
ARCHER: Architecture-Level Simulator for
Side-Channel Analysis in RISC-V Processors

Asmita Adhikary
Radboud University

Nijmegen, The Netherlands
asmita.adhikary@ru.nl

Abraham J. Basurto Becerra
Radboud University

Nijmegen, The Netherlands
abraham.basurto@ru.nl

Lejla Batina
Radboud University

Nijmegen, The Netherlands
lejla@cs.ru.nl

Ileana Buhan
Radboud University

Nijmegen, The Netherlands
ileana.buhan@ru.nl

Durba Chatterjee
Radboud University

Nijmegen, The Netherlands
durba.chatterjee@ru.nl

Senna Van Hoek
Radboud University

Nijmegen, The Netherlands
senna.vanhoek@ru.nl

Eloi Sanfelix Gonzalez
Binary Gecko

Nijmegen, The Netherlands
eloi@limited-entropy.com

Abstract—Side-channel attacks pose a serious risk to cryp-
tographic implementations, particularly in embedded systems.
While current methods, such as test vector leakage assess-
ment (TVLA), can identify leakage points, they do not provide in-
sights into their root causes. We propose ARCHER, an architecture-
level tool designed to perform side-channel analysis and root
cause identification for software cryptographic implementations
on RISC-V processors. ARCHER has two main components: (1)
Side-Channel Analysis to identify leakage using TVLA and its
variants, and (2) Data Flow Analysis to track intermediate values
across instructions, explaining observed leaks.

Taking the binary file of the target implementation as input,
ARCHER generates interactive visualizations and a detailed report
highlighting execution statistics, leakage points, and their causes.
It is the first architecture-level tool tailored for the RISC-V archi-
tecture to guide the implementation of cryptographic algorithms
resistant to power side-channel attacks. ARCHER is algorithm-
agnostic, supports pre-silicon analysis for both high-level and
assembly code, and enables efficient root cause identification.
We demonstrate ARCHER’s effectiveness through case studies on
AES and ASCON implementations, where it accurately traces the
source of side-channel leaks.

Index Terms—Side-Channel Analysis, RISC-V, Pre-silicon, Data
Flow Analysis, Qiling

I. INTRODUCTION

Analyzing assembly language code often poses challenges
due to its difficulty in readability and maintenance and its
dependency on specific architectures. Despite these challenges,
disassembling an executed binary file to examine low-level
code is essential when investigating side-channel leaks in
cryptographic software implementations.

Side-channel leaks stem from two sources: 1) improper
implementation of the cryptographic scheme, which leads to
undesirable interactions of sensitive data within architectural
registers, and 2) data interactions from microarchitectural opti-
mizations like pipelining, use of shadow registers, speculative
execution, or caching. Two factors complicate the identifi-
cation of the cause of side-channel leaks. Firstly, the lack
of access to cycle-accurate information obscures the precise
timing and sequence of events, which we need to pinpoint the
instructions that triggered the leak. Secondly, understanding

whether the component that caused the side-channel leakage
is architectural or microarchitectural is crucial for developing
effective remedies. Best design practices advocate for a top-
down approach, which suggests addressing architectural leaks
before tackling microarchitectural ones. Differentiating between
the two types of leaks requires a detailed analysis to isolate the
microarchitectural components effectively.

Solutions for architectural-level leaks involve reallocating or
clearing registers [1], [2]. Conversely, fixes for microarchitec-
tural leaks typically target the specific components involved,
such as employing fence instructions for speculative executions
or adopting constant-time programming to mitigate cache tim-
ing attacks [3]. With the advent of open hardware, the appeal of
developing cryptographic algorithms for RISC-V architectures
has increased [4], [5], [6], while the tools to support secure
implementations are few [7]. Existing power leakage simulator
available for RISC-V are geared towards verifying hardware
implementations [8], [9], [10].
Related Work. The landscape of cryptographic verification
tools is fragmented. At high abstraction levels, tools such as
Tamarin [11], EasyCrypt [12], or MaskVerif [13] assist in
creating security proofs. Secure compilers like Jasmin [14] can
produce low-level assembly; however, the supported architec-
tures are limited. Once an implementation is proven to follow
the desired security proof, it must also withstand side-channel
attacks. Consequently, the interest in tools to detect, verify and
mitigate side-channel leaks is significant [7]. Papagiannopoulos
et al. [15] were among the first to discuss the microarchitec-
tural effects when analyzing side-channel leaks for software
implementations. De Meyer et al. [16] and Arora et al. [17]
continue their work and discuss additional microarchitecture
leakage effects on different target devices.

