
An extended abstract [DRS24] of this article appears in the proceedings of ASIACRYPT 2024. This is the full version.

Tightly-Secure Group Key Exchange
with Perfect Forward Secrecy

Emanuele Di Giandomenico1 , Doreen Riepel2 , and Sven Schäge1

1 Eindhoven University of Technology, Eindhoven, Netherlands
{e.di.giandomenico,s.schage}@tue.nl

2 UC San Diego, USA
doreen.riepel@gmail.com

Abstract. In this work, we present a new paradigm for constructing Group Authen-
ticated Key Exchange (GAKE). This result is the first tightly secure GAKE scheme
in a strong security model that allows maximum exposure attacks (MEX) where the
attacker is allowed to either reveal the secret session state or the long-term secret of
all communication partners. Moreover, our protocol features the strong and realis-
tic notion of (full) perfect forward secrecy (PFS), that allows the attacker to actively
modify messages before corrupting parties. We obtain our results via a series of tightly
secure transformations. Our first transformation is from weakly secure KEMs to uni-
lateral authenticated key exchange (UAKE) with weak forward secrecy (WFS). Next,
we show how to turn this into an UAKE with PFS in the random oracle model.
Finally, and as one of our major novel conceptual contributions, we describe how to
build GAKE protocols from UAKE protocols, also in the random oracle model. We
apply our transformations to obtain two practical GAKE protocols with tight secu-
rity. The first is based on the DDH assumption and features low message complexity.
Our second result is based on the LWE assumption. In this way, we obtain the first
GAKE protocol from a post-quantum assumption that is tightly secure in a strong
model of security allowing MEX attacks.

1 Introduction

Group Authenticated Key Exchange (GAKE) is the generalization of two-party key exchange
to the group setting. It allows N group members to compute a common symmetric session
key over an insecure network. This key can then be used to exchange messages among the
group members that are protected via efficient symmetric cryptography. As such GAKE
protocols form an important building block in any form of group-based communication.

Proving security of GAKE protocols is in general much more challenging than for classical
AKE protocols. In many AKE security proofs the two parties participating in the proto-
col can simply be guessed upfront resulting in a polynomial security loss

(N
2
)
. For GAKE

protocols this strategy quickly becomes infeasible with growing group size t since there are(N
t
)

possible groups that could now run the GAKE protocol. For superlogarithmical t this
number already grows superpolynomial and guessing the group upfront becomes inefficient.
Moreover, each of the existing GAKE protocols have one of the following downsides.

Vulnerabilty Against Quantum Attacks. The vast majority of GAKE protocols rely on clas-
sical security assumptions that are related to the discrete logarithm assumption. The un-
derlying problems are known to be solvable efficiently by quantum computers [Sho94]. For
long-term security a shift towards post-quantum-based security assumptions is necessary.
However, relying on post-quantum assumptions often introduces new challenges like non-
perfect correctness in lattice cryptography. Thus PQ-based security assumptions cannot be
used as a drop-in to classical protocols and new techniques are necessary.

https://asiacrypt.iacr.org/2024/
https://orcid.org/0009-0003-4632-7017
https://orcid.org/0000-0002-4990-0929
https://orcid.org/0000-0002-8698-4244

Realistic Security Models. Most GAKE protocols consider relatively weak security definitions
that only consider attackers that may corrupt the long-term keys of parties while disallowing
that the (ephemeral) state material stored by parties between moves will ever be revealed.
So, in case an attacker manages to obtain the state information of a single group member
all security guarantees may be lost. A stronger and much more realistic notion of security
considers so-called maximum exposure attacks (MEX) that allow the attacker to also reveal
the secret states of the group members while carefully excluding trivial attacks [LLM07].
These models are considered standard in the case of two-party key exchange.

Non-Tight Security Proofs. A tight security proof allows for highly efficient and theoretically-
sound instantiations of the system parameters. In particular, the proofs – and thus the
system parameters – are independent of the number of parties, sessions, or the number
of attacker queries. Providing schemes with tight security proofs for asymmetric cryp-
tography is challenging [BJLS16], in particular for key exchange [CC17]. Only recently
tightly secure AKE protocols have been proposed for strong security in the two-party
case [JKRS21, HJK+21, PWZ23a]. The only tightly secure GAKE protocol [PQR22] relies
on signatures (which are generally less efficient in the PQ-setting) and also does not protect
against MEX attacks.

1.1 Contribution

In this work, we tackle these challenges and present the first, tightly secure GAKE protocol
that is secure under post-quantum assumptions under a strong, realistic notion of security.
To this end, we develop a new paradigm for constructing GAKE schemes. To explain it
intuitively, consider the well-known ring-based Burmester-Desmedt (BD) protocol [BD95].
In this protocol, each party Pi first sends ki = gxi for some randomly drawn ephemeral
secret xi . In the next round, each party sends Ki = (ki+1/ki−1)xi where all indices are taken
mod t for group size t. The final group key is produced as

K = ktxi
i−1K t−1

i K t−2
i+1 . . . Ki−2 = gx1x2+x2x3+...+xtx1 .

This protocol is only passively secure but serves as a guiding principle in many constructions.
Using digital signatures over all messages sent, this protocol can be made actively secure
(though it remains highly vulnerable to state-reveal attacks). While it is elegant, we believe
that it rather disguises the core principles that make it work. We therefore present a more
conceptual perspective to the design of GAKE protocols that to the best of our knowledge
is novel. This allows us to identify the parts that can be improved considerably.

Novel Conceptual Perspective on GAKE. Assume we have t parties P1, . . . , Pt organized
in a ring. Essentially we view a GAKE protocol as consisting of two phases. In the first
phase, adjacent parties compute a common session key via a two-party protocol. To make
this secure against active attacks, the neighboring parties will at some point (implicitly or
explicitly) authenticate each other. In particular, for each i, Pi authenticates Pi−1 and Pi+1.
In the basic BD protocol (which is only passively secure) this step simply consists of sending
ki . Actively secure protocols that rely on the BD protocol, typical add authentication via
other means like digital signatures. More concretely, each party will also sign each message
they send. The shared key with party Pi+1 can then be computed as Gi,i+1 = (ki+1)xi .
Likewise, the shared key computed with Pi−1 can then be computed as Gi−1,i = (ki−1)xi .
The second phase of the protocol consists of distributing the derived key material to the other
parties. Now, a key insight is that, in order to not hand these keys over to an impersonating
attacker, they are only given to parties that Pi has authenticated before. In particular,
Gi,i+1 is only given to Pi−1 and Gi−1,i is only given to Pi+1. In the BD protocol this is
done simultaneously via simply publishing Gi,i+1/Gi−1,i . This can be thought as a simple
symmetric encryption of Gi,i+1 (respectively Gi−1,i) via the key Gi−1,i (respectively Gi,i+1).

2

Pi−1
(pkL

i−1, skL
i−1)

Pi
(pkL

i , skL
i)

Pi+1
(pkL

i+1, skL
i+1)

(pke
i , ske

i)← KeyGene(pare)

(cL
i−1, KL

i−1)← EncapsL(pkL
i−1)

(ce
i+1, K e

i+1)← Encapse(pke
i+1)

KL
i := DecapsL(skL

i , cL
i)

ti := H(K e
i+1, KL

i , ctxt)

K e
i := Decapse(ske

i , ce
i)

Ki−1,i := Hukey(K e
i , KL

i−1, ctxt)

Ki,i+1 := Hukey(K e
i+1, KL

i , ctxt)

for j ∈ {i + 1, . . . , N , 1, · · · , i − 1}

Kj,j+1 := Htag(Kj−1,j)⊕ cK
j

K := Hgkey(K1,2, . . . , KN,1, ctxt)

pke
i , cL

i−1 pke
i+1, cL

i

ce
i ,ti−1 ce

i+1, ti

cK
i := Htag(Ki−1,i)⊕Ki,i+1 cK

i+1 := Htag(Ki,i+1)⊕Ki+1,i+2

Fig. 1: The idea of the complete construction presented in Section 6, assuming, without loss
of generality, that the predecessor and the successor of party i are i−1, i+1, respectively, and
that the parties verify the tag received. The superscripts e and L stand for “ephemeral” and
“long-term” respectively. H∗ with different subscripts ∗ are (independent) random oracles.

Now observe that from the knowledge of all the Kj , each party Pi can now easily compute
K = gx1x2+x2x3+...+xtx1 = G1,2G2,3 · · ·Gt,1. It first computes Gi,i+1 using ki+1 and xi . Next,
it can step-wisely compute the next value Gi+1+c,i+2+c from Ki+1+c and Gi+c,i+1+c for any
c = 0, 1, . . . , t − 1. The BD protocol essentially computes this process in an algebraically
elegant and efficient fashion.

