jia1, Varun Madathil2, and Aniket Kate1,3

1Purdue University
2North Carolina State University

3Supra Research

Abstract

In the realm of privacy-preserving blockchain applications such as Zcash, oblivious message retrieval
(OMR) enables recipients to privately access messages directed to them on blockchain nodes (or bul-
letin board servers). OMR prevents servers from linking a message and its corresponding recipient’s
address, thereby safeguarding recipient privacy. Several OMR schemes have emerged recently to meet
the demands of these privacy-centric blockchains; however, we observe that existing solutions exhibit
shortcomings in various critical aspects and may only achieve certain objectives inefficiently, sometimes
relying on trusted hardware, thereby impacting their practical utility. This work introduces a novel OMR
protocol, HomeRun, that leverages two semi-honest, non-colluding servers to excel in both performance
and security attributes as compared to the current state-of-the-art.

HomeRun stands out by providing unlinkability across multiple requests for the same recipient’s ad-
dress. Moreover, it does not impose a limit on the number of pertinent messages that can be received by a
recipient, which thwarts “message balance exhaustion” attacks and enhances system usability. HomeRun
also empowers servers to regularly delete the retrieved messages and the associated auxiliary data, which
mitigates the constantly increasing computation costs and storage costs incurred by servers. Remarkably,
none of the existing solutions offer all of these features collectively. Finally, thanks to its judicious use
of highly efficient cryptographic building blocks, HomeRun is highly performant: Specifically, the total
runtime of servers in HomeRun is 3830× less than that in the work by Liu et al. (CRYPTO ’22) based
on fully-homomorphic encryption, and at least 1459× less than that in the design by Madathil et al.
(USENIX Security ’22) based on two semi-honest and non-colluding servers, using a single thread in a
WAN setting.

1 Introduction

Safeguarding “metadata”—that is, information concerning who communicated with whom, when, and the
extent of their interactions [SG23]—over the Internet poses a formidable challenge. This challenge is notably
pronounced in the context of blockchains, where message senders publicly post their messages on a bulletin
board (i.e. a blockchain) and recipients retrieve their messages by contacting the blockchain nodes/servers.
This process presents an opportunity for various intermediaries to potentially link senders to recipients by
tracking these accesses [HHK18]. While senders may employ techniques like anonymous broadcast [LK23,
LSD23, NSD22, APY20] to hide their identities, such methods are ineffective for preserving the privacy
of the intended message recipients, especially when confronted with adversaries attempting to associate a
particular recipient (typically identified by an address or wallet) with a message intended for them.

A straightforward approach to solving the problem is to let full nodes (namely, servers) assist recipients
in identifying pertinent messages on the bulletin board. Unfortunately, if recipients share their addresses
(namely, Addr) with the servers, their privacy would be compromised. On the other hand, recipients can
potentially download the bulletin board and read their messages locally, without revealing which messages

1



are pertinent to them. However, as blockchains grow in size, it is very impractical for recipients to download
or maintain a massive bulletin board,1 merely to read a few pertinent messages. This work focuses on
protecting the privacy of blockchain/bulletin-board recipients while allowing efficient and scalable retrieval
of pertinent messages.

Hearn and Corallo [HC12] were the first to address the problem by leveraging the false-positive probability
of Bloom filters to provide a suitable anonymity set to hide the addresses of recipients: here, the server
cannot identify the receiver addresses in the anonymity set. However, subsequent research by Gervais et
al. [GCKG14] showed that the Bloom filter-based solution leaks considerable information about recipient
addresses. Later, Beck et al. [BLMG21] followed the idea of introducing false-positive probability, but
they avoided the information leakage of addresses. While false-positive probability is an effective means to
improve privacy, it is not conducive to achieving full privacy (i.e., hiding the pertinent messages among all
messages) and inherently results in higher communication and computational costs as the privacy level is
enhanced. This is because the recipient would receive more messages and identify the pertinent ones from
them. Recently, Madathil et al. [MSS+22], Liu et al. [LT22] and Jakkamsetti et al. [JLM23] proposed
solutions that do not rely on false-positive probability, thus avoiding the above shortcomings. Therefore,
their solutions achieve full privacy and constitute the key related work for this paper. Nonetheless, their
schemes still have significant drawbacks.

Limitations in the Existing Solutions. The schemes proposed by Madathil et al. [MSS+22] and Jakkam-
setti et al. [JLM23] rely on a Trusted Execution Environment (TEE), which is a strong trust assumption.
Meanwhile, the two-server scheme in [MSS+22] and the single-server scheme (that leverages fully homo-
morphic encryption) introduced by Liu et al. [LT22], both impose significant computational overhead on
server(s). Moreover, both schemes in [MSS+22] require servers to update the entire table whose size is linear
in the number of unretrieved messages (denoted as N), while adding a new message. Most recently, the
scheme in [JLM23] reduces the addition cost to O(logN) by leveraging Oblivious RAM (ORAM). In addi-
tion, the schemes in [MSS+22, LT22] limit the number of pertinent messages for a recipient. This limitation
not only compromises usage flexibility but also facilitates attacks by adversaries aiming to consume the
“message balance” of a recipient.

In this work, we design a new protocol, HomeRun (High-efficiency Oblivious MEssage Retrieval UNrestricted),
that avoids the shortcomings of the previous work while enjoying their merits. Let us start with a trivial
approach: a server holding a list of message/address pairs {(mi,Addri)} tests whether Addri = Addr′ to
determine if message mi is pertinent to a recipient with address Addr′. Obviously, in this straightforward
approach, the server can directly append a new message/address pair to the list, and the number of pertinent
to a recipient is unlimited. However, recipients’ privacy is compromised. To achieve full privacy, our key
idea is to split each Addri and Addr′ between two servers such that each server only obtains a share of each
address. Then, the two servers perform a matching process without knowing the actual address and the final
output. Moreover, HomeRun takes into account the following two highly relevant enhancements.

Allowing Deletion. In the previous works [BLMG21, MSS+22, LT22, JLM23], for each message on the
bulletin board, the server(s) stores messages and corresponding auxiliary information2 to assist recipients
with retrieving messages while guaranteeing their privacy. However, since the server(s) do not know which
messages have been retrieved, these solutions do not directly support deletion. This would lead to a constantly
increased storage cost. Moreover, apart from the scheme in [JLM23], the server runtime in all of the above
existing schemes (including ours) is linearly dependent on the number of messages that are stored. Therefore,
without deletion, the concrete efficiency of previous schemes may deteriorate very quickly. Whereas, our
work for the first time introduces a deletion feature, which ensures precise and regular deletion of retrieved
messages, thus avoiding the issue.

1For example, the size of Bitcoin is 511.84 GB [bit], the size of Ethereum is 1221.43 GB [eth], until September 2023.
2The auxiliary information for the schemes in [MSS+22, JLM23] refer to a ciphertext. As for the schemes in [BLMG21, LT22],

the auxiliary information is a label. The schemes in [MSS+22, JLM23] only provided pertinent indexes to recipients without
considering retrieving messages. Therefore, the server(s) in their schemes does not store messages. For simplicity, we do not
explicitly differentiate between these two kinds of schemes, and the schemes in [MSS+22, JLM23] can be seamlessly integrated
with PIR to achieve message retrieval.

2



Table 1: Comparisons with the previous works.

FMD1/2
[BLMG21]

PS1
[MSS+22]

PS2
[MSS+22]

OMRp1/2
[LT22]

S-PS
[JLM23]

Ours

Setup 1 SH Svr 1 TEE Svr 2 SH Svrs 1 SH Svrs 1 TEE Svr 2 SH Svrs

Addition Method Append Update All Update All Append ORAM Append

Full Privacy ✗ ✓ ✓ ✓ ✓ ✓

#Pert. Msgs Unlimit ✓ ✗ ✗ ✗ ✓ ✓

Deletion Support ✗ ✗ ✗ ✗ ✗ ✓

Request Unlinkability ✗ ✓ ✗ ✓ ✓ ✓

1. Setup: “ SH Svr” means semi-honest server; “TEE Svr” means a server with a TEE.
2. Addition Method: There are three methods to add a new message: (1) updating the entire list,
(2) appending to the list and (3) storing the list in an ORAM and adding via ORAM.

3. Full Privacy: A pertinent message is hidden among all unretrieved messages on board.
4. #Pert. Msgs Unlimit: The number of pertinent messages to a recipient is unlimited.
5. Deletion Support: Retrieved messages can be periodically deleted.
6. Request Unlinkability: Server(s) cannot link two retrieval requests from the same address.

Achieving Retrieval Request Unlinkability. Here, we consider an underlying privacy leakage risk:
if a recipient requests retrieval twice, the server(s) can link those two requests. We observed that the
TEE-based schemes in [MSS+22]3 and [JLM23] does not suffer from this leakage risk, since the server can
only access the ciphertexts of retrieval requests under the public key of TEE. However, other solutions
[MSS+22, BLMG21, LT22] are all susceptible to this risk; requests from the same recipient will include the
(secret) key of the recipient. Therefore, the server(s) can link these requests by identifying the same (secret)
keys4. Notice that even if recipients communicate with servers over anonymous channels, the requests remain
linkable.

Liu et al. [LT22] also observed this leakage risk, and they proposed to resample the key for each retrieval
request. Nevertheless, this solution cannot be applied to [MSS+22, BLMG21]. Unlike the scheme in [LT22],
the (secret) keys that incur linkability in [MSS+22, BLMG21] are related to addresses. Moreover, senders
need to produce the above-discussed auxiliary information based on the recipient address. This means that
the recipient needs to frequently update her addresses with all her prospective senders, which affects usability.

In our protocol, for every request, each server receives a random share of an address. As a result, even
when a recipient consistently uses the same address, the servers are unable to establish a link between
these requests assuming that the recipient communicates with servers over an anonymous channel to avoid
network-level leakage. The privacy5 achieved by our protocol is captured by the functionality FOMR in
Figure 6. Please see Section 3.2 for more details.

1.1 Our Contributions

In summary, we design an efficient protocol, called HomeRun, that can assist recipients with retrieving
pertinent messages from a bulletin board while guaranteeing their privacy. See the summarized comparison
with the previous works [BLMG21, MSS+22, LT22, JLM23] in Table 1.

First, HomeRun avoids the shortcomings existing in the previous works [BLMG21, MSS+22, LT22,
JLM23], and has the following advantages:

3When a table is too large, it must be stored in the memory of the server. In this case, the server can also link retrieval
requests based on access patterns. The problem is solved by [JLM23] using ORAM.

4In the two schemes proposed by [BLMG21], a recipient needs to send secret keys to the server. In the two-server solution
in [MSS+22], a recipient is required to send her signature verification key to the servers. The retrieval request in the scheme
designed by Liu et al. [LT22] includes a BFV public key.

5Similar to [MSS+22, BLMG21, LT22, JLM23], the discussion on privacy in this work is conducted without considering the
network-level leakage, which is beyond the scope of our paper. In practice, for example, Tor [Tor] can be used to mitigate
network-level leakage.

3



(1) Add a new
message

Request index
retrieval

(2) Response
(3) Recover the

indexes

PS1:
PS2: 

OMDp1: 

S-PS:

Ours:

Bulletin Board Server(s) Recipient

Figure 1: Comparison of runtime (in seconds) for addition and index retrieval phases, with the prior schemes
PS1 / PS2 [MSS+22], OMDp1 [LT22] and S-PS [JLM23]. PS1 and S-PS are based on TEE. The number of
pertinent messages is n. Here, for PS1 / PS2 and OMDp1, n is up to 50; for S-PS and ours, n is unlimited.
The runtime of S-PS is linear in n, whereas ours is independent on n. The two servers in PS2 communicate
in a LAN setting6, while those in HomeRun run in a WAN setting. All experiments are evaluated using a
single thread.

• We achieve full privacy efficiently where a pertinent message is hidden among all messages on the
bulletin board. Importantly, we achieve this without relying on trusted hardware or heavy machinery
like FHE.

• We allow efficiently adding new messages through appending. This is advantageous in scenarios where
new messages are frequently generated and a large number of unretrieved messages are on the bulletin
board.

• We allow unlimited number of pertinent messages for a recipient. This enhances user-friendliness and
effectively prevents adversaries from consuming the message balance of a recipient.

We additionally introduce two features into HomeRun. Specifically, deletion avoids the constantly in-
creasing computation time and storage cost of servers. Retrieval request unlinkability guarantees that servers
cannot link multiple retrieval requests derived from the same address.

Finally, we implement HomeRun and provide comprehensive performance comparisons with the prior
works [BLMG21, MSS+22, LT22, JLM23]. The protocols in [MSS+22, JLM23] only focus on retrieving
pertinent indexes without considering how to retrieve the pertinent messages, and the scheme in [BLMG21]
cannot achieve full privacy. Therefore, in Figure 1, we only show performance comparisons with [MSS+22,
LT22, JLM23] in addition and index retrieval phases, assuming that the bulletin board contains 219 messages.
Please see Section 5.2 for more details.

