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Abstract. The Messaging Layer Security (MLS) protocol, recently stan-
dardized in RFC 9420 [7], aims to provide efficient asynchronous group
key establishment with strong security guarantees. The main component
of MLS, which is the source of its important efficiency and security prop-
erties, is a protocol called TreeKEM [9]. Given that a major vision for
the MLS protocol is for it to become the new standard for messaging
applications like WhatsApp, Facebook Messenger, Signal, etc., it has the
potential to be used by a huge number of users. Thus, it is important to
better understand the security of MLS and hence also of TreeKEM. In
[2], TreeKEM was proven adaptively secure in the Random Oracle Model
(ROM) with a polynomial loss in security by proving a result about the
security of an arbitrary IND-CPA secure public-key encryption scheme
in a public-key version of the Generalized Selective Decryption (GSD)
security game [14].

In this work, we prove a tighter bound for the security of TreeKEM. We
follow the approach in [2] and first introduce a modified version of the
public-key GSD game better suited for analyzing TreeKEM. We then
provide a simple and detailed proof of security for a specific encryption
scheme, the DHIES scheme (currently the only standardized scheme in
MLS), in this game in the ROM and achieve a tighter bound compared
to the result in [2]. We also define and describe the syntax and security of
TreeKEM-like schemes and state a result linking the security of TreeKEM
with security in our GSD game in the ROM.

1 Introduction

We all rely on messaging applications like WhatsApp, Facebook Messenger,
Signal, etc. in our daily lives and take it for granted that our messages will be
transmitted securely, for some definition of “secure”. A common security feature
expected from the protocol employed in a messaging application and known also
to the general public is end-to-end encryption, i.e. that only the end users of
a messaging session can read the messages being sent and the service provider
or any party with access to the communication channel learns nothing of their
contents. Another straightforward feature is that the protocol should work in an
asynchronous setting: we would like to send messages even when the recipient
is offline, and we expect them to receive the messsage once they come online.



For this we must rely on a delivery service to store and deliver the messages. Of
course also this delivery service should learn nothing about the contents of the
messages.

There are two more advanced security features expected from messaging
protocols today, both related to security in case a user is compromised:

– forward secrecy (FS): the compromise should not reveal the contents of old
messages

– post-compromise security (PCS): after the user recovers from the compromise,
new messages are secure once again

As a user may well not know that they have been compromised, ensuring PCS
requires regularly updating the key material used for encryption (in a way that
the information leaked in a compromise before the update does not suffice to
compute encryption keys used after the update). The more often the key material
is updated, the stronger the level of PCS that is achieved. Thus, updating the
key material should be an efficient operation.

For messaging between two users, the Double Ratchet protocol [15], the main
component of the so-called Signal Protocol, is a widely adopted solution used by
major messaging applications such as Signal, WhatsApp, Facebook Messenger
and more. It is well studied and achieves all of the above security guarantees
[10]. For messaging in a group of more than two users, a straightforward solution
is to maintain 1:1 communication channels using the Double Ratchet protocol
between every pair of users and send messages to the group by sending them to
every member individually. This achieves very strong security guarantees, but
requires a number of encryption operations linear in the group size to send a
message.

Another common solution is to use sender keys [6]: every user creates a
symmetric key, their sender key, and distributes this sender key to every other user
using 1:1 channels as before. A user sending a message then derives a symmetric
encryption key for the message from their sender key, while continually updating
their sender key (with each sent message) to provide FS. However, achieving
PCS is costly: if a user is compromised, the sender keys of all users are leaked
and recovering from the compromise requires each user to send a new sender key
to every other user over the respective 1:1 channels, resulting in a number of
operations linear in the group size per user and a quadratic number of operations
in total. Moreover, dynamic group membership introduces additional complexity:

– adding a new member involves the new member sharing their sender key
with all other group members

– removing a member requires distributing new sender keys in the group, just
like recovering from a compromise

The Messaging Layer Security (MLS) protocol, recently standardized in [7],
proposes a solution for group messaging with better efficiency and the same
strong security guarantees as for the two-party case. Updating key material
and adding or removing members can be achieved with a logarithmic number



of operations (although the complexity may still degrade to linear in certain
scenarios). At the core of MLS is a fairly recent primitive called a continuous
group key agreement (CGKA) scheme [3] (this primitive was introduced only
after the first draft of the MLS protocol). In essence, a CGKA scheme enables
a group of users to agree on a group key, which they can then use to derive
symmetric message encryption keys. This key must be indistinguishable from a
random key for anyone outside the group eavesdropping on all communication.
However, a CGKA scheme must also achieve FS and PCS, and support dynamic
group membership. Hence, it must provide mechanisms for members to update
their key material, add new users to the group and remove members from the
group. Moreover, the scheme must work in the asynchronous setting with an
untrusted service to deliver protocol messages.

The CGKA scheme used in the MLS protocol is called TreeKEM (initially
proposed in [9]) and the majority of the literature on MLS is dedicated to
analyzing TreeKEM or proposing better CGKA schemes as in [2,3,5,4]. The
TreeKEM protocol has undergone multiple changes since its inception. In this
work we refer to the version documented in RFC 9420. TreeKEM, as adopted
from its predecessors, maintains a binary tree where every node in the tree has
some associated secrets, every member of the group is associated with a leaf and
the group key is derived from the root of the tree. Every member can compute
the group key from their view of the tree. The group key can be updated and
members added/removed with a number of operations logarithmic in the group
size.

Given that the vision for the MLS protocol is for it to become the new
standard for messaging protocols and that it has support from several large
companies [11,12], it has the potential to be used by a huge number of users.
Thus, understanding the security of MLS and hence also of TreeKEM is of great
importance. This means having formal security guarantees about the security
provided by TreeKEM (based on appropriate hardness assumptions). The first
important step in this direction was the conception of the CGKA primitive
and the accompanying definitions of security introduced in different works (for
example [3,2]). Such definitions clarify what kind of adversaries we can provide
security against and thus what kind of security one should expect from the
scheme when using it in practice. Moreover, proofs of (reasonably tight) security
under these definitions show what level of security we should expect from the
scheme and serve as a guide to implementors on what values to choose for the
security parameter. Proofs also provide strong justification that there are no
flaws in the overall design of the scheme.

One choice that can be made when defining the security of a CGKA scheme
is whether the adversary is modeled as selective or adaptive. In the former case,
the adversary must provide all the interactions it will have with the protocol
and when it will attempt to break the scheme at the beginning of the security
game, while in the latter case the adversary can make its decisions based on
responses from previous interactions. Clearly, the adaptive setting is much closer
to how an attack would unfold in practice, so it is desirable to prove security



against adaptive adversaries. However, achieving this without too much of a
blow-up in the security loss is a challenge since one often resorts to guessing
actions performed by the adversary.

The Generalized Selective Decryption (GSD) security game [14] was intro-
duced precisely to analyze adaptive security for protocols based on a graph-like
structure (as is the case with TreeKEM). It was initially defined for the private-
key setting and later adapted to the public-key setting in [2]. The work in [2]
proved a polynomial bound for the adaptive security of the public-key GSD game
in the so-called Random Oracle Model (ROM) for an arbitrary IND-CPA secure
public-key encryption scheme. This result implies a polynomial bound for the
adaptive security of TreeKEM as a CGKA scheme as outlined in [2, Theorem 4]
and subsequently proved in more detail in [4, Theorem 12].

In this work, we formally prove the adaptive security of a specific public-key
encryption scheme, the DHIES scheme, in a modified version of the public-key
GSD game, adapted to better model TreeKEM, in the ROM. Focusing on the
DHIES scheme allows us to achieve a tighter bound than the one in [2]. Moreover,
we define the syntax and security of propose and commit CGKA schemes, provide
a high-level description of how the TreeKEM protocol can be instantiated with
our definitions and state a result in the ROM relating the security of a public-key
encryption scheme in our modified GSD game with the security of TreeKEM as
a CGKA scheme when instantiated with this public-key encryption scheme.

1.1 Contributions

We present the following main contributions:

– A simple definition of an adaptation of the public-key GSD game better
suited to model TreeKEM.

– A simple and detailed proof of (adaptive) security of the DHIES scheme
with respect to our GSD definition. We achieve a tighter bound than the one
proven so far.

– Simple and clear definitions of the syntax and security of propose and commit
CGKA schemes. We explain our definition in detail and briefly discuss the
correctness of CGKA schemes.

– A high-level description of the TreeKEM protocol and how it can be instanti-
ated with respect to our CGKA definition. Finally, we state a result relating
the security of our GSD game and the security of TreeKEM, and provide an
outline of the proof.

1.2 Technical overview

The GSD game In the GSD security game, given an encryption scheme a
graph, the GSD graph, is constructed by the challenger where every node in
the graph is associated with a symmetric key in the private-key setting, or a
public/private key pair in the public-key setting. The adversary can then request
encryptions of a node’s (secret) key under the (public) key of another node. In



the public-key setting, such an encryption query also reveals the node’s public
key. This creates an encryption edge in the graph, directed from the node whose
(public) key was used for encryption to the node whose key was encrypted. The
adversary can also corrupt any node, which reveals its (secret) key and allows
the adversary to compute the (secret) key of any other node reachable from the
corrupted node in the graph by performing decryptions along the path to the
other node. At the end of the game the adversary chooses a node to be challenged
on, the challenge node. A coin is then tossed and the adversary is given either
the (secret) key of the challenge node or a uniformly random (secret) key and it
must guess which scenario it is in. The possible choices for the challenge node
must of course be restricted to nodes whose keys were not compromised through
a corruption, meaning that the challenge node should never be reachable from a
corrupted node in the graph. Further restrictions are also necessary which we do
not go into here. Figure 1 illustrates what an example GSD graph may look like.

v

c

Fig. 1: An illustration of the GSD graph for an instance of the GSD game. The
challenge node is v. The node c was corrupted, resulting in all nodes reachable
from it being compromised, as marked with red color.

The TreeKEM protocol

Propose and commit syntax As a CGKA scheme, TreeKEM must support opera-
tions for updating the key material of a group member, adding a new user and
removing a member. The syntax for these operations has changed over time. In
the current version of MLS, the protocol uses so-called proposals and commits.
Whenever a user would like have their key material updated (by someone else),
add a new user or remove a group member, they create a corresponding update,



add or remove proposal, respectively, and share this proposal with the group. Any
group member can then create a commit to apply a set of proposals, create a
new group key and update their key material in the process. The commit object
includes (encrypted) information such that every group member can update their
view of the group and compute the new group key.

TreeKEM dynamics As already outlined briefly, TreeKEM uses a full binary tree
to model the group. Every user, associated with a leaf in the tree, maintains
a synchronized view of the tree, though different users will know more about
different parts of the tree. The group key is derived from the root of the tree.
Every node n in the tree has an associated key pair (pkn, skn) output by Π.Gen
where Π is a public-key encryption scheme. All public keys are known to all users.
Let the direct path of a leaf be the path from the leaf’s first parent to the root.
Every user at a leaf knows the secret key of their leaf and, in the usual case, the
secret keys of all nodes on their direct path, though we will see exceptions to this
rule later. To illustrate the scheme and how commit operations are performed,
we will consider of a group with users A,B, . . . , G and H, as depicted in Figure 2.
In the following, we will use these labels for the users both to refer to the users
themselves and to their nodes in the tree.

A B C D E F G H

Fig. 2: Illustration of a group with users 8 users in the TreeKEM protocol.

Simple commits The idea behind this tree structure is that it allows for a user
creating a commit with a new group key to share the new group key with the
group using only a few encryptions, while still updating all the secrets the user
knew in the tree in order to recover from a possible compromise (recall that in
a PC-CGKA scheme a commit also updates the committer’s key material). To
illustrate how a commit is performed and how the new group key is computed, say
user A performs a commit. First we only consider commits without any proposals.



TreeKEM specifies two hash functions Hgen, Hdep : {0, 1}ρ(η) → {0, 1}ρ(η) where
ρ(η) gives the number of bits of randomness used by Π.Gen(1η). Let d = 3 the
depth of user A. A will replace all the d + 1 nodes on their path to the root
(including their leaf) with new nodes A, p1, . . . , pd. Although it would be more
accurate to say that A just replaces the information stored in the original nodes,
and this view makes more sense when implementing the protocol, it will become
convenient later to say that A creates new nodes. The key pairs for the new nodes
are sampled as follows. For the leaf node A, user A simply samples a key pair by
running Π.Gen(1η). For the remaining nodes, they first sample s1 ← {0, 1}ρ(η)
and compute the key pair of the first parent p1 as Π.Gen(1η, Hgen(s1)). For
i ∈ {2, . . . , d} they then compute si := Hdep(si−1) and set the key pair of pi to
be Π.Gen(1η, Hgen(si)). The new group key is k := Hdep(sd).

User A only needs to share (encryptions of) the seeds si for the other users
to update their view of the tree and compute the new group key:

– To share the group key with user B, A computes the ciphertext c1 :=
Π.EncpkB

(s1). B can then compute the seed s1, then use that to compute
the seeds s2, . . . , sd, the key pairs of all new nodes on their path to the root
and the group key k.

– To share the new group key with users C and D, A computes the ciphertext
c2 := Π.EncpkX

(s2), where X is the parent of the nodes C and D. Both C
and D know the secret key skX of their parent and can decrypt c2.

– To share the new group key with users E,F,G and H, A computes the
ciphertext c3 := Π.EncpkY

(s3), where Y is the right child of the root node.
Again, all users under Y know skY and can thus decrypt c3.

The commit c that A shares with all users includes the ciphertexts c1, c2 and c3
and the public keys of all new nodes. Figure 3 illustrates the commit performed
by A.

The nodes B,X and Y form the copath of A: the copath of a node v consists
of the sibling of each node on v’s path to the root, excluding the root itself. In
the ideal case as above, a node performing a commit only has to compute one
encryption for each node on its copath, i.e. logarithmically many encryptions in
the total number of users.