Having this perspective in mind, we make several conceptual changes to the design that
enable better efficiency. First, we do not require that Pi authenticates Pi+1 and vice versa.
Crucially, we observe that only one direction is enough. This is because the group members
are organized in a ring: if each member authenticates its predecessor only, all parties will
be authenticated eventually. In general, reciprocal authentication among neighbors seems
wasteful. In addition to that, this change will now allow us to avoid using AKE protocols
but instead rely on unilaterally authenticated key exchange (UAKE) where only a single
party is authenticated. Overall this saves bandwidth and computational complexity. Let
us clarify: each party will, as before, compute two shared keys, one with its predecessor
and one with its successor. However, only the predecessor will be authenticated. Thus, in
the second phase, parties will now only distribute the symmetric key that they share with
their successor to their authenticated predecessor (and not vice versa). The second change
that we make is that we consider the symmetric encryption scheme used more generally in
the second phase. To this end, we use a simple random oracle-based symmetric encryption
system, where the sharing of key Ki,i+1 to Pi now proceeds as h(Ki−1,i) ⊕ Ki,i+1. In this
way, each party essentially only encrypts to one party – its predecessor. This scheme is
very simple and fast and has strong security properties. Unfortunately, currently there is no
efficient and tightly secure post-quantum secure digital signature scheme that is suitable to
implementing authentication efficiently.3 To obtain a tightly secure GAKE protocol overall
— even in the PQ-setting — we will thus deviate from the use of digital signature schemes
and instead rely on authentication via KEMs, similar to previous work on tight AKE in the
2-party setting [JKRS21,PWZ23a,PRZ24]. We provide an illustration of our protocol from

3 The signature schemes introduced in [PW22, HLWG23] do provide (almost) tight security but
are too inefficient for practical applications.

3

the view of one party in Figure 1. Typically post-quantum signatures are considerably larger
in size than KEM ciphertexts. Essentially, the mechanism that we use for authentication will
require Pi to send an encapsulated key to its predecessor (encrypted with pki−1). This key
will be decapsulated by Pi−1 and is then used to derive a MAC key, which in turn is used to
provide integrity protection for all the messages sent and received by Pi−1. Since Pi knows
the encapsulated key as well, it can recompute the MAC. The security properties of the KEM
guarantee that the MAC can only be computed correctly by the predecessor if it indeed has
the corresponding secret long-term key. In our instantiations, we rely on the recent tightly
secure KEM from [PWZ23a] that is secure under lattice assumptions and the DDH based
scheme introduced in [JKRS21] that both fulfill the notion of OW-PCVA-CR [PRZ24], a very
weak notion of KEM security.

We proceed as follows. First, we present a construction of an UAKE scheme with weak
perfect forward secrecy (WFS) that is constructed from a KEM. Next, we present a trans-
formation from a WFS-secure UAKE to an UAKE that provides full PFS in the random
oracle model (ROM). Whereas WFS only provides security guarantees against long-term
key corruptions in case the attacker has not modified the sent messages, full PFS also guar-
antees security in the presence of active attackers that modify messages. Finally, and as
our main contribution, we present a transformation from PFS-secure UAKE to PFS-secure
GAKE, again in the ROM. Security holds even under MEX attacks where the attacker
may adaptively reveal state information and adaptively corrupt parties. Remarkably, all our
transformations preserve the tightness of the security proof so that the final GAKE will
tightly reduce to the security of the KEM. When instantiated with the PQ-secure scheme
of [PWZ23a] this results in the first tightly secure GAKE scheme under lattice assumptions
in a very strong model of security. When instantiated under the DDH assumption, our pro-
tocol only requires to send 5 group elements and two bitstrings of length 256 bits per party.
In comparison, the tightly secure protocol of [PQR22] requires to send 2 group elements
and 4 exponents (when relying on generic group model bounds of Schnorr signatures), or 2
group elements and 6 exponents (when instantiating the signature scheme with [DGJL21]).

1.2 Security Model

To provide a strong notion of security that reflects full PFS and security against state-reveal
attacks, we present a new security definition. We remark that providing security notions
for GAKE has in the past proven error-prone. This is due to the number of subcases that
one has to consider in the proof. In this work, we take a new avenue that simplifies the
development of such a definition.

The central idea is to strongly rely on a corresponding security definition for two parties.
This definition is now used more generically to develop the GAKE definition. To this end,
we take the strong definition of [JKRS21] as a starting point. This definition features an
attack table that defines when certain query combinations of the attacker are deemed non-
trivial. In our new definition a similar attack table is (almost) generically utilized at the
end of our security experiment to evaluate if, for any of the tested sessions, the attacker
has performed a trivial attack. However, we need to be careful since the application of the
checks in the [JKRS21] table do not only depend on the holder of the tested session itself,
but also on its peer.

Our formulation of GAKE security thus essentially re-applies this table to all the peers
of the considered tested session that are currently participating in the GAKE run. In this
way, we can reduce the problem of analyzing trivial attacks for a session and all its peers to
the problem of analyzing trivial attacks for this session and a single peer. We note that the
semantics of these tables define when an attack is valid. In this sense they encode properties
of non-trivial attacks. By setup all other attacks are deemed trivial. So to make this useful in
the group setting we require that for all of the pairs of parties, the attacker hasn’t performed
a trivial attack.

4

KEM UAKEWFS UAKEPFS GAKEPFS
Theorem 3 Theorem 1 Theorem 2

Fig. 2: Logical implication sequence from KEM to GAKEPFS with intermediate steps.

We note that our GAKE definition holds for any polynomial-sized groups, in particular
for groups of size 2. This implies a definition for classical AKE as well. However, conceptually
the exposition of our algorithms is structured into rounds, where every party has to apply
the same algorithms. This allows us to specify algorithms independent of classical roles like
initiator or responder. However, when proving the security of our GAKE from the underlying
UAKE we have to relate the UAKE roles of initiator and responder to the behaviour of two
adjacent parties in the GAKE using terms like predecessor and successor.

1.3 Related Work

There has been considerably less research activity on GAKE than on classical two-party
AKE. A nice overview of the existing notions of group AKE can be found in [PRSS21].

The protocol from [DB05] is similar to BD. It relies on DDH and signatures to achieve
PFS. It supports dynamic groups and only requires two rounds. We note that while we
require three rounds to get PFS, it was shown in [Kra05] for 2-party AKE that if the
underlying protocol is only implicitly authenticated (e.g., via KEMs), then a protocol cannot
achieve PFS in two rounds.

The protocol in [ADGK19] can be thought of as a lattice-based variant of the BD protocol
that is secure under the Ring-LWE assumption. Correspondingly it is passively secure and
needs additional authentication mechanisms for active security. To this end, the authors
propose the application of signatures. It is generally unclear how to do this in an efficient
and tightly secure manner in the post-quantum setting. The security model of [ADGK19]
does not allow the attacker to reveal secret state information.

The work in [PQR22] focuses on tight security. It also takes the BD protocol as a basis
and presents a tight proof in a security model that does not allow the attacker to reveal secret
state information. The construction applies the efficient Schnorr signature scheme to protect
the protocol against active attacks and achieve authentication. We deviate from these two
approaches by considering tight security in strong models that allow MEX attacks. Moreover,
we use a novel authentication mechanism that relies on KEMs instead of signatures. This
allows us to obtain efficient instantiations based on previous works. Our instantiation in the
classical setting considers the highly efficient DDH-based scheme introduced in [JKRS21].
In the post-quantum setting we can apply the recent scheme of [PWZ23a] that is based on
the LWE assumption. However, from the description of the scheme in [PWZ23a] it is not
immediately clear if it can be applied to our transformation when used in the group setting.
The problem is that the correctness of the scheme is only shown to hold with probability
(1− z) where z = negl(κ). This can be problematic when bounding the probability that all
N = poly(κ) KEM applications that are required in a run of the GAKE protocol provide
correctness because (1−negl(κ))N is only overwhelming if z is statistically small. Fortunately,
we can show that z is indeed statistically small [PWZ23a].

Recent works on AKE aim at achieving tighter security reductions in the QROM [HKSU20,
PWZ23b, PRZ24]. The first AKE protocol proven secure in the QROM [HKSU20] suffers
from a square-root security loss in the random oracle model. This was improved in [PWZ23b]
that provides a QROM proof with a loss only linear in the number of users. The resulting
scheme only provides weak forward secrecy. Very recently, via an additional key confirmation
move [PRZ24], this was lifted to a protocol that provides perfect forward secrecy, also with
a linear loss in the number of users.

Another interesting work related to ours is the authentication compiler of Katz and Yung
that constructs actively secure GAKE from a passively secure one. Essentially the paper
proposes to authenticate all messages with digital signatures schemes as in the BD protocol.