From Figure 1, we can see that the overall performance of HomeRun is comparable to that of PS1
[MSS+22] and significantly surpasses those of PS2 [MSS+22] and OMDp1 [LT22]. When the number of
pertinent indexes, denoted as n, reaches the scale of several thousand, our performance is comparable to
that of S-PS [JLM23]. Moreover, increasing to 16 threads can reduce our response time to 0.96s. In addition,
the servers in HomeRun spend 4.47s to delete the retrieved messages in the WAN setting, regardless of the
number of messages to be deleted.

Organization. We first introduce our core ideas in Section 2. This followed by preliminaries in Section 3.
Our detailed protocol is presented in Section 4. Then, we evaluate our protocol and provide comprehensive
comparisons with prior works through experiments in Section 5. In Section 6, we discuss potential extensions
based on our protocol. Finally, we provide a recall of related work in Section 7 and a conclusion in Section 8.

6The source code of PS2 does not directly support network simulation.

4



Figure 2: The lists maintained by the two servers. For message mi pertinent to recipient Rk, Serverj stores it

alongside its label Lj,t
Rk

, where t denotes it is the t-th message for this recipient. Moreover, L1,t
Rk
⊕L2,t

Rk
= AddrRi

where AddrRi
is the address of the recipient.

2 Technical Overview

Our work aims to design an efficient and scalable OMR protocol, by leveraging two non-colluding servers,
Server1 and Server2. In an OMR protocol, a recipient (namely, R) will first share her address (namely,
AddrR) with prospective senders or all parties (perhaps by posting it to a public repository). Then, a sender
submits a message and associated auxiliary data (that is generated based on the recipient’s address) to a
bulletin board. Later, a recipient can retrieve her pertinent messages with the assistance of the two servers,
without scanning the entire bulletin board. Moreover, the two servers cannot link the recipient’s address to
her pertinent messages.

2.1 Core Idea

We start with a naive solution that does not preserve the privacy of recipients. We use a random string as
the address (namely, Addr) of a recipient and let a server store a list of message/address pairs {(mi,Addri)}.
If each message is sent to a different recipient, no additional information is leaked from the list. However, a
recipient always receives more than one message. In this case, the server maintaining the pairs of messages
and addresses can learn which messages are pertinent to the same recipient. Fortunately, we have two semi-
honest, non-colluding servers, denoted as Server1 and Server2. Therefore, we can require each server to store a
random share of each address, instead of the actual address. In this way, even if two messages are associated
with the same address AddrR, we can randomly share AddrR in two different ways, e.g., AddrR = L1,1

R ⊕L2,1
R

and AddrR = L1,2
R ⊕ L2,2

R . Then, Server1 holds L1,1
R and L1,2

R , while Server2 holds L2,1
R and L2,2

R . Since

L1,1
R ̸= L1,2

R and L2,1
R ̸= L2,2

R , neither of the two servers can know that the two messages are sent to the
same recipient. We call the share of an address “label”, and show the lists maintained by the two servers in
Figure 2. Next, we explain the processes of sending and retrieval.

We suppose that two servers have previously received messages m1, · · · ,m4 with their associated labels.
Now, a sender wants to transmit a message m5 to recipient R3. To do this, the sender generates the shares
L1,2
R3

and L2,2
R3

and sends (m5, L
1,2
R3

) and (m5, L
2,2
R3

) to the two servers, respectively. When the recipient R3

wants to retrieve messages, R3 generates two shares of her address AddrR3
, denoted as L1

R3
and L2

R3
, and

sends them to the two servers, respectively. Note that, given that the sender and recipient generate their
respective shares randomly, L1,2

R3
̸= L1

R3
and L2,2

R3
̸= L2

R3
hold true with overwhelming probability. Similarly,

for the message m3 that has been stored by the two servers, L1,1
R3
̸= L1

R3
and L2,1

R3
̸= L2

R3
also hold with

overwhelming probability. Therefore, given L1
R3

(resp. L2
R3

), Server1 (resp. Server2) cannot know messages
m3 and m5 are pertinent to recipient R3. Next, we explain how the servers help the recipient R3 retrieve

5



PET

PET

PET

PET

PET

 

{0,1,1,0,0} {0,1,0,0,1}

{0,1,1,0,0} {0,1,0,0,1} {0,0,1,0,1} indexes: 3,5

PIR PIR

Figure 3: Our initial protocol. Here, we take recipient R3 as an example. The recipient R3 generates L1
R3

and L2
R3

such that AddrR3
= L1

R3
⊕ L2

R3
. After receiving Lj

R3
from R3, Serverj XORs it with each stored

label to obtain “test label”. For each pair of test labels, servers perform a “Private Equality Test (PET)”;
equal test labels yield opposite bits, while differing labels produce identical bits. Then, servers send PET
outputs (i.e., two bit-vectors) to R3. Later, R3 learns 3 and 5 are pertinent indexes through XOR operation,
and retrieves m3 and m5 through “Private Information Retrieval (PIR)”.

pertinent messages m3 and m5, and illustrate the process in Figure 3.
The fact that messages m3 and m5 are pertinent to recipient R3 means that L1,1

R3
⊕L1

R3
= L2,1

R3
⊕L2

R3
and

L1,2
R3
⊕ L1

R3
= L2,2

R3
⊕ L2

R3
. Therefore, Server1 (resp. Server2) can perform XOR to L1

R3
(resp. L2

R3
) with the

label of each message mi to obtain the corresponding “test label” L1,i
T (resp. L2,i

T ), and then performs an

equality test on each pair (L1,i
T , L2,i

T ) to check if mi is pertinent. However, the result of each equality test will
leak information about pertinent messages, so we use “Private Equality Test (PET)” [DSZ15, Cou18, CGS22].
Through PET, for each pair, the two servers only obtain random bits b1i and b2i , respectively; if L

1,i
T = L2,i

T ,
b1i ⊕ b2i = 1, otherwise b1i ⊕ b2i = 0. After obtaining b1i and b2i , the recipient R3 can learn if mi is pertinent by
computing b1i ⊕b2i , then obtain mi using “Private Information Retrieval (PIR)” [BGI16, KOR19, HHCG+23].

Nonetheless, the aforementioned initial protocol presents a vulnerability: anyone possessing the address
of the recipient R3 can retrieve messages m3 and m5, as the retrieval process does not require any secret
information. To address this, we subsequently introduce a unique secret key for each recipient. This allows
the servers to authenticate recipients while preserving their anonymity.

2.2 Achieving Authentication of Recipients

In the previous works [MSS+22, LT22, BLMG21, JLM23], each recipient uses a secret key(s) to generate
a retrieval request. Therefore, other users not holding the secret key cannot retrieve the corresponding
messages successfully. To achieve the same security property, we replace the random string in the above
initial protocol with a public key chosen from a group G. When initiating a retrieval request, a recipient now
needs to prove the knowledge of the corresponding secret key. However, following the above initial protocol
where the address is shared between the two servers through the XOR operation, will require the two servers
to interact while verifying the proof. To avoid the interaction, we further replace the XOR operation with
the operation of the group G, denoted as “·” here. Accordingly, the servers use the “·” operation and
corresponding inverses of the group elements to calculate test labels. Next, we also use the above example
to explain the authentication process.

The recipient R3 generates L1
R3

= gskR3,1 and L2
R3

= gskR3,2 such that L1
R3
· L2

R3
= AddrR3 = gskR3

where g is the generator of group G. Besides L1
R3

and L2
R3

, the recipient R3 additionally sends proofs π1

and π2 proving the knowledge of skR3,1 and skR3,2, to Server1 and Server2, respectively. Note that only if
the recipient knows skR3

can they compute the proofs π1 and π2 correctly. Then, the two servers calculate

6



Receive Request-1 Receive new a message
 and Request-2 Receive Request-3

Figure 4: New states triggered by retrieval requests and new messages. (1) T0 ∼ T1: Assuming that m3 and
m5 are pertinent for Request-1, the 3-rd and 5-th delete label pairs (highlighted in red) are different. This
observation is also consistent for Request-2 and Request-3. (2) T1 ∼ T2: If there is a new message m6, both
servers simply append it to their lists and produce the corresponding delete labels. (3) T2 ∼ T3: Assuming
that m3, m5 and m6 are pertinent to Request-3, the two servers generate delete labels for all three, even
though m3 and m5 were previously retrieved by Request-1. Note that m3 and m5 having been retrieved is
not known to the servers.

a pair of test labels for each message using “·” operation. For example, the test labels for message m1 are
L1,1
R2
· (L1

R3
)−1 and (L2,1

R2
)−1 · L2

R3
. Likewise, the servers then perform PET on these test label pairs, such

that the recipient R3 can only obtain the messages whose two test labels are equal.
It is worth mentioning that our authentication process includes two steps: (1) verifying the proofs and (2)

privately testing equality. The first step guarantees that the recipient knows a secret key sk for an address
gsk, and the second step ensures that only the messages whose addresses are equal to gsk will be retrieved
by the recipient, thus ensuring that an adversary cannot impersonate an honest recipient.

2.3 Achieving Deletion

Existing schemes [MSS+22, LT22, BLMG21] do not directly support deletion. In the approach by [MSS+22],
the server must keep a vector of length ℓ (e.g., ℓ = 50) for every registered recipient. Similarly, in the schemes
[LT22, BLMG21], the list maintained by the server continually expands unless the server periodically deletes
messages that have been stored for more than a specified duration (e.g., one day), regardless of whether they
have been retrieved or not. However, in practice, it is desirable to give recipients the flexibility to retrieve
messages at any time, while periodically deleting the messages that have indeed been retrieved. To this end,
we design a deletion mechanism based on the aforementioned protocol, detailed as follows.

In this work, we assume that after obtaining pertinent indexes from a pair of servers, a recipient will
retrieve their pertinent messages from the same pair of servers, within a fixed time ∆. Therefore, the servers
can delete messages and labels according to the indexes that are recognized as pertinent. In Section 6.3, we
will further discuss how to perform deletion when this assumption does not hold.

In the above protocol, for each message mi, Server1 generates a bit b1i while Server2 generates a bit b2i ;
if the message mi is pertinent, b1i ⊕ b2i = 1, otherwise, b1i ⊕ b2i = 0. A natural solution is to delete all the
messages corresponding to b1i ⊕ b2i = 1. We perform a deletion once every specified interval (such as daily).

More specifically, for message mi, we denote the bit generated by Server1 (resp. Server2) for the j-th
request in a particular interval as b1,ji (resp. b2,ji ). If each message is only retrieved once, the two servers

can interactively compute bi = (b1,1i ⊕ b2,1i )⊕ · · ·⊕ (b1,ki ⊕ b2,ki ) assuming there are k requests in this interval.
Then, the two servers can delete the messages whose bi = 1. However, if a recipient requests twice in an
interval, some of her pertinent messages will be retrieved twice, which means that there are j1 and j2 such
that (b1,j1i ⊕b2,j1i ) = (b1,j2i ⊕b2,j2i ) = 1 leading to bi = (b1,1i ⊕b

2,1
i )⊕· · ·⊕(b1,ki ⊕b

2,k
i ) = 0, so the corresponding

message mi will not be deleted successfully. To avoid an even number of 1s being canceled out by the XOR

7



MP-OPRF

For each , delete .
If                           ,     

delete  and add  into set .    

Figure 5: Our core idea for deletion. For each message mi, the two servers XOR all its delete labels to
obtain ri and r′i, respectively. In the example shown in Figure 4, messages m1, m3, m5 and m6 are retrieved,
so their corresponding ri and r′i (marked in red circles) differ. Through “Multi-point OPRF (MP-OPRF)”,
Server1 can learn the inequalities without knowing each r′i, and then delete the corresponding messages,
whose indexes are recorded in set D. Once obtaining D, Server2 executes the deletion.

operation, we introduce a distinct randomness for each request. To illustrate our deletion solution, we show
how to introduce randomnesses in Figure 4 and how to delete retrieved messages in Figure 5, and more
details are explained below.

To be precise, for the j-th request, the two servers agree on a randomness7 rji and compute “delete labels”

b1,ji · r
j
i and b2,ji · r

j
i
8 for each message mi, respectively. In Figure 4, we assume that deletion is not executed

before time T3.
After time T3, the two servers need to delete the retrieved messages, i.e., m1, m3, m5 and m6. In Figure 5,

we show how to use the above delete labels to perform the deletion without leaking additional information.
More specifically, for each message mi, Server1 (resp. Server2) first generates ri (resp. r

′
i) by performing XOR

operations on all delete labels of mi. Obviously, if mi has not been retrieved during the period T0 ∼ T3, the
corresponding ri would be equal to r′i, otherwise ri ̸= r′i. Note that we cannot require Server2 to send each
r′i to Server1 directly, since Server1 can then learn the recipients of retrieved messages. Take the message m3

as an example: Server1 knows that b1,13 = 1, b1,23 = 1 and b1,33 = 0. Upon receiving r′3, Server1 can learn that
r′3 = r23 ⊕ r33 since Server1 also knows r13, r23 and r33. Furthermore, Server1 can deduce that b2,13 = 0, b2,23 = 1
and b2,33 = 1. Accordingly the Server1 can compute b1,13 ⊕ b2,13 = 1, b1,23 ⊕ b2,23 = 0 and b1,33 ⊕ b2,33 = 1, and it
learns that m3 is pertinent to the recipient of Request-1 and Request-3.