Remove and update proposals Things look a bit different if the commit contains
a remove proposal. Say user A creates a commit that contains a remove proposal
for user E. We could just let A replace the nodes on E’s direct path E and not
encrypt anything for E. However, if A were compromised while replacing E’s
direct path and performed another commit to update their key material after
the compromise, the information leaked in the compromise could still be used to
compute the new group key, as it includes the secret keys of the nodes on E’s
direct path. Instead, E’s leaf and all nodes on E’s direct path are replaced by
blank nodes: nodes with no associated key pair. Now A has to encrypt the secret
s3 directly to F and to the parent node of G and H in the commit removing
user E. See Figure 4. A blank leaf node can be populated with a new user. A
blank node that is not a leaf will be replaced by a non-blank node once some
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Fig. 3: The commit by user A described in the text. Dashed directed edges
illustrate the fact that the target is related to the source via the hash function
Hdep. The solid directed edges illustrate the fact that the seed of the target node
is encrypted to the public key of the source node.

user in the node’s subtree performs a commit. Blank nodes are also useful to
represent the nodes of a subtree with no users.

Creating a commit with an update proposal for user a u is analogous. The
update proposal simply contains the public key of user u’s new leaf, while u
stored the corresponding secret key locally when creating the proposal. Because
we don’t want the committer to know the secret keys along u’s direct path, we
must again replace these nodes with blank ones and encrypt to the non-blank
nodes below directly.

Add proposals Adding a user introduces one new but similar complication.
Consider the same group as in Figure 2, but with the leaf of user H blank. Now
say user A would like to add user H to the group. Although we would want H
to know all secret keys on their direct path, A can only provide the secrets of
their lowest common ancestor, which is the root node in this case. In such a
situation where a non-blank node n has a leaf l below it where l does not know
n’s secret key, we say that l is unmerged relative to n. Every non-blank, non-leaf
node stores its list of unmerged leaves and whenever one encrypts to a node, one
should also encrypt to all its unmerged leaves. A user’s leaf becomes “merged”
as the nodes on their direct path are replaced and they are provided the seeds to
compute the secret keys of the new nodes. Note that for any non-leaf node n,
any one of its descendants d and any unmerged leaf of n that is a descendant of
d, this leaf must also be an unmerged leaf of d: every commit that replaces d also
replaces the node n and if a user at a leaf learns the secret key of the new node
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Fig. 4: The commit by user A removing user E described in the text. Nodes with
a dashed border represent the (new) blank nodes.

for d through its seed, they also learn the seed of and therefore the secret key of
the new node for n. Figure 5 shows a commit by user A adding H, followed by
another commit by user E.

Resolution We have now seen that when performing a commit, one must pay
attention to blank nodes and unmerged leaves when providing encryptions. Instead
of only providing encryptions for each node on the copath as in the ideal case, in
the general case for each node n on the copath one must provide an encryption
for every node in the resolution of n. The resolution of a non-blank node is the
node itself and the set of all its unmerged leaves. The resolution of a blank leaf
is the empty set and the resolution of a blank, non-leaf node is the union of the
resolutions of its two children.

Key packages and welcome messages To encrypt to an existing group member it
is clear that we can just use the public key in their leaf. But how do we encrypt
to a new user? Before a user joins any group, they publish a key package: this
contains (among other things) the public key, their so-called init key, to be used
to encrypt information to the user when they join the group and the public key
that should be associated with the user’s leaf. The key package is included (or
referenced) in the add proposal for the new user. Along with the seed of the
committer’s and the new user’s lowest common ancestor in the tree, the new user
must also be given the (public) state of the tree. This information is provided
to the new user, encrypted with their init key, by the committer in a welcome
message.
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(a) User A adds user H. As a small detail: the encryption for user H is computed using
H’s init key instead of the public key of their leaf.
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(b) Commit by user E. H is now “merged” relative to node Y ′.

Fig. 5: A commit adding user H and another commit by a user E as described in
the text. Orange edges illustrate the fact that the target leaf is unmerged relative
to the source node. In (a), H is also unmerged relative to Y ’s right child, but
this information is redundant as it follows from H being unmerged relative to Y .



2 Preliminaries

2.1 Notation

We will use the following notation throughout:

– We write “u.a.r.” for “uniformly at random”
– We write x← S to say that x is sampled u.a.r. from the finite set S
– For n ∈ N \ {0}, [n] = {1, . . . , n}, and for a, b ∈ N s.t. a ≤ b, [a, b] =
{a, a+ 1, . . . , b}

– If G is a cyclic group of order q and g a generator, then
• We write the group operation in G multiplicatively
• h−1 denotes the inverse of h ∈ G
• logg(h) denotes the unique x ∈ [q] such that gx = h

– We write b← A to denote the event that an adversary A outputs the bit b
when playing a game where it must output a bit in the end

– For a, b ∈ {0, 1}n, a⊕ b denotes the XOR of a and b
– log is short for log2
– We will stick to using κ as the security parameter of private-key encryption

schemes and η as the parameter of public-key encryption schemes
– For a function f in the security parameter η (or κ) we will often omit writing

η as an argument and simply write f to refer to f(η)

– {0, 1}≤l =
⋃l

i=1{0, 1}i

2.2 Basic definitions

The definitions presented in this section were taken from [13].

Encryption schemes

Private-key encryption

Definition 1 (Private-key encryption [13, Definition 3.7]). Let κ denote
the security parameter. A private-key encryption scheme Π consists of three
probabilistic polynomial-time algorithms (Gen,Enc,Dec) such that:

1. The key-generation algorithm Gen takes as input 1κ (in unary) and outputs
a key k. We will write k ← Gen(1κ).

2. The encryption algorithm Enc takes as input a key k and a message m ∈
{0, 1}∗, or m ∈ {0, 1}≤l(κ) for some function l if the message space is finite,
and outputs a ciphertext c. We write this as c← Enck(m).

3. The deterministic decryption algorithm Dec takes as input a key k and a
ciphertext c, and outputs a message m or ⊥ (denoting an error). We write
this as m = Deck(c).

We may also refer to algorithm X by Π.X for X ∈ {Gen,Enc,Dec}.
It is required that for every κ, every key k output by Gen, and every message

m, it holds that Pr[Deck(Enck(m)) = m] = 1 (where the probability is over the
randomness of Enck).



Public-key encryption In the following definition we will be more explicit about
the randomness used by the algorithm Gen, as we will require a way to provide
the randomness as input later.

Definition 2 (Public-key encryption [13, Definition 12.1]). Let η denote
the security parameter. A public-key encryption scheme Π consists of three
probabilistic polynomial-time algorithms (Gen,Enc,Dec) such that:

1. The key-generation algorithm Gen takes as input 1η (in unary) and outputs
a pair of keys (pk, sk) (a public and private key). We will write (pk, sk)←
Gen(1η).
The public key defines a message spaceMpk.
The algorithm samples ρ(η) uniformly random bits to make randomized
decisions for some function ρ polynomial in η. The sequence of random
bits r ∈ {0, 1}ρ(η) to be used by the algorithm may also be provided as
input. We write this as (pk, sk) = Gen(1η, r) to emphasize the fact that the
output is deterministic. The distribution over key pairs output by sampling
r ← {0, 1}ρ(η) and running Gen(1η, r) is identical to the distribution over
key pairs output by running Gen(1η).

2. The encryption algorithm Enc takes as input a public key pk and a message
m ∈Mpk, and outputs a ciphertext c. We write this as c← Encpk(m).

3. The deterministic decryption algorithm Dec takes as input a private key sk
and a ciphertext c, and outputs a message m or ⊥ (denoting an error). We
write this as m = Decsk(c).

We may also refer to algorithm X by Π.X for X ∈ {Gen,Enc,Dec}.
It is required that for every η, every key (pk, sk) output by Gen, and every

message m, it holds that Pr[Decsk(Encpk(m)) = m] = 1 (where the probability is
over the randomness of Encpk).

Security definitions

Definition 3 (The IND-CPA game). Let κ denote the security parameter
and let Π a private-key encryption scheme. Define the game GameIND−CPA

Π,κ (A)
for an adversary A:
1. A key k ← Gen(1κ) is generated.
2. The adversary A is given oracle access to Π.Enck, and outputs a pair of

messages m0,m1 of the same length.
3. A bit b← {0, 1} is sampled and A is given a ciphertext c← Enck(mb). (A

continues to have oracle access to Π.Enck.)
4. A outputs a bit b′. The output of the game is defined to be 1 if b′ = b, and 0

otherwise.

Definition 4 (IND-CPA security [13, Definition 3.21]). For functions t, ε
in the security parameter κ, a private-key encryption scheme Π is (t, ε)-IND-
CPA-secure if for all κ, for any adversary A running in time t(κ) we have

AdvIND−CPA
Π,κ (A) := 2 ·

(
Pr

[
GameIND−CPA

Π,κ (A) = 1
]
− 1

2

)
≤ ε(κ).



We will make use of a weaker form of security called “indistinguishability in
the presence of an eavesdropper” [13] and will refer to it as “EAV security”. It is
identical to IND-CPA security with the sole exception that the adversary does
not have access to an encryption oracle.

Definition 5 (The EAV game). Let κ denote the security parameter and
let Π a private-key encryption scheme. Define the game GameEAV

Π,κ (A) for an
adversary A:

1. A key k ← Gen(1κ) is generated.
2. The adversary A outputs a pair of messages m0,m1 of the same length.
3. A bit b← {0, 1} is sampled and A is given a ciphertext c← Enck(mb).
4. A outputs a bit b′. The output of the game is defined to be 1 if b′ = b, and 0

otherwise.

Definition 6 (EAV security [13, Definition 3.8]). A private-key encryption
scheme Π is (t, ε)-EAV-secure if for all κ, for any adversary A running in time
t(κ) we have

AdvEAV
Π,κ (A) := 2 ·

(
Pr

[
GameEAV

Π,κ (A) = 1
]
− 1

2

)
≤ ε(κ).

Lemma 1. Let Π a private-key encryption scheme. If Π is (t, ε)-IND-CPA-
secure, then Π is (t, ε)-EAV-secure.

Proof. This follows immediately from the fact that any EAV adversary is also an
IND-CPA adversary.

Definition 7 (Group-generation algorithm [13, Section 9.3.2]). Let η
denote the security parameter. A group-generation algorithm G is a probabilistic
polynomial-time algorithm that takes as input 1η and outputs (G, q, g), where G
is (a description of) a cyclic group, q is the order of the group with q ≥ 2η and
g ∈ G is a generator. A group element is represented as a bit-string of length at
most γ(η). We write (G, q, g)← G(1η).

Definition 8 (The Decisional Diffie-Hellman (DDH) problem). Let η
denote the security parameter and let G a group-generation algorithm. Define the
game GameDDH

G,η (A) for an adversary A:

1. G(1η) is run to obtain (G, q, g), and exponents x, y ← [q] and a bit b← {0, 1}
are sampled.

2. The adversary A is given G, q, g, h1 := gx, h2 := gy and

k =

{
gx·y b = 0

k̃ b = 1

where k̃ ← G.
3. A outputs a bit b′. The output of the game is defined to be 1 if b′ = b, and 0

otherwise.



Definition 9 (Hardness of the DDH problem [13, Definition 9.64]). The
DDH problem is (t, ε)-hard relative to G if for all η, for any adversary A running
in time t(η) we have

AdvDDH
G,η (A) := 2 ·

(
Pr

[
GameDDH

G,η (A) = 1
]
− 1

2

)
≤ ε(η).

When analyzing the advantage of an adversary we may make use of the
following well known equality.

Lemma 2. Let X a Bernoulli random variable and b← {0, 1} (where X and b
are not necessarily independent). Then for x ∈ {0, 1}

2 ·
(
Pr[X = b]− 1

2

)
= Pr[X = x | b = x]− Pr[X = x | b = 1− x].

In particular, if A is an adversary with output in {0, 1} playing a game where a
bit b← {0, 1} is sampled, then for x ∈ {0, 1}

2 ·
(
Pr[b← A]− 1

2

)
= Pr[x← A | b = x]− Pr[x← A | b = 1− x]. (1)

Proof. Let x ∈ {0, 1}. We have

2 ·
(
Pr[X = b]− 1

2

)
= 2 ·

(
Pr[X = x | b = x] · 1

2
+ Pr[X = 1− x | b = 1− x] · 1

2
− 1

2

)
= Pr[X = x | b = x] + Pr[X = 1− x | b = 1− x]− 1

= Pr[X = x | b = x]− (1− Pr[X = 1− x | b = 1− x])

= Pr[X = x | b = x]− Pr[X = x | b = 1− x].

In the following definition we will refer to “key-derivation functions”. This
is only meant as a hint to the reader. We do not provide a definition here, as
we will always model such a function as a random oracle (see Section 2.2 on the
facing page).

Definition 10 (DHIES [13, Construction 12.19]). Let η denote the security
parameter. Let G a group-generation algorithm. Let Πs a private-key encryption

scheme where Πs.Gen(1η) samples a key u.a.r. from {0, 1}η. Let HDH = {H(η)
DH |

η ∈ N} a family of key-derivation functions where H
(η)
DH : {0, 1}∗ → {0, 1}η. We

write HDH := H
(η)
DH when η is clear from the context. Define the algorithms

Gen,Enc and Dec as follows:

– Gen: on input 1η run G(1η) to obtain (G, q, g). Sample x ← [q] and set
h1 := gx. Set pk := ⟨G, q, g, h1⟩ and sk := ⟨G, q, g, x⟩, and output (pk, sk).

The message space is the message space of Πs.