5

However, their analysis does not account for attacks that reveal ephemeral states. Also they
do not specifically consider tight reductions. Our result, in contrast, uses authentication
based on KEMs that provides efficient instantiations in the DH setting and the PQ-setting.
At the same time, our solutions are tightly secure.

In 1999, Mayer and Yung have proposed a construction of group AKE from two-party
AKE [MY99]. The model that they use is comparatively weak and does not consider attacks
that reveal state information. Also, they rely on key exchange with mutual authentication
that – when used in a ring setting – requires each party to be authenticated twice. Our
solution based on UAKE, authenticates parties only once and is thus more efficient, while
featuring tight security. Similarly, the work presented in [ABGS07] considers a compiler from
AKE to GAKE. Again, the security model is weaker than ours and does not allow to reveal
state information in the GAKE. As in [MY99] the compiler requires the computationally
more complex notion of AKE whereas we solely require UAKE.

UAKE protocols and their security notions were previously studied in [DF17] and [MTC13],
where the former proposes a 2-round forward-deniable and forward-secure UAKE from
KEMs that is very similar to ours and the latter focuses on universal composability (UC)
security. Further, [IY22] studies anonymity of UAKE. The main focus of these works is to
study UAKE protocols themselves, whereas we use UAKE as a building block for GAKE.
Hence, our security notion is tailored to be as weak as possible to enable our transformation,
which makes it presumably weaker than (or incomparable to) the ones given in these works.

We mention that our notion of security covers key compromise impersonation (KCI)
security for GAKE as introduced by [GBG09]. Whereas [GBG09] can be thought of as an
analogue of the security notion introduced in [Kra05], our notion rather generalizes the
stronger notion of [LLM07].

Finally, we remark that GAKE is generally related to Group Continous Key Agreement,
a notion that has gained much interest [ACJM20,CCG+18,ACDT20,KPPW+21] in the last
years. More formally, the authors of [BDG+22] provide initial results showing that weakly-
secure variants of these primitives are indeed equivalent. We believe that this relationship
will become much clearer in the future where we expect GAKE to be an essential primitive
used in the setup phase of CGKA protocols to establish key material for the first time. It
is thus very helpful that our protocol provides security even in case the attacker obtains
secret state information. This seems helpful in CGKA constructions to achieve the intricate
notions of post-compromise security that CGKA protocols try to guarantee in a provably
secure way.

2 Preliminaries

For a positive integer N , let [N] := {1, . . . , N}. For a set S , let |S | be the cardinality of
S ; moreover, s ← S denotes that s is sampled uniformly at random from S . We use the
abbreviation JBK to represent the bit set to 1 when the boolean statement B is true, and 0
otherwise.

By y ← A(x), we denote that on input x ∈ X , the probabilistic algorithm A returns
y ∈ Y . Otherwise, by y := A(x), we denote that on input x, the deterministic algorithm
A returns y. By AO, we denote that the algorithm A has access to oracle O. We say that
probabilistic algorithm A has min-entropy µ if for all outputs y′ ∈ Y we have Pr[y = y′ : y ←
A(x)] ≤ 2−µ.

Following [Sho04], we use code-based games. An adversary is a probabilistic polynomial
time algorithm. Let G be a game, for an adversary A, GA ⇒ 1 denotes that the output of
game G running with adversary A is 1. All the games that will be introduced later have two
fixed oracles, Initialize and Finalize, which can be queried at most once, as the first and
last query respectively. The output of the game is the output of the Finalize query.

6

3 Unilateral Authenticated Key Exchange

We will first define unilateral authenticated key exchange (UAKE), which is a two-party
protocol where only one party authenticates to the other. We will only focus on two-message
protocols (but note that the syntax can be extended trivially).
Syntax. A two-message unilateral authenticated key exchange UAKE := (Setup, KeyGen,
Beg, DerR, DerB) consist of five polynomial-time algorithms:

– par ← Setup(1κ) : The probabilistic setup algorithm Setup takes as input the security
parameter κ in unary and returns global system parameters par that implicitly define
message space T , the public key space PK, the secret key space SK and the key space
K.

– (pk, sk) ← KeyGen(par) : The probabilistic key generation algorithm KeyGen takes as
input the parameters par and returns a public key pk ∈ PK and a secret key sk ∈ SK.

– (M1, st)← Beg(pk) : The probabilistic initial algorithm Beg takes as input a public key
pk and returns a message M1 ∈ T and a state st.

– (M2, K)← DerR(sk, M1) : The probabilistic derivation for the responder algorithm DerR
takes as input a secret key sk and a message M1 and returns a message M2 ∈ T and a
key K ∈ K.

– K := DerB(pk, M2, st) : The deterministic derivation for the initiator algorithm DerB
takes as input a secret key pk, a message M2 and a state st and returns a key K ∈ K.

Note that only the party I save a state information, even if only the party R has long-term
keys. Then, R can derive immediately the session key K after receiving the message of I ,
cf. also Figure 3 below.

I R (pk, sk)

(M1, st)← Beg(pk)

(M2, K)← DerR(sk, M1)

K := DerB(pk, M2, st)

M1

M2

st

Fig. 3: Syntax of a two-message unilateral key exchange protocol.

Definition 1 (Correctness of UAKE). We say that UAKE is ρ-correct, if for any par←
Setup(1κ) we have:

Pr

K = K ′

∣∣∣∣∣∣∣∣
(pk, sk)← KeyGen(par),
(M1, st)← Beg(pk),
(M2, K)← DerR(sk, M1),
K ′ := DerB(pk, M2, st)

 ≥ ρ ,

and the probability is over the random coins consumed by the algorithms of UAKE.

Now we introduce the definition of min-entropy for UAKE. This is extremely useful for the
theorems we will introduce.

Definition 2 (Min-Entropy of UAKE). We say that UAKE has min-entropy µ if:
– It has key min-entropy µ′ ≥ µ: for any pk′ ∈ PK we have Pr[pk = pk′ : (pk, sk) ←

KeyGen(par)] ≤ 2−µ′ for some par.
– It has min-entropy µ′′ ≥ µ of Beg: for any M ′

1 ∈ T we have Pr[M1 = M ′
1 : (M1, st) ←

Beg(pk)] ≤ 2−µ′′ for some pk ∈ PK.
– It has min-entropy µ′′′ ≥ µ of DerR: for any M ′

2 ∈ T we have Pr[M2 = M ′
2 : (M2, K)←

DerR(sk, M1)] ≤ 2−µ′′′ for some sk ∈ SK and M1 ∈ T .

7

3.1 Security for UAKE

We consider N parties P1, . . . , PN (for an easier notation sometimes we use n to refer to
Pn) with long-term key pairs (pkn, skn), n ∈ [N]. An interaction between two parties is
called session, and to each session are associated an identification number sID and variables
defined on sID.

– ini[sID] ∈ [N] denotes the initiator of the session.
– res[sID] ∈ [N] denotes the responder of the session.
– type[sID] ∈ {“In”, “Re”} denotes if the initiator or the responder computes the session

key.
– I [sID] denotes the message sent by the initiator.
– R[sID] denotes the message sent by the responder.
– state[sID] denotes the state.
– sKey[sID] denotes the session key. In case a party does not accept, this variable will be

set to rej.
Moreover, we use the following boolean values to store which queries the adversary made.

– corr[n] denotes if long-term secret key of party Pn has been given to the adversary.
– revState[sID] denotes if the state has been given to the adversary.
– peerCorr[sID] denotes if the peer of the session is corrupted and its long-term key has

already been given to the adversary at the time the session key is derived.
Let us now define what it means for two sessions to be (partially) matching. As in two-party
key exchange, the notion of partially matching sessions is used to define if two parties have
communicated with each other and so revealing session secrets of the first will also reveal
secrets of the second. Partially matching sessions take into account that parties have to
accept at distinct points in time: the party responsible for sending the last message will
accept independent of whether the attacker modifies the last message on transit or not.
We will later use our general methodology and derive a definition of partially matching for
GAKE protocols that is intuitively based on a repeated application of the two-party notion.
This simplifies the exposition greatly.

Definition 3 (Partially matching session for UAKE). The session sID is partially
matched with session sID∗ if the following conditions are satisfied.
1. The sessions have the same initiator and responder, (ini[sID], res[sID]) = (ini[sID∗], res[sID∗]).
2. The messages of the initiator are identical, I [sID] = I [sID∗].
3. The types of the sessions are distinct, type[sID] ̸= type[sID∗].
4. The type of sID is “In”, type[sID] = “In”.

Definition 4 (Matching session for UAKE). Two sessions sID and sID∗ are matching
if the following conditions are satisfied.
1. The sessions have the same initiator and responder, (ini[sID], res[sID]) = (ini[sID∗], res[sID∗]).
2. The messages of the initiator are identical, I [sID] = I [sID∗].
3. The messages of the responder are identical, R[sID] = R[sID∗].
4. The type of the sessions are distinct, type[sID] ̸= type[sID∗].