McCann et al. [18] introduced ELMO, a side-channel leakage
simulator which models the power consumption of a software
implementation as a linear combination of values and transi-
tions. Shelton et al. [19] improve the leakage model in ELMO
by capturing data interactions across multiple cycles. As ELMO
models (part of) the microarchitecture of the target device it

can only be used for ARM Cortex-M0 platforms. Abby [20]
streamlines the profiling of the target device, which enables
the use of machine learning models for capturing (parts of) the
microarchitecture, for the ARM Cortex M0 and M3. Marshall et
al. [21] propose MIRACLE, a generic set of microbenchmarks,
which can detect microarchitecture optimizations but does not
examine their application in the context of side-channel attacks.
In contrast, ARCHER targets the architectural layer for modeling
the data dependencies at the architecture level with a goal to
perform side-channel analysis. The closest tool to ARCHER
is MAMBO [22], which captures architecture-specific timing
leaks for RISC-V for creating constant-time code. In contrast,
ARCHER is aimed at addressing power side-channel leaks.
Our Contributions. We propose ARCHER, a design tool that
focuses on architectural-level leakages for RISC-V crypto-
graphic implementations. ARCHER acts as the first step for
evaluating the side-channel leakage for any software cryp-
tographic implementation. It assists with the analysis of the
binary files using powerful data-flow visualization features. The
core contributions of this work are:

1) ARCHER is the first power side-channel simulator for RISC-
V that isolates architectural side-channel leakage effects,
thereby enabling users to focus on the implementation-
level vulnerabilities. We plan to make the tool open-source
upon publication.

2) ARCHER can simulate and analyze the exact binary file
executed by the target device. This avoids the variability
of compiler output that could occur otherwise.

3) The integrated side-channel analysis module has three
leakage models and a built-in leakage assessment module
that supports fixed-vs-random and fixed-vs-fixed TVLA
tests.

4) The flow analysis module aids the data flow visualiza-
tion and is a valuable tool when determining the root
cause of side-channel leaks. We provide the visualizations
and reports generated by ARCHER in the URL: https:
//anonymous.4open.science/r/ARCHER-D744/.

5) We demonstrate the working of the tool and the derived
insights using AES and ASCON as case studies.

Target audience. We develop ARCHER for designers/develop-
ers who optimize cryptographic implementations and security
evaluators who evaluate the impact of a side-channel leak.

II. PRELIMINARIES

Notation. We denote an architectural register as ri, where i
is a number from the set {1, . . . ,m}. We denote with I an
assembly instruction executed by the target. For all instructions,
the instruction mnemonic (I) is specified first, followed by the
destination register (RD), the first operand (OP1, also known
as source register), and the second operand (OP2).

An execution trace contains the sequence of executed in-
structions, {I1, . . . , IN} for a given input, where N represents
the total number of executed instructions. For each instruction

Figure 1: Schematic representation of ASCON encryption [24]

Ij we store the state of all architectural registers {rj1, . . . , rjm}1.
We briefly describe the concepts required in this work.
Test Vector Leakage Assessment (TVLA) [23] is one of the
most popular leakage detection methods based on statistical
hypothesis tests. It comes in two flavors: specific and non-
specific. The ‘fixed-vs-random’ is the most common non-
specific test and compares a set of traces acquired with a
fixed plaintext with another set of traces acquired with random
plaintext. In the case of a specific test, commonly known as
‘fixed-vs-fixed’, the traces are divided according to a known
intermediate value tested for leakage. Welch’s two-sample t-
test for equality of means is applied for all trace samples in
both cases. An absolute difference between two sets larger than
the standard threshold of 4.5 is taken as evidence of a leak’s
presence.
RISC-V is an open-source ISA and follows a LOAD/STORE
architecture. Due to the LOAD/STORE architecture, operations
can not be performed directly on memory, and data must be
first moved to registers. This implies that any data-dependent
activity is visible in the register state.
Next, we briefly describe the algorithms chosen for analysis.
AES-128 is a symmetric-key cryptographic algorithm that
transforms a 128-bit plaintext into a 128-bit ciphertext using a
128-bit key [25]. Its execution spans 10 rounds, with each round
consisting of AddRoundKey, SubBytes (S-Box), ShiftRows,
and MixColumns operations, except for the last round, which
has only AddRoundKey, SubBytes and ShiftRows operations.
ASCON-128 AEAD (authenticated encryption with associated
data) [24], bitsliced by design, processes a 320-bit state
comprising a 128-bit key, 128-bit nonce, 64-bit associated data,
and 64-bit plaintext to produce an authenticated ciphertext
of the same length as the plaintext, along with a 128-bit
tag. The algorithm applies a 12-round SPN-based permutation
pa (a = 12) during Initialization and Finalization and a 6-round
permutation pb (b = 6) during associated data and plaintext
processing as shown in Figure 1. Each round consists of:
1) Addition of round constant (pC): Adds ci to the 64-bit

register x2 in round i, where the state
S = x0∥∥x1∥∥x2∥∥x3∥∥x4 = IV ∥∥K∥∥N

= IV ∥∥K0∥∥K1∥∥N0∥∥N1.
2) Substitution layer (pS): A 5-bit S-Box (S(x)) is applied to

each bit-slice of the five state registers x0, . . . , x4.
3) Linear diffusion layer (pL): Adds diffusion via a 64-bit

linear function Σi(xi).