– Enc: on input a public key ⟨G, q, g, h1⟩ and a message m, sample y ← [q],
set h2 := gy, k := HDH(h

y
1)

1, compute c′ ← Πs.Enck(m) and output the
ciphertext ⟨h2, c

′⟩.
– Dec: on input a private key ⟨G, q, g, x,HDH⟩ and a ciphertext ⟨h2, c

′⟩, compute
k := H(hx

2) and output Πs.Deck(c
′). If the ciphertext is not of the right form

or Πs.Dec outputs ⊥, output ⊥.

The public-key encryption scheme ΠDH := (Gen,Enc,Dec) is called the Diffie-
Hellman Integrated Encryption Scheme (DHIES).

When using the DHIES scheme later on, we will set pk := h and sk := x in
Gen for simplicity. In practice G, q, g and HDH will be known.

The DHIES scheme is an instance of a so-called key-encapsulation mechanism
([13, Definition 12.9]): a scheme that uses a public key to encapsulate a symmetric
encryption key in a ciphertext and the corresponding private key to compute
the encryption key again from the ciphertext. This can be combined with any
arbitrary secure private-key encryption scheme to get a secure and efficient public-
key encryption scheme by sending a message encrypted with the private-key
encryption scheme along with an encapsulation of the encryption key. Under the
DDH assumption (i.e. the assumption that the DDH problem is hard relative
to G), using DHIES with an EAV secure private-key scheme gives an IND-CPA
secure public-key encryption scheme in the ROM (see Section 2.2), as proven
in [13, Theorem 12.12]. Moreover, under the so-called “gap-CDH” assumption,
also called the “Strong Diffie-Hellman” assumption in [1], using DHIES with
an IND-CCA2 secure private-key encryption scheme gives an IND-CCA2 secure
public-key encryption scheme [13, Theorem 12.22]. (We do not provide defintions
for many of the notions mentioned here as we will not make use of them in this
work.)

The Random Oracle Model We will work in the commonly used Random
Oracle Model (ROM) to prove our results. We refer the reader to [13, Chapter
6.5] for an informal overview of the ROM and to [8] for the original work that
introduced the model. The ROM introduces the concept of a random oracle. If a
function H : A→ B is modelled as a random oracle, then certain assumptions
are made about what an adversary A knows about H and how it interacts with
it:

– From A’s perspective, H is a black-box function. The only way for A to
interact with H is for it to provide a value a ∈ A and get back H(a), and
this is the only way for A to learn H(a). We say that A queries H(a) or
that A queries H for a. This well-defined interface of A to H implies that a
reduction can extract the queries that A makes to H.

– From A’s perspective, H is a random variable, sampled u.a.r. from the set of
all functions from A to B. Thus, if A queries H for some a ∈ A that it has

1 Where for h ∈ G, HDH(h) denotes the output of HDH with the binary representation
of h given as input.



not queried before, the value H(a) is a random variable uniformly distributed
in B from A’s perspective.

We do not rely on the property known as “programmability” in this work.

3 Tighter GSD security

The graph constructed in the public-key GSD game and the tree structure behind
the TreeKEM protocol clearly resemble each other. Let η denote the security
parameter and let Π the public-key encryption scheme in use, where Π.Gen(1η)
uses ρ(η) bits of randomness. We can make some small modifications to the
public-key GSD game such that the operations performed in TreeKEM match
the ones performed in this modified GSD game. Take the functions Hgen, Hdep

used in TreeKEM and first modify the game as follows:

– the key pair of a node v is generated by sampling a seed sv ∈ {0, 1}ρ(η) and
computing (pkv, skv) = Π.Gen(1η, sv)

– encryption queries encrypt the seed of the target node instead of its secret
key

Now the generation of key pairs and the encryptions computed in TreeKEM
match what is done in this adapted GSD game. (Although the key pair of a leaf
in TreeKEM need not be generated through such a seed, we assumed this to
be equivalent to running Π.Gen(1η) in Definition 2.) To model the fact that in
TreeKEM a seed of a node may depend on the seed of another node through
Hdep (as in the new direct path computed in a commit), we introduce a new type
of edge which we call a seed dependency : a seed dependency (u, v) implies that
sv = Hdep(su). We will call our adaptation of the public-key GSD game Seeded
GSD with Dependencies (SD-GSD).

3.1 Seeded GSD with Dependencies

The definition provided here is inspired by the definition of the public-key GSD
game (Definition 7) and the proof of Theorem 3 in [2]. A very similar definition
appears in [4], providing essentially the same abstraction over TreeKEM and also
allowing for an adversary to provide the randmoness used for encryption and key
generation. However, our definition has one notable difference: when asking to be
challenged on a node with seed s, the adversary must distinguish Hdep(s) from
random as opposed to s. This stays true to how the group key is computed in
TreeKEM and has the significant advantage of greatly simplifying our proof. On
the other hand, the security implied by our definition is weaker (at least in the
ROM), as it only guarantees that an adversary cannot compute the seed of the
challenge node, whereas the other definitions guarantee that this seed cannot be
distinguished from random.

Definition 11 (The SD-GSD game). Let η denote the security parameter
and let Π = (Gen,Enc,Dec) a public-key encryption scheme, where Gen(1η)



uses ρ(η) bits of randomness and {0, 1}ρ(η) is a subset of the message space.

Let Hgen = {H(η)
gen | η ∈ N},Hdep = {H(η)

DH | η ∈ N} families of functions with

H
(η)
gen, H

(η)
dep : {0, 1}ρ(η) → {0, 1}ρ(η). We will write Hgen := H

(η)
gen, Hdep := H

(η)
dep

and ρ := ρ(η) if η is clear from the context. Define the game GameSD−GSD
(Π,Hgen,Hdep),η

(A)
for an adversary A:

1. The adversary A and outputs n ∈ N and a list of dependencies D =
{(ai, bi)}mi=1 ∈ [n]2. For each v ∈ [n]:
(i) – Case v = bi for some i (v is the target of some dependency):

set sv = Hdep(sai
).

– Otherwise: sample sv ← {0, 1}ρ.
We call sv the seed of the node v and a tuple (a, b) ∈ D a seed dependency.

(ii) Compute (pkv, skv) = Gen(1η, Hgen(sv)).
Set C = E = ∅. We call the directed graph ([n], E) a GSD graph of size n.

2. A may adaptively do the following queries:
– reveal(v) for v ∈ [n]: A is given pkv.
– encrypt(u, v) for u, v ∈ [n], u ≠ v, (u, v) /∈ E: (u, v) is added to E and A

is given c← Encpku(sv).
– corrupt(v) for v ∈ [n], v /∈ C: A is given sv and v is added to C. We call

such a node v ∈ C corrupted. All nodes not reachable from any corrupted
node in the graph ([n], E ∪D) are safe (while all other nodes are unsafe)
and we call their seeds hidden (even if an unsafe node happens to have
the same seed).

3. A outputs a node v ∈ [n]. We call v the challenge node. A bit b← {0, 1} is
sampled and A is given

r =

{
Hdep(sv) b = 0

s b = 1
,

where s← {0, 1}ρ.2 A may continue to do queries as before.
4. A outputs a bit b′. The output of the game is defined to be 1 if b′ = b, and 0

otherwise.

We require an adversary playing the above game to adhere to the following:

– The challenge node is safe
– The graph (V,E ∪D) always remain acyclic and without self-loops
– All paths in the graph (V,D) are vertex disjoint3

It is interesting to note that previous definitions of the GSD game also
included the following restrictions to the adversary:

– The challenge node always remains a sink

2 Note that (in general) r is not a hidden seed, as (with overwhelming probability) it
is not the seed of any node.

3 This ensures that any node is only the target of at most one seed dependency, such
that the computation of seeds is well-defined.



– reveal is never queried on the challenge node

Our proof in the ROM does not require these restrictions. If Hdep is modelled
as a random oracle, then an encryption edge or seed dependency outgoing from
the challenge node, or knowing its public key gives no advantage to A, as by the
assumption of Hdep being a random oracle the only way to learn information
about Hdep(s) is by querying s.

Definition 12 (SD-GSD security). Let Π,Hgen and Hdep as in Definition 11
above and let t, ε,N, δ functions in η. The triple (Π,Hgen, Hdep) is (t, ε,N, δ)-
SD-GSD-secure if for all η, for any adversary A constructing a GSD graph of
size at most N(η) and indegree at most δ(η) and running time in t(η) we have

AdvSD−GSD
(Π,Hgen,Hdep),η

(A) := 2 ·
(
Pr

[
GameSD−GSD

(Π,Hgen,Hdep),η
(A) = 1

]
− 1

2

)
≤ ε(η).

Since in this work we are interested in SD-GSD security for the case where
Hgen and Hdep are modelled as random oracles and our focus is on the encryption
scheme being used, we introduce the following definition for convenience.

Definition 13 (SD-GSD security in the ROM). A public-key encryption
scheme Π is (t, ε,N, δ)-SD-GSD-secure in the ROM if the triple (Π,Hgen,Hdep)
is (t, ε,N, δ)-SD-GSD-secure when Hgen and Hdep are modelled as random oracles.

For security parameter η and an adversary A, we write GameSD−GSD
Π,η (A) to

denote the game where Hgen and Hdep are modelled as random oracles and

AdvSD−GSD
Π,η (A) for A’s advantage in this game.

3.2 Proving SD-GSD security for DHIES in the ROM

Theorem 1. Let η denote the security parameter. Let ΠDH the DHIES scheme
instantiated with a group-generation algorithm G and a private-key encryption
scheme Πs. If Πs is (t, εEAV)-EAV-secure, the DDH problem is (t, εDDH)-hard
relative to G and the function HDH in ΠDH is modelled as a random oracle, then
for any δ,N with δ ≤ N , ΠDH is (t̃, ε̃, N, δ)-SD-GSD-secure in the ROM with4

ε̃ = 2 · δ ·N · εEAV + 2 ·N · εDDH +
mDH ·N2

2η−1
+

ms ·N
2ρ−1

,

where ms is an upper bound on the number of queries made to either Hgen or
Hdep and mDH is an upper bound on the number of queries made to HDH, and
with

t̃ = t−O
(
ρ · tsample ·ms + (γ + η · tsample) ·mDH

+N · ((ρ+ η) · tsample +mDH · top + tΠDH.Gen)

+N2 · tΠDH.Enc

)
,

where the various variables denote the following

4 Note that in the following equality we have omitted writing the argument η to the
various functions and are implying that the equality holds for all η.



– tsample: time to sample a uniform bit
– tΠDH.Enc: time to encrypt s ∈ {0, 1}ρ with ΠDH

– tΠDH.Gen: runtime of ΠDH.Gen(1η) (which is strictly greater than the runtime
of ΠDH.Gen(1η, r) for input randomness r)

– top: time to perform the group operation in a group output by G(1η)
– γ: maximum length of any query to HDH

In contrast, the result in [2] achieves a security loss in O(N2) and reduces to
the IND-CPA security of the public-key encryption scheme.

For ease of exposition, we will assume that G(1η) is deterministic, as is the
case in practice, and denote the output by . . . = G(1η) to emphasize this. We
will therefore set the pk := h1, sk := x in ΠDH.Gen, as G, q, g are implied by η.
The results nevertheless hold also for the general case.

Intuition Consider an arbitrary SD-GSD adversary A. For an execution of
GameSD−GSD

ΠDH,η (A) we say “A wins” to denote the event GameSD−GSD
ΠDH,η (A) = 1.

As usual with random oracles we proceed by a case distinction on whether they
were queried on some interesting value. Accordingly, let Qx denote the event that
A queries Hx on a hidden seed for x ∈ {gen,dep}. Then we can write

Pr[A wins] = Pr[A wins ∧Qdep] + Pr
[
A wins ∧Qdep

]
≤ Pr[A wins ∧Qdep] + Pr

[
A wins | Qdep

]
(†)
= Pr[A wins ∧Qdep] +

1

2

≤ Pr[Qdep] +
1

2

≤ Pr[Qs] +
1

2
,

(2)

where Qs := Qgen ∪Qdep (s for seed). Step (†) intuitively holds because without
having queried Hdep for any hidden seed, in particular the seed sv of the challenge
node v, Hdep(sv) is a uniformly random value from A’s perspective. Therefore,
it can do no better than guessing to distinguish Hdep(sv) from s← {0, 1}ρ.

The heart of the proof is to bound Pr[Qs]. When the adversary first triggers
Qs by querying the seed of some safe node w, (with overwhelming probability
w will be the only node with this seed and) it can only have learned the seed
through encryptions c1 ← ΠDH.Encpku1

(sw), . . . , cd ← ΠDH.Encpkud
(sw) where

(u1, w), . . . , (ud, w) are edges in the GSD graph (obtained through corresponding
queries encrypt(u1, w), . . . , encrypt(ud, w)). The only other potential source of
information about sw would be a seed dependency (p, w), but this tells A nothing:
Since w is safe, p would also be safe and Hdep(sp) cannot have been queried
due to the assumption that w was the first node to trigger Qs. Without having
queried Hdep(sp), by virtue of Hdep being a random oracle sw has the same
distribution as a seed without a dependency from A’s perspective (uniformly
random). See Figure 6 for an illustration of node w in the GSD graph.

The proof in [2] simply argued that this is not too likely if these encryptions
were made with an IND-CPA secure scheme. In the context of the DHIES scheme
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Fig. 6: Illustration of the GSD graph when Qs is triggered at a node w. The dashed
edge represents a seed dependencey (p, w) and the remaining edges represent
encryption queries ci ← encrypt(ui, w).

we can say more about these encryptions and achieve a better reduction loss. Let
(G, q, g) = G(1η). Let xi = logg(pkui). Each encryption ci is a tuple of the form
⟨gyi , Πs.Encki

(sw)⟩ where yi ← [q], ki = HDH (gxi·yi). Now we can again do a
case distinction on whether HDH was queried for (the encoding of) some group
element gxj ·yj or not:

(i) If such a query was made, thenA solved the Diffie-Hellman challenge (gxj , gyj ).
(Remember that we assumed that w is the first node for which Qs is triggered
and as before if w is safe, then so are the nodes ui. Thus the adversary has
not learned the exponent xi through querying Hgen(sui

) for any i.)
(ii) If no such query was made, then from A’s perspective all the ki are indepen-

dent, uniformly random keys and it still was able to learn sw from the EAV
secure encryptions Πs.Enck1

(sw), . . . ,Πs.Enckd
(sw).