OW-Security. We define security in a one-way game, where the adversary has to compute
the session key of a target session of its choice. The full game is given in Figure 4. The adver-
sary can create parties using the KeyGeneration oracle. It can send and relay messages
between the parties using oracles Beg,SDerR ,SDerB . It can reveal the state of sessions and
corrupt parties via Rev-State and Corrupt, respectively. Further, we allow the adversary
to check for session keys using oracle Check. If the session is fresh when the oracle is queried
and the key is correct, then we set a flag attFound which will also be the final output of the
game, i.e., the adversary wins whenever this flag is set.

In order to rule out trivial attacks, we use attack tables as introduced in [JKRS21] to
describe which queries the adversary is allowed to make for an attack. We give two tables, one

8

GAMES OW-UAKE-GX
Initialize
00 cnt := 0 �session counter
01 N := 0
02 attFound := 0
03 par← Setup(1κ)
04 return par

KeyGeneration
05 N ++
06 (pkN , skN)← KeyGen(par)
07 return pkN

SBeg((i, r))
08 if (i, r) ̸∈ [N]2 : return ⊥
09 cnt ++
10 sID := cnt
11 (ini[sID], res[sID]) := (i, r)
12 type[sID] := “In”
13 (M1, st)← Beg(pkr)
14 I [sID] := M1 �store initiator message
15 state[sID] := st
16 return (sID, M1)

SDerR ((i, r), M1)
17 if (i, r) ̸∈ [N]2 : return ⊥
18 cnt ++
19 sID := cnt
20 (ini[sID], res[sID]) := (i, r)
21 type[sID] := “Re”
22 (M2, K)← DerR(skr , M1)
23 I [sID] := M1
24 R[sID] := M2 �store responder message
25 sKey[sID] := K
26 return (sID, M2)

SDerB (sID, M2)
27 if state[sID] = ⊥ : return ⊥
28 if sKey[sID] ̸= ⊥ : return ⊥
29 (i, r) := (ini[sID], res[sID])
30 peerCorr[sID] := corr[r]
31 st := state[sID]
32 K := DerB(pkr , M2, st)
33 R[sID] := M2
34 sKey[sID] := K
35 return ϵ

Rev-State(sID)
36 if type[sID] ̸= “In” : return ⊥
37 revState[sID] := true
38 return state[sID]

Corrupt(n)
39 corr[n] := true
40 return skn

Check(sID, K)
41 if K = ⊥ : return ⊥
42 if attFound = 0 :
43 if sKey[sID] = K

and UValidX(sID) = true :
44 (s∗, k∗) := (sID, K)
45 attFound := 1
46 return JsKey[sID] = KK

Finalize
47 return attFound

UValidX(sID∗)
48 (i∗, r∗) := (ini[sID∗], res[sID∗])
49 M(sID∗) := {sID | (ini[sID], res[sID]) = (i∗, r∗) ∧ I [sID] = I [sID∗] ∧ R[sID] = R[sID∗]

∧ type[sID] ̸= type[sID∗]} �matching sessions
50 P(sID∗) := {sID | (ini[sID], res[sID]) = (i∗, r∗) ∧ I [sID] = I [sID∗] ∧ type[sID] = “In”

∧ type[sID] ̸= type[sID∗]} �part. match. sess.
51 AttackTable := Table 1a �by default we define PFS
52 if X = WFS then AttackTable := Table 1b �if defining WFS use other table
53 for attack ∈ AttackTable:
54 if attack = true :
55 return true
56 return false

Fig. 4: Games OW-UAKE-GX for a two-message UAKE. Adversary A has access to ora-
cles O := {Initialize,KeyGeneration,SBeg,SDerR ,SDerB ,Rev-State,Corrupt,Check,
Finalize}. Helper procedure UValidX verifies the validity of attacks against the UAKE
protocol. Attack tables are given in Table 1.

capturing perfect forward secrecy (cf. Table 1a) and the other one capturing weak forward
secrecy (cf. Table 1b) for UAKE protocols.

Each table is parameterized by an initiator i∗ and responder r∗ session. Note that only
the responder has a public key, hence we only need to consider corruptions of that party.
The initiator on the other hand holds a state, however, we do not allow the adversary to
reveal the state for any session it wants to attack. Even though this could be achieved
for some cases, we will see that it is not necessary to allow this attack for our following
transformations. Similarly, we also omit a session key reveal oracle. This way, we relax the
security definition as much as possible to allow for most efficient instantiations, while still
achieving the strongest target notion for the final group AKE protocol.

We explain Table 1a in more detail, the other table can be read in a similar way. Line
(0) captures that if a protocol has not sufficient entropy, then the protocol should not be

9

A gets (i∗, r∗) co
rr

[r
∗
]

pe
er

C
or

r[
sI

D
∗
]

ty
pe

[s
ID

∗
]

re
vS

ta
te

[s
ID

∗
]

∃s
ID
∈
M

(s
ID

∗
):

re
vS

ta
te

[s
ID

]

|M
(s

ID
∗
)|

∃s
ID
∈
P

(s
ID

∗
):

re
vS

ta
te

[s
ID

]

|P
(s

ID
∗
)|

(0) multiple partially matching sessions - - - - - - - >1
(1) (–, long-term) - - - F F 1 - -
(2) (–, long-term) - - “Re” F n/a 0 F 1
(3) (–, long-term) - F “In” F n/a 0 n/a 0

(a) Attack table for perfect forward secrecy

A gets (i∗, r∗) co
rr

[r
∗
]

pe
er

C
or

r[
sI

D
∗
]

ty
pe

[s
ID

∗
]

re
vS

ta
te

[s
ID

∗
]

∃s
ID
∈
M

(s
ID

∗
):

re
vS

ta
te

[s
ID

]

|M
(s

ID
∗
)|

∃s
ID
∈
P

(s
ID

∗
):

re
vS

ta
te

[s
ID

]

|P
(s

ID
∗
)|

(0) multiple partially matching sessions - - - - - - - >1
(1) (–, long-term) - - - F F 1 - -
(2) (–, long-term) - - “Re” F n/a 0 F 1
(3) (–, long-term) F - “In” F n/a 0 n/a 0

(b) Attack table for weak forward secrecy

Table 1: Attack tables for UAKE protocols. The difference lies in the time when the peer can
be corrupted in an actively attacked session. An attack is regarded as an AND conjunction of
variables with specified values as shown in the each line, where “–” means that this variable
can take arbitrary value, “F” means “false”, “n/a” indicates that there is no state which can
be revealed as no (partially) matching session exists.

considered secure. If this is the case, it should be possible for an adversary to create a session
that has multiple (partially) matching sessions, so whenever this happens, we consider it
a valid attack which lets the adversary win directly. Line (1) is for sessions that have a
matching session. These can be of type “In” or “Re” and in this case we allow the adversary
to reveal the responder’s long-term key, but (as explained above) we never allow to reveal
the initiator’s state. Line (2) captures partially matching sessions which are always of type
“Re”. For those, we also allow the responder to be corrupted. Line (3) captures sessions
that do not have any (partially) matching partner session. Since Table 1a looks at perfect
forward secrecy, we allow to reveal the responder’s secret key after the session key has been
computed, which is captured by variable peerCorr. We only consider sessions of type “In”
since the initiator has no long-term secrets and sessions of type “Re” can never be secure
when being actively attacked.

For completeness, we give the table for weak forward security of UAKE protocols in
Table 1b. It is very similar to Table 1a, the only difference is that the peer cannot be
corrupted at all if the adversary was active.

Definition 5. We define the game OW-UAKE-GX for X ∈ {PFS, WFS} as in Figure 4. The
advantage of an adversary A against UAKE in this game is defined as

AdvX
UAKE(A) := Pr[OW-UAKE-GA

X ⇒ 1] .

10

3.2 From WFS to PFS Secure UAKE

We construct a UAKE protocol UAKEPFS with perfect forward secrecy from a UAKE pro-
tocol UAKEWFS with weak forward secrecy and two hash functions H, Hukey. The idea is
that the session key of UAKEWFS will be used twice: to derive the UAKEPFS session key and
to compute a key confirmation hash which is sent together with M2. An illustration of the
protocol is given in Figure 5.

I R (pk, sk)

(M1, st)← Beg(pk)

(M2, K ′)← Der′
R(sk, M1)

t := H(pk, M1, M2, K ′)

K ′ := Der′
B(pk, M2, st) K := Hukey(pk, M1, M2, K ′)

if t ̸= H(pk, M1, M2, K ′) : reject

K := Hukey(pk, M1, M2, K ′)

M1

(M2, t)

st

Fig. 5: Protocol UAKEPFS = (Setup, KeyGen, Beg, Der′
R, Der′

B) constructed from UAKEWFS =
(Setup, KeyGen, Beg, DerR, DerB) and random oracles H, Hukey.