1In our case, the input is a pair (Pj ,Kj), where Pj constitutes the plaintext
and Kj represents the key. Depending on the specifics of the algorithm
implementation, it is possible that other inputs, such as nonce, masks, may
need to be provided.

https://anonymous.4open.science/r/ARCHER-D744/
https://anonymous.4open.science/r/ARCHER-D744/

Side Channel Analysis

.elf

B

A Data Generation (simulation based)Input
Data

Intermediate Values (specific to the target implementation)

Simulated
Power TracesEmulated Device Leakage Models

1

Target Device

Flow Analysis
Sensitive data

C

Test Vector
Leakage Assessment

.h.s

Source

.c

Figure 2: Overview of side-channel architecture level simulator
for RISC-V (ARCHER)

Key points of interest include the first S-Box outputs and linear
diffusion layer outputs, as this is where the algorithm processes
the key and nonce to start Initialization [26]. As shown in [27],
[28], these intermediates facilitate successful retrieval of key.

III. ARCHER: SIDE-CHANNEL ARCHITECTURE LEVEL
SIMULATOR FOR RISC-V

ARCHER takes a binary file along with the input data (such
as plaintext, nonce, keys, and other initialization data) and
generates instruction-level interactive visualizations and statis-
tical results pertaining to side-channel leaks. The end-to-end
toolflow and component interactions depicted in Fig. 2 are
described as follows:
A. Data Generation

This module generates simulated power traces for input sets
using the Qiling framework [29], executing the binary file with
provided data. The number and size of inputs are determined by
the cryptographic algorithm, as specified by the user. Execution
traces are transformed via leakage models to produce simu-
lated/hypothetical power traces, which are then used for side-
channel and data flow analysis. The data generation process for
each component is detailed separately in the next section.

B. Side-Channel Analysis (SCA)
This component is responsible for the identification of side-

channel leakages in an implementation. ARCHER uses Test Vec-
tor Leakage Assessment (TVLA) as a statistical test to identify
leaks. The steps in this process are described as follows:
1) Generate input data. This module generates cryptographic

inputs (e.g., plaintext, key, associated data, nonce) based on
user-specified parameters, such as the number of input bytes
and total inputs.

2) Generate execution traces. The .elf file is executed with
the generated inputs, and execution traces are saved in
a .csv file, capturing all executed instructions and the
register states after each instruction.

3) Create simulation traces. For each instruction recorded in
the .csv trace file, we apply a transformation function
called leakage model, which takes in the values of all the
registers and produces an estimate for the data-dependent
power consumption incurred by the target instruction (also
referred to as hypothetical power trace). ARCHER sup-
ports three commonly used leakage models in side-channel
analysis, namely Hamming Weight (HW), Hamming Dis-
tance (HD), and Identity (ID). HD leakage model assumes

the adversary can observe any pairwise combination of the
intermediate values. HW leakage model assumes the adver-
sary can observe the HW of a cryptographic algorithm’s set
of intermediate values.

4) TVLA Analysis. ARCHER uses TVLA for detecting leaks in
two modes:
• Fixed-vs-Random: This configuration compares traces

generated with fixed and random plaintexts for the same
key, providing quick leakage detection.

• Fixed-vs-Fixed: This mode compares traces where only
one or more plaintext bytes vary, enabling detailed root-
cause analysis.

ARCHER provides us with two kinds of TVLA graphs:

1) Classic TVLA plot: A plot with the sequence of instructions
on the x-axis and the t-score on the y-axis, featuring red
lines at 4.5 and -4.5 to indicate the threshold for side-
channel leakage. Sample points that exceed these thresholds
suggest the presence of side-channel information leakage, as
depicted in Fig. 4.

2) Interactive plot: A plot displaying the sequence of instruc-
tions along the x-axis and the different registers on the y-
axis, where leaky instructions are highlighted in red and
non-leaky instructions are shown in grey. This visualization
is appended with intermediate values obtained from data
flow analysis to identify the root cause of the leakage, as
illustrated in Fig. 5 and Fig. 6.