We can bound the probability of either of these events occurring using hardness
of the DDH problem relative to G and EAV security of Πs, respectively.

To this end, we call a group element h ∈ G a hidden Diffie-Hellman key if
h = pk

yu,v
u , where (u, v) is an edge in the GSD graph, u is safe and yu,v is the

exponent chosen in the DHIES encryption of sv (i.e. A was given a ciphertext of
the form ⟨gyu,v , . . .⟩ when it queried encrypt(u, v)). Now analogously to above
let QDH the event that A queries HDH on a hidden Diffie-Hellman key, and let
FDH the event that A triggers QDH when Qs has not (yet) been triggered. Then
we can split the event Qs into two cases as motivated above:

Pr[Qs] = Pr[Qs ∧ FDH] + Pr
[
Qs ∧ FDH

]
.

We bound Pr[Qs ∧ FDH] and Pr
[
Qs ∧ FDH

]
in Lemma 6 and Lemma 4, respec-

tively. Overall this gives us a bound on the advantage of A using (2). (To be
precise, the event Qs ∧ FDH is a superset of case ((i)) above. However, the argu-
ment applied in Lemma 6 gives the same bound for either event and this more
general event has the advantage of being simpler.)

Proof (of Theorem 1). Let δ,N functions in η (mapping to N) with δ ≤ N . Let
η arbitrary and let A an arbitrary SD-GSD adversary constructing a GSD graph



of size at most N(η) and indegree at most δ(η), making at most ms(η) queries to
Hgen or Hdep and at most mDH(η) queries to HDH, each of length at most γ(η),
and running in time t̃(η). We will use the events defined above.

We first justify step (†) in (2). Note that by the rules imposed on the adversary
in the SD-GSD game, the challenge node v is safe and its seed sv thus indeed
hidden. If Qdep does not hold, then A has not queried Hdep for sv and, by virtue
of Hdep being a random oracle, Hdep(sv) is a uniformly distributed value in
{0, 1}ρ from A’s perspective. The value s follows the same distribution. Thus, A
behaves the same when given either r = s or r = Hdep(sv) and

Pr
[
1← A | Qdep, b = 1

]
= Pr

[
1← A | Qdep, r = s

]
= Pr

[
1← A | Qdep, r = Hdep(sv)

]
= Pr

[
1← A | Qdep, b = 0

]
.

(3)

Therefore

Pr
[
A wins | Qdep

]
= Pr

[
1← A | Qdep, b = 1

]
· 1
2

+ Pr
[
0← A | Qdep, b = 0

]
· 1
2

(3)
= Pr

[
1← A | Qdep, b = 0

]
· 1
2

+ Pr
[
0← A | Qdep, b = 0

]
· 1
2

=
1

2
.

By Lemma 6 on page 28 we have5

Pr[Qs ∧ FDH] ≤ N · εDDH +
mDH ·N2

2η
.

and by Lemma 4 on page 22 we have

Pr
[
Qs ∧ FDH

]
≤ δ ·N · εEAV +

ms ·N
2ρ

,

so we know that

Pr[Qs] ≤ N · εDDH + δ ·N · εEAV +
mDH ·N2

2η
+

ms ·N
2ρ

= ε̃(η)/2. (4)

Then

AdvSD−GSD
Π,η (A) = 2 ·

(
Pr[A wins]− 1

2

)
(2)

≤ 2 · Pr[Qs]

(4)

≤ ε̃(η).
5 Note that we are again omitting the argument η from the functions on the right hand
side (N, εDDH and mDH in this case).



Reducing to EAV security Recall case ((ii)) in the high-level discussion of
Theorem 1: the adversary A was able to learn the seed sw given the EAV secure
encryptions Πs.Enck1(sw), . . . ,Πs.Enckd

(sw). We can see A as an adversary
against a security game where A is given d EAV secure encryptions c1 ←
Πs.Enck1

(m), . . . , cd ← Πs.Enckd
(m) of a message m with ki ← Πs.Gen(1η) and

must compute m. If we can prove that beating such a game is hard, then we can
bound the probability of A actually learning sw in this way.

This is exactly how we proceed in this section. Instead of asking the adversary
to compute an encrypted message m, we turn to a more familiar decisional
formulation as in the IND-CPA game (where the adversary may choose a pair
m0,m1 and must distinguish whether the d ciphertexts encrypt m0 or m1).
We call this security notion EAV security under multiple (M) independent (I)
encryptions of a single (S) pair of messages (MIS-EAV).

Definition 14 (The MIS-EAV game). Let κ denote the security parameter
and let Π a private-key encryption scheme. Define the game GameMIS−EAV

Π,κ (A)
for an adversary A:

1. The adversary A outputs q ∈ N and a pair of messages m0,m1 of the same
length. We refer to q as the number of queries made by A.

2. A bit b ← {0, 1} is sampled. For each i ∈ [q], A is given an encryption
ci ← Π.Encki

(mb) where ki ← Π.Gen(1κ) is generated independently of the
other keys.

3. A outputs a bit b′. The output of the game is defined to be 1 if b′ = b, and 0
otherwise.

Definition 15 (MIS-EAV security). A private-key encryption scheme Π is
(t, ε, q)-MIS-EAV-secure if for all κ, for any adversary A making at most q(κ)
queries and running in time t(κ) we have

AdvMIS−EAV
Π,κ (A) := 2 ·

(
Pr

[
GameMIS−EAV

Π,κ (A) = 1
]
− 1

2

)
≤ ε(κ).

Similar to how IND-CPA security for a single encryption query implies IND-
CPA security for q queries with a security loss of q by a standard hybrid argument,
one can show that EAV security implies MIS-EAV security with the same loss.
To see why, recall the hybrid argument for IND-CPA security (as discussed in e.g.
[13, Theorem 12.6]): We define the sequence of hybrid games H0, . . . ,Hq where
in the game Hi the first i encryption queries encrypt the second message and
the remaining q − i queries encrypt the first message. Then given an IND-CPA
adversary A for multiple encryptions, an IND-CPA adversary A′ is constructed
to bound

|Pr[A outputs 0 in game Hi−1]− Pr[A outputs 0 in game Hi]|

for arbitrary i. The adversary A′ simulates Hi−1 or Hi to A depending on whether
the ciphertext received from the (single-query) IND-CPA challenger, which gets
passed on as the response to the i-th query, encrypts the first or the second



message from the i-th pair of messages. A′ then uses the encryption oracle to
pass on the right encryptions to A for all other queries. Now notice that if we
wanted to simulate to an MIS-EAV adversary we wouldn’t need access to an
encryption oracle since for the MIS-EAV security game all the other encryptions
can easily be generated by A′ sampling the new keys itself.

The argument would of course also work without restricting the adversary to
a single pair of messages (which we could call MI-EAV security). However, we
will make use of this restriction to provide a tighter reduction for a certain class
of schemes at the end of this section.

Lemma 3. Let Π a private-key encryption scheme with finite message space.
Let tGen, tEnc functions in κ that upper bound the runtime of Π.Gen and Π.Enc,
respectively. If Π is (t, ε)-EAV-secure, then for any function q, Π is (t̃, q · ε, q)-
MIS-EAV-secure with t̃ = t−O(q · (tGen + tEnc)).

The details of the proof can be found in Section A.1 of the appendix.

Lemma 4. Recall the assumptions, variables and events from the statement and
proof of Theorem 1. In particular, assume that Πs is (t, εEAV)-EAV-secure. Let
η arbitrary and let A an SD-GSD adversary constructing a GSD graph of size at
most N(η) and indegree at most δ(η), making at most ms(η) queries to Hgen or
Hdep and at most mDH(η) queries to HDH, and running in time t̃(η). Then

Pr
[
Qs ∧ FDH

]
≤ δ ·N · εEAV +

ms ·N
2ρ

.

Intuition By Lemma 3 we know that Πs is MIS-EAV secure. Continuing the
high-level argument before the proof of Theorem 1, consider the first moment that
A triggers Qs ∧ FDH by querying the seed of some safe node w. As intended, it
follows from the definition of the event FDH that from A’s perspective all DHIES
ciphertexts it got from queries encrypt(u,w) for any u contain encryptions of
sw under independent, uniformly random keys using Πs. Moreover, as already
argued once, A has learned nothing from a potential seed dependency (p, w), so
these encryptions are everything A had at its proposal to learn sw.

We can use A’s ability to compute the seed sw of a safe node w from
encryptions of sw to construct an MIS-EAV adversary: We first guess a node w
whose seed A may query first. Next we give the MIS-EAV challenger sw and some
other independent seed s. We simulate the SD-GSD game to A and embed the
encryptions from the MIS-EAV challenger when answering queries of the form
encrypt(u,w) for any u. Now consider the behavior of A depending on which
seed the challenger chooses to encrypt:

– If the challenger chooses to encrypt sw, then A will trigger the event Qs∧FDH

with the same probability as before. We can detect whether Qs ∧ FDH gets
triggered since all seeds in the simulation are known. If Qs ∧ FDH occurs and
we guessed w correctly, the event will be triggered at w and A will query sw,
telling us that the challenger encrypted sw.



– If the challenger chooses to encrypt s, then A receives no information about
sw and has negligible probability of querying it.

Thus, the advantage of the MIS-EAV adversary is about Pr
[
Qs ∧ FDH

]
/N , where

the factor 1/N arises from guessing w, and using that Πs is MIS-EAV secure
we can bound this probability. Since we are only interested in checking whether
the event was triggered for w, the adversary can abort when this is no longer
possible (w is corrupted, some other hidden seed is queried, etc.).

Proof (of Lemma 4). As motivated above we construct an MIS-EAV adversary
A′ to derive the bound. A′ behaves as follows:

1. A′ runs A to get n and D and initializes the GSD graph, seeds and the set
of edges and corrupted nodes as in step 1. of the SD-GSD game.

2. A′ samples w ← [n], s ← {0, 1}ρ and gives δ and the messages sw, s to the
challenger. Let c1, . . . , cδ the encryptions it gets back.

3. A′ faithfully simulates the SD-GSD game to A with the following exception:
Whenever A makes a query of the form encrypt(u,w) for any u, A′ replies
with ⟨gx, ci⟩ where x ← [q] and i is the index of the next ciphertext (from
step 2.) not yet used.
All random oracles queries are simulated by sampling the output of the oracle
u.a.r. for new queries and using the value first sampled for repeated queries.
During the simulation A′ also pays attention to the following:
– If any of the following events occur, A′ aborts the simulation and outputs

1:
• A queries HDH for a hidden Diffie-Hellman key
• A queries Hgen or Hdep for a hidden seed that is not sw
• A queries corrupt(u) for some node u such that w is no longer safe

– If A queries Hgen(sw) or Hdep(sw), A′ aborts the simulation and outputs
0. This is the only point at which A′ outputs 0.

If the simulation arrives to the point where A outputs its guess (step 4. of
the SD-GSD game), then A′ outputs 1.

The advantage of A′ is given by

AdvMIS−EAV
Πs,η

(A′)
(1)
= Pr[0← A′ | b = 0]− Pr[0← A′ | b = 1], (5)

where b is the bit sampled by the MIS-EAV challenger.
First, we will show that

Pr[0← A′ | b = 0] ≥
Pr

[
Qs ∧ FDH

]
N

. (6)

Let E = Qs ∧ FDH and let E′ the same event in the SD-GSD game simulated
to A during an execution of GameMIS−EAV

Πs,η
(A′) with b = 0. In the following

while showing (6) we will implicitly assume that b = 0 when referring to the
game simulated to A by A′. On a high level (6) holds due to the fact that as
long as the game has not been aborted the encryptions A receives from A′ are



indistinguishable from what it would get in the real SD-GSD game and we get a
factor 1

N from guessing the node that triggered E. However, showing this requires
a few steps.

Consider a modification of the SD-GSD game G1 where the game is aborted
whenever one of the following events occurs, where for all these events A′ would
also abort the simulation:

– A queries HDH for a hidden Diffie-Hellman key
– A queries Hgen or Hdep for a hidden seed

(Since we are not interested in the output of the game we can define aborting the
game as the game ending with output 0.) The game G1 is something between the
real SD-GSD game and what A′ simulates to A. The only difference in when G1

aborts compared to the game simulated by A′ is that we aren’t paying attention
to some specific node w remaining safe. Aborting the game in this way does not
alter the probability of A triggering the event E in G1, since in either case when
the game is aborted either E or E is already known to hold:

– If A queries HDH for a hidden Diffie-Hellman key, then it triggers QDH and
Qs has not been triggered before since this would have caused the game to be
aborted. Thus, A triggered FDH and Qs ∧ FDH cannot hold in this execution
of the game.

– If A queries Hgen or Hdep for a hidden seed, then this triggers Qs. Moreover,
FDH also holds at this moment since the game would have aborted earlier if
QDH had already been triggered. Thus, Qs ∧ FDH holds.

Let E1 the same event as E in the game G1. As argued above we have

Pr[E1] = Pr[E]. (7)

Now consider a game G2 which is a modification of the game G1 where at the
beginning of the game w2 ← [n] is sampled and the game also aborts if A queries
corrupt(u) for some node u such that w2 is no longer safe, just as in the game
simulated by A′. The game G2 is again something between the game G1 and
what A′ simulates to A. We also modify G1 such that it also samples w1 ← [n]
at the beginning of the game. This does not change the fact that (7) holds as
the sampling of w1 has no effect on the execution of the game.