Observe that the construction does not introduce any new primitives at all. Hence, correct-
ness is preserved from the underlying UAKEWFS.

Lemma 1. If UAKEWFS has correctness ρ = 1−1/2v for some v ∈ Ω(κ) then UAKEPFS has
overwhelming correctness at least ρ.

Theorem 1 (UAKEWFS to UAKEPFS). Let UAKEWFS be (1− 1/2v)-correct and with min-
entropy µ. Let ζ be the lower bound for the dimensions of the tag space and key space. For
any adversary A against OW-UAKE-GPFS with protocol UAKEPFS, there exists an adversary
B against OW-UAKE-GWFS with protocol UAKEWFS such that

AdvPFS
UAKEPFS

(A) ≤ AdvWFS
UAKEWFS

(B) + N 2 + S2 + SqRO

2µ
+ S + q2

RO + qCh

2ζ
+ 2S

2v ,

where N is the number of queries that A and B make to the key generation oracle, S is the
number of sessions that A and B create, and qRO and qCh are the number of random oracle
and check queries that A makes. Further, the running time of B is about that of A.

We give the full proof in Appendix A and we want to give a brief intuition here. It is indeed
very similar to the proof for AKE in [PRZ24], adapted to the UAKE case. For this, note
that the only difference between the weak and perfect forward security is that in the latter
the adversary A is allowed to query corrupt after the session is completed even if there is no
matching session. We will show that due to the key confirmation tag, A can never complete
a session for which the peer was not corrupted. More specifically, A has to forge a valid tag
t. For this, it has to compute the underlying UAKE key and query it to the random oracle.
Hence, we can construct a reduction which extracts the key and wins game UAKEWFS.

4 Group Authenticated Key Exchange

We define group authenticated key exchange (GAKE), which is an N -party protocol, with
N > 2, where all parties authenticate to each other. We consider three-round broadcast
protocols where each round corresponds to a message broadcast. The execution is exemplified
in Figure 6.

11

Pi (pki , ski) Pi

(mi , st)← Begin(ski , {pkj}j∈Pi)

(m̂i , st)← Respond(ski , st,M)

(m̄i , st)← Final(ski , st,M̂)

K := Derive(ski , st,M̄)

(i, mi)

Mi = {(j, mj)}j∈Pi

(i, m̂i)

M̂i = {(j, m̂j)}j∈Pi

(i, m̄i)

M̄i = {(j, m̄j)}j∈Pi

Fig. 6: Execution of the GAKE algorithms in a protocol run.

We indicate with P = {P1, . . . , PN} the set of all potential members. Before the first run
of the protocol, each party Pn ∈ P runs the algorithm KeyGen to get their own long-term
public and secret keys (pkn, skn).

Our GAKE protocol allows all parties in a group P′ ⊆ P to establish a common secret
group key. For a party Pn, we define Pn := P′ \ {Pn} the set of the peers from the point of
view of Pn. The following provides a detailed explanation of how our GAKE protocol works
and offers proper syntax.
Syntax. A group authenticated key exchange protocol GAKE := (Setup, KeyGen, Begin,
Respond, Final, Derive) consists of six polynomial-time algorithms:

– par ← Setup(1κ) : The probabilistic setup algorithm Setup takes as input the security
parameter κ in unary and returns global system parameters par that implicitly define
message space T , the public key space PK, the secret key space SK and the key space
K.

– (pk, sk) ← KeyGen(par) : The probabilistic key generation algorithm KeyGen takes as
input the parameters par and returns a public key pk ∈ PK and a secret key sk ∈ SK.

– (m, st) ← Begin(sk, {pkj}j∈P) : The probabilistic first round algorithm Begin takes as
input a secret key sk and a set of public keys {pkj}j∈P of the peers P ⊂ N and returns
a message m ∈ T and a state st.

– (m̂, st)← Respond(sk, st,M) : The probabilistic second round algorithm Respond takes a
secret key sk, a state st, and a setM of extended messagesM = {(i, m)}. Each extended
message is a pair consisting of an index i ∈ N and a message m ∈ T . The algorithm
returns a message m̂ ∈ T and an updated state st.

– (m̄, st) ← Final(sk, st,M̂) : The probabilistic third round algorithm Final takes a secret
key sk, a state st, and a set of extended messages M̂ = {(i, m̂)} with index i ∈ N and
message m̂ ∈ T , and returns a message m̄ ∈ T and an updated state st.

– K := Derive(sk, st,M̄) : The deterministic derivation algorithm Derive takes a secret key
sk, a state st and a set of extended messages M̄ = {(i, m̄)} with index i ∈ N and m̄ ∈ T ,
and returns a group key K ∈ K.

Definition 6 (Correctness GAKE). Given N parties, we say that GAKE is ρ-correct,
if for any par← Setup(1κ) we have:

Pr

K1 = · · · = KN

∣∣∣∣∣∣∣∣∣∣
∀i ∈ [N] : (pki , ski)← KeyGen(par),
(mi , sti)← Begin(ski , {pkj}j∈[N]\{i}),
(m̂i , sti)← Respond(ski , sti ,Mi),
(m̄i , sti)← Final(ski , sti ,M̂i),
Ki := Derive(ski , sti ,M̄i)

 ≥ ρ ,

where Mi = {(j, mj)}j∈[N]\{i}, M̂i = {(j, m̂j)}j∈[N]\{i}, and M̄i = {(j, m̄j)}j∈[N]\{i} and
the probability is over the random coins consumed by the algorithms of GAKE.

12

To each new run of the group key protocol we assign a unique identification number sID
and variables which are defined relative to sID. We call such a run a session.

– holder[sID] ∈ [N] denotes the holder of the session.
– peers[sID] ⊆ [N] denotes the peers of the session.
– I [sID], R[sID], F [sID] denotes the extended message sent by the holder in the first, second

and third round respectively.
– M[sID],M̂[sID],M̄[sID] denotes the extended messages received by the holder in the

first, second and third round respectively.
– state[sID] denotes the state.
– gKey[sID] denotes the group key.
– stage[sID] ∈ {2, 3, 4, 5} is used to model that the algorithms of each session are executed

in a specific order.

Moreover, we use the following boolean values to store which queries the adversary made.
– corr[n] denotes if long-term secret key of party Pn has been given to the adversary.
– revealed[sID] denotes if the group key has been given to the adversary.
– revState[sID] denotes if the state has been given to the adversary.
– peersCorr[sID] denotes if one of the peers is corrupted and its long-term key has already

been given to the adversary at the time the group key is derived.

Let us now define what it means for two sessions to be partially matching for GAKE proto-
cols. This follows the same motivation as in the definition for the two-party case.

Definition 7 (Partially matching session). Two sessions sID and sID∗ are partially
matching if the following conditions are satisfied.
1. The sessions have distinct holders, holder[sID] ̸= holder[sID∗].
2. The extended messages in the first round are identical, I [sID] ∪ M[sID] = I [sID∗] ∪
M[sID∗].

3. The extended messages in the second round are identical, R[sID] ∪ M̂[sID] = R[sID∗] ∪
M̂[sID∗].

Definition 8 (Matching session). Two sessions sID and sID∗ are matching if they are
partially matching and additionally, we have:
4. The extended messages in the third round are identical, F [sID] ∪ M̄[sID] = F [sID∗] ∪
M̄[sID∗].

Security Notion. We give the full description of the security game in Figure 7. In contrast
to the UAKE game, this game models key indistinguishability. The interfaces are however
very similar. We allow the adversary to create parties via KeyGeneration. It can create
groups and send messages to its members via oracles SessionB,SessionR,SessionF,Der.
Here, we not only allow to reveal the state and long-term keys of parties, but also session
keys. Security is captured by the Test oracle which can be queried multiple times. All
queries are answered with the same bit b.

Similar to UAKE, we use an attack table to describe valid attacks. Here, we only define
the stronger notion of perfect forward secrecy in Table 2 since this is our target notion. One
can define weak forward secrecy by modifying the table similar to the UAKE notions. Intu-
itively, we aim for the strongest notion possible where the adversary is allowed to query either
the long-term key or the secret state of any party in the group, even if the corresponding
session of any group member will later be queried to Test.

We now describe Table 2 in more detail. As for UAKE, we let the adversary win directly
if the protocol does not have sufficient entropy. Further, we iterate over all peers of a session
to detect trivial attacks. More specifically, we look at the holder of the session and then at
each group member individually. Depending on whether this group member has the same
view as the holder, which we determine by the checking whether they have a (partially)
matching session, we allow the adversary to reveal long-term keys or states.