C. Flow Analysis

This component tracks sensitive data bytes in different reg-
isters across various instructions. The module takes as input
the simulated power traces and intermediate values (such as
the output of the substitution layer, a combination of plaintext
and keys). Optionally, TVLA results can be added as input
to generate interactive, annotated visualizations as depicted in
Fig. 5 and Fig. 6. These figures provide information about i)
the distribution of leaky instructions across different registers,
ii) the content of registers after every instruction execution,
iii) redundant entries of bytes in different registers, and the
remanence of bytes across several instructions (which may
potentially lead to leakage), iv) the usage pattern of registers
for each algorithm execution. These features enable designers
to identify the root cause of leakage. To aid designers in iden-
tifying and explaining the source of leakage, this component
generates i) interactive visualizations incorporating the TVLA
leakage along with the intermediate bytes and ii) a detailed
report on the execution, register usage, and side channel leaks.
The steps involved in this component are described as follows:

1) Generate intermediate values (to track). For cryptographic
implementations, the key bytes and sensitive intermediate
data (e.g., S-Box outputs, round results, or other critical
data) typically form the focus of side-channel analysis.
ARCHER extracts these intermediate values through a sep-
arate execution of the cryptographic algorithm. Since only
the data values are relevant, this process remains platform-
independent.

PT13

PT3

SB13

SB3

MO13

MO3

SB13

SB3

SB1

SB0 SB4 SB8 SB12

SB5 SB9

SB10 SB14 SB2 SB6

SB7 SB11SB15

Round
Key Bytes
(K0-K15)

S-Box
8 bits 8 bits

Shift
row

Mix
Column

PT0 PT4 PT8 PT12

PT1 PT5 PT9

PT2 PT6 PT10 PT14

PT7 PT11 PT15

SB0 SB4 SB8 SB12

SB1 SB5 SB9

SB2 SB6 SB10 SB14

SB7 SB11 SB15

MO0 MO4 MO8 MO12

MO1 MO5 MO9

MO2 MO6 MO10MO14

MO7 MO11 MO15
AddRoundKey

Figure 3: Schematic representation of AES operations high-
lighting the bytes impacted on modifying 6th byte of plaintext

2) Generate execution traces. This step generates detailed exe-
cution traces with additional information, such as instruction
mnemonics, operators, and machine code, to pinpoint the
location of intermediates.

3) Generate interactive visualizations. In this step, the tool
places markers in the interactive plots to highlight the
presence of intermediate/sensitive bytes in the architectural
registers through the execution. To locate markers, multiple
execution traces are generated with different values for
the sensitive data. The correct marker positions are found
by intersecting the respective markers across the different
traces.

4) Visualize markers. The intermediate bytes are plotted on
top of the TVLA plots using different marker symbols as
depicted in Fig. 5. The y coordinate of each marker is
determined from the destination register holding the value.

5) Generate report. A document is generated based on the
execution traces and TVLA results. It highlights information
such as frequently executed leaking instructions and their
locations in the source code and details the distribution of
instruction types contributing to leakage.

IV. ARCHER IMPLEMENTATION DETAILS

This section describes the implementation details of ARCHER,
followed by its functioning using the example of an open-
source AES implementation [30] compiled for a RISC-V core,
PicoRV32 [31]. The tool is implemented in Python3.
Target Device Setup. To obtain the compiled binary, i.e., the
.elf file for the target device, we cross-compile the AES
implementation on a machine with the RISC-V GNU Compiler
Toolchain (2023.11.20). The C source code is cross-compiled
for the RV32I architecture using the −Os optimization level as
it reduces the size of the executable and is a popular choice for
embedded systems.
Simulation Setup. The simulation setup takes the AES .elf
file and the number of traces to be generated as input pa-
rameters. It retrieves the address of the essential elements of
the compiled binary, such as the addresses of the key and
the plaintext for AES. As parameters vary between schemes
and implementation, some configuration may be needed to
adapt the simulation code and define how parameters are
provided. ARCHER leverages the Qiling emulation framework
to run the same binary as would be flashed to a target board.
A callback is configured to be executed for every emulated
instruction (code hook). The code hook collects the register
states and disassembles the instruction using Capstone. These
traces consisting of disassembled instructions and register states
are stored in .csv files.

0 410 820 1230 1640 2050 2460 2870 3280 3690 4100 4510 4920 5330 5740 6150 6560 6970 7380 7790 8200
Instruction Index

60
40
20

0
20
40
60

t-s
co

re

t-score trace for HD, N=500, -Os

All registers

Figure 4: t-score for simulated traces using HD model

Data Generation for Side-channel Analysis. During simula-
tion, we use the same set of plaintexts and keys used in the
target device. In the running example, we compute the fixed-vs-
fixed TVLA to highlight leakage caused by a one-byte change.
Two datasets are generated, differing only in the 6th byte of the
plaintext (referred to as PT5 in Fig. 3). The first dataset consists
of a single fixed plaintext and key, while the second includes
500 inputs where all plaintext bytes remain the same except for
byte 6, which is randomly varied. These inputs are processed by
Qiling using the .elf file, generating one execution trace for
the fixed input and 500 traces for the varied inputs. Each trace
captures the sequence of 8434 instructions. For this example,
let us choose HD as the leakage model.
TVLA Analysis. Next, we compute the TVLA for the two
sets of power traces and plot the t-score for each instruction.
Fig. 4 depicts the classic TVLA graph that indicates leakage
throughout the algorithm’s execution.