Let E2 and E′ the events corresponding to E in the game G2 and the game
simulated by A′, respectively. We further introduce a new random variable W to
analyze each game where

W =

{
0 E

x E was triggered at node x

(if x is not unique we choose the node with lowest identifier). Let W1, W2 and
W ′ be the corresponding random variables in game G1, game G2 and the game
simulated by A′. Consider the probability Pr[W1 = w1 | E1]. The node w1 is
sampled independently and does not affect the execution of the game. Therefore,



in an execution where E1 occurs and the GSD graph has size n (so W1 ∈ [n]),
we correctly guess W1 = w1 with probability exactly 1

n ≥
1
N . Thus

Pr[W1 = w1 | E1] ≥
1

N

and combining this with (7) we get

Pr[W1 = w1] = Pr[W1 = w1 ∧ E1]

= Pr[W1 = w1 | E1] · Pr[E1]

≥ 1

N
· Pr[E].

(8)

Analogously to the argument used to justify (7), we can argue that

Pr[W1 = w1] = Pr[W2 = w2]. (9)

The only difference from G1 to G2 is that G2 aborts when w2 is no longer safe.
But if w2 is no longer safe then we know that W2 ̸= w2 (if W2 = w2 the game
would have already aborted when w2’s seed was queried while it was safe). Thus,
(9) indeed holds.

We now show an analogous result comparing the game G2 to the game
simulated by A′:

Pr[W2 = w2] = Pr[W ′ = w]. (10)

Consider how G2 differs from the game simulated by A′. Both games abort at
exactly the same events (this is easy to see). They only differ in how A′ answers
queries encrypt(u,w) for any u. In G2 such a query is answered with a ciphertext
⟨gx, c⟩ where x ← [q], c ← Πs.Enck(sw) and k = HDH(pk

x
u). A′ answers such a

query with ⟨gx′
, c′⟩ where x′ ← [q], c′ ← Πs.Enck′(sw) and k′ ← {0, 1}η. Now

notice that as long as the game G2 is ongoing, pkxu is a hidden Diffie-Hellman key
and A has not queried pkxu to HDH. If it had, then the game would have already
aborted. Therefore, from A’s view k follows the same distribution as k′. Thus,
overall the game G2 and the game simulated by A′ are indistinguishable to A
and (10) holds.

Finally, notice that if the event W ′ = w occurred, then A′ outputs 0. Then
we have

Pr[0← A′ | b = 0] ≥ Pr[W ′ = w]

(10)
= Pr[W2 = w2]

(9)
= Pr[W1 = w1]

(8)

≥ Pr[E]

N

=
Pr

[
Qs ∧ FDH

]
N

,



as promised.

Second, returning to (5), we can more easily show that Pr[0← A′ | b = 1]
is negligible. In the SD-GSD game simulated to A during an execution of
GameMIS−EAV

Πs,η
(A′) with b = 1, the seed sw is a random variable independent of

any information given to A:

– the game aborts when w becomes unsafe, so sw cannot be learned by querying
corrupt(w) or by querying Hdep(sp) for an unsafe node p where (p, w) is a
seed dependency

– querying Hdep(sp) for a safe node p where (p, w) is a seed dependency results
in the game being aborted and by virtue of Hdep being a random oracle, from
A’s perspective sw follows the same distribution regardless of whether there
is a seed dependency (p, w) or not

– with b = 1 queries encrypt(u,w) yield encryptions of s instead of sw

Therefore, for any seed s′ that A queries to Hgen or Hdep we have

Pr[sw = s′] =
1

2ρ
.

Thus, by a union bound we have

Pr[0← A′ | b = 1] ≤ ms

2ρ
. (11)

Combining (5), (6) and (11) we get

AdvMIS−EAV
Πs,η

(A′) = Pr[0← A′ | b = 0]− Pr[0← A′ | b = 1]

≥
Pr

[
Qs ∧ FDH

]
N

− ms

2ρ
.

(12)

Furthermore, going through the details yields that A′ runs in time

tA′ := t̃+O
(
ρ · tsample ·ms + (γ + η · tsample) ·mDH

+N · (ρ · tsample + tΠDH.Gen)

+N2 · tΠDH.Enc

)
(note that tA′ is a constant). Using that δ ≤ N, tΠs.Gen ≤ O(η · tsample), tΠs.Enc ≤
tΠDH.Enc (as encrypting with ΠDH involves an encryption with Πs), the definition
of t̃, with appropriately chosen constants we have

tA′ ≤ t−O(δ · (tΠs.Gen + tΠs.Enc)).

By Lemma 3 Πs is (t−O(δ · (tΠs.Gen + tΠs.Enc)), δ · εEAV, δ)-MIS-EAV-secure, so

AdvMIS−EAV
Πs,η

(A′) = δ · εEAV. (13)



Finally, if we now combine (12) and (13) we get

Pr
[
Qs ∧ FDH

]
N

− ms

2ρ
≤ δ · εEAV

⇐⇒

Pr
[
Qs ∧ FDH

]
≤ δ ·N · εEAV +

ms ·N
2ρ

,

as was to prove.

Tighter MIS-EAV security for certain schemes In our reduction from MIS-EAV
security to EAV security (Lemma 3) we applied a general hybrid argument. It is
also tempting to try a more direct approach. The EAV and MIS-EAV games seem
less far apart than IND-CPA for single and multiple encryptions: All additional
encryptions in the MIS-EAV game encrypt the same message, with the only
difference being that each encryption is performed using a fresh key. If only
we could take a single encryption c ← Enck(m) and from it produce several
encryptions ci ← Encki

(m) for ki ← Gen(1κ) (without knowing k or m), then
the additional encryptions would leak no new information to the adversary, and
we would have a tight bound on MIS-EAV security from EAV security. There is
a simple EAV secure scheme that achieves the above property: the one-time pad.
Given an encryption c = k ⊕m, we can just sample k′ ← {0, 1}κ and compute
the ciphertext c′ = c⊕k′ = (k⊕k′)⊕m, an encryption of m under the uniformly
random key k ⊕ k′. In the following, we formalize this property of a private-key
encryption scheme and use it to prove the desired bound on MIS-EAV security.

Definition 16 (Key-rerandomizability). Let κ denote the security param-
eter and let Π = (Gen,Enc,Dec) a private-key encryption scheme. Π is key-
rerandomizable if there exists a probabilistic polynomial-time algorithm ReRan
achieving the following: Let κ, k ← Gen(1κ), m in the message space and
c ← Enck(m) arbitrary but fixed6. Then the distribution over ciphertexts as
defined by computing c′ ← ReRan(1κ, c) is identical to the distribution over
ciphertexts resulting from the process of first sampling k′ ← Gen(1κ) and then
computing a ciphertext c′ ← Enck′(m).

Example As outlined above, the one-time pad is an example of a key-rerandomizable
encryption scheme.

The key idea underlying the proof of the following Lemma was already
provided at the beginning of this section.

Lemma 5. Let Π a key-rerandomizable private-key encryption scheme with finite
message space. Let ReRan the corresponding algorithm to rerandomize ciphertexts
and tReRan an upper bound for the runtime of ReRan. If Π is (t, ε)-EAV-secure,
then for all q ∈ N, Π is (t̃, ε, q)-MIS-EAV-secure with t̃ = t−O(q · tReRan).

6 Here we are quantifying over all possible keys k and ciphertexts c that can be output
by Gen(1κ) and Enck(m).



Proof. Note that since the message space and thus the ciphertext space is finite,
the runtime of ReRan is indeed bounded. Let κ arbitrary. Let A an MIS-EAV
adversary running in time t̃(κ) and making at most q(κ) queries. We construct
an EAV adversary A′ that behaves as follows:

1. A′ runs A to get the number of queries q and messages m0,m1.

2. A′ gives m0,m1 to the challenger and receives the ciphertext c1.

3. A′ computes ciphertexts c2 ← ReRan(1κ, c1), . . . , cq ← ReRan(1κ, c1) (with
independent runs of ReRan).

4. A′ gives the ciphertexts c1, . . . , cq to A.
5. A′ outputs whatever bit A outputs.

We apply the properties of ReRan given in Definition 16 to show that the game
simulated to A is distributed identically to the MIS-EAV game. For this we
need only show that the ciphertexts c1, . . . , cq given to A in the simulation are
distributed identically to the ciphertexts c′1, . . . , c

′
q that A would get in the real

MIS-EAV game. It is immediate that c1 is distributed identically to c′1. Now let
i ∈ {2, . . . , q}. By Definition 16 ReRan(c) outputs a ciphertext encrypting mb

(where b is the bit chosen by the EAV challenger) distributed identically to a
ciphertext encrypting mb output by the MIS-EAV challenger. Thus, indeed for
any i, ci is distributed identically to c′i and the claim holds. Therefore

AdvMIS−EAV
Π,κ (A) = AdvEAV

Π,κ (A′). (14)

Because A′ is an EAV adversary running in time t̃ + O(q · tReRan) = t we
know that

AdvEAV
Π,κ (A′) ≤ ε(κ),

which together with (14) concludes the proof.

By assuming a key-rerandomizable encryption scheme and applying Lemma 5
on the previous page instead of the hybrid argument (Lemma 3) in the proof of
Lemma 4, we can drop the δ factor in the bound. This also allows us to drop the
δ factor in Theorem 1 on page 17.

Corollary 1. Recall the setting of Theorem 1. If the private-key encryption
scheme Πs is additionally key-rerandomizable, then the bound in Lemma 4 can
be improved to

Pr
[
Qs ∧ FDH

]
≤ N · εEAV +

ms ·N
2ρ

and the bound ε̃ on the success probability of an SD-GSD adversary thus improved
to

ε̃ = 2 ·N · (εEAV + εDDH) +
mDH ·N2

2η−1
+

ms ·N
2ρ−1

(with appropriate changes to the runtime t̃).



Reducing to the DDH problem

Lemma 6. Recall the assumptions, variables and events from the statement and
proof of Theorem 1. In particular, assume that the DDH problem is (t, εDDH)-hard
relative to G. Let η arbitrary and let A an SD-GSD adversary constructing a
GSD graph of size at most N(η) and indegree at most δ(η), making at most ms(η)
queries to Hgen or Hdep and at most mDH(η) queries to HDH, and running in
time t̃(η). Then

Pr[Qs ∧ FDH] ≤ N · εDDH +
mDH ·N2

2η−1
.

Intuition We will bound the simpler event FDH. This event tells us that there is
some safe node a in the GSD graph with encryption edges to nodes u1, . . . , ud,
where the query encrypt(a, ui) returned the ciphertext ⟨gyi , Πs.Encki(sui)⟩ with
ki = HDH(g

ska·yi), such that gska·yj was the first hidden Diffie-Hellman key
queried by A for some j. Moreover, at the time gska·yj was queried, no hidden
seed had yet been queried by A, implying that A had not queried Hgen(sa)
and thus had no information about ska besides pka (recall that (pka, ska) =
ΠDH.Gen(1η, Hgen(sa))).

It is interesting to note that our approach does not require that A has not
queried Hdep for a hidden seed (i.e. that Qdep was not triggered) as is implied
by the event FDH, because knowing Hgen(sa) is the only way to learn about ska.
Regardless, we still want to have our definition of FDH include this information,
as the bound on Pr

[
Qs ∧ FDH

]
in Lemma 4 on page 22 relies on the fact that in

the event of Qs ∧ FDH happening, QDH was not yet triggered when the event Qs

was triggered, i.e. when either the event Qgen or the event Qdep was triggered.

The intuition is clear that this means that A solved the Diffie-Hellman
challenge (gska , gyj ). What is not immediately clear is how to embed a given
Diffie-Hellman challenge (gx, gy) from an instance of the DDH game and use
A to tell whether the key k chosen by the challenger is the real key gx·y or a
uniformly random group element. An intuitive strategy would be to embed the
challenge by setting pka = gx and gyj = gy, which involves guessing uj , and
simply checking whether for any of the queries qi to HDH by A, such that qi
encodes a group element in G, it holds that qi = k. Now:

– If k = gx·y, A triggers FDH and we guessed a and uj correctly, then indeed
as described above qi = gska·yj = gx·y = k will hold for some i.

– If k is a random group element, then A has negligible probability of querying
k, as no information about k is ever leaked to A.

If we make sure not to change A’s view of the game in the case k = gx·y in this
process, we can achieve an advantage of about Pr[FDH]/N

2, where one factor
1/N arises from guessing a and another from guessing uj . Unfortunately, this
would yield no improvement over the result from [2].

To avoid this issue, we can use random self-reducability of the DDH problem
and avoid guessing uj . Instead of embedding gy into a single encryption edge, we



embed it into all d encryption edges. To get a uniformly random exponent from y
we set yj = y+ rj mod q with rj ← [q]. Given gx·yj , we can easily compute gx·y:

gx·yj = gx·(y+rj) = gx·y · gx·rj ⇐⇒ gx·y = gx·yj · ((gx)rj )−1︸ ︷︷ ︸
=:Rj

.

Now to determine whether k is the real Diffie-Hellman key, we check whether
qi · Rj = k for some i, j. This yields an advantage of about Pr[FDH]/N (and a
slightly larger runtime). We can now proceed with the full proof.

Proof (of Lemma 6). As outlined above we use A to construct a DDH adversary
A′.

1. A′ gets h1, h2 and k from the DDH challenger.
2. A′ runs A to get n and D, samples a← [n] and initializes the GSD graph,

seeds and the set of edges and corrupted nodes as in step 1. of the SD-GSD
game, with the sole exception that pka = h1 (as opposed to setting it to the
public key output by ΠDH.Gen(1η, Hgen(sa))).