13

GAMES GAKE-GPFS,b
Initialize
00 cnt1 := 0 �session counter
01 N := 0
02 S := ∅ �set of test sessions
03 par← Setup(1κ)
04 return par

KeyGeneration(par)
05 N ++
06 (pkN , skN)← KeyGen(par)
07 return pkN

SessionB(i,Pi)
08 if Pi ̸⊆ [N] : return ⊥ �subset of known pks
09 if i /∈ [N] : return ⊥ �key material exists
10 if i ∈ Pi : return ⊥ �all public keys distinct
11 cnt1 ++
12 sID := cnt1
13 holder[sID] := i
14 peers[sID] := Pi
15 (mi , st)← Begin(ski , {pkj}j∈Pi)
16 I [sID] := {(i, mi)} �store first extended message
17 state[sID] := st
18 stage[sID] := 2
19 return (sID, mi)

SessionR(sID,M)
20 parse {(j, mj)}j∈Pi :=M
21 if stage[sID] ̸= 2 : return ⊥ �session not created
22 if |M| ̸= |peers[sID]| : return ⊥ �correct no. msgs.
23 if {j | ∃mj s. t. (j, mj) ∈M} ≠ peers[sID] : return ⊥

�all partners have sent messages
24 (i,Pi) := (holder[sID1], peers[sID1])
25 peersCorr[sID] :=

∨
j∈Pi

corr[j]
26 M[sID] :=M
27 (m̂i , st)← Respond(ski , state[sID],M)
28 R[sID] := {(i, m̂i)} �store second extended message
29 state[sID] := st
30 stage[sID] := 3
31 return (sID, m̂i)

Reveal(sID)
32 revealed[sID] := true
33 return gKey[sID]

SessionF(sID,M̂)
34 parse {(j, m̂j)}j∈Pi := M̂
35 if stage[sID] ̸= 3 : return ⊥
36 if |M̂| ̸= |peers[sID]| : return ⊥
37 if {j | ∃m̂j s. t. (j, m̂j) ∈ M̂} ̸= peers[sID] : return ⊥
38 (i,Pi) := (holder[sID1], peers[sID1])
39 peersCorr[sID] :=

∨
j∈Pi

corr[j]
40 M̂[sID] := M̂
41 (m̄i , st)← Final(ski , state[sID],M̂)
42 F [sID] := {(i, m̄i)} �store third extended message
43 state[sID] := st
44 stage[sID] := 4
45 return (sID, m̄i)

Der(sID,M̄)
46 parse {(j, m̄j)}j∈Pi := M̄
47 if stage[sID] ̸= 4 : return ⊥
48 if |M̄| ̸= |peers[sID]| : return ⊥
49 if {j | ∃m̄j s. t. (j, m̄j) ∈ M̄} ̸= peers[sID] : return ⊥
50 if gKey[sID] ̸= ⊥ : return ⊥ �key already computed
51 (i,Pi) := (holder[sID1], peers[sID1])
52 peersCorr[sID] :=

∨
j∈Pi

corr[j]
53 M̄[sID] := M̄
54 K := Derive(ski , state[sID],M̄)
55 gKey[sID] := K
56 stage[sID] := 5
57 return ϵ

Rev-State(sID)
58 revState[sID] := true
59 return state[sID]

Corrupt(n)
60 corr[n] := true
61 return skn

Test(sID)
62 if sID ∈ S : return ⊥
63 if gKey[sID] = ⊥ : return ⊥
64 S := S ∪ {sID}
65 K∗

0 := gKey[sID]
66 K∗

1 ← K
67 return K∗

b

Finalize(b′)
68 for sID∗ ∈ S : �multiple test sessions
69 for P ∈ peers[sID∗] :
70 if GValidPFS(sID∗, P) = false :
71 return 0 �no valid attack
72 return b′

GValidPFS(sID∗, P)
73 i∗ := holder[sID∗]
74 M(sID∗, P) := {sID | holder[sID] = P ∧ I [sID] ∪M[sID] = I [sID∗] ∪M[sID∗]

∧R[sID] ∪ M̂[sID] = R[sID∗] ∪ M̂[sID∗] ∧ F [sID] ∪ M̄[sID] = F [sID∗] ∪ M̄[sID∗]}
75 P(sID∗, P) := {sID | holder[sID] = P ∧ I [sID] ∪M[sID] = I [sID∗] ∪M[sID∗] �part. match. sess. to P

∧R[sID] ∪ M̂[sID] = R[sID∗] ∪ M̂[sID∗]}
76 if revealed[sID∗] or (∃sID ∈M(sID∗, P) : revealed[sID] = true) �session or partner revealed

or ∃sID ∈M(sID∗, P) s. t. sID ∈ S : �Test was asked for two partnered sessions
77 return false
78 for attack ∈ Table 2
79 if attack = true :
80 return true
81 return false

Fig. 7: Games GAKE-GPFS,b for GAKE, where b ∈ {0, 1}. Adversary A has access to or-
acles O := {Initialize,KeyGeneration,SessionB,SessionR,SessionF,Der,Reveal,
Rev-State,Corrupt,Test,Finalize}. Helper procedure GValidPFS captures perfect
forward secrecy and verifies the validity of attacks against the GAKE protocol. If there
exists any test session which is not valid, the game will return 0.

14

A gets (holder, P) co
rr

[i∗
]

co
rr

[P
]

pe
er

sC
or

r[
sI

D
∗
]

re
vS

ta
te

[s
ID

∗
]

∃s
ID
∈
M

(s
ID

∗
,P

):
re

vS
ta

te
[s

ID
]

|M
(s

ID
∗
,P

)|

∃s
ID
∈
P

(s
ID

∗
,P

):
re

vS
ta

te
[s

ID
]

|P
(s

ID
∗
,P

)|

(0) multiple partially matching sessions - - - - - - - >1
(1) (long-term, long-term) - - - F F 1 - -
(2) (state, state) F F - - - 1 - -
(3) (long-term, state) - F - F - 1 - -
(4) (state, long-term) F - - - F 1 - -
(5) (long-term, long-term) - - F F n/a 0 F 1
(6) (state, state) F F - - n/a 0 - 1
(7) (long-term, state) - F - F n/a 0 - 1
(8) (state, long-term) F - F - n/a 0 F 1
(9) (long-term, long-term) - - F F n/a 0 n/a 0
(10) (state, state) F F - - n/a 0 n/a 0

Table 2: Attack table describing valid attacks for perfect forward secrecy. An attack is
regarded as an AND conjunction of variables with specified values as shown in the each
line, where “–” means that this variable can take arbitrary value, “F” means “false”, “n/a”
indicates that the result is trivially “false” because of the definition of (partially) matching
sessions.

– Attacks (1)-(4) deal with matching sessions, where we essentially capture all combina-
tions of reveal queries.

– Attacks (5)-(8) capture partially matching sessions which are the same as (1)-(4), except
that we need to look at the state of those sessions in set P.

– Attacks (9)-(10) look at sessions where the peer does not hold a session with the same
view (hence, the adversary actively modified communication). Here, we need to be more
restrictive since the adversary can pick some of the states itself, in which case we cannot
allow it to also reveal the long-term key.

Definition 9. We define the game GAKE-GPFS,b for b ∈ {0, 1} as in Figure 7. The advantage
of an adversary A against GAKE in this game is defined as

AdvPFS
GAKE(A) :=

∣∣∣Pr[GAKE-GA
PFS,1 ⇒ 1]− Pr[GAKE-GA

PFS,0 ⇒ 1]
∣∣∣ .

5 GAKE from UAKE

We construct a GAKE protocol from a UAKE protocol as shown in Figure 8. Each party will
run the UAKE protocol twice to generate two fresh symmetric keys. While doing this, each
party uses the first UAKE run to authenticate itself to the predecessor (acting as responder
in the UAKE), and the other to authenticate its successor (acting as initiator). In the second
phase, each party will encrypt the key that it shares with its predecessor to its successor. In
this way, shared keys will only be made available to parties that have been authenticated.
In the final step, each party will step-wisely compute all the pairwisely shared keys and use
them to derive the final group key.

To protect critical information from the attacker, we will encrypt the state information
with the long-term key. The state information consists of all the information that needs to be
pertained between rounds for the the protocol to work properly. To simplify, we will in our
description encrypt all state information. Indeed some of the state information of sessions

15

can be derived by the attacker publicly. Encrypting the entire state information allows us
to abstract and more generically describe the mechanisms we use.

Remark 1. One may view the state encryption as a weaker variant of the NAXOS trick
[LLM07] that is sufficient to capture state attacks that reveal the information that needs to
be stored between rounds. In contrast to long-term secrets, this information may be more
easily accessible (and may not be securely erased from memory). This definition of state
attacks is weaker since it cannot model compromise or manipulation of randomness. However,
when considering tightness, the latter is also much harder to achieve. For example, when
using the NAXOS trick, the reduction must be able to output “valid-looking” randomness
for all sessions since it does not know which ones will be tested.