The interactive visualization plots the TVLA leaks spread
across different registers. Fig. 5 depicts a zoomed portion
illustrating the leakage points in the first round of AES. The
horizontal dotted lines correspond to different registers denoted
on the left end. The vertical lines represent the executed
instructions. The x coordinate of a vertical bar denotes the
instruction index (in the execution trace), and the y position
denotes the destination register of the executed instruction. The
leaky instructions are highlighted in red. To explain the source
of the leaky points, we proceed to the flow analysis module.
Flow Analysis involves generating intermediates for tracking
and overlapping it with TVLA results. The performed steps are:
Generation of intermediate values. For AES, we track individ-
ual bytes of the plaintext (denoted by PT0 - PT15), key (denoted
by K0 - K15), S-Box output (denoted by SB0 - SB15), MixCol-
umn output (denoted by MC0 - MC15), round keys (denoted by
RK0 - RK15). These are obtained by executing the C implemen-
tation independently. Since we are tracking individual bytes, we
might encounter some byte values in unexpected instruction
indices. We refer to these unexpected byte appearances as
ghost values that can be attributed to other byte operations.
To remove such ghost values, we preprocess the intermediate
byte locations before generating the visualizations.
Pre-processing. We work with three distinct inputs (randomly
generated plaintext and key) for this step. We compute the
instruction sequence of all the intermediate bytes for these
inputs. An instruction sequence of a byte contains a mapping
of the registers where the byte value occurs, along with the list
of instruction indices when it appears in the particular register.
We then compute the intersection of instruction sequences for
each tracked byte across the inputs. The indices that appear
in the intersection represent the legitimate points where the
intermediate bytes are actually present. This step filters out

2500 2600 2700 2800 2900 3000 3100

s0

s1

a0

a1

a2

a3

a4

a5

a6

a7

s2

s3

s4

s5

s6

s7

s8

s9

t3

Instruction Index

s10

s11

A Round 1 (K0 - K15)

MixColumn Output (MO0 - MO15)Plaintext Bytes (P0 - P15)

S-Box Output (SB0 - SB15)
C Round 2 (RK0- RK15)

B
E

D

2631
add a2, s5, a2

2632 lbu a2, 0(a2)

2636
lbu a2, 0(a4)

SB5SB1 SB9

a1

a2

 AddRound Key SubBytes ShiftRows MixColumn AddRound Key

Figure 5: Visualization of interim AES bytes over TVLA results

illegitimate instruction indices where the intermediate byte
might appear due to unrelated or independent computations.
The final visualizations are generated using the filtered indices.
Visualizations. We utilize the plotly library in Python3 to
generate interactive visualizations. A snapshot of the visualiza-
tion for the first round of AES execution is shown in Fig. 5.
The red lines indicate the leaky instructions identified by TVLA
under the HD leakage model. The legend provides details of the
various markers used to represent different intermediate values,
with each byte shown in a distinct color and each intermediate
output denoted by a unique marker, as seen in the legend.
Hovering over a vertical line reveals the executed instruction,
program counter (PC), and instruction index, while hovering
over the colored markers displays the corresponding byte. For
enhanced clarity, we annotate the plot with labels indicating the
outputs of various operations. While the TVLA results (Fig. 4)
identify the leaky instructions, these visualizations allow us to
trace the leakage back to specific intermediate bytes during
execution. Key insights derived from these visualizations are
discussed in the subsequent section.

V. INSIGHTS FROM ARCHER

We apply ARCHER to two unprotected cryptographic imple-
mentations of AES and ASCON with different mathematical
structures. While AES is still the most used symmetric algo-
rithm in real-world applications, ASCON is a recent standard
for authenticated encryption and a permutation-based cryp-
tosystem. We demonstrate the tool first on two unprotected
cryptographic implementations, as these implementations will

leak side-channel information, making them an attractive choice
for a tool aimed at root-cause analysis.

A. Case Study: Unprotected AES

We examine first an unprotected implementation of AES-
128 [25]. We continue with the TVLA results obtained in
Fig. 4. To understand the source of leakage, we first identify
the bytes impacted on randomizing PT5 and track them via
the visualizations. We restrict our analysis to the first round as
the difference is propagated to all bytes in subsequent rounds.
Fig. 3 depicts the bytes impacted on randomizing PT5 during
the first round of AES. From this visualization depicted in
Fig. 5, we obtain the following insights:
• The registers used by each AES operation are localized for

this implementation. For instance, S-Box outputs are always
stored in a2 (box labeled C), and plaintext bytes always
appear in register t3 (box labeled B). Thus, the red lines
atop the horizontal line a2 indicate leakage in the S-Box
operation.