3. A′ faithfully simulates the SD-GSD game to A with the following ex-
ception: For the j-th query encrypt(a, uj) made by A, A′ replies with
⟨h2 · grj , Πs.Enckj

(suj
)⟩ where rj ← [q], kj ← {0, 1}η. A′ also computes

and stores Rj =
(
pk

rj
a

)−1
.

All random oracles queries are simulated by sampling the output of the oracle
u.a.r. for new queries and using the value first sampled for repeated queries.
During the simulation A′ also pays attention to the following:
– If any of the following events occur, A′ aborts the simulation and outputs

1:
• A queries HDH for a hidden Diffie-Hellman key on an encryption
edge (u, v) ∈ E with u ̸= a

• A queries Hgen or Hdep for a hidden seed
• A queries corrupt(u) for some node u such that a is no longer safe

– If A queries qi to HDH such that qi · Rj = k for some j, A′ aborts the
simulation and outputs 0. This is the only point at which A′ outputs 0.

If the simulation arrives to the point where A outputs its guess (step 4. of
the SD-GSD game), then A′ outputs 1.

The advantage of A′ is given by

AdvDDH
G,η (A′)

(1)
= Pr[0← A′ | b = 0]− Pr[0← A′ | b = 1], (15)

where b is the bit sampled by the DDH challenger.
First, we will show that

Pr[0← A′ | b = 0] ≥ Pr[FDH]

N
. (16)

This part of the proof proceeds very similarly to the proof of Lemma 4 on page 22
and we will be a bit more concise. We focus on executions of GameDDH

G,η (A′) with



b = 0. Let the games G1, G2 be defined as in Lemma 4, where we denote the
node sampled at the beginning of each game by a1, a2, respectively (as opposed
to w1, w2). Let E = FDH and let E1, E2 and E′ be the analogous events in
G1, G2 and the game simulated by A′ (note that in this latter game, the group

elements pk
logg(h2)+rj
a are also hidden Diffie-Hellman keys). Finally, we introduce

the random variable

A =

{
0 FDH

x FDH holds and QDH was triggered on an encryption edge with source x

(if x is not unique we choose the node with smallest identifier) and let A1, A2

and A′ denote the corresponding random variables in game G1, game G2 and
the game simulated by A′.

Just as argued in Lemma 4,

Pr[E1] = Pr[E] (17)

holds, since whenever G1 aborts, it is already decided whether FDH holds:

– If the game was aborted when A queried a hidden Diffie-Hellman key, then
FDH holds.

– If the game was aborted when A queried Hgen or Hdep for a hidden seed,
FDH does not hold.

Next, the inequality

Pr[A1 = a1 | E1] ≥
1

N

and therefore also

Pr[A1 = a1] ≥
1

N
· Pr[E] (18)

hold for the same reason that

Pr[W1 = w1 | E1] ≥
1

N

and (8) held in Lemma 4.
Then, the equality

Pr[A1 = a1] = Pr[A2 = a2] (19)

holds again due to the fact that when G2 aborts because a2 is no longer safe, we
know that A2 ̸= a2.

Finally, we need to argue that

Pr[A2 = a2] = Pr[A′ = a]. (20)

Consider how G2 differs from the game simulated by A′. As in Lemma 4, both
games abort at exactly the same events (note that if qi · Rj = k holds and A′

outputs 0, then qi = k ·R−1
j = k · pkrja = h

logg(h2)

1 · pkrja = pk
logg(h2)+rj
a , a hidden

Diffie-Hellman key). The game simulated by A′ differs in two aspects:



(i) A′ sets pka to h1 and not to the public key output by ΠDH.Gen(1η, Hgen(sa))
(ii) A′ answers queries encrypt(a, u) differently

Note that as long as the game G2 is ongoing, A has not queriedHgen for sa orHDH

for a hidden Diffie-Hellman key. Both differences are therefore indistinguishable:

(i) By Definition 2, the output of ΠDH.Gen(1η, r) with r ← {0, 1}ρ follows
the same distribution as the output of ΠDH.Gen(1η). The former process is
behind the distribution of pka as viewed from A in G2, as A has not queried
Hgen(sa), and the latter process is behind the distribution of pka in the game
simulated by A′, as the DDH challenger generates a public key with the
same distribution as ΠDH.Gen(1η). Since both processes follow the same
distribution, pka follows the same in G2 and the game simulated by A′ from
A’s perspecive.

(ii) In G2 a query encrypt(a, u) is answered with ⟨gz, c⟩ where z ← [q], c ←
Πs.Enck(su) and k = HDH(pk

z
a).A′ answers such a query with ⟨glogg(h1)+r, c′⟩

where r ← [q], c′ ← Πs.Enck′(su) and k′ ← {0, 1}η. First, logg(h1)+r follows
the same distribution as z. Second, pkza is a hidden Diffie-Hellman key and
from A’s view k follows the same distribution as k′.

Thus (20) indeed holds.
Now, again analogous to Lemma 4 if the event A′ = a occurred, then A′

outputs 0 and

Pr[0← A′ | b = 0] ≥ Pr[A′ = a]

(20)
= Pr[A2 = a2]

(19)
= Pr[A1 = a1]

(18)

≥ Pr[E]

N

=
Pr[FDH]

N
.

Second, we will show that Pr[0← A′ | b = 1] is negligible. When b = 1 in
GameDDH

G,η (A′), k is a uniformly random group element independent of any
information given to A, in particular of qi ·Rj for any i, j. Thus for any i, j,

Pr[qi ·Rj = k] =
1

q
≤ 1

2η
,

where we used that q ≥ 2η by Definition 7. Thus, by a union bound and using
that i ∈ [mDH], 1 ≤ j ≤ N − 1 ≤ N (j is bounded by the maximum outdegree)
and we have

Pr[0← A′ | b = 1] ≤ mDH ·N
2η

. (21)

Combining (15), (16) and (21) we get

AdvDDH
G,η (A′) ≥ Pr[FDH]

N
− mDH ·N

2η
. (22)



Furthemore, going through the details yields that A′ runs in time

tA′ := t̃+O
(
ρ · tsample ·ms + (γ + η · tsample) ·mDH

+N · ((ρ+ η) · tsample +mDH · top + tΠDH.Gen)

+N2 · tΠDH.Enc

)
.

Then using the definition of t̃, with appropriately chosen constants we have
tA′ ≤ t. So by virtue of the DDH problem being (t, εDDH)-hard relative to G

AdvDDH
G,η (A′) ≤ εDDH

and if we combine this with (22) we get

Pr[FDH]

N
− mDH ·N

2η
≤ εDDH

⇐⇒

Pr[FDH] ≤ N · εDDH +
mDH ·N2

2η
,

concluding the proof.

4 Application to TreeKEM

4.1 Continuous Group Key Agreement

The model As already described briefly in the introduction, a CGKA scheme
allows a group of users to agree on a group key, indistinguishable from random
for any eavesdropper, while providing mechanisms to add or remove users from
the group and update the group key and users’ key material, such that FS and
PCS can be achieved.

Fully modelling a group of users running a CGKA scheme is complex. Since
the protocol must work in the asynchronous setting, there must be a delivery
service that takes protocol messages and forwards them to the recipients. Users
also need to be able to publish some kind of public key, the key packages used in
TreeKEM, such that they can be invited to the group with a welcome message.
This functionality is also left to the delivery service. Moreover, there must be
mechanisms in place to authenticate protocol messages and the published public
keys.

In our model, users are honest nodes running the protocol algorithms and
maintaining local state. They send out new messages and process received
messages immediately. They have a reliable communication channel to the delivery
service, and all public keys and protocol messages are assumed to be authenticated,
meaning that an attacker cannot forge them. The delivery service, and thus an
attacker, can of course see all protocol messages. We assume little about the what
messages get delivered by the delivery service: the service may deliver a message
to some users but not others and it may not deliver certain messages at all.



For a more complete model we refer the reader to [4]. The authors consider
not just CGKA but the more difficult problem of secure group messaging as
tackled by the MLS protocol. The model they consider allows an attacker to
inject protocol messages and gives them some control over the public keys stored
by the delivery service.

PC-CGKA schemes Multiple definitions of the syntax and security of CGKA
schemes already exist [3,2,4], all meant to capture the syntax of how update, add
and remove operations were performed with the latest verion of TreeKEM at
the time, and all with the same name. As already described in the introduction,
the current version of TreeKEM uses propose and commit operations to advance
the group state, which is also the syntax formalized in [4] and in this work.
The syntax defined in [3,2] came before the propose and commit syntax was
introduced. In this syntax there are no proposals and every operation is a commit,
either adding a single user, removing a singler group member, or just updating
the key material of the committer. To differentiate our definitions from existing
ones that describe something different as in [3,2], we will talk about propose and
commit continuous group key agreement (PC-CGKA) schemes.

Syntax Our definition of the syntax of PC-CGKA schemes is inspired from the
definition in [2] and is essentially the same as what is described in [4, Section
4.1.1].

We assume that every user u is identified by some value idu.

Definition 17 (PC-CGKA). Let η denote the security parameter. A PC-
CGKA scheme Σ with key space K consists of the following algorithms:

Initialization:
– An algorithm Gen. Before joining any group, a user generates a pair of

keys (pk, sk)← Gen(1η), a public and private key.
– An algorithm CreateGroup. A user runs σ ← CreateGroup(1η) to locally
initialize a group with themselves as the only member and the state of
the group stored in σ. We call σ their group state.

Compute the group key:
– An algorithm Key. At any point in time, a member of a group with state

σ can compute the current group key k ← Key(σ) with k ∈ K(η).
Proposal:
– An algorithm ProposeUpdate. If a member u of a group with state σ

wishes to update their key material, they may run (σ, p)← ProposeUpdate(σ)
to create an update proposal p to be shared with other members of the
group and update their state such that they have processed p.

– An algorithm ProposeAdd. If a member of a group with state σ wishes
to add a new user u with public key pku to the group, they may run
(σ, p)← ProposeAdd(σ, idu, pku) to create an add proposal p to be shared
with other members of the group and update their state such that they
have processed p.



– An algorithm ProposeRemove. If a member of a group with state σ wishes
to remove another member u from the group, they may run (σ, p) ←
ProposeAdd(σ, idu) to create a remove proposal p to be shared with other
members of the group and update their state such that they have processed
p.

Commit:
– An algorithm CreateCommit. To apply a list of proposals π to the group

state, a member with state σ may run (σ′, c, w
1
, . . . , w

k
)← CreateCommit(σ, π),

where c is a commit to be shared with other members, σ′ would be the
new state of the member after applying the commit7 and each wi is a
welcome message for a newly added user.

Process:
– An algorithm ProcessCommit. Upon receiving another member’s commit

c, a member u with state σ can set σ ← ProcessCommit(σ, c) to process
c. We say that u has processed c.

– An algorithm ProcessWelcome. Upon receving a welcome message w
for a user with public key pk, the user with this public key can set
σ ← ProcessWelcome(pk, sk, w), where sk is the corresponding secret key
output by Gen.

For any object X above (including K) we will refer to it as Σ.X.
The scheme must also specify an algorithm for determining the set of members

of the group from a group state σ.

Semantics In the following we provide some further details regarding the semantics
of the PC-CGKA algorithms:

– Gen: The public key is used to invite the user to the group and should
therefore be made public. This public key corresponds to a key package in
TreeKEM (see Section 1.2). The same key pair must not be reused to join
multiple groups and must be discarded after it was used to join a group. A
new key pair must be generated to join a new group.

– ProposeUpdate: An update proposal created by a user u contains (possibly
public) information for the other group members about u’s new key material.
This information is used by other members to provide encrypted information
in a commit (see below) that includes the update proposal such that u is
able to compute the new group key.

– CreateCommit: Let c a commit and w1, . . . , wk the corresponding welcome
messages output by the algorithm, run by user u with group state σ and with
the proposals π provided as input. There should be one welcome message
for each new user added to the group in the commit with a corresponding
add proposal in π. Welcome message wi contains the identifier idi of a user
and the message should be shared with that user such that they can join
the group. Besides updating the key material for all other members with

7 Note that the user’s state is not immediately replaced with the new state output by
the algorithm. We will see why in the explanation of the semantics below.



an update proposal in π, the commit also updates user u’s key material.
Accordingly, π should not contain an update proposal for user u. Nor should
it contain a remove proposal for user u as they will know the group key
resulting from the commit. User u may keep both group states σ and σ′ until
the group agrees on whether to apply the commit c or not. If the commit is
to be applied, user u sets their state to σ′ and discards σ. Otherwise, they
discard σ′. Applying a commit results in a new group key.
Our syntax does not specify how a user learns of proposals in π created by
other users. Also how users agree on whether to apply a commit is left up to
the application. The decision could be made by the delivery service or using
some consensus algorithm run by all group members.
We see a call to CreateGroup as a special type of commit that is applied by
the group creator.

– ProcessCommit: If the commit removed the member from the group, they
should not be able to compute the group key from σ and should delete σ.

– ProcessWelcome: The user must discard their secret key sk after processing a
welcome message, so that the contents of the welcome message remain secret
in case the user gets compromised (recall FS). As we cannot express this
conveniently in our syntax, our security definition does not check for this.

Correctness The above description of PC-CGKA schemes already provides some
explicit correctness properties or implicitly implies other ones. We will explicitly
define one important correctness property that a PC-CGKA scheme should satisfy
in Definition 21 on the next page.

The correctness property concerns the handling of “bad” (malformed or
inconsistent) inputs. The algorithms of a PC-CGKA scheme should have several
checks built in to deal with such inputs. For example

– a commit including an update or add proposal for the commit creator is
invalid

– a user should never process the same commit twice
– a user should never process a commit that they created
– etc.