We will rely on perfect forward secrecy of UAKE to achieve perfect forward secrecy of GAKE,
hence we refer to the protocols as UAKEPFS and GAKEPFS, respectively. We will later explain
why the same implication does not seem to directly hold for weak forward secrecy.

5.1 Correctness

It can be shown that the final construction has overwhelming correctness if the underlying
UAKE has overwhelming correctness.

Lemma 2. Consider the construction in Figure 8. If UAKEPFS has overwhelming correctness
ρ = 1 − 1/2v for some v ∈ Ω(κ) and the attacker makes q queries overall, then GAKEPFS
has overwhelming correctness at least 1− q/2v.

Proof. Assume UAKEPFS has overwhelming correctness ρ = 1 − 1/2v for some v ∈ Ω(κ).
First, observe that by setup this is the only source of non-perfect correctness in the entire
protocol construction. Also observe that if UAKEPFS has no correctness errors at all, then we
will not have any correctness error in our GAKEPFS construction as well. So we only have to
analyse the influence of UAKEPFS on the overall correctness. Now, since a single application of
UAKEPFS has overwhelmingly high correctness ρ, a q-time application of UAKEPFS will result
in a correctness of at least (1−1/2v)q. This can be lower bounded via (1−1/2v)q ≥ 1−q/2v

for some arbitrary polynomial q = q(κ) due the Bernoulli’s inequality, which shows that the
resulting correctness is still overwhelming. ⊓⊔

5.2 Security

We now prove the security of our construction. Informally, if UAKE has perfect forward
secrecy, then the resulting GAKE also has perfect forward secrecy. This is captured in the
following theorem.

Theorem 2 (UAKE to GAKE). For any adversary A against GAKE-GPFS,b with protocol
GAKEPFS with N parties that establish at most S sessions and issues at most q queries to
the oracles, there exists an adversary B against OW-UAKE-GPFS of a protocol UAKEPFS with
min-entropy µ and correctness (1− 1/2v), such that

AdvPFS
GAKEPFS

(A) ≤ AdvPFS
UAKEPFS

(B) + SqRS + NqC

2κ
+

SqHukey

2τ
+

SqHtag

2τ

+
SqHgkey

|KGAKEPFS |
+ N 2 + S2

2µ
+ N 2 + 3S2

2κ
+ q2

RO
2ζ

+ q
2v ,

where all hash functions are modeled as random oracles and the running time of B is about
that of A.

16

Setup(1κ)
00 par← SetupUAKE(1κ)
01 return par

KeyGen(par)
02 (pkUAKE, skUAKE)← KeyGenUAKE(par)
03 k ← {0, 1}κ

04 return (pk, sk) := (pkUAKE, (skUAKE, k))

Begin(ski , pki , {pkj}j∈Pi)
05 compute the bijection π() with π([|Pi |+ 1]) = Pi ∪ {i}

s.t. PK′ := (pk′
1, . . . , pk′

|Pi |+1) := (pkπ(1), . . . , pkπ(|Pi |+1))
is lexicographically ordered

06 h := Hpk(PK′)
07 (M1,prd[i,π], stUAKE,prd[i,π])← Beg(pkprd[i,π])
08 mi := M1,prd[i,π]
09 sti := (pkprd[i,π], mi , h, prd[i, π], scc[i, π]), stUAKE,prd[i,π])
10 IV ← {0, 1}κ

11 w := Hst(IV , ki)⊕ sti
12 st′

i := (IV , w)
13 return (mi , st′

i)

Respond(ski , st′
i ,Mi)

14 parse {(j, mj)}j∈Pi :=Mi
15 parse (IV , w) := st′

i
16 sti := Hst(IV , ki)⊕ w
17 parse (pkprd[i,π], mi , h, prd[i, π], scc[i, π], stUAKE,prd[i,π]) := sti
18 M′

i := ((1, m′
1), . . . , (|Pi |+ 1, m′

|Pi |+1))
:= ((π(1), mπ(1)), . . . , (π(|Pi |+ 1), mπ(|Pi |+1)))

19 ĥ := Hctxt(M′
i , h)

20 (M2,i , KUAKE,i)← DerR(skUAKE,i , mscc[i,π])
21 m̂i := M2,i
22 K ′

UAKE,i := Hprkey(KUAKE,i , m̂i , ĥ)
23 ŝti := (pkprd[i,π], K ′

UAKE,i , m̂i , ĥ, prd[i, π], scc[i, π], stUAKE,prd[i,π])
24 ˆIV ← {0, 1}κ

25 ŵ := Hŝt(ˆIV , ki)⊕ ŝti
26 ŝt′

i := (ˆIV , ŵ)
27 return (m̂i , ŝt′

i)

Final(ski , ŝt′
i ,M̂i)

28 parse {(j, m̂j)}j∈Pi := M̂i
29 parse (ˆIV , ŵ) := ŝt′

i
30 ŝti := Hŝt(ˆIV , ki)⊕ ŵ
31 parse (pkprd[i,π], K ′

UAKE,i , m̂i , ĥ, prd[i, π], scc[i, π], stUAKE,prd[i,π])
:= ŝti

32 M̂′
i := ((1, m̂′

1), . . . , (|Pi |+ 1, m̂′
|Pi |+1))

:= ((π(1), m̂π(1)), . . . , (π(|Pi |+ 1), m̂π(|Pi |+1)))
33 KUAKE,prd[i,π] := DerB(pkprd[i,π], m̂prd[i,π], stUAKE,prd[i,π])
34 K ′

UAKE,prd[i,π] := Hprkey(KUAKE,prd[i,π], m̂prd[i,π], ĥ)
35 Ki,scc[i,π] := Hukey(K ′

UAKE,i ,M̂′
i)

36 Kprd[i,π],i := Hukey(K ′
UAKE,prd[i,π],M̂′

i)
37 m̄i := Htag(Kprd[i,π],i)⊕Ki,scc[i,π]
38 s̄ti := (Kprd[i,π],i , Ki,scc[i,π], m̄i , prd[i, π], scc[i, π])
39 ¯IV ← {0, 1}κ

40 w̄ := Hs̄t(¯IV , ki)⊕ s̄ti
41 s̄t′

i := (¯IV , w̄)
42 return (m̄i , s̄t′

i)

Derive(ski , s̄t′
i ,M̄i)

43 parse {(j, m̄j)}j∈Pi := M̄i
44 parse (¯IV , w̄) := s̄t′

i
45 s̄ti := Hs̄t(¯IV , ki)⊕ w̄
46 parse (Kprd[i,π],i , Ki,scc[i,π], m̄i , prd[i, π], scc[i, π]) := s̄ti
47 j := scc[i, π]
48 repeat
49 Kj,scc[j,π] := Htag(Kprd[j,π],j)⊕ m̄j
50 j := scc[j, π]
51 until j = i
52 M̄′

i := ((1, m̄′
1), . . . , (|Pi |+ 1, m̄′

|Pi |+1))
:= ((π(1), m̄π(1)), . . . , (π(|Pi |+ 1), m̄π(|Pi |+1)))

53 K̄ := (Kπ(1),π(2), . . . , Kπ(|P|+1),π(1))
54 K := Hgkey(K̄ ,M̄′

i)
55 return K

Fig. 8: Generic construction of GAKEPFS from UAKEPFS = (SetupUAKE, KeyGenUAKE, Beg,
DerR, DerB).

Let us first sketch the proof. We proceed in a series of games. In the first steps, we
make sure that all outputs of the sessions are distinct by relying on the min-entropy of the
UAKE. Next, we exclude collisions in the random oracles. Finally, we assume that all UAKE
runs feature correctness. Each time this accounts only for a statistically small change in the
success probability of the attacker. Next we make the state of each stage independent of
all the initial values and secret parameters. At the same time, we ensure consistency by
adapting the random oracle used for state encryption to generate an output - on the fly -
that is used to encrypt the state. In fact, the reduction creates it such that it can successfully
appear to have encrypted the state beforehand. In this step, we essentially exploit that the
hash function in the state encryption is modeled as a random oracle. After that, we change
how the keys K ′

UAKE,i are computed and make them independent of all previously computed
values while guaranteeing consistency with all the queries of the attacker. Again, we exploit
that the underlying hash function is used as a random oracle. We now have that uKey′ is
now independent of uKey. Now we partition the space of all sessions into two categories.
1) The set of sessions that still, when tested, could amount to a subset S of valid attacks

(with respect to the predicate GValid).
2) The set of sessions for which we already have certainty, that they can never amount to

a valid attack in S .
Specifically, we will show that sessions of type 1) imply the existence of an algorithm that
breaks the underlying UAKE scheme. Put differently, the attacks in 1) will correspond
to an attacker that can compute the UAKE key in a non-trivial way. For the remaining
sessions we will next apply an argument which guarantees that the keys K ′

UAKE,prd[holder[sID],π]
and K ′

UAKE,holder[sID] are indistinguishable from random. This accounts for an additional

17

statistically small change in the success probability. As a result, we now only consider group
keys that are indistinguishable from random (with overwhelming probability).