• Leakage in Box C: From the intermediates, we gather that
instructions in the range 2583 to 2624 (Box labeled C)
correspond to S-Box operation. TVLA reports leaks at three
instruction indices, 2631, 2632, and 2636 (marked in red).
The cause of these leakages can be understood by observing
the contents of a2 and a4 registers at these instructions,
illustrated as follows. In the following code listings, & is
used to denote addresses.

2631 add a2,s5,a2 #a2=&SB; s5=&state[5]
2632 lbu a2, 0(a2) #a2=SB5
...

1000800 900 1100850 950 1050

t1

t2
s0
s1
a0

a1

a2
a3

a4

a5

a6

a7

s2
s3
s4
s5
s6
s7
s8
s9
s10

s11

t3
t4
t5
t6

Instruction index

t0

D

C

E

F

G

H

A

B

Key (K3, K0, K1)

Nonce (N0, N1)

Round Output (RO7, RO0, RO2, RO9, RO5, RO3)

SB4

RO9

SB0

SB6

RO6

AddRoundConstant Substitution Layer Diffusion Layer

Figure 6: Visualization of interim bytes of ASCON over TVLA results for HD model

2636 lbu a2, 0(a4) #a2=state[9]; a4=&state[9]

Here, s5 stores the pointer to the SBox mapping in memory,
and a2 stores the input to the SBox. The add operation
computes the pointer to the resultant SBox output. In all three
instructions, a2 stores a value that is impacted by a change in
PT5, thus explaining the TVLA leaks.

• Leakage in Box B,E: The leaky instructions in Box B
correspond to instruction 0x9bc lbu t3, 0(a4) that
load PT5 in t3. Here, a4 stores the pointer to the state array,
iterates over each byte, and stores the content to t3. In Box
E, we observe leaks for the same instruction. In this case,
the reason for leakage is the loading of MixColumn outputs
(MO0 - MO4), precisely the bytes impacted by a change in
PT5 (refer Fig. 3).

• Leakage in Box D: The leaks correspond to instruc-
tions 0x9cc xor a3,a3,t3 and 0x9b8 add a3,
a6, a5, that constitute the AddRoundKey operation (Round
2). The reason for leaks is MO bytes, which are impacted by
change in PT5.

3005 add a3,a6,a5 # a6=&state; a5=1 (index)
3010 xor a3,a3,t3 # t3=MO1; a3=RK1
3018 xor a3,a3,t3 # t3=MO2; a3=RK2
3026 xor a3,a3,t3 # t3=MO3; a3=RK3

B. Case Study: Unprotected ASCON

We illustrate the functionalities of ARCHER using an open-
source unprotected ASCON implementation [32] compiled on
the Ibex core [33] with −Os optimization level. We follow a
similar approach to generate the .csv files for ASCON. For
ASCON, ARCHER retrieves the addresses of the key, plaintext,
nonce, and associated data.

Side-Channel Analysis. We perform a fixed-vs-fixed TVLA
by fixing all the bytes of the nonce except the 0th byte,
while the key, associated data, and plaintext are kept fixed.
For ASCON, each execution trace comprises 8629 instructions.
Fig. 6 illustrates the interactive visualization depicting TVLA
results, highlighting the leaky instructions in red if they leak
as per the HD leakage model.
Data Flow Analysis. For ASCON, we track key bytes (K0-K4),
nonce (N0-N4), S-Box outputs (SB0-SB9), round outputs (RO0-
RO9), associated data (A0-A1), and plaintext (M0-M1). For this
use case, we focus on Round 1 of Initialization. The first four
intermediates are shown illustrated as markers in Fig. 6. We
get the following insights from the interactive visualization:
• The key bytes, K3, K0 and K1 (at A), are loaded into s5,
s6 and s7 registers where they remain until completion,
while the nonce, N1 and N0 (at B), loaded at s10 and s11
remain until the completion of pa of Initialization. The rest
of the intermediates are spread across 21 out of the 32 RISC-
V registers. Unlike the first S-Box output, which is present
within the range of Round 1 of pa (instruction index 809 to
905), the round output extends into Round 2 (starting from
index 906) for most of its bytes.