Many of these checks are straightforward and we do not provide an extensive
list of what is needed. However, we will discuss one type of check that is less
straightforward and plays a role in the security of the scheme. Our correctness
property enforces all members of a group to agree on the history of commits they
have applied (up to joining the group). It avoids scenarios where a group member
may skip a commit processed by other members that, for example, removed a
user from the group. We ignore errors that would result from processing bad
input in our syntax and restrict our security model to dealing with only valid
inputs, as it is not our goal to analyze this type of attack on the scheme.

Before we can formally define our correctness property, we must first introduce
some definitions.

Definition 18 (Applying a commit). When a user



– processes commit c with ProcessCommit
– creates commit c and subsequently updates their group state to the new state
output by the corresponding call to CreateCommit

– joins the group by processing welcome message w, where c is the commit that
was output along with w by CreateCommit

– creates a group, where we let c denote the call to CreateGroup

we say that the user applied commit c.

In the following, when talking about time for a user that was a part of some
group, we are referring to the sequence of group states they went through as
members of the group8.

Definition 19 (Last commit). Let u a user that at some point in time was a
member of a group and had group state σ. We define the last commit in σ to be
the most recent commit c that u applied up to arriving in state σ.

In the above definition, the user’s last commit will always exist since they either
joined the group through a welcome message or created the group themselves.

Definition 20 (Consistent group states). Let u0, u1 two users where each
user was a member of a group at some point in time. Let σ0, σ1 the group states
they were in, respectively and c0, c1 the last commits in σ0, σ1, respectively. The
group states σ0 and σ1 are said to be consistent if c0 = c1.

9

We can now define the correctness property motivated above.

Definition 21 (Consistent history). A PC-CGKA scheme Σ maintains a
consistent hisory if a user with group state σ only successfully10 processes a
commit c← CreateCommit(σ′, ·) for some σ′11 (with ProcessCommit) if σ and
σ′ are consistent.

Definition 20 also allows us to express the following important correctness
property: any set of members with consistent group states must compute the
same group key with Σ.Key and must agree on the set of members of the group.

In the following we introduce a few more definitions that will become useful
later.

8 We are only interested in state transitions from applying a commit, but for com-
pleteness we will also consider transitions due to creating proposals as a part of this
sequence.

9 If a commit is a call to CreateGroup, it is equal to another commit iff. both refer to
the same call to CreateGroup. This implies that after a user just created a group,
their group state is consistent with itself only.

10 As noted, we ignore checks for bad input in our syntax. To describe schemes satisfying
correctness related to bad inputs, one would need to extend the syntax such that e.g.
an algorithm can also output an error, and the user’s state remains unchanged if this
is the case.

11 Here we only consider states σ′ that an honest user would get as output from one of
the PC-CGKA algorithms.



Definition 22 (Parent commit). Let c a commit output by CreateCommit(σ0, ·)
for some σ0. The parent commit of c is the last commit in σ0.

Note that if the PC-CGKA scheme maintains a consistent history, for a
commit c that was processed by a user while they were still in group state σ, the
last commit in σ will be the parent commit of c.

Definition 23 (Commit history). Let c a commit.12 Define the commit his-
tory of c as follows:

– Case c refers to a call to CreateGroup: the sequence (c) of length 1
– Otherwise: the sequence (c1, . . . , ck, c), where (c1, . . . , ck) is the commit

history of c’s parent commit ck.

One could also consider the local commit history of a group member u in
group state σ, consisting of the sequence of commits applied by u since joining
the group and until arriving in σ. If the PC-CGKA scheme maintains a consistent
history, this local commit history is a suffix of the commit history of the last
commit in σ. (To see this, first note that by definition the last commit in σ is
the last commit the local commit history. Then repeatedly apply the argument
before Definition 23.) Thus, for a set of users in consistent group states, the users
all agree on the commits they have processed and their order (up to the earliest
commit present in the local commit history of all users).

PC-CGKA security Our security definition is again inspired by [2]. We consider
fully adaptive adversaries. The adversary controls all PC-CGKA operations
performed by the users, can decide who receives what messages (i.e. the adversary
has control over the delivery service), can decide what commits get applied or
discarded, and when they are discarded, by querying “confirm” and can corrupt
the state of any user. We will refer to commits created by a user that they have
not yet been told to apply or discard as unconfirmed commits. Corrupting a user
leaks the group states corresponding to all their unconfirmed commits. Because
the adversary can schedule the delivery of messages as it likes, it is possible for
the adversary to create “forks” in the group where some users in the group are
told to process one commit, while other users are told to process another. Such
forks could also happen in practice and should not break security.

The adversary eventually chooses a commit to be challenged on, for which
they must differentiate the group key from a uniformly random key. We must
restrict the set of commits the adversary can ask to be challenged on to those
that are safe even in the face of previous or later corruptions. The level of FS
and PCS expected from a PC-CGKA scheme is captured the size of this set of
safe commits. Exactly which commits are considered safe will be explained later.

We also impose some notable restrictions on the adversary. The adversary
cannot inject protocol messages or public keys and it may only deliver a message

12 Here we only consider commits referring to a call to CreateGroup or output by
CreateCommit, run by an honest user.



to users that are supposed to process that message, in order to avoid giving
users messages with bad inputs. The latter restriction is justified, as in a correct
PC-CGKA protocol such messages would simply be discarded and correctness
can be verified independently. Imposing the restriction on the adversary allows
us to ignore the details of handling bad inputs when specifying a PC-CGKA
scheme and analyzing the core aspects of its security.

The definition in [4, Section B.1] is very similar in essence. The same restri-
cions on the adversary are imposed. However, the security game provided there
gives more power to the adversary: the adversary may additionally choose the
randomness used in operations, choose its own public keys to be associated with
users and tell certain users not to delete old keys. In the end this restricts the
set of safe commits. We provide our own definition with the hope of having a
formulation that is easier to digest, keeps the security game simpler and is more
explicit about what commits are considered safe.

Definition 24 (The PC-CGKA game). Let η denote the security parameter
and let Σ a PC-CGKA scheme. Define the game GamePC−CGKA

Σ,η (A) for an
adversary A:

1. A outputs n ∈ N. For each i ∈ [n], initialize a user i by creating a (unique)
identifier idi, generating (pki, ski)← Σ.Gen(1η), preparing Ui = ∅, the set
of unconfirmed commits at user i, and setting σi := ∅, where ∅ denotes the
empty value. The state output by an algorithm of Σ is never the empty value.
A is given (pk1, id1), . . . , (pkn, idn).
Set P = C = W = 0, where P denotes the number of proposals, C the number
of commits and W the number of welcome messages created.

2. A may adaptively do the following queries:

– create-group(i) for i ∈ [n]: set σi ← CreateGroup(1η).
– propose-update(i) for i ∈ [n], σi ≠ ∅: run (σi, pP+1)← ProposeUpdate(σi)
to update user i’s state and get a proposal pP+1. A is given pP+1. Set
P := P + 1.

– propose-add(i, j) for i, j ∈ [n], σi ̸= ∅: run (σi, pP+1)← ProposeAdd(σi, idj , pkj)
to update user i’s state and get a proposal pP+1. A is given pP+1. Set
P := P + 1.

– propose-remove(i, j) for i, j ∈ [n], σi ̸= ∅: run (σi, pP+1)← ProposeRemove(σi, idj)
to update user i’s state and get a proposal pP+1. A is given pP+1. Set
P := P + 1.

– create-commit(i, (j1, . . . , jd)) for i ∈ [n], σi ̸= ∅,∀l jl ∈ [P ]: run (σ, cC+1, wW+1, . . . , wW+k)←
CreateCommit(σi, (pj1 , . . . , pjd)) to create the new state σ, commit cC+1

and corresponding welcome messages. A is given cC+1 and wW+1, . . . , wW+k.
Set Ui := Ui ∪ {(C + 1, σ)}, C := C + 1 and W := W + k.

– confirm(j, b) for j s.t. (j, σ) ∈ Ui for some user i and state σ, b ∈ {0, 1}:
If b = 0, set Ui := Ui \ {(j, σ)}. If b = 1, set σi := σ and Ui := ∅.13

13 All other unconfirmed commits in Ui are cleared if b = 1 as they should not be
applied anymore.



– deliver-commit(i, j) for i ∈ [n], σi ≠ ∅, j ∈ [C]: run σ ← ProcessCommit(σi, cj).
Set Ui := ∅. If cj contains a remove proposal for user i, then set σi := ∅,
generate a new pair (pki, ski)← Σ.Gen(1η) and give (i, pki) to A. Oth-
erwise, set σi := σ.

– deliver-welcome(i, j) for i ∈ [n], σi = ∅, j ∈ [W ]: set σi ← ProcessWelcome(pkj , skj , wj).
14

– corrupt(i) for i ∈ [n]: If σi = ∅, A is given ski. Otherwise, A is given
σi and Ui.

3. A picks i ∈ [0, C]. We call the commit ci the challenge commit, where the c0
refers to the initial CreateGroup operation. Let σ the group state output by
the operation that created ci (the state output by CreateCommit if i > 0 or
the state output by CreateGroup if i = 0). A bit b← {0, 1} is sampled and
A is given

k =

{
Σ.Key(σ) b = 0

k̃ b = 1
,

where k̃ ← Σ.K(η). A may continue to do queries as before.
4. A outputs a bit b′. The output of the game is defined to be 1 if b′ = b, and 0

otherwise.

We require an adversary playing the above game to adhere to the following:

– create-group is queried exactly once
– The challenge commit is safe (see Definition 28 on page 43)
– For any query deliver-commit(i, j) where the commit cj was created by user

k while they where in state σ′
k, σi and σ′

k must be consistent
– For any query create-commit(i, (j1, . . . , jd)), for every proposal pjl created by
a user while in state σ′

l, σi and σ′
l must be consistent

– A user never processes a commit that they created
– Every commit is processed at most once by any user
– A welcome message for user i is processed by i at most once and is never

processed by a user j with i ̸= j
– A user creating a commit never includes an update or remove proposal for
themselves, or multiple update/add/remove proposals for to the same user

– A user is never asked to create an add proposal for a user they consider to be
in the group, or create a remove proposal for a user they do not consider to
be in the group

The concept of a safe user and safe commit is adapted from the so-called
“safe predicate” in [2], which again took inspiration from [3]. As elaborated in the
cited papers and also analogous to how we needed to define “safe” nodes in the
SD-GSD game, we want to forbid the adversary to ask to be challenged on a
commit for which it can trivially compute the group key through some corruption
it performed.

14 Note that in a real execution of the protocol the user must delete skj from their local
state after processing the welcome message wj . Accordingly, skj is no longer leaked
to the adversary in a later query corrupt(j).



To see what is needed for a commit to be safe, consider some commit c with
group key k created by a user i and let j ̸= i any user that i would consider to
be in the group after applying c (Definition 25 clarifies exactly which users are
considered to be in the group). The commit c or an associated welcome message
provides encrypted information for user j to compute the new group key using its
current key material. Clearly, if this key material has been compromised by the
adversary corrupting user j, the commit should not be safe. If the adversary has
not corrupted user j since they last updated their key material, then we would
not expect the adversary to be able to learn the group key k through user j, even
if user j was corrupted before (recall PCS). Moreover, corrupting user j after
they have again updated their key material should not allow the adversary to
compute the group key of c either (recall FS). We will later say that the commit
c is safe with respect to user j if j was not corrupted in this window between
their last and next update. Now, it is important to notice that the encrypted
information in commit c is for the key material that user j had from user i’s
view when user i created c. It is possible that when user i created c, user j had
already processed a commit updating their key material that user i has not yet
processed. Thus, we must be careful to require exactly the right key material of
user j to be unknown to the adversary. Definition 27 formalizes this.

Definition 25. Let c a commit and let σ′ the new group state ouptut by

– the call to CreateCommit that created c
– or the call to CreateGroup that c refers to

The (set of) users in the group after applying c is the set of users in the group
according to state σ′.

Definition 26. Let c a commit and let u a user in the group after applying c.
Let h = (c1, . . . , ck) the commit history of c. Define u’s last update up to c as
the last commit ci to satisfy the following:

(i) ci was created by u
(ii) ci included an update proposal for u
(iii) ci was output along with a welcome message for u
(iv) ci refers to a call to CreateGroup run by u (implying i = 1)

Definition 27 (Safe user). Let η arbitrary and let Σ a PC-CGKA scheme.
Consider an execution of GamePC−CGKA

Σ,η (A) for some adversary A. Let Q the
total number of queries made by A. We will refer to queries by their index
among all queries. Let q∗ ∈ [Q] a create-group(i) or create-commit(i, ·) query
with i ∈ [n] as the target user. Let j ∈ [n] any user (including i) in the group
after applying the commit c∗ created by q∗. Let the commit c′ be user j’s last
update up to c∗.

Set the query q− ∈ [Q] depending on which case in Definition 26 commit c′

falls into:

(i) q− is the create-commit(j, ·) query that created c′



(ii) q− is the propose-update(j) query that created the update proposal for j
included in c′

(iii) q− is the last deliver-commit query before q∗ that reset j’s public and private
key pair or q− = 0 if no such query was made

(iv) q− is the corresponding query create-group(j) that ran CreateGroup

Again, set the query q+ ∈ [Q] depending on which case in Definition 26
commit c′ falls into:

(i) – Case user j applied c′, i.e. a query confirm(k, 1) with index qconfirm
was made where ck = c′: same as (iv), but use the next query after
qconfirm.

– Otherwise: q+ is the next query that removed the new state associated
with c′ from Uj . This is either a query confirm(k, 0) with ck = c′, a query
confirm(k, 1) with ck ̸= c′ or a query deliver-commit(j, k) with ck ≠ c′.
Set q+ = Q if there is no such query.