In order to enhance the privacy of recipients, we leverage “Multi-point Oblivious PRF (MP-OPRF)” to
hide each r′i. Through MP-OPRF, Server2 receives a key k and Server1 obtains the PRF value Fk(ri) for
each ri without knowing k. Then, after obtaining each Fk(ri), Server1 deletes message mi and records index
i into a set D if Fk(ri) ̸= Fk(r

′
i). Server2 then deletes messages according to the set D.

In a nutshell, we periodically delete the messages that are retrieved in each interval. For a specific interval,
the retrieved messages can be regarded as an anonymity set to break the linkability between messages and
requests. However, we admit that if the anonymity set is too small (e.g. 1), the servers will learn some
information about the linkability. This leakage is captured in our OMR functionality FOMR shown in Figure 6.
Therefore, in practice, the duration of the period should be configured to an adequate length so that the
anonymity set is large enough. This can be enforced since we assume that the two servers do not collude,
and at least one server will honestly wait until enough time has elapsed. Nevertheless, we further discuss
how to allow the recipients to determine whether to delete in Section 6.2.

7It can be derived from a common seed.
8When b is a bit and r is a string, if b = 0, b · r = 0, otherwise b · r = r.

8



The functionality maintains a table T indexed by each recipient Rj , which contains the messages pertinent to
the corresponding recipient. The functionality also maintains a set D that keeps track of the messages that are
retrieved.
Sending a message (SEND):

1. Upon receiving ⟨SEND, Rj ,msg⟩ from a sender Si, send ⟨SEND,msg⟩ to the adversary and server(s);
2. Upon receiving ⟨SEND, OK⟩ from the adversary and server(s), append msg to T [Rj ];

Retrieving messages (RECEIVE):
1. Upon receiving ⟨RECEIVE⟩ from a recipient Rj , send ⟨RECEIVE⟩ to the adversary and server(s);
2. Upon receiving ⟨RECEIVE, OK⟩ from the adversary and server(s), send ⟨RECEIVE, T [Rj ]⟩ to the recipient

Rj ;
3. Add T [Rj ] to D and update T [Rj ] = [];

Deletion (DELETE):
1. Upon receiving ⟨DELETE⟩ from the environment Z, send ⟨DELETE, D⟩ to the server(s) and ⟨DELETE⟩ to the

adversary;
2. Upon receiving ⟨DELETE, OK⟩ from the adversary and server(s), update D = ∅.

Functionality FOMR

Figure 6: Server-aided Oblivious Message Retrieval.

3 Preliminaries

Notations. Let κ and λ be the computational and statistical security parameters, respectively. We use [m]

to denote the set {1, 2, · · · ,m}. A vector containing |X⃗| items is denoted by X⃗, and X⃗[i] is the i-th item. A
table T indexed by Rj indicates that each row corresponds uniquely to an Rj and T [Rj ] is the row indexed
by Rj .

3.1 Threat Model

We assume that all parties (including two servers, multiple senders/recipients, and adversaries) can read from
and submit messages to the bulletin board (abstracted as global functionality GLedger shown in Figure 10).
In addition, we assume that the adversaries run in polynomial time in the computational security parameter
κ. We assume the two servers are semi-honest and non-colluding, which means that they will follow the
instructions of our protocol, but try to learn more information from the view of protocol execution without
collusion. Senders and recipients may behave maliciously and collude with one of the servers.

3.2 Oblivious Message Retrieval Functionality

We define our OMR functionality FOMR in Figure 6, based on the definition given in [MSS+22]. Recall that
our goal is to assist recipients in obliviously retrieving the pertinent messages from a bulletin board, if the
recipients can only obtain pertinent indexes, they still need to retrieve the corresponding messages from the
bulletin board by themselves. Moreover, recipients may not be able to download a large bulletin board.
Therefore, the table T in our FOMR contains directly the messages for recipients, rather than indexes. It
is worth mentioning that OMR is different from “Private Information Retrieval (PIR)” (please see Defini-
tion 3.1); in PIR, a recipient leverages indexes to retrieve messages, whereas, in OMR, a recipient does not
even know the indexes and just uses their addresses (i.e., Rj) to request retrievals. In addition, our FOMR

supports deletion, which was not considered in [MSS+22]. Note that we focus on server-aided OMR and
thus we explicitly show the role of server in FOMR.

Privacy Implied by FOMR. For a sending request, the adversary can obtain ⟨SEND,msg⟩, which means
that the adversary can only obtain the message but cannot learn anything about the sender and recipient.
For a retrieval request, the adversary learns nothing about the recipient and the retrieved messages from
⟨RECEIVE⟩. For the deletion procedure, the server(s) can learn the set D contains all messages retrieved since
the last deletion was executed, but the adversary cannot learn the set D.

9



3.3 Building Blocks

We collect the building blocks here.

3.3.1 Private Equality Test (PET)

Through PET, two parties with items x and y can obtain bits b1 and b2, respectively, such that if x = y,
b1 ⊕ b2 = 1, otherwise, b1 ⊕ b2 = 0. We show the formal definition in Figure 7. The performance of PET
directly affects the latency of our protocol, so we implemented it using the scheme in [CGS22], which enjoys
efficient online performance.

Parameters:
• Two parties: P0 and P1;

Functionality:
1. Wait for input a ∈ {0, 1}ℓ1 from P0;
2. Wait for input b ∈ {0, 1}ℓ1 from P1

3. Give output yb to Pb, where y0 and y1 are boolean shares of y, where y = 1 if a = b and y = 0 if a ̸= b.

Functionality FPET

Figure 7: Private Equality Testing Ideal Functionality

3.3.2 Private Information Retrieval (PIR)

PIR allows a client to select an index and retrieve the corresponding message from a server while ensuring
the server remains unaware of which message is retrieved. The formal definition is shown in Definition 3.1.
Given the persistent arrival of new messages and two-party setting in our application, we implemented PIR
leveraging the DPF-based PIR [KOR19, BGI16], which can achieve an efficient performance without needing
a setup phase on a fixed database.

Definition 3.1 (Two-Server PIR). A 2-server PIR protocol involving two server S0 and S1 holding the
same n-bit database z and user consists of three algorithms Q,A,M with query domain DQ and answer
domain DA and are defined as follows:

• Q(n, i): On input of an index i, client return queries (q0, q1) ∈ D2
Q

• A(z, q): On input of a query q and a database z, server b returns an answer ab
• M(i, a0, a1): On input of an index i and two answers a0, a1 recovers and returns the i-th database
entry zi.

Definition 3.2 (Secure Two-Server PIR). The security properties guaranteed by a PIR protocol are cor-
rectness and computational secrecy.

Correctness: A 2-server PIR is correct if for every n ∈ N, every z ∈ {0, 1}n, and every i ∈ [n] it holds
that

Pr[(q0, q1)← Q(n, i) : M(i, A(j, z, qj))j∈{0,1} = zi] = 1

Computational Secrecy: Let Db,⌈logn⌉,i, b ∈ {0, 1}, n ∈ N and i ∈ [n] denote the probability distri-
bution on qb induced by Q. A 2-server PIR scheme provides computational secrecy if there exists a PPT
algorithm SPIR such that:

{SPIR(b, ⌈log n⌉)}b∈{0,1},n∈N ≈c {Db,⌈logn⌉,i}b∈{0,1},n∈N,i∈[n].

3.3.3 Multi-point Oblivious PRF (MP-OPRF)

A party P0 with an item x performs OPRF with another party P1, such that P1 obtains a key k without
learning x, and P0 obtains PRF value Fk(x) without knowing k. The term “Multi-point” means that P0 can
input multiple items in an instance. We provide the formal definition in Figure 8. We utilized the scheme
in [RS21] to implement MP-OPRF, given its high efficiency in both LAN and WAN settings.

10



Parameters:
• Two parties: P0 and P1;
• A PRF Fk(·) : {0, 1}ℓ2 → {0, 1}ℓ3 .

Functionality:
1. Wait for input X⃗ = {x1, · · · , xn} from P0;
2. Randomly select a key k for Fk(·);
3. Give output {Fk(x1), Fk(x2), · · · , Fk(xn)} to P0, and the key k to P1.

Functionality FMPOPRF

Figure 8: Multi-Point OPRF functionality.

3.3.4 Non-interactive Zero-Knowledge Proof (NIZK)

Given an NP language L and its corresponding efficiently decidable binary relation R, we say a statement
x ∈ L if there exists a witness w such that (x,w) ∈ R. In NIZK, a prover can generate a proof π to prove
the knowledge of w satisfying (x,w) ∈ R. Through verifying π, a verifier can learn if the prover possesses a
valid w without knowing the information about w. The formal definition of NIZK is given in Figure 9. In
this work, we leveraged the Σ-protocol [Sch90] for discrete logarithm language to enable recipients to prove
the knowledge of secret keys.

Parameters: The non-interactive zero-knowledge functionality FL
NIZK allows proving of statements in an NP

language L. It maintains a set of statement/proof pairs Q, initialized to ∅. Let R be an efficiently decidable
binary relation for the NP language L.
Functionality:
Prove: Upon receiving ⟨PROVE, sid, x, w⟩:

1. If (x,w) /∈ R then return ⟨PROOF, sid, x,⊥⟩;
2. Else send ⟨PROVE, sid, x⟩ to A and receive the reply ⟨PROOF, sid, x, π⟩. Do Q = Q ∪ {(x, π)} and return
⟨PROOF, sid, x, π⟩;

Verify: Upon receiving⟨VERIFY, sid, x, π⟩ :
1. If (x, π) /∈ Q then send ⟨VERIFY, sid, x, π⟩ to A and then receive the reply Res;

2. If Res = ⟨WITNESS, sid, x, π, w⟩ ∧ (x,w) ∈ R then let Q = Q ∪ (x, π);

3. Return ⟨VERIFY, sid, x, π, (x, π) ∈ Q⟩.

Functionality FNIZK

Figure 9: FNIZK functionality

3.3.5 Ledger

A bulletin board can be abstracted as a global ledger, which can be achieved by blockchain techniques. Any
party can submit messages to the ledger and read the state of the ledger. The underlying consensus protocols
can guarantee that all the parties can read the same state. We follow the global ledger definition in [KZZ16]
and give an abridged version in Figure 10.

4 Protocol Description

We break our protocol into four parts: (1) Initialization phase ΠInitialize (Figure 11): how the servers and
clients initialize; (2) Message sending phase ΠSend ( Figure 12): how a sender sends a message and servers
store it such that it can be obliviously retrieved later; (3) Message retrieval phase ΠRetrieve (Figure 13): how

11



This functionality is globally available to all participants. Parameters:
• A predicate Validate: verify if a transaction is valid;
• A function ExtendState: update state according to the latest buffer and reset buffer = ϵ periodically;
• Variables state and buffer, both are initialized as ϵ;

Functionality:
Submit: Upon receiving ⟨SUBMIT, tx⟩ from a party Pi:

1. Choose a unique transaction ID txid and set BTX = (tx, txid, Pi);
2. If Validate(BTX, state, buffer) = 1 then buffer = buffer ∪ BTX, and execute ExtendState(state, buffer);
3. Send ⟨SUBMIT, BTX⟩ to A;

Read: Upon receiving READ from a party Pi, send state to Pi. If received from A, send ⟨state, buffer⟩ to A.

Abridged GLedger functionality

Figure 10: Abridged GLedger functionality.

There are two servers, Server1 and Server2, and multiple clients acting as senders or recipients. The
bulletin board is abstracted by GLedger (see Figure 10).
Initialization:
Each Serverj (j ∈ {1, 2}) does the following:

• Generate key pair (pkj , skj)← PKE.Gen(1λ);
• Send ⟨SUBMIT, pkj⟩ to GLedger;
• Initialize two empty vectors M⃗j = ∅ and X⃗j = ∅ (for retrieval), a zero vector Y⃗j = 0⃗ (for
deletion);

Each client acting as a recipient Ri does the following:
• Randomly choose kRi

← Zp, and generate an address AddrRi
= gkRi ∈ G; (G is a cyclic group

with prime order p and generator g.)
• Send AddrRi to parties from which Ri is willing to receive messages;

Protocol ΠInitialize

Figure 11: Protocol for initialization.

a recipient obliviously retrieve messages; (4) Message deletion phase ΠDelete (Figure 14): how the servers
delete the messages that have been retrieved, as well as the corresponding labels.

4.1 Initialization

In our protocol, there are two servers and multiple clients that can act as senders or recipients. In the
initialization phase as shown in Figure 11, servers and clients are required to generate key pairs. Note that
new clients can generate key pairs to join the system at any time.

Specifically, each server produces an encryption key pair and then posts the public key on a bulletin
board. When a client wants to communicate with a server, the client can encrypt the message using the
corresponding public key and publish the ciphertext on the bulletin board. Additionally, if a client will act as
a recipient denoted Ri, the client needs to generate an address AddrRi = gkRi where kRi is the corresponding
secret key used for retrieval. To receive messages, Ri must share the address AddrRi with the prospective
sender.