• Leakage at C, D, E, F and G : The intermediates RO0 and
RO2 (at C), RO3, RO5, RO6 (at D) and SB4 (at E) exhibit
leakage for the HD model, when they are either loaded into
registers or are overwritten by other values in the registers.
In the case of SB6 (at F) and SB0 (at G) in registers a3 and
a7, the S-Box values get overwritten by RO6 and RO0. For
RO0, we see leakage because the value stored in t2 changes:

965 c.lw a3,0x24(a0) #t2=RO for S.x[0]=IV; a0=0x18(sp
), sp=&ASCON_state

966 lw t2,0x4(a0) #t2=&N0; a0=0x18(sp),
sp=&ASCON_state

• Leakage at H: The intermediate RO9 (at H) leaks for the HD
model. In register t4, RO9 is plotted, coinciding with leaks
at L: xor t4,a4,t4. Just after the completion of RO9, at
N: not t4,s0, the HD leaks. The leakage at L and N can
be attributed to the change of value in t4 at ith+1 instruction
w.r.t. ith instruction. The disassembled code from Capstone
shows that instruction at indices i and i+1 updates the state
S.x[4], i.e., the output of the linear diffusion layer applied
on the nonce, N1, for L. Similarly, at N, using execution
trace, we can identify that these instructions correspond to
the S-Box operation on the IV, K0, K1 and N0. Illustrating N:

989 not t4,s0 #t4=initial results of S-Box
990 and t3,t3,s1 #t4=not(s0); t4=RO(S.x[4]=N1)

VI. CONCLUSION AND FUTURE DIRECTIONS

This paper presents ARCHER, an architecture-level simula-
tor for systematically analyzing side-channel vulnerabilities
in RISC-V processors. ARCHER integrates side-channel and
flow analysis, enabling developers to identify and understand
leakage sources at the architecture level. It operates on binary
cryptographic implementations independent of target hardware.
Using AES and ASCON as case studies, we demonstrate
ARCHER’s ability to uncover the root causes of side-channel
leaks. As future work, we plan to incorporate advanced side-
channel assessment methods, such as mutual information-based
techniques, and extend ARCHER to analyze protected implemen-
tations. Additionally, automating leakage cause identification
from visualizations by detecting patterns in data modifications
is another key research direction.

REFERENCES

[1] Santiago Arranz Olmos, Gilles Barthe, Ruben Gonzalez, Benjamin
Grégoire, Vincent Laporte, Jean-Christophe Léchenet, Tiago Oliveira, and
Peter Schwabe. High-assurance zeroization. IACR TCHES, 2024:375–
397.

[2] Madura A. Shelton, Niels Samwel, Lejla Batina, Francesco Regazzoni,
Markus Wagner, and Yuval Yarom. Rosita: Towards automatic elimination
of power-analysis leakage in ciphers. In NDSS, 2021.

[3] Gilles Barthe, Marcel Böhme, Sunjay Cauligi, Chitchanok Chuengsa-
tiansup, Daniel Genkin, Marco Guarnieri, David Mateos Romero, Peter
Schwabe, David Wu, and Yuval Yarom. Testing side-channel security of
cryptographic implementations against future microarchitectures. CoRR,
abs/2402.00641, 2024.

[4] Ko Stoffelen. Efficient cryptography on the risc-v architecture. In
LATINCRYPT 2019, page 323–340. Springer-Verlag, 2019.

[5] Konstantina Miteloudi, Joppe W. Bos, Olivier Bronchain, Björn Fay,
and Joost Renes. PQ.V.ALU.E: post-quantum RISC-V custom ALU
extensions on dilithium and kyber. In CARDIS, volume 14530 of Lecture
Notes in Computer Science, pages 190–209. Springer, 2023.

[6] Patrick Karl, Jonas Schupp, Tim Fritzmann, and Georg Sigl. Post-
quantum signatures on risc-v with hardware acceleration. ACM TECS,
23(2), 2024.

[7] Ileana Buhan, Lejla Batina, Yuval Yarom, and Patrick Schaumont. Sok:
Design tools for side-channel-aware implementations. In ASIA CCS,
pages 756–770, 2022.

[8] Nader Sehatbakhsh, Baki Berkay Yilmaz, Alenka G. Zajic, and Milos
Prvulovic. EMSim: A microarchitecture-level simulation tool for model-
ing electromagnetic side-channel signals. In HPCA, pages 71–85, 2020.

[9] Barbara Gigerl, Vedad Hadzic, Robert Primas, Stefan Mangard, and
Roderick Bloem. Coco:{Co-Design} and {Co-Verification} of masked
software implementations on {CPUs}. In USENIX Security, pages 1469–
1468, 2021.

[10] Muhammad Arsath K F, Vinod Ganesan, Rahul Bodduna, and Chester
Rebeiro. Param: A microprocessor hardened for power side-channel
attack resistance. In HOST, pages 23–34, 2020.

[11] David Basin, Cas Cremers, Jannik Dreier, and Ralf Sasse. Tamarin:
Verification of large-scale, real-world, cryptographic protocols. IEEE S&
P, 20(3):24–32, 2022.

[12] Gilles Barthe, François Dupressoir, Benjamin Grégoire, César Kunz,
Benedikt Schmidt, and Pierre-Yves Strub. Easycrypt: A tutorial. In
Foundations of Security Analysis and Design VII - FOSAD, volume 8604
of Lecture Notes in Computer Science, pages 146–166. Springer, 2013.