(ii) Let p be the update proposal for j included in c′.
– Case j applied a commit ck that included p: same as (iv), but

use the next query after qdeliver, where qdeliver is the deliver-commit(j, k)
query that let j process ck

– Otherwise:
(iii) same as (iv)
(iv) q+ is the next query q > q− that led to user j applying a commit c that they

created (i.e. q is a confirm(k, 1) query with ck = c) or that included an update
or remove proposal for j (i.e. q is a deliver-commit(j, k) query with ck = c),
or set q+ = Q if no such commit exists

The commit c∗ is safe with respect to user j if there was no query corrupt(j)
in the interval [q−, q+].

Continuing the discussion above, so far we have considered a necessary
condition to keep the commit c safe by restricting the corruptions made to a
specific user j. If c is safe with respect to every user that i considered to be in
the group after applying c (including user i), we would expect that the adversary
is not able to compute the corresponding group key. Indeed, this is how we define
a safe commit.

Definition 28 (Safe commit). Recall the setting of Definition 27. As in Defi-
nition 27, let q∗ ∈ [Q] a create-group(i) or create-commit(i, ·) query with i ∈ [n]
as the target user and let c∗ the commit created by q∗. The commit c∗ is safe if
for every user j (including i) in the group after applying commit c∗, the commit
c∗ is safe with respect to user j.

Definition 29 (PC-CGKA security). A PC-CGKA scheme is (t, ε, c, p, u)-
CGKA-secure if for all η, for any adversary A making at most c(η) queries
to create-commit, creating at most p(η) update or add proposals in the created
commits and asking for at most u(η) users in step 1. of the PC-CGKA game we
have

AdvPC−CGKA
Σ,η (A) := 2 ·

(
Pr

[
GamePC−CGKA

Σ,η (A) = 1
]
− 1

2

)
≤ ε(η).



4.2 The TreeKEM Protocol

The TreeKEM protocol discussed in the literature is not described as a self-
contained subprotocol in the MLS specification [7] and is therefore only defined
implicitly. The following description of the protocol was extracted from [7]. Fully
describing TreeKEM is complex and some parts of the protocol were either
simplified (e.g. the content of protocol messages) or omitted as they are not
relevant for proving security with respect to our definition (e.g. handling of bad
inputs, signatures, hashes of the tree and additional functionality provided by
the protocol).

Definition 30 (TreeKEM [7]). Let η denote the security parameter. Let Π
a public-key encryption scheme, where Π.Gen(1η) uses ρ(η) bits of randomness.

Let Hgen = {H(η)
gen | η ∈ N},Hdep = {H(η)

dep | η ∈ N} families of functions with

H
(η)
gen, H

(η)
dep : {0, 1}ρ(η) → {0, 1}ρ(η). We write Hgen := H

(η)
gen, Hdep := H

(η)
dep and

ρ := ρ(η) if η is clear from the context. Define the CGKA scheme ΣTK with key
space K(η) = {0, 1}ρ(η) and its algorithms defined as follows, where id refers to
the identifier of the user running the algorithm:

– Gen:
• generate (pkinit, skinit)← Π.Gen(1η), where pkinit is the init key
• generate the key pair of the user’s leaf (pkleaf , skleaf)← Π.Gen(1η)
• set pk := (pkinit, pkleaf), this is the user’s key package, and sk := (skinit, skleaf),
this will be stored by the user, and output the key pair (pk, sk)

– CreateGroup(1η):
• generate (pkleaf , skleaf)← Π.Gen(1η)
• create a tree with a single node v and set (pkv, skv) = (pkleaf , skleaf)
• set the group key to k ← {0, 1}ρ
• output a state σ containing the tree, the group key k and the security
parameter η

– Key(σ): output the group key stored in σ
– ProposeUpdate(σ):
• generate (pkleaf , skleaf)← Π.Gen(1η)
• create the add proposal p := (update, id, pkleaf) and store skleaf in σ
• output (σ, p)

– ProposeAdd(σ, id′, pk′):
• create the add proposal p := (add, id′, pk′)
• output (σ, p)

– ProposeRemove(σ, id′):
• create the remove proposal p := (remove, id′)
• output (σ, p)

– CreateCommit(σ, (p1, . . . , pk)):
• create a commit object c storing all proposals and the author id of the
commit
• for every update proposal pj = (update, id′, pk′):

* replace the leaf of user id′ with a new leaf with public key pk′

* replace all nodes on the direct path of the new leaf with blank ones



• for every remove proposal pj = (remove, id′):

* replace the leaf of user id′ and all nodes on their direct path with
blank nodes

* as long as the right child of the root has an empty resolution (and
the root actually has a right child), truncate the tree by deleting the
subtree of the root’s right child and the root itself, and setting the
root’s left child as the new root

• for every add proposal pj = (add, id′, (pk′init, pk
′
leaf)) (in order):

* if there are no blank leaves in the tree, extend the tree to the right by
setting the root to be a new blank node, the left child of the root to
the old root and the right child of the root to a full subtree of blank
nodes (of the same height as the old root’s subtree)

* replace the leftmost blank leaf in the tree with a new leaf with public
key pk′leaf

* for every non-blank node on the new leaf’s direct path, add the new
leaf to the node’s set of unmerged leaves

• generate (pkleaf , skleaf)← Π.Gen(1η) and sample s1 ← {0, 1}ρ
• replace id’s leaf with a new leaf with key pair (pkleaf , skleaf)
• If the tree consists of a single leaf, set the group key to s1. Otherwise, for
the i-th node vi on id’s direct path where its child wi on the copath of id
has a non-empty resolution:

* if i > 1, compute si := Hdep(si−1) and (pk, sk) = Π.Gen(1η, Hgen(si))
* replace vi with a new node v′i with key pair (pk, sk) (and no unmerged
leaves)

* for every node u in the resolution of wi: If u is the leaf of a user
id′ and the commit contains an add proposal (add, id′, (pk′init, pk

′
leaf)),

compute a ciphertext cu ← Π.Encpk′
init

(si)
15. Otherwise, compute a

ciphertext cu ← Π.Encpku
(si) and store it in the commit c.

Set the group key to Hdep(sd) where vd is the last node on id’s direct path,
i.e. the root. Store the list of pubic keys (pkleaf , pkv′

1
, . . . , pkv′

d
) in c.

• for every add proposal pj = (add, id′, (pk′init, pk
′
leaf)):

* let l be the leaf of user id′ in the tree
* create a welcome message wid′ containing the identifier id′, the ci-
phertext cl computed above and a copy of the public part of the tree
(i.e. the tree without any secret keys)

• output (σ′, c, ω), where σ′ is the new group state of id′ after applying the
above changes to the tree and setting the new group key, and ω is the list
of welcome messages computed (in any order)

– ProcessCommit(σ, c):

• apply all proposals in c to the tree as in CreateCommit

15 As defined here, there is no use for the init key in the protocol and we could simply
encrypt the seed under the leaf’s public key (in other words set (pk′

init, sk
′
init) =

(pk′
leaf , sk

′
leaf)). In the real TreeKEM protocol the message encrypted using the init key

includes additional information and is different from the type of message encrypted
under a leaf’s public key.



• replace the committer’s leaf and the nodes on the committer’s (non-blank)
direct path with the new nodes created in the commit16

• find the right ciphertext cu encrypting the seed of the new node u on id’s
direct path, decrypt it (using the appropriate secret key known to id) and
compute (and store) the secret key of u, the non-blank nodes above u and
the new group key (using the same computations involving Hdep and Hgen

as in CreateCommit)
• output the updated group state σ′ of id containing the new tree and group
key

– ProcessWelcome((pkinit, pkleaf), (skinit, skleaf), w):
• compute the seed s = Π.Decskinit

(c) of node u in the tree provided in w,
where c is the ciphertext provided in w
• compute the secret key of u and the non-blank nodes above u, and store
them in the tree, and compute the group key
• output a group state σ containing the tree, the group key and the security

parameter η (derived from pkinit)

The scheme ΣTK is called the TreeKEM protocol.

The full TreeKEM protocol as described in the RFC achieves the correctness
property in Definition 20 using a hash of the tree.

4.3 TreeKEM security from SD-GSD security

We have already described the relationship between the TreeKEM protocol and
the SD-GSD security game at the beginning of Chapter 3. The following theorem
formalizes this.

Theorem 2. Let η denote the security parameter. Let ΣTK the TreeKEM protocol
instantiated with a public-key encryption scheme Π. Let c, p, u functions in η. Set
N := c · (⌈log(u)⌉+ 1) + u+ p and δ := u. If Π is (t, ε,N, δ)-SD-GSD-secure in
the ROM and the functions Hgen, Hdep in ΣTK are modelled as random oracles,
then ΣTK is (t̃, ε, c, p, u)-PC-CGKA-secure with t̃ ≈ t.

Intuition The approach for the proof is straightforward. Given an adversary A
against TreeKEM, we want to construct an SD-GSD adversary A′ that simulates
GamePC−CGKA

ΣTK,η to A and uses A’s ability to distinguish the group key of a safe
commit from a random key to win the SD-GSD game. Every non-blank node in
TreeKEM can be simulated with a corresponding node in the GSD graph. Note
that the group key of a commit in TreeKEM is given by Hdep(s) where s is the
seed of the root node. Thus, if A can distinguish the group key of a safe commit
from a uniformly random key k ← {0, 1}ρ in the simulation and s is the seed the
node in the GSD graph corresponding to the root of the tree in the commit, then
A is able to distinguish Hdep(s) from r ← {0, 1}ρ. For A′ to make use of this, we
need to make sure that this node remains safe in the GSD graph.

16 Recall that c contains the public key of each new node.



More concretely, let us go over how the various queries in the PC-CGKA
game can be simulated. We will refer to nodes in the GSD graph as GSD nodes
and nodes in the TreeKEM tree as tree nodes. We can also model the init keys
with GSD nodes, as only seeds of nodes are ever encrypted with them. A′ can
always keep track of the public state of the tree (as viewed by any user) using
the reveal oracle in the SD-GSD game. For the initial create-group query or
any create-commit query with a single node in the group, it suffices to create
a GSD node for the tree leaf node and sample the group key of the commit
manually. If A asks to be challenged on such a commit, then we cannot make
use of A’s output in the GSD game. However, note that if such a commit is
safe, then A is never leaked any information about the group key and has zero
advantage in this case. Proposals can also be simulated easily as creating them
only requires knowing public values. The leaf key pair sampled in an add proposal
is of course modelled with a GSD node. To simulate the creation of a commit
and corresponding welcome messages:

– A′ can apply the proposals as in ΣTK.CreateCommmit, since this only
requires knowing public values

– use seed dependencies in the SD-GSD game to model the new nodes on the
direct path

– compute the ciphertexts for the commit and welcome messsages using queries
to encrypt

To simulate deliver-commit and deliver-welcome, A′ updates the public state of
the target user’s tree accordingly. Queries to corrupt are a bit more involved.
Since A′ can only keep track of the public state of each user, it must be prepared
to compute the real group state of a user upon receiving such a query. Note
however that the secret keys known by a group member can always be computed
as a function of their current secret key, which can be learned using a corrupt
query in the SD-GSD game, and the transcript of commits applied by the member
with this secret key.

Finally, it follows from Defintion 28 that when A challenges a safe commit
(in a group with more than one user), the corresponding GSD node that A′

challenges is also safe.

For a detailed proof we refer the reader to [4, Theorem 12].

A Appendix

A.1 Proof of Lemma 3

Proof (of Lemma 3). Note that since the message space is finite, the time to
encrypt a message is bounded. As outlined before Lemma 3, the lemma follows
from a simple hybrid argument. Let q a function in κ, let κ arbitrary and let
A an arbitrary MIS-EAV adversary running in time t̃(κ) and making at most
q(κ) queries. Define the sequence of hybrid games H0, . . . ,Hq where in the game



Hi the first i encryptions given to the adversary encrypt m1 and all remaining
encryptions encrypt m0. We will write

Pr[0← A | Hi]

for the probability of A outputting 0 when playing the hybrid game Hi.
Let i ∈ [q]. Construct an EAV adversary A′ that behaves as follows:

1. A′ runs A and gets q,m0,m1.
2. A′ outputs the messages m0,m1 and gets a ciphertext c from the challenger.
3. A′ gives the ciphertexts c1, . . . , cq to A where

cj =


Π.Enckj

(m1) i < j

c i = j

Π.Enckj (m0) i > j

and kj ← Π.Gen(1κ) ∀j.
4. A′ outputs whatever bit A outputs.

Now consider the value of the bit b sampled in GameEAV
Π,κ (A′). If b = 0, then

the first i − 1 ciphertexts that A received were encryptions of m1 and the
remaining ciphertexts were encryptions of m0, where all encryptions were under
keys sampled independently with Π.Gen. Thus, from the view of A everything
followed the same distribution as in the game Hi−1 and

Pr[0← A′ | b = 0] = Pr[0← A | Hi−1].

Analogously, in the case b = 1 the first i ciphertexts received byA were encryptions
of m1 and the rest encryptions of m0, so

Pr[0← A′ | b = 1] = Pr[0← A | Hi].

Then

Pr[0← A | Hi−1]−Pr[0← A | Hi]

= Pr[0← A′ | b = 0]− Pr[0← A′ | b = 1]

(1)
= AdvEAV

Π,κ (A′)

≤ ε

(23)

by (t, ε)-EAV security of Π since A′ runs in time t̃+O(q · (tGen + tEnc)) = t.
Now let b be the bit sampled in the MIS-EAV game. Notice that

Pr[0← A | b = 0] = Pr[0← A | H0]

and

Pr[0← A | b = 1] = Pr[0← A | Hq].



Then

AdvMIS−EAV
Π,κ (A) (1)= Pr[0← A | b = 0]− Pr[0← A | b = 1]

= Pr[0← A | H0]− Pr[0← A | Hq]

=

q∑
i=1

Pr[0← A | Hi−1]− Pr[0← A | Hi]

(23)

≤ q · ε.
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