In addition, each server also initializes three vectors. The first one denoted M⃗ , is to store messages, while
the second vector X⃗ is used to store labels. The two vectors will be updated during the sending and deletion
phases, as shown in figures 12 and 14 respectively. The third vector Y⃗ serves for detecting which messages
in M⃗ and labels in X⃗ should be deleted. This vector is updated in both the retrieval and deletion phases,
as depicted in figures 13 and 14 respectively.

12



Publishing messages on the bulletin board:
To send a message m to a recipient Ri, the sender does the following:

• Obtain the address AddrRi
of the recipient Ri (from the recipient or the bulletin board);

• Randomly split AddrRi
into LRi,1 and LRi,2, such that AddrRi

= LRi,1 ·LRi,2, and compute L−1
Ri,2

;

• Encrypt LRi,1 and L−1
Ri,2

as c1 = PKE.Encpk1
(LRi,1) and c2 = PKE.Encpk2

(L−1
Ri,2

) respectively;
• Send ⟨SUBMIT, (m, c1, c2)⟩ to GLedger.

Preparing for retrievals:
For each new tuple (mk, ck,1, ck,2) on GLedger, for j ∈ {1, 2}, each Serverj does the following:

• Decrypt ck,j as tk,j ;
• If tk,j ∈ G, select an index i based on a predefined rule(e.g., according to the position on bulletin
board) shared with Server1−j , otherwise ignore the message;

• Set M⃗j [i] = mk and X⃗j [i] = tk,j .

Protocol ΠSend

Figure 12: Protocol for sending.

4.2 Sending Messages

In this section, we describe the procedures undertaken by a sender and two servers when a message m is
to be sent to a recipient possessing the address AddrRi

. As shown in Figure 12, the sender publishes the
message and auxiliary information on the bulletin board. Subsequently, the two servers read the message
and auxiliary information from the bulletin board and prepare for future retrieval.

More specifically, the sender first needs to obtain the address AddrRi of the recipient Ri. In practice, a
recipient may share her address by posting it on the bulletin board for prospective senders. Once obtaining
the address AddrRi

, the sender proceeds to randomly split AddrRi
into two shares LRi,1 and LRi,2 such that

AddrRi
= LRi,1 · LRi,2. As mentioned in Section 2.2, Server2 uses the inversion of a label from the sender

to generate the corresponding test label. To reduce the computation cost of Server2, we require the sender
to generate the inversion of LRi,2 directly. Then, the sender encrypts LRi,1 and L−1

Ri,2
as ciphertexts c1 and

c2 using the public keys of Server1 and Server2, respectively. Lastly, the sender submits (m, c1, c2) on the
bulletin board.

The two servers continuously monitor the bulletin board. Once a new valid message is detected, the
servers will add it to their respective lists for subsequent retrieval. In particular, upon observing a new
tuple (mk, ck,1, ck,2) on the bulletin board, the two servers decrypt ck,1 and ck,2 to obtain tk,1 and tk,2,
respectively. Then, if tk,1 and tk,2 both belong to group G, the two servers collaboratively determine an

index i, and assign (M⃗1[i], X⃗1[i]) = (mk, tk,1) and (M⃗2[i], X⃗2[i]) = (mk, tk,2), respectively.

4.3 Retrieval

We now describe how a recipient, who holds the address AddrRi
and the corresponding secret key kRi

,
retrieves the pertinent messages. The recipient begins by requesting the pertinent indexes. Upon obtaining
these indexes, the recipient then employs PIR to retrieve the pertinent messages by using these indexes. See
Figure 13 for the procedure pseudocode.

For requesting indexes, the recipient first randomly chooses a serial number sn for this request. This serial
number serves a dual purpose: it identifies the request and also contributes to generating the randomness
utilized in deletion. Then, the recipient splits the secret key kRi

into kRi,1 and kRi,2, and generates the
corresponding address shares LRi,1 = gkRi,1 and LRi,2 = gkRi,2 . To reduce the computation cost of Server1,
the recipient also generates the inversion of LRi,1, denoted as L−1

Ri,1
. For authentication purpose, the recipient

constructs proof π1 and π2, proving knowledge of kRi,1 and kRi,2. Note that the recipient does not need
to prove kRi,1 + kRi,2 = kRi

. If this equation does not hold true, it implies that LRi,1 · LRi,2 ̸= AddrRi
,

leading to an unsuccessful retrieval of messages pertinent to address AddrRi
. Moreover, an adversary cannot

13



retrieve an honest recipient’s message since it cannot compute kRi from AddrRi . Finally, the recipient sends
⟨sn, L−1

Ri,1
, π1, LRi,1⟩ to Server1, and ⟨sn, LRi,2, π2⟩ to Server2.

Upon receiving the request from a recipient, the two servers first check if the request is valid. More
specifically, we represent the message received by Server1 as ⟨sn, t1, π1, t

′
1⟩, and the message received by

Server2 as ⟨sn, t2, π2⟩. Server1 needs to check if t1, t
′
1 ∈ G, t1 · t′1 = 1 and π1 is valid, while Server2 needs to

check if t2 ∈ G and π2 is valid. If both servers verify the request successfully, they will exchange ⟨sn,OK⟩
with each other. After verifying the request successfully, the two servers proceed to generate the bit vectors
through PET. Serverj retrieves each tk,j from X⃗j and computes ak,j = H1(tk,j · tj) where H1 is a hash
function mapping a group element to a string. Through PET, the two servers can obtain bk,1 and bk,2,
respectively, such that if ak,1 = ak,2, bk,1 ⊕ bk,2 = 1, otherwise bk,1 ⊕ bk,2 = 0. Then, Serverj places the bits

obtained from PET sequentially into a vector B⃗j and sends this vector to the recipient. In addition, the
servers also need to prepare for subsequent deletions. For each message mk, the two servers generate the
same randomness H2(sn||k) by using the serial number sn, and update Y⃗1[k] = Y⃗1[k] ⊕ bk,1 ·H2(sn||k) and

Y⃗2[k] = Y⃗2[k]⊕ bk,2 ·H2(sn||k), respectively.
After receiving B⃗1 and B⃗2, the recipient calculates B⃗1[k]⊕ B⃗2[k] for each k. When B⃗1[k]⊕ B⃗2[k] = 1, it

indicates that k is a pertinent index. The recipient then records it into a set I. At last, through PIR, the
recipient can obliviously retrieve the pertinent messages indexed by the elements in set I. Furthermore, to
prevent the servers from learning the number of messages that the recipient Ri aims to retrieve, the recipient
only retrieves one message at a time when performing PIR.

4.4 Deletion

As mentioned in the previous section, Server1 and Server2 maintain vectors Y⃗1 and Y⃗2 for an interval, respec-
tively, such that if mi has been retrieved in this interval, Y⃗1[i] ⊕ Y⃗2[i] ̸= 0ℓ2 , otherwise Y⃗1[i] ⊕ Y⃗2[i] = 0ℓ2 .

Obtaining Y⃗2 can let Server1 learn which indexes are pertinent to each index retrieval request. To solve
this problem, the two servers invoke FMPOPRF such that Server1 obtains Fk(Y⃗1[i]) where i ∈ |Y⃗1| and Server2
obtains the PRF key k. Furthermore, Server2 can use PRF key k to calculate Fk(Y⃗2[i]) where i ∈ |Y⃗2|. Once

receiving Fk(Y⃗2[i]), Server1 compares Fk(Y⃗2[i]) with Fk(Y⃗1[i]). If Fk(Y⃗1[i]) ̸= Fk(Y⃗2[i]), Server1 deletes the

message M⃗1[i] and the label X⃗1[i], and sends index i to Server2. Server2 also deletes the message M⃗2[i] and

the label X⃗2[i]. Finally, the two servers reset Y⃗1 and Y⃗2 as zero vectors, respectively, for the next interval.

4.5 Security Proof

Correctness. For an address AddrRi
, the labels generated by the sender are denoted as L1

Ri
and L2

Ri
. A

recipient aiming to retrieve messages pertinent to address AddrR′
i
needs to generate labels L1

R′
i
and L2

R′
i
.

Obviously, only if AddrRi = AddrR′
i
, then L1

Ri
· (L1

R′
i
)−1 = (L2

Ri
)−1 · L2

R′
i
(i.e., L1

Ri
· L2

Ri
= L1

R′
i
· L2

R′
i
), thus

resulting in H1(L
1
Ri
· (L1

R′
i
)−1) = H1((L

2
Ri
)−1 · L2

R′
i
). Then, after performing PET with inputs H1(L

1
Ri
·

(L1
R′

i
)−1) and H1((L

2
Ri
)−1 · L2

R′
i
), the two servers will obtain b1 and b2, respectively, such that b1 ⊕ b2 = 1.

Upon obtaining b1 and b2, the recipient can know the corresponding index is pertinent, and retrieve the
corresponding message through PIR.

We remark that collisions of H1 would incur a correctness error, i.e., L1
Ri
· (L1

R′
i
)−1 ̸= (L2

Ri
)−1 · L2

R′
i
but

H1(L
1
Ri
· (L1

R′
i
)−1) = H1((L

2
Ri
)−1 · L2

R′
i
). To ensure that the probability of collisions happening is less than

2−λ, we set the output length ℓ1 of H1 to be at least λ+ logN .
As for the deletion procedure, for each message mi whose index is identified as pertinent, one of the two

servers will XOR randomness H2(sn||i) to the corresponding element in vector Y⃗j (j = 1 or 2). For each
message mi whose index is not identified as pertinent, either both servers will XOR randomness H2(sn||i), or
neither does. Obviously, at the end of an interval, if mi is retrieved, Y⃗1[i] ̸= Y⃗2[i] and Fk(Y⃗1[i]) ̸= Fk(Y⃗2[i]),

otherwise, Y⃗1[i] = Y⃗2[i] and Fk(Y⃗1[i]) = Fk(Y⃗2[i]).

14



A recipient holding (AddrRi , kRi) wants to retrieve the messages pertinent to her.
Requesting indexes:
The recipient Ri does the following:

• Randomly choose sn← {0, 1}ℓ, and randomly split kRi
into kRi,1 and kRi,2 such that

kRi
= kRi,1 + kRi,2;

• Generate LRi,1 = gkRi,1 , LRi,2 = gkRi,2 , and L−1
Ri,1

;
• Set x = (LRi,1, LRi,2, g) and w = (kRi,1, kRi,2) and send ⟨PROVE, x, w⟩ to FNIZK and receive
(π1, π2);
(The language is LRi,j = gkRi,j for j ∈ {1, 2}.)

• Send (sn, L−1
Ri,1

, π1, LRi,1) to Server1, and (sn, LRi,2, π2) to Server2.
Responding for the request of indexes:
The two servers maintain a set S, that records the serial numbers of valid requests in this time interval
and will be cleared after each deletion (as shown in Figure 14).

• Server1 and Server2 receive (sn, t1, π1, t
′
1) and (sn, t2, π2) respectively.

• Server1: Send ⟨VERIFY, t′1, π1⟩ to FNIZK, if receiving 1 from FNIZK, t1 · t′1 = 1 and sn /∈ S, then send
⟨sn,OK⟩ to Server2, otherwise, ignore the request;

• Server2: Send ⟨VERIFY, t2, π2⟩ to FNIZK, if receiving 1 from FNIZK and sn /∈ S, then sends ⟨sn,OK⟩
to Server1, otherwise, ignore the request;

• After receiving ⟨sn,OK⟩ from the other server, Serverj (j ∈ {1, 2}) initializes an empty bit vector

B⃗j , and does the following for each k ∈ [|X⃗j |]:
– Serverj computes ak,j = H1(tk,j · tj), where tk,j = X⃗j [k], j ∈ {1, 2} and H1 is a hash

function: G→ {0, 1}ℓ1 ;
– Server1 and Server2 invoke FPET with inputs ak,1 and ak,2, and obtain bk,1 and bk,2

respectively;
– Serverj (j ∈ {1, 2}) appends bk,j into vector B⃗j ;

– Serverj (j ∈ {1, 2}) updates Y⃗j [k] = Y⃗j [k]⊕ bk,j ·H2(sn||k) where H2 is a hash function:

{0, 1}ℓ+ℓ′ → {0, 1}ℓ2 ;
• Serverj (j ∈ {1, 2}) sends B⃗j to the recipient Ri.

Recovering indexes:
The recipient Ri upon receiving B⃗j from Serverj :

• Set b = min{|B⃗1|, |B⃗2|}, and initialize a set I = ∅;
• For each k ∈ [b], if B⃗1[k]⊕ B⃗2[k] = 1, add k into set I.

Retrieving pertinent messages:
For each i ∈ I, the recipient Ri does the following:

• Compute (qi1, q
i
2)← PIR.Q(|M⃗j |, i);

• Send qi1 to Server1, and qi2 to Server2;
• Upon receiving (ai1, a

i
2) from the servers, computes mi = PIR.M(i, ai1, a

i
2);

For each i ∈ I, upon receiving qij , Serverj does the following:

• Compute aij = PIR.A(M⃗j , q
i
j), and send aij to recipient Ri;

Protocol ΠRetrieve

Figure 13: Protocol for retrieval.