[13] Gilles Barthe, Sonia Belaı̈d, Pierre-Alain Fouque, and Benjamin Grégoire.
maskverif: a formal tool for analyzing software and hardware masked
implementations. IACR Cryptol. ePrint Arch., page 562, 2018.

[14] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Arthur Blot,
Benjamin Grégoire, Vincent Laporte, Tiago Oliveira, Hugo Pacheco,
Benedikt Schmidt, and Pierre-Yves Strub. Jasmin: High-Assurance and
High-Speed Cryptography. In CCS, pages 1–17, 2017.

[15] Kostas Papagiannopoulos and Nikita Veshchikov. Mind the gap: Towards
secure 1st-order masking in software. In COSADE 2017, volume 10348
of Lecture Notes in Computer Science, pages 282–297. Springer, 2017.

[16] Lauren De Meyer, Elke De Mulder, and Michael Tunstall. On the effect
of the (micro)architecture on the development of side-channel resistant
software. Cryptology ePrint Archive, Report 2020/1297, 2020. https:
//eprint.iacr.org/2020/1297.

[17] Vipul Arora, Ileana Buhan, Guilherme Perin, and Stjepan Picek. A tale
of two boards: On the influence of microarchitecture on side-channel
leakage. In CARDIS 2021, volume 13173 of Lecture Notes in Computer
Science, pages 80–96. Springer, 2021.

[18] David McCann, Elisabeth Oswald, and Carolyn Whitnall. Towards
practical tools for side channel aware software engineering: ’grey box’
modelling for instruction leakages. In USENIX, pages 199–216. USENIX
Association, 2017.

[19] Madura A. Shelton, Niels Samwel, Lejla Batina, Francesco Regazzoni,
Markus Wagner, and Yuval Yarom. Rosita: Towards automatic elimination
of power-analysis leakage in ciphers. In NDSS, 2021.

[20] Omid Bazangani, Alexandre Iooss, Ileana Buhan, and Lejla Batina.
ABBY: automating leakage modelling for side-channel analysis, 2024.

[21] Ben Marshall, Dan Page, and James Webb. MIRACLE: micro-
architectural leakage evaluation A study of micro-architectural power
leakage across many devices. IACR TCHES, 2022(1):175–220, 2022.

[22] Jan Wichelmann, Christopher Peredy, Florian Sieck, Anna Pätschke, and
Thomas Eisenbarth. MAMBO-V: dynamic side-channel leakage analysis
on RISC-V. In Daniel Gruss, Federico Maggi, Mathias Fischer, and
Michele Carminati, editors, Detection of Intrusions and Malware, and
Vulnerability Assessment - 20th International Conference, DIMVA 2023,
Hamburg, Germany, July 12-14, 2023, Proceedings, volume 13959 of
Lecture Notes in Computer Science, pages 3–23. Springer, 2023.

[23] G. Goodwill, J.J.B. Jun, and P.Rohatgi. A testing methodology for side
channel resistance validation. NIST non-invasive attack testing workshop,
2018.

[24] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin
Schläffer. Ascon v1.2: Lightweight authenticated encryption and hashing.
JoC, 34(3), 2021.

[25] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The
Advanced Encryption Standard. Information Security and Cryptography.
Springer, 2002.

[26] Zhenyu Liu and Patrick Schaumont. Root-cause analysis of the side
channel leakage from ascon implementations. 2023.

[27] Niels Samwel and Joan Daemen. DPA on hardware implementations of
ascon and keyak. In Proceedings of the Computing Frontiers Conference,
pages 415–424. ACM, 2017.

[28] Léo Weissbart and Stjepan Picek. Lightweight but not easy: Side-channel
analysis of the ascon authenticated cipher on a 32-bit microcontroller.
IACR Cryptol. ePrint Arch., page 1598, 2023.

[29] Qiling framework. https://qiling.io/, 2023-08-04. Accessed: 2024-04-17.
[30] CENSUS. Masked aes.
[31] YosysHQ. Yosyshq/picorv32: Picorv32 - a size-optimized risc-v cpu.
[32] Reference, highly optimized, masked c and asm implementations of

ascon.
[33] lowRISC. Lowrisc/ibex-demo-system: A demo system for ibex including

debug support and some peripherals. accessed 15-10-2023.

https://eprint.iacr.org/2020/1297
https://eprint.iacr.org/2020/1297
https://qiling.io/

	Introduction
	Preliminaries
	ARCHER : Side-Channel Architecture Level Simulator for RISC-V
	Data Generation
	Side-Channel Analysis (SCA)
	Flow Analysis

	 ARCHER Implementation Details
	Insights from ARCHER
	Case Study: Unprotected AES
	Case Study: Unprotected ASCON

	Conclusion and Future Directions
	References