Likewise, H2 and Fk(·) can also incur collisions, thus leading to correctness error. We also set the output
length ℓ2 of H2 and the output length of ℓ3 of Fk(·) to be at least λ+ logN .

Security. Next, we show the UC security of HomeRun in the {GLedger,FPET,FMPOPRF,FNIZK}-hybrid world.

Theorem 1. Assuming the security of CPA-secure encryption, computational secrecy of PIR and hard
Discrete Logarithm (DL) problem, the protocol ΠOMR = (ΠInitialize,ΠSEND,ΠRetrieve,ΠDelete) realizes the FOMR

15



The two servers delete the messages that have been retrieved periodically.
Deletion:

• Server1 and Server2 invoke FMPOPRF:
– Server1 acts as P0 with input Y⃗1;
– Server1 obtains J1 = {Fk(Y⃗1[i])}i∈[|Y⃗1|], and Server2 obtains the key k;

• Server2 computes J2 = {Fk(Y⃗2[i])}i∈[|Y⃗2|] and sends J2 to Server1;

• Server1 does the following:
– Initializes a set I = ∅;
– Set n = min{|J1|, |J2|};
– For each i ∈ [n], if J1[i] ̸= J2[i], add i into set I and delete M⃗1[i] and X⃗1[i];
– Send set I to Server2;
– Reset vector Y⃗1 as a zero vector;

• For each i ∈ I, Server2 deletes M⃗2[i] and X⃗2[i]. Then, reset vector Y⃗2 as a zero vector.

Protocol ΠDelete

Figure 14: Protocol for deletion.

ideal functionality in the {GLedger,FPET,FMPOPRF,FNIZK}-hybrid world.

Proof. To prove that ΠOMR UC-realizes the FOMR functionality, we show that there exists a simulator S
interacting with FOMR functionality that generates a transcript that is indistinguishable from the transcript
generated by the real-world adversary A in the protocol ΠOMR.

We consider the following different cases of corruption and define a simulator for each case:
• Simulator SN for the case when neither sender nor receiver is corrupt and only one of the servers is
corrupt.

• Simulator Ss for the case when the sender is corrupt and colludes with one of the servers.
• Simulator Sr for the case when the receiver is corrupt and colludes with one of the servers.
• Simulator Ssr when both the sender and receiver are corrupt and collude with one of the servers.
We discuss these simulators in more detail below.

Case 1: When neither the senders nor the receivers are corrupt. We consider the case when only
one of the two servers is corrupt. In this case, the simulator interacts with the corrupt server (the adversary)
and the ideal functionality FOMR and computes a transcript that is indistinguishable from the real-world
protocol. The simulator is shown in Figure 15.

We present proof by hybrids to show that the simulated world and the real world are indistinguishable.
• Hyb0: The real world protocol.
• Hyb1: This hybrid is the same as the previous hybrid except that the random tape of of the corrupted
server is chosen by the simulator. Since the corrupted server is semi-honest, the two hybrids are
indistinguishable.

• Hyb2: This hybrid is the same as the previous hybrid except that c1 is replaced by encryptions
to 0, respectively. By the CPA security of the underlying encryption scheme, the two hybrids are
indistinguishable.

• Hyb3: This hybrid is the same as the previous hybrid except that the proofs sent to the corrupt server
are replaced by simulated proofs. By the zero-knowledge property of the FNIZK functionality, these
hybrids are indistinguishable.

• Hyb4: This hybrid is the same as the previous hybrid, except that the request of messages via PIR is
replaced by the output of SPIR. By the computational secrecy of the underlying PIR scheme, the two
hybrids are indistinguishable.

• Hyb5: This hybrid is identical to the previous hybrid except that we use the internally simulated FPET

ideal functionality.
• Hyb6: This hybrid is identical to the previous hybrid except that we use the internally simulated

16



The simulator SN internally simulates the GLedger,FPET and the FMPOPRF ideal functionalities towards the ad-
versary.
Simulating ΠInitialize:

1. Initialization:
• w.l.o.g. assuming Server2 is corrupted, choose a uniformly distributed random tape for the

corrupted Server2 (semi-honest, A), and run A’s code to generate (pk2, sk2).
• On behalf of honest Server1 generate (pk1, sk1), and send ⟨SUBMIT, pk1⟩ to the simulated GLedger.

(Note that the simulator Ss knows the key pairs of the honest server and the corrupted server.)
• On behalf of Ri, sample kRi ← Zp and compute AddrRi = gkRi and send AddrRi to A.

Simulating ΠSend:

1. Publishing to the board: Upon receiving ⟨SEND,msg⟩ from the FOMR functionality, compute
c1 = Enc(pk1, 0) and c2 = Enc(pk2, R), where R← G. Then send ⟨SUBMIT,msg, c1, c2⟩ to the simulated
GLedger functionality. Then send ⟨SEND, OK⟩ to FOMR.

2. Preparing for retrievals: Upon receiving READ from A (Server1 or Server2) on behalf of the GLedger
functionality, the simulator responds with ⟨state, buffer⟩ that includes all (msg, c1, c2) tuples. The
simulator assigns an index i for each msg according to a predefined rule, and sets M⃗j [i] = msg on behalf
of honest Serverj .

Simulating ΠRetrieve:
Upon receiving ⟨RECEIVE⟩ from the FOMR functionality,

1. Requesting indices:
• If Server1 is corrupt: sample random sn← {0, 1}ℓ and sample L← G and compute L−1. Internally

simulate FNIZK and receive a proof π and send ⟨sn, L, π, L−1⟩ to Server1 (A) and internally store
(L, π).

• If Server2 is corrupt: sample random sn← {0, 1}ℓ and sample L← G. Internally simulate FNIZK

and receive a proof π and send ⟨sn, L, π⟩ to Server2 (A) and internally store (L, π).
2. Response to request:

• If Server1 is corrupt: receive ⟨VERIFY, t, π⟩ from A on behalf of FNIZK, if (t, π) is stored, respond
with 1 else respond with 0. Upon receiving ⟨sn,OK⟩ from A, send ⟨sn,OK⟩ back to A.

• If Server2 is corrupt: send ⟨sn,OK⟩ to A. Upon receiving ⟨VERIFY, t, π⟩ from A on behalf of FNIZK,
if (t, π) is stored, respond with 1 else respond with 0. Wait to receive ⟨sn,OK⟩ from A.

• For each invocation of FPET for k ∈ [|M⃗j |], sample a bit bk ∈ {0, 1} and send back bk to A.
3. Retrieving pertinent messages:

• Invoke SPIR(1, ⌈logn⌉) and receive qi1, q
i
2 for a random index i ∈ [|M⃗j |].

• Send qij to A (i.e., Serverj) and receive back ai
j .

• Send ⟨RECEIVE, OK⟩ to FOMR.
Simulating ΠDeletion:
Upon receiving ⟨DELETE, D⟩ from the FOMR functionality,

1. Deletion:
• If Server1 is corrupt:

– Upon receiving Y⃗1 from A, internally simulate FMPOPRF and randomly sample (x1, . . . , x|Y⃗1|)
and send (x1, . . . , x|Y⃗1|) to the A.

– For each M⃗2[i] ∈ D, send corresponding xi to A.
– Receive a set I from A, and send ⟨DELETE, OK⟩ to FOMR.

• If Server2 is corrupt:
– Internally simulate FMPOPRF and sample a random key k. Send k to A.
– Upon receiving J2 from A, for each M⃗1[i] ∈ D, add i to I.
– Send I to A, and send ⟨DELETE, OK⟩ to FOMR.

Simulator SN

Figure 15: Simulator when only one of the servers is corrupt

FMPOPRF ideal functionality. Since this hybrid is identical to the ideal world, we show that the real
and ideal worlds are indistinguishable.

17



The simulator Ss internally simulates the GLedger,FPET and the FMPOPRF ideal functionalities towards the adver-
sary.
Simulating ΠInitialize: same as in Figure 15.
Simulating ΠSend:

• Upon receiving ⟨SUBMIT,msg, c1, c2⟩ on behalf of the simulated GLedger functionality, decrypt c1 to R(1)

using sk1 and decrypt c2 to R(2) using sk2, and compute R = R(1) ·R(2). If R(1) ∈ G and R(2) ∈ G, send
⟨SEND, R,msg⟩ to FOMR.

Simulating ΠRetrieval: same as in Figure 15.
Simulating ΠDeletion: same as in Figure 15.

Simulator Ss

Figure 16: Simulator when only one of the servers and the sender are corrupt

Case 2: When one of the servers and the sender are corrupt. We construct the simulator in
Figure 16, and then present proof by hybrids to show that the simulated world and the real world are
indistinguishable.

• Hyb0: The real world protocol.
• Hyb1: This hybrid is the same as the previous hybrid except that the random tape of of the corrupted
server is chosen by the simulator. Since the corrupted server is semi-honest, the two hybrids are
indistinguishable.

• Hyb2: This hybrid is the same as the previous hybrid except that the proofs sent by the receiver are
replaced by simulated proofs. By the zero-knowledge property of the FNIZK functionality, these hybrids
are indistinguishable.

• Hyb3: This hybrid is the same as the previous hybrid, except that the request of messages via PIR is
replaced by the output of SPIR. By the computational secrecy of the underlying PIR scheme, the two
hybrids are indistinguishable.

• Hyb4: This hybrid is identical to the previous hybrid except that we use the internally simulated FPET

ideal functionality.
• Hyb5: This hybrid is identical to the previous hybrid except that we use the internally simulated
FMPOPRF ideal functionality. Since this hybrid is identical to the ideal world, we show that the real
and ideal worlds are indistinguishable.

Case 3: When one of the servers and the receiver are corrupt. We construct the simulator
in Figure 17, and present a proof by hybrids to show that the real world and the simulated worlds are
indistinguishable.

• Hyb0: The real world protocol.
• Hyb1: This hybrid is the same as the previous hybrid except that the random tape of of the corrupted
server is chosen by the simulator. Since the corrupted server is semi-honest, the two hybrids are
indistinguishable.

• Hyb2: This hybrid is the same as the previous hybrid except that c1 is replaced by encryptions
to 0, respectively. By the CPA security of the underlying encryption scheme, the two hybrids are
indistinguishable.

• Hyb3: This hybrid is the same as the previous hybrid, except that the simulator may abort upon
receiving a retrieval request from the adversary such that t1 · t2 corresponds to that of an honest party.
By the discrete log assumption, this occurs with negligible probability and therefore the two hybrids
are indistinguishable.

• Hyb4: This hybrid is the same as the previous hybrid except that the proofs sent by the receiver are
replaced by simulated proofs. By the zero-knowledge property of the FNIZK functionality, these hybrids
are indistinguishable. The adversary extracts the AddrR of the receiver from the witness.

• Hyb5: This hybrid is identical to the previous hybrid except that we use the internally simulated FPET

ideal functionality and the bit string sent to the malicious receiver is constructed as in the simulator.

18



The simulator Ss internally simulates the GLedger,FPET and the FMPOPRF ideal functionalities towards the adver-
sary.
Simulating ΠInitialize: same as in Figure 15.
Simulating ΠSend: same as in Figure 15.
Simulating ΠRetrieval:

• Requesting indices: Upon receiving ⟨PROVE, (t1, t2, g), (k1, k2)⟩ from A,
– If t1 · t2 corresponds to an honest recipient’s AddrR, then abort.
– Else forward to the internally simulated FNIZK functionality and return (π1, π2) to A. Store

((t1, t2, g), (k1, k2), π1, π2)
• Response to request:

– Upon receiving (sn, L−1
Ri,1

, π1, LRi,1) and (sn, LRi,2, π2) from A, check if (sn, L−1
Ri,1

, π1, LRi,1) and
(sn, LRi,2, π2) exist in the list of stored proofs.

– Compute AddrR = t1 · t2.
– Send ⟨RETRIEVE, R⟩ to the FOMR functionality and receive the set I.

– Simulating FPET : For M⃗j [i] ∈ I, set b⃗1−j [i] = 1⊕ b⃗j [i], output b⃗1−j to A (Server1−j).

– Send b⃗j to the A.
• Retrieving pertinent messages: Upon receiving qij from A (corrupt receiver), compute

ai
j = PIR.A(M⃗j , q

i
j) and send ai

j back to A.
Simulating ΠDeletion: same as in Figure 15.

Simulator Sr

Figure 17: Simulator when only one of the servers and the receiver are corrupt

• Hyb6: This hybrid is identical to the previous hybrid except that we use the internally simulated
FMPOPRF ideal functionality. Since this hybrid is identical to the ideal world, we show that the real
and ideal worlds are indistinguishable.

Case 4: When one of the servers, the receiver and sender are corrupt. We construct the simulator
in Figure 18, and present a proof by hybrids to show that the real world and the simulated worlds are
indistinguishable.

• Hyb0: The real world protocol.
• Hyb1: This hybrid is the same as the previous hybrid except that the random tape of of the corrupted
server is chosen by the simulator. Since the corrupted server is semi-honest, the two hybrids are
indistinguishable.

• Hyb2: This hybrid is the same as the previous hybrid except that c1 is replaced by encryptions to 0.
By the CPA security of the underlying encryption scheme, the two hybrids are indistinguishable.

• Hyb3: This hybrid is the same as the previous one except that for a malicious sender, the proofs are
simulated via the FNIZK functionality and the simulator extracts the AddrR of the receiver.

• Hyb4: This hybrid is the same as the previous hybrid, except that the simulator may abort upon
receiving a retrieval request from the adversary such that t1 · t2 corresponds to that of an honest party.
By the discrete log assumption, this occurs with negligible probability and therefore the two hybrids
are indistinguishable.

• Hyb5: This hybrid is the same as the previous hybrid except that the proofs sent by the receiver are
replaced by simulated proofs. By the zero-knowledge property of the FNIZK functionality, these hybrids
are indistinguishable. The adversary extracts the AddrR of the receiver from the witness.

• Hyb6: This hybrid is identical to the previous hybrid except that we use the internally simulated FPET

ideal functionality and the bit string sent to the malicious receiver is constructed as in the simulator.
• Hyb7: This hybrid is identical to the previous hybrid except that we use the internally simulated
FMPOPRF ideal functionality. Since this hybrid is identical to the ideal world, we show that the real
and ideal worlds are indistinguishable.

19



The simulator Ss internally simulates the GLedger,FPET and the FMPOPRF ideal functionalities towards the adver-
sary.
Simulating ΠInitialize: same as in Figure 15.
Simulating ΠSend: same as in Figure 16.
Simulating ΠRetrieval: same as in Figure 17.
Simulating ΠDeletion: same as in Figure 15.

Simulator Ssr

Figure 18: Simulator when only one of the servers and the sender and receiver are corrupt

5 Performance Evaluation

In this section, we experimentally evaluate HomeRun and compare with the previous works.

5.1 Implementation

Benchmarking Environment. We implement HomeRun in C++, which is available on GitHub: https:
//github.com/yanxue820/twoPartyOMR. Our experiments are conducted on a server equipped with two
Intel Xeon Silver 4116 CPUs (2.10GHz) and 128GB RAM, running Ubuntu. We evaluate HomeRun in
two network settings, LAN network with 10Gbps bandwidth and 0.02 ms RTT and WAN network with
400Mbps and 100ms RTT, which are emulated using Linux tc command. The garbled-circuit-based scheme
in [MSS+22] is also a two-server scheme, but we only evaluate it in the LAN network as their code does not
support simulating networks.

The cyclic group G is realized using the elliptic curve secp256r1 provided in OpenSSL [Ope]. HomeRun
leverages the Private Equality Test (PET), Multi-point Oblivious PRF (MP-OPRF) and Private Information
Retrieval (PIR) as building blocks. We implement PET based on the design in [CGS22], setting the length
of a leaf node as 1-bit. The MP-OPRF protocol is instantiated by using the scheme in [RS21]. We leverage
the two-party PIR designed in [KOR19], which is based on Distributed Point Function (DPF) [BGI16].

Parameters. We set the computational security parameter κ = 128 and the statistical security parameter
λ = 40. The bit-length ℓ1 of the input of PET is set to 64. We set both the bit-length ℓ2 of the element in
vector Y⃗j and the bit-length ℓ3 of the PRF Fk(·) output as 128.

5.2 Performance Comparison

In this section, we provide a thorough performance comparison of HomeRun against prior works [MSS+22,
LT22, BLMG21, JLM23]9. These schemes can be divided into two categories: (1) Detection schemes focus
on detecting the indexes of pertinent messages without being dedicated to studying how the recipient obtains
the pertinent messages using these indexes; (2) Retrieval schemes allow the recipient to obtain the pertinent
messages. HomeRun integrates a detection scheme with a two-party PIR for message retrieval. We first
present the performance of the detection component, followed by an analysis of the added overhead introduced
by the PIR.

Next, assuming that there are 219 messages (approximate number of Bitcoin transactions per day as
mentioned in [MSS+22, LT22]) on the bulletin board, we compare the computation and communication
costs and summarize the results in Table 2.

Number of pertinent messages. A main advantage of HomeRun is that the number of pertinent messages
for a recipient is unlimited. The prior schemes [BLMG21, JLM23] also enjoy the feature. Therefore, in

9FMD1 [BLMG21] is more efficient than FMD2 [BLMG21]. So, we only show the performance of FMD1 here. We could not
re-evaluate the work of [JLM23] in our environment as their current codebase is not side-channel resistant. We will conduct a
comprehensive comparison once a secure implementation of [JLM23] becomes available. For now, we include the experimental
results presented in their paper as is.

20

https://github.com/yanxue820/twoPartyOMR
https://github.com/yanxue820/twoPartyOMR


D
e
te
ct
io
n

S
ch

e
m
e
s
(o

n
ly

re
tr
ie
v
e
in
d
e
x
e
s)

R
e
tr
ie
v
a
l
S
ch

e
m
e
s

(r
e
tr
ie
v
e
in
d
e
x
e
s
a
n
d

m
e
ss
a
g
e
s)

P
S
1[
M
S
S
+
22
]

P
S
2[
M
S
S
+
22
]

O
M
D
p
1

[L
T
22
]

S
-P
S
[J
L
M
23
]

O
u
rs

w
/o

P
IR

F
M
D
1

[B
L
M
G
21
]

O
M
R
p
1

[L
T
22
]

O
M
R
p
2

[L
T
22
]

O
u
rs

L
A
N

W
A
N

T
a S

T
r S

T
a S

T
r S

T
a S

T
r S

O
n
lin

e
O
ffl
in
e
O
n
lin

e
O
ffl
in
e

D
et
ec
to
r
to
ta
l
ru
nt
im

e
(s
ec
,
d
en
ot
ed

as
T
S
)

1
th
re
ad

4.
41

0.
06
91

74
25
.9
4

0.
00
11

19
49
4.
57
∼

0.
00
3
∼

0.
00
3n

4.
21

14
.9
5

5.
09

36
.2
6

33
9.
21

12
40
43
.1
5
14
71
40
.5
4

+
1.
37

4
th
re
ad
s

1.
25

6.
17

1.
91

17
.4
8

16
th
re
ad
s

0.
49

4.
11

0.
96

16
.5
7

N
u
m
b
er

of
p
er
ti
n
en
t
m
es
sa
ge
s

0
∼

50
0
∼

50
0
∼

50
n

n
n

0
∼

50
0
∼

50
50

R
ec
ip
ie
nt

re
co
n
st
ru
ct
io
n
ti
m
e

(s
ec
,
d
en
ot
ed

as
T
R
)

1
th
re
ad

1.
52

0.
00
01
44

0.
00
54

<
0.
00
00
1n

0.
00
65

N
′ T

0.
01
2

0.
02
1

+
0.
00
04

L
at
en
cy

(s
ec
)

T
r S
+
T
R

T
r S
+
T
R

T
S
+
T
R

T
r S
+
T
R

T
S
(o
n
lin

e)
+
T
R

T
S
+
T
R

T
S
+
T
R

T
S
+
T
R

+
0

D
el
et
io
n
ti
m
e
(s
ec
)

1
th
re
ad

N
/A

N
/A

N
/A

N
/A

2.
51

4.
47

N
/A

N
/A

N
/A

+
0

L
ab
el
si
ze

fo
r
ea
ch

m
es
sa
ge

(b
yt
es
)

64
64

fo
r
ea
ch

se
rv
er

95
6

17
0

33
fo
r
ea
ch

se
rv
er

68
95
6

95
6

+
0

R
ec
ip
ie
nt
→

S
en
d
er

(b
yt
es
)

51
2

8
13
3K

4
33

79
2

13
3K

13
3K

+
0

R
ec
ip
ie
nt
→

S
er
ve
r(
s)

(b
yt
es
)

51
2

21
44

99
M

38
0

22
9

16
5

12
9M

12
9M

+
24
.3
K

S
er
ve
r
↔

S
er
ve
r
(b
yt
es
)

N
/A

∼
37
50
M

N
/A

N
/A

on
lin

e:
15
.7
5M

/
offl

in
e:

56
7.
09
M

N
/A

N
/A

N
/A

+
0

D
ig
es
t
si
ze

(b
yt
es
)

25
60
0

64
00

27
7K

4n
+
14
4

12
8K

N
′ |M
|

55
4K

44
37
K

+
62
.5
K

T
ab

le
2:

C
om

p
ar
is
on

s
of

ru
n
ti
m
e
(i
n
se
co
n
d
s)

an
d
co
m
m
u
n
ic
a
ti
o
n
co
st

(i
n
b
y
te
s)

in
W
A
N
(4
0
0
M
b
p
s
b
a
n
d
w
id
th
,
1
0
0
m
s
R
T
T
)
a
n
d
L
A
N
(1
0
G
b
p
s

b
an

d
w
id
th
,
0.
02

m
s
R
T
T
)
se
tt
in
gs
.
T
h
er
e
ar
e
N

=
21

9
u
n
re
tr
ie
ve
d
m
es
sa
g
es

o
n
th
e
b
u
ll
et
in

b
o
a
rd
.
S
er
ve
r(
s)

to
ta
l
ru
n
ti
m
e
T
S
in
cl
u
d
es

a
d
d
it
io
n

ti
m
e
T
a
an

d
re
sp
on

se
ti
m
e
T
r.

F
or

[B
L
M
G
21
,
L
T
2
2
]
a
n
d
o
u
r
w
o
rk
,
a
d
d
it
io
n
is

a
ch
ie
ve
d
b
y
a
p
p
en
d
in
g
,
so

a
d
d
it
io
n
ti
m
e
is
∼

0
a
n
d
ig
n
o
re
d

h
er
e.

R
ec
ip
ie
n
t
re
co
n
.
ti
m
e
T
R
is

th
e
d
u
ra
ti
on

th
e
re
ci
p
ie
n
t
ta
k
es

to
re
co
v
er

p
er
ti
n
en
t
in
d
ex
es
/
m
es
sa
g
es

a
ft
er

re
ce
iv
in
g
th
e
re
sp
o
n
se

fr
o
m

se
rv
er
(s
).

L
at
en
cy

re
fe
rs

to
th
e
ti
m
e
in
te
rv
al

b
et
w
ee
n
th
e
re
ci
p
ie
n
t
se
n
d
in
g
a
re
q
u
es
t
a
n
d
o
b
ta
in
in
g
th
e
p
er
ti
n
en
t
in
d
ex
es
/
m
es
sa
g
es
.
D
el
et
io
n

ti
m
e
is

th
e
d
u
ra
ti
on

se
rv
er
s
ta
ke

to
d
el
et
e
al
l
re
tr
ie
ve
d
m
es
sa
g
es

a
n
d
co
rr
es
p
o
n
d
in
g
la
b
el
s.

X
→

Y
m
ea
n
s
X

se
n
d
s
to

Y
,
a
n
d
X
↔

Y
m
ea
n
s

th
e
co
m
m
u
n
ic
at
io
n
b
et
w
ee
n
X

an
d
Y
.
D
ig
es
t
is

th
e
re
sp
o
n
se

fr
o
m

se
rv
er
(s
).

O
ffl
in
e
p
h
a
se

is
u
se
d
fo
r
p
re
co
m
p
u
ta
ti
o
n
(b
it
-t
ri
p
le
s
g
en
er
a
ti
o
n

in
ou

r
w
or
k
),
w
h
il
e
on

li
n
e
p
h
as
e
in
vo
lv
es

th
e
re
q
u
es
ts

o
f
se
n
d
er
s
a
n
d
re
ci
p
ie
n
ts
.

21



Table 2, we use n to denote the number of pertinent messages for our work and [BLMG21, JLM23]. In
contrast, other schemes only allow a recipient to receive up to a pre-determined number of pertinent messages.
For the sake of fair comparisons, we set the pre-determined number at 50 for these schemes. There are 219

messages on the bulletin board and each recipient can receive at most 50 messages, so we set the number of
rows in PS1/PS2 [MSS+22] as 10485.

While we do not limit the number of pertinent messages for a recipient, the extra overhead from the
PIR is dependent on the number of pertinent messages. Therefore, to ensure fair comparisons, we detail the
additional overhead for retrieving 50 messages in the last column of Table 2.

Server(s) total computation time. The server(s) is responsible for helping the recipient to identify
pertinent messages. Roughly speaking, if a sender wants to send a message to a recipient, the server(s)
needs to do two steps: (1) process the label from the sender before receiving a request from the recipient;
(2) generate a response after receiving a request from the recipient. Except for the schemes designed in
[MSS+22], other schemes in the first step only need to add the label (and the message) from the sender into
a list, so the total computation time refers to the runtime of the second step. As for PS1/PS2 [MSS+22],
the total computation time involves the two steps. We denote the runtimes of the two steps as T a

S and T r
S

(“a” means “addition” and “r” means “response”), respectively. From Table 2, we can see that the total
computation time of the servers in HomeRun is significantly shorter than that in prior works that do not
rely on TEE. More specifically, when using a single thread, HomeRun achieves an online runtime of 4.21s
in the LAN setting and 5.09s in the WAN setting, which is comparable with the performance of TEE-based
PS1. Furthermore, by scaling to 16 threads, the online runtime is further optimized to 0.49s in the LAN
setting and 0.96s in the WAN setting.

Recipient reconstruction time. After receiving the response from the server(s), the recipient needs to
reconstruct the pertinent indexes (or messages). We can see that the reconstruction times in these schemes,
except for PS1 [MSS+22] and FMD1 [BLMG21], are much less than 1 second. The recipient in PS1 needs to
decrypt 50 ciphertexts. The goal of [BLMG21] is to reduce the number of messages that the recipient needs
to test, rather than give the exact pertinent messages. More specifically, the server sends N ′ = (219−n)p+n
messages to the recipient, where p is a false positive probability. Then, the recipient identifies the n pertinent
messages from theN ′ messages. The test time for each message, denoted as T , is determined by the particular
application10. Therefore, we only give the expression, rather than the precise value.

Latency. The latency refers to the duration between the recipient initiating a request and receiving the
relevant indexes or messages. For HomeRun and the schemes in [LT22, BLMG21], the latency is the sum
of the server(s) computation time and the recipient reconstruction time. Whereas, when computing the
latency of PS1/PS2 [MSS+22] and S-PS [JLM23], we need to subtract the runtime before receiving the
request from the total computation time of the server. It is worth mentioning that the latency of HomeRun
is independent of the number of pertinent messages. More specifically, regardless of how many pertinent
messages the recipient can receive, the latency of HomeRun is only 0.96s using 16 threads in the WAN setting,
which is greater than that of PS2 and S-PS, comparable with that of TEE-based PS1 and significantly less
than that of other schemes. Note that the latency of S-PS is linear in n. When n is greater than 1000, the
latency of S-PS is comparable with ours.

Deletion time. In these schemes, only HomeRun can support deletion. To prevent the servers from knowing
which messages are pertinent to a recipient, we require the two servers to batch-delete all retrieved messages
and corresponding labels at regular intervals (e.g., every day). No matter how many messages need to be
deleted, HomeRun takes only 4.47s (resp. 2.51s) using a single thread in the WAN (resp. LAN) setting to
delete these messages.

Label size for each message. The server(s) needs to maintain a label for each message to identify if the
message is pertinent. In HomeRun, the label is an elliptic curve point, which occupies a size of 33 bytes
using compressed representation. As indicated in Table 2, our label size is the most compact.

Recipient → Sender. The recipient needs to send an “address” to a sender, such that the sender can send
messages to her. In HomeRun, the address is an elliptic curve point of size 33 bytes, which is much smaller

10For instance, in cryptocurrencies, the recipient needs to use a private key to test whether a transaction belongs to her.

22



#Msgs on bulletin board (N) 216 218 220 222

Detector total runtime (online, sec) 1.07 3.02 10.31 40.34
Deletion time (sec) 2.73 3.57 5.93 14.45

Server ↔ Server (online, byte) 1.97M 7.87M 31.50M 126M
Digest size (byte) 16K 64K 256K 1024K

Table 3: Costs under different N (the number of messages on bulletin board) in WAN (400Mbps bandwidth,
100ms RTT) setting, using a single thread.

than that in the schemes by [BLMG21, LT22] and comparable with that in the designs of [MSS+22].

Recipient → Server(s). The recipient needs to send a request to the server(s). In HomeRun, the recipient
needs to send a share of address (33 bytes) and a proof (65 bytes) to each server. In order to reduce the
computation cost of Server2, we require the recipient to also send an inversion (33 bytes) of a share to Server2.
The total communication cost that the recipient sends to the two servers is 229 bytes, which is much smaller
than that in the schemes by [LT22] and comparable with that in the designs of [BLMG21, MSS+22, JLM23].
It is worth mentioning that the communication cost in [BLMG21] varies with the false positive probability
p. As p increases, the communication overhead correspondingly increases.
Server ↔ Server. Only HomeRun and PS2 in [MSS+22] rely on two servers. The total communication
cost between servers of HomeRun is about 6.4× less than that of PS2. Moreover, our online communication
cost is only 15.75M bytes.
Digest size. The server(s) responds with a digest to the recipient, such that the recipient can recover the
pertinent indexes or messages. In HomeRun, for each message on the bulletin board, each server needs to
send 1 bit to the recipient. Therefore, the digest size is 2N bits, i.e., 128K bytes when N = 219, which is
much smaller than that in the designs of [BLMG21, LT22]11. Although HomeRun has a larger digest size
than the schemes presented by [MSS+22, JLM23], it is worth noting that HomeRun supports an unlimited
number of pertinent indexes, while PS1/PS2 limit it up to 50 and the digest size of S-PS is linear in n.
Combining with PIR. After obtaining the pertinent indexes, the recipient can employ PIR to retrieve
the corresponding messages. More specifically, we assume that the message size is 640 bytes. For each
pertinent index, the recipient takes 0.008ms to generate two DPF keys, each of size 249 bytes, and sends
them to the two servers, respectively. Each server spends 27.44ms to generate a 640-byte digest, which is
subsequently sent back to the recipient. Finally, the recipient recovers the pertinent message by applying
the XOR operation to the two digests.

In order to give a fair comparison, we assume a scenario with 50 pertinent messages. The overhead of the
recipient is an extra 0.4ms for DPF key generation and an additional transfer of 12, 450 bytes to each server.
On the server side, generating the digests requires 1.37s in a single thread. We show the extra overhead of
retrieving 50 messages through PIR in the last column of Table 2.

5.3 Evaluation under Different N

In Table 3, we show the experimental results for different numbers (denoted as N) of messages on the bulletin
board. Similarly to previous work [BLMG21, MSS+22, LT22], our detector total runtime (online) is O(N).
HomeRun requires each server to send N bits to the recipient, leading to the digest size of O(N). Note that
although the digest size in the previous work [BLMG21, MSS+22, LT22] is sublinear in N , their solutions
limit the number of pertinent messages for a recipient. In contrast, HomeRun allows an unlimited number of
pertinent messages for each recipient. In addition, our deletion time and online communication cost between
the two servers are both O(N).

While the experimental results demonstrate that HomeRun is sufficiently efficient for practical use, we
discuss how to further improve performance through horizontal scaling in Section 6.4.

11For FMD1, |M | is the sum of the sizes (in bytes) of a message and its label.

23



6 Extensions

6.1 Authentication of Recipients

In this work, the two non-colluding and semi-honest servers need to separately verify a NIZK proof to
guarantee that only the holder of a secret key can retrieve the corresponding messages (see Section 2.2 or
Section 4.3). However, if one of two servers and a receiver collude and the server does not verify the proof,
the receiver can choose the address of an honest party Addrh and obtain the messages pertinent to Addrh.
While the attack cannot be successful assuming the two servers are semi-honest, the malicious behavior is
not easily detectable12 in practice. Therefore, we still discuss how to prevent this attack below.

The key idea is that the sender generates a new one-time address for the recipient each time, so that the
adversary cannot know the actual addresses of a recipient. To avoid out-of-band communications between
senders and receivers for updating addresses, we leverage the notion of stealth address [CM17] to ensure that
a recipient can only use the secret key of a permanent address to retrieve her messages.

Specifically, a recipient has a permanent address A = ga where a is the secret key. To send a message m
to the recipient, the sender generates a new one-time address E = gH(Ar) together with R = gr, where r is a
randomness and H is a hash function, and generates shares L1 and L2 such that L1 ·L2 = E. Later, the two
servers obtain L1 and L2, respectively, as before. In addition, R can be publicly published on the board, so
both servers can obtain R. When the recipient requests a retrieval, she generates random shares a1 and a2
where a1 + a2 = a and sends ai to Serveri (note that the two servers are non-colluding). Then, Server2 sends
Ra2 to Server1 such that Server1 can compute s = H(Ra1 ·Ra2) and E′ = gs. It is easy to see that if E = E′,
then E′/L1 = L2. Therefore, the two servers can use E′/L1 and L2 respectively, to perform the subsequent
process as in HomeRun. In this way, as long as the recipient cannot provide valid a1 and a2, Server1 cannot
compute the matched one-time address E′. Moreover, the address is one-time, so leaking it to Server1 does
not break the recipient’s privacy. Furthermore, if a malicious sender generates R = g to leak the permanent
address of a recipient to Server1, the malicious behavior can be easily detected. Therefore, the message can
be prevented from being published on the board, or the honest server can reject processing the message.

6.2 Option to Not Delete

We provide a deletion feature that helps the servers to avoid continuously increasing storage consumption.
However, the two servers can learn which messages are retrieved (and thus deleted) within a certain time
frame, which may raise concerns about privacy for the recipients. In order to accommodate the interests
of the recipients, in practice, we can allow them the option not to delete their pertinent messages. More
specifically, the recipient can inform the two servers if she agrees to deletion, and the two servers reach a
consensus on the recipient’s decision. If the recipient chooses not to delete, the two servers will set all the
“delete labels” (see Section 2.3) as 0, such that this retrieval will not affect the OPRF values.

6.3 Timing Issues with Deletion

Recall that in our protocol the recipients retrieve their messages (via PIR) after first obtaining the relevant
indices. If, for any reason (such as network instability, or messages being stored at different servers), the
messages are deleted before the receiver retrieves them, it could result in permanent loss of the pertinent
messages. Thus the process of deletion should be tied to the retrieval of messages itself, rather than relying on
the index retrieval. In our work, we leverage DPF-based PIR [KOR19, BGI16] to achieve message retrieval.
For a request to retrieve messages indexed by i, the two servers performing DPF-based PIR will generate
two string vectors, V⃗1 and V⃗2, respectively; The elements of the two vectors are identical elsewhere, except at
the i-th position. It can be easily observed that the elements in the two vectors share identical features with
the “delete labels” mentioned in Section 2.3. Therefore, the two servers can follow the same idea described
in Section 2.3 to identify the messages that are indeed retrieved in an interval, by using the vectors.

12The malicious behaviors that compromise correctness can be detected, as all the messages are publicly available on the
blockchain. All the previous works do not consider the adversary that aims to break correctness.

24



6.4 Horizontal Scaling

To further improve performance, we can use multiple pairs of servers to horizontally scale. Specifically, we
can allocate each pair of servers to serve a designated set of recipients. To send a message to a recipient, the
sender leverages the public keys of the corresponding servers to encrypt the auxiliary information. Then,
only the designated servers can open the auxiliary information and assist the recipient with retrieval. But
note that anyone observing the bulletin board can see which messages correspond to which server, thereby
reducing the anonymity set of the recipient of that message to the parties that are serviced by the two
servers. We can mitigate this by using key-private encryption so that one cannot tell the set of servers that
can process this ciphertext, thereby achieving full anonymity for that recipient.

6.5 Group Setting

Next, we explore a potential extension of our protocol - group retrieval. Recently, Liu et al. [LTW23]
extended the topic to a group setting where a message may be addressed to more than one recipient with
two cases: (1) Ad-hoc Group where a group is chosen by the sender; (2) Fixed Group where a group is pre-
formed by its members. The main difference between the two cases is that for a fixed group, the sender can
treat it as a single entity, while for an ad-hoc group, the sender still needs to treat each member individually.
Here, we discuss how to extend our protocol to support the two group settings.

(1) Ad-hoc Group. The key idea is to allow each server to recover the label for each member, and
then leverage the label to assist the member with retrieval as before. We assume that a sender chooses
k recipients with public keys {pk1, · · · , pkk} to form a group, and randomly splits each public key pki to
generate the labels {L1

i , L
2
i } as before. Then, the sender chooses a unique identifier idi for each member, and

interpolates a polynomial f1 (resp. f2) over points {(idi, L1
i )}i∈[k] (resp. {(idi, L2

i )}i∈[k]). Last, the sender
sends polynomials f1 and f2 to Server1 and Server2, respectively. When requesting retrieval, the j-th member
still splits pkj as before and sends the labels and idj to the servers. The servers use idj to recover the labels
and perform the subsequent procedure as before.

(2) Fixed Group. The key idea is to enable all members to collaboratively perform the role of the recipient
in our original protocol. We set the public key of the group as pkG =

∏m
i=1 pki and the corresponding secret

key as skG =
∏m

i=1 ski. The sender splits the group public key to labels L1
G and L2

G and sends them to
the servers, respectively. To retrieve messages, each member in this group splits his secret key ski into sk1i
and sk2i and generates the corresponding pk1i = gsk

1
i and pk2i = gsk

2
i . Then, the members collaboratively

generate two multi-signature σ1 and σ2 under public lists {pk1i }i∈[k] and {pk2i }i∈[k]. Last, the leader of the

group sends ⟨σ1, {pk1i }i∈[k],
∏k

i=1 pk
1
i )⟩ and ⟨σ2, {pk2i }i∈[k],

∏k
i=1 pk

2
i )⟩ to the two servers, respectively. After

verifying the multi-signatures successfully, the two servers can use
∏k

i=1 pk
1
i and

∏k
i=1 pk

2
i to generate test

labels and perform the subsequent as before. A limitation of this extension is that members within a group
cannot retrieve messages independently. We defer this issue to future work.

6.6 Denial-of-Service Attack

The previous works [MSS+22, LT22] limit the number of pertinent messages of a recipient, so it is inevitable
that an adversary can send many messages to a recipient to induce an overflow, as mentioned in [LT22].
Our HomeRun and [BLMG21, JLM23] eliminate this limitation, thus avoiding this DoS attack. In addition,
Liu et al. [LT22] pointed out an amplified DoS attack: the adversary maliciously crafts labels such that the
corresponding messages are misperceived as pertinent by almost all recipients. Liu et al. [LT22] proved that
their schemes are resistant to this DoS attack, but the solution by [BLMG21] is not. HomeRun essentially
uses the address of a recipient to detect her pertinent messages, and the addresses of honest recipients are
mutually distinct. Therefore, the amplified DoS attack cannot be applied to HomeRun. The existing works,
including HomeRun, do not consider the DoS attacks that use arbitrarily chosen addresses and/or spam
messages to consume resources. But we note that senders could prove that the recipient of a transaction

25



belongs to the set of all parties to mitigate this attacks. This can be efficiently accomplished using any
proof-of-membership techniques (Merkle Trees[Mer87], vector commitments[CF13] etc.)

7 Related Work

Hearn et al. [HC12] require a recipient to insert her addresses into a Bloom filter, which can be used to check
if an element is in a set with a predetermined false-positive probability p. Then, the Bloom filter will be sent
to a server that later checks if an address appearing in the bulletin board is in the Bloom filter; if so, the
server sends the corresponding message to the recipient. The drawback here is the server can identify the
messages pertinent to the recipient with the false-positive probability p. Moreover, according to the research
by Gervais et al. [GCKG14], this solution also leaks considerable information about addresses.

Later, Beck et al. [BLMG21] followed the idea of introducing false-positive probability while avoiding
the leakage of addresses. Moreover, they first formalized the problem as “Fuzzy Message Detection (FMD)”
where “fuzzy” means that the detection is with a false-positive probability. In their work, two schemes, FMD1
and FMD2, are proposed. FMD1 can only support restricted false-positive probabilities p of the form 1

2γ ,
whereas FMD2 can support more fine-grained false-positive probabilities p of the form m

2γ . Most recently, a
concurrent work by Pu et al. [PTDH23] also followed a similar idea by designing post-quantum fuzzy stealth
signatures, but achieved better performance, which is comparable to ours. In these schemes, the recipient
still needs to pick up her pertinent messages from the messages received from the server, which is avoided in
our protocol. Moreover, our protocol can achieve full privacy. Note that the schemes in [BLMG21, PTDH23]
have to set p = 1 to achieve full privacy, but the performance would be almost equivalent to that of directly
scanning the data on the chain.

Liu et al. [LT22] achieved full privacy more efficiently, and the recipients in their schemes can obtain per-
tinent messages without re-testing by themselves. Nevertheless, due to the inefficiency of fully homomorphic
encryption, their schemes still lack efficiency when a large number of messages are published on the bulletin
board.

Madathil et al. [MSS+22] only focused on index retrieval without considering message retrieval. Their
key idea is to require the server to maintain a table, wherein each row corresponds to a recipient and records
the pertinent indexes for the recipient. When a recipient requests an index retrieval, the server responds
with the corresponding row. To protect privacy, they proposed to use TEE or a two-party garbled circuit
to maintain the table, and update the entire table upon the addition of a new index; only the TEE-based
scheme is efficient. Most recently, Jakkamsetti et al. [JLM23] also presented a TEE-based solution. To avoid
limiting the number of pertinent messages for a recipient, Jakkamsetti et al. [JLM23] changed the table used
in [MSS+22] to a linked list. Moreover, by using ORAM, they achieved sublinear cost. Our protocol does
not rely on TEE but achieves a performance comparable to that of [MSS+22], and the same privacy as that
of [JLM23].

8 Conclusion

In this work, we design an Oblivious Message Retrieval protocol, HomeRun, leveraging two non-colluding,
semi-honest servers. Through our protocol, recipients can efficiently retrieve messages from a bulletin board
without compromising privacy. The comprehensive experimental results demonstrate the high efficiency of
our protocol. Particularly, assuming there are 219 unretrieved messages on the bulletin board, our protocol
allows a recipient to retrieve a message within 1 second using 16 threads in a WAN setting.

Compared with previous works, our protocol not only offers performance advantages but also presents
significant improvements in both functionality and security. Specifically, as for functionality, our protocol
supports unlimited pertinent messages for a recipient, periodic deletion, and appending-based addition.
Regarding security, our protocol achieves full privacy and guarantees request unlinkability.

26



Acknowledgements

We thank Zhongtang Luo for his assistance in running the experiments. This work was supported in part
by the National Science Foundation (NSF) under grant CNS1846316, and by Protocol Labs and Supra
Research.

References

[APY20] Ittai Abraham, Benny Pinkas, and Avishay Yanai. Blinder - scalable, robust anonymous com-
mitted broadcast. In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors,
ACM CCS 2020, pages 1233–1252. ACM Press, November 2020.

[BGI16] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing: Improvements and exten-
sions. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and
Shai Halevi, editors, ACM CCS 2016, pages 1292–1303. ACM Press, October 2016.

[bit] Bitcoin blockchain size. https://ycharts.com/indicators/bitcoin_blockchain_size.

[BLMG21] Gabrielle Beck, Julia Len, Ian Miers, and Matthew Green. Fuzzy message detection. In Giovanni
Vigna and Elaine Shi, editors, ACM CCS 2021, pages 1507–1528. ACM Press, November 2021.

[CF13] Dario Catalano and Dario Fiore. Vector commitments and their applications. In Public-Key
Cryptography–PKC 2013: 16th International Conference on Practice and Theory in Public-Key
Cryptography, Nara, Japan, February 26–March 1, 2013. Proceedings 16, pages 55–72. Springer,
2013.

[CGS22] Nishanth Chandran, Divya Gupta, and Akash Shah. Circuit-PSI with linear complexity via
relaxed batch OPPRF. PoPETs, 2022(1):353–372, January 2022.

[CM17] Nicolas T Courtois and Rebekah Mercer. Stealth address and key management techniques
in blockchain systems. In ICISSP 2017-Proceedings of the 3rd International Conference on
Information Systems Security and Privacy, pages 559–566, 2017.

[Cou18] Geoffroy Couteau. New protocols for secure equality test and comparison. In International
Conference on Applied Cryptography and Network Security, pages 303–320. Springer, 2018.

[DSZ15] Daniel Demmler, Thomas Schneider, and Michael Zohner. ABY - A framework for efficient
mixed-protocol secure two-party computation. In NDSS 2015. The Internet Society, February
2015.

[eth] Ethereum chain full sync data size. https://ycharts.com/indicators/ethereum_chain_

full_sync_data_size.

[GCKG14] Arthur Gervais, Srdjan Capkun, Ghassan O. Karame, and Damian Gruber. On the privacy
provisions of bloom filters in lightweight bitcoin clients. In Proceedings of the 30th Annual
Computer Security Applications Conference, ACSAC ’14, page 326–335, New York, NY, USA,
2014. Association for Computing Machinery.

[HC12] Mike Hearn and Matt Corallo. Connection bloom filtering. https://github.com/bitcoin/

bips/blob/master/bip-0037.mediawiki, 2012.

[HHCG+23] Alexandra Henzinger, Matthew M Hong, Henry Corrigan-Gibbs, Sarah Meiklejohn, and Vinod
Vaikuntanathan. One server for the price of two: Simple and fast single-server private infor-
mation retrieval. In Usenix Security, volume 23, 2023.

27

https://ycharts.com/indicators/bitcoin_blockchain_size
https://ycharts.com/indicators/ethereum_chain_full_sync_data_size
https://ycharts.com/indicators/ethereum_chain_full_sync_data_size
https://github.com/bitcoin/bips/blob/master/bip-0037.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0037.mediawiki


[HHK18] Ryan Henry, Amir Herzberg, and Aniket Kate. Blockchain access privacy: Challenges and
directions. IEEE Security & Privacy, 16(4):38–45, 2018.

[JLM23] Sashidhar Jakkamsetti, Zeyu Liu, and Varun Madathil. Scalable private signaling. Cryptology
ePrint Archive, Paper 2023/572, 2023. https://eprint.iacr.org/2023/572.

[KOR19] Daniel Kales, Olamide Omolola, and Sebastian Ramacher. Revisiting user privacy for certificate
transparency. In 2019 IEEE European Symposium on Security and Privacy (EuroS&P), pages
432–447. IEEE, 2019.

[KZZ16] Aggelos Kiayias, Hong-Sheng Zhou, and Vassilis Zikas. Fair and robust multi-party compu-
tation using a global transaction ledger. In Marc Fischlin and Jean-Sébastien Coron, editors,
EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 705–734. Springer, Heidelberg, May
2016.

[LK23] Donghang Lu and Aniket Kate. RPM: robust anonymity at scale. Proc. Priv. Enhancing
Technol., 2023(2):347–360, 2023.

[LSD23] Simon Langowski, Sacha Servan-Schreiber, and Srinivas Devadas. Trellis: Robust and scalable
metadata-private anonymous broadcast. In 30th Annual Network and Distributed System Secu-
rity Symposium, NDSS 2023, San Diego, California, USA, February 27 - March 3, 2023. The
Internet Society, 2023.

[LT22] Zeyu Liu and Eran Tromer. Oblivious message retrieval. In Yevgeniy Dodis and Thomas
Shrimpton, editors, CRYPTO 2022, Part I, volume 13507 of LNCS, pages 753–783. Springer,
Heidelberg, August 2022.

[LTW23] Zeyu Liu, Eran Tromer, and Yunhao Wang. Group oblivious message retrieval. Cryptology
ePrint Archive, Paper 2023/534, 2023. https://eprint.iacr.org/2023/534.

[Mer87] Ralph C. Merkle. A digital signature based on a conventional encryption function. pages
369–378, 1987.

[MSS+22] Varun Madathil, Alessandra Scafuro, István András Seres, Omer Shlomovits, and Denis Var-
lakov. Private signaling. In Kevin R. B. Butler and Kurt Thomas, editors, USENIX Security
2022, pages 3309–3326. USENIX Association, August 2022.

[NSD22] Zachary Newman, Sacha Servan-Schreiber, and Srinivas Devadas. Spectrum: High-bandwidth
anonymous broadcast. In Amar Phanishayee and Vyas Sekar, editors, 19th USENIX Symposium
on Networked Systems Design and Implementation, NSDI 2022, Renton, WA, USA, April 4-6,
2022, pages 229–248. USENIX Association, 2022.

[Ope] Openssl. https://www.openssl.org/source/gitrepo.html.

[PTDH23] Sihang Pu, Sri AravindaKrishnan Thyagarajan, Nico Döttling, and Lucjan Hanzlik. Post quan-
tum fuzzy stealth signatures and applications. Cryptology ePrint Archive, Paper 2023/1148,
2023. https://eprint.iacr.org/2023/1148.

[RS21] Peter Rindal and Phillipp Schoppmann. VOLE-PSI: Fast OPRF and circuit-PSI from vector-
OLE. In Anne Canteaut and François-Xavier Standaert, editors, EUROCRYPT 2021, Part II,
volume 12697 of LNCS, pages 901–930. Springer, Heidelberg, October 2021.

[Sch90] Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In Gilles Brassard,
editor, CRYPTO’89, volume 435 of LNCS, pages 239–252. Springer, Heidelberg, August 1990.

[SG23] Sajin Sasy and Ian Goldberg. Sok: Metadata-protecting communication systems. Cryptology
ePrint Archive, Paper 2023/313, 2023. https://eprint.iacr.org/2023/313.

[Tor] The Tor Project. https://metrics.torproject.org/.

28

https://eprint.iacr.org/2023/572
https://eprint.iacr.org/2023/534
https://www.openssl.org/source/gitrepo.html
https://eprint.iacr.org/2023/1148
https://eprint.iacr.org/2023/313
https://metrics.torproject.org/

	Introduction
	Our Contributions

	Technical Overview
	Core Idea
	Achieving Authentication of Recipients
	Achieving Deletion

	Preliminaries
	Threat Model
	Oblivious Message Retrieval Functionality
	Building Blocks
	Private Equality Test (PET)
	Private Information Retrieval (PIR)
	Multi-point Oblivious PRF (MP-OPRF)
	Non-interactive Zero-Knowledge Proof (NIZK)
	Ledger


	Protocol Description
	Initialization
	Sending Messages
	Retrieval
	Deletion
	Security Proof

	Performance Evaluation
	Implementation
	Performance Comparison
	Evaluation under Different N

	Extensions
	Authentication of Recipients
	Option to Not Delete
	Timing Issues with Deletion
	 Horizontal Scaling
	Group Setting
	Denial-of-Service Attack

	Related Work
	Conclusion