Remark 2. One might wonder whether we can use our WFS-secure UAKE (without the
additional hash) to construct WFS-secure GAKE. However, if UAKE is only WFS-secure,
the resulting GAKE protocol does not seem to be WFS-secure. This is because the active
adversary can always compute one UAKE key, wait until all parties have sent their third
messages and recompute the second UAKE key to send its own message. This is not possible
when using UAKE with key confirmation because the adversary will not be able to authen-
ticate towards its predecessor. Hence, the predecessor will not send the third message and
prevents the above attack.

Proof (Theorem 2). Let A be an adversary against GAKE-GPFS,b with protocol GAKEPFS as
defined in Figure 8. We consider the sequence of games in Figures 9 to 11.
Game G0,b . This is the same as GAKE-GPFS,b, except for small changes. We store the un-
encrypted state in an additional variable state′[sID] and do not decrypt it explicitly. This is
only conceptual. We also implicitly exclude collisions and if a collision happens at any time in
the game, the experiment aborts. We also make sure that key pairs and messages are distinct.
Using the fact that UAKEPFS has min-entropy µ, the upper bound for key collisions is N 2/2µ

and for message collisions, it is S2/2µ. Moreover, we assume that values kn, for n ∈ [N], and
IV , ˆIV , ¯IV (at most S for each one) are distinct, and this is provided with probability at
most (N 2+3S2)/2κ. In the end, we aim for all random oracle outputs to be unique. Assuming
ζ is the lower bound for all dimensions of the random oracle outputs, collisions are excluded
with a probability of at most q2

RO/2ζ , where qRO ≤ q. All the probabilities above also follow
from the birthday bound. Finally, in this step we abort if any of the UAKE runs of the
challenger do not feature correctness. However, as analysed before this only happens with
probability q/2v.

We get ∣∣∣Pr[GAKE-GA
PFS,0 ⇒ 1]− Pr[GAKE-GA

PFS,1 ⇒ 1]
∣∣∣ ≤

∣∣Pr[GA
0,0 ⇒ 1]− Pr[GA

0,1 ⇒ 1]
∣∣ + N 2 + S2

2µ
+ q2

KG + 3S2

2κ
+ q2

RO
2ζ

+ q
2v .

Game G1,b . In games G1,b , we make the state of each stage independent of all the initial
values and secret parameters. At the same time, we ensure consistency by adapting the
random oracle Hst∗ to generate an output - on the fly - that is used to encrypt the state
(actually the reduction creates it such that it can successfully appear to have encrypted the
state beforehand). Now the initial values are computed in the Rev-State oracle and the
long-term secret values kn are computed in the Corrupt oracle. We raise flag BADIV in
line 27 (Fig. 11) and abort if the Rev-State oracle chooses an initial value IV that was
issued, together with the secret key of the corresponding holder of the session, to the Hst∗

oracle before. The probability that BADIV is raised for one specific IV is at most qRS/2κ,
where qRS indicates the number of queries issued to the Rev-State oracle and qRS ≤ q.
An union bound gives us

Pr[BADIV] ≤ SqRS

2κ
. (1)

We also raise flag BADk in line 38 (Fig. 11) and abort if, for the chosen secret value kn
computed by the Corrupt oracle, there exist an initial value IV such that both were
issued to the Hst∗ oracle before. The probability that BADk is raised for one specific kn is at
most qC /2κ, where qC indicates the number of queries issued to the Corrupt oracle and
qC ≤ q. Again, an union bound gives us

Pr[BADk] ≤ NqC

2κ
. (2)

18

GAMES G0,b -G1,b
Initialize
00 (cnt1, N ,S) := (0, 0,∅)
01 par← SetupUAKE(1κ)
02 return par

KeyGeneration
03 N ++
04 (pkUAKE,N , skUAKE,N)← KeyGenUAKE(par)
05 kN ← {0, 1}κ �G0,b
06 (pkN , skN) := (pkUAKE,N , (skUAKE,N , kN)) �G0,b
07 (pkN , skN) := (pkUAKE,N , (skUAKE,N ,⊥)) �G1,b
08 return pkN

SessionB(i,Pi)
09 if Pi ̸⊆ [N] or i /∈ [N] or i ∈ Pi : return ⊥
10 cnt1 ++
11 sID := cnt1
12 holder[sID] := i
13 peers[sID] := Pi
14 compute the bijection π() with π([|Pi |+ 1]) = Pi ∪ {i}

s.t. PK′ := (pk′
1, . . . , pk′

|Pi |+1) := (pkπ(1), . . . , pkπ(|Pi |+1))
is lexicographically ordered

15 h = Hpk(PK′)
16 (M1,prd[i,π], stUAKE,prd[i,π])← Beg(pkprd[i,π])
17 mi := M1,prd[i,π]
18 sti := (pkprd[i,π], mi , h, prd[i, π], scc[i, π], stUAKE,prd[i,π])
19 IV ← {0, 1}κ �G0,b
20 w := Hst(IV , ki)⊕ sti �G0,b
21 I [sID] := {(i, mi)}
22 state′[sID] := sti
23 state[sID] := (IV , w) �G0,b
24 state[sID] := ⋄ �G1,b
25 stage[sID] := 2
26 return (sID, mi)

SessionR(sID,M)
27 parse {(j, mj)}j∈Pi :=M
28 if stage[sID] ̸= 2 or |M| ̸= |peers[sID]| : return ⊥
29 if {j | ∃mj s. t. (j, mj) ∈M} ≠ peers[sID] : return ⊥
30 (i,Pi) := (holder[sID], peers[sID])
31 peersCorr[sID] :=

∨
j∈Pi

corr[j]
32 M[sID] :=M
33 parse (pkprd[i,π], mi , h, prd[i, π], scc[i, π], stUAKE,prd[i,π])

:= state′[sID]
34 M′

i := ((1, m′
1), . . . , (|Pi |+ 1, m′

|Pi |+1))
:= ((π(1), mπ(1)), . . . , (π(|Pi |+ 1), mπ(|Pi |+1)))

35 ĥ = Hctxt(M′
i , h)

36 (M2,i , KUAKE,i)← DerR(skUAKE,i , mscc[i,π])
37 m̂i := M2,i
38 K ′

UAKE,i := Hprkey(KUAKE,i , m̂i , ĥ)
39 ŝti := (pkprd[i,π], K ′

UAKE,i , m̂i , ĥ, prd[i, π], scc[i, π], stUAKE,prd[i,π])
40 ˆIV ← {0, 1}κ �G0,b

41 ŵ := Hŝt(ˆIV , ki)⊕ ŝti �G0,b
42 R[sID] := {(i, m̂i)}
43 state′[sID] := ŝti
44 state[sID] := (ˆIV , ŵ) �G0,b
45 state[sID] := ⋄ �G1,b
46 stage[sID] := 3
47 return (sID, m̂i)

SessionF(sID,M̂)
48 parse {(j, m̂j)}j∈Pi := M̂
49 if stage[sID] ̸= 3 or |M̂| ̸= |peers[sID]| : return ⊥
50 if {j | ∃m̂j s. t. (j, m̂j) ∈ M̂} ̸= peers[sID] : return ⊥
51 (i,Pi) := (holder[sID], peers[sID])
52 peersCorr[sID] :=

∨
j∈Pi

corr[j]
53 M̂[sID] := M̂
54 parse (pkprd[i,π], K ′

UAKE,i , m̂i , ĥ, prd[i, π], scc[i, π], stUAKE,prd[i,π])
:= state′[sID]

55 M̂′
i := ((1, m̂′

1), . . . , (|Pi |+ 1, m̂′
|Pi |+1))

:= ((π(1), m̂π(1)), . . . , (π(|Pi |+ 1), m̂π(|Pi |+1)))
56 KUAKE,prd[i,π] := DerB(pkprd[i,π], m̂prd[i,π], stUAKE,prd[i,π])
57 K ′

UAKE,prd[i,π] := Hprkey(KUAKE,prd[i,π], m̂prd[i,π], ĥ)
58 Ki,scc[i,π] := Hukey(K ′

UAKE,i ,M̂′
i)

59 Kprd[i,π],i := Hukey(K ′
UAKE,prd[i,π],M̂′

i)
60 m̄i := Htag(Kprd[i,π],i)⊕Ki,scc[i,π]
61 s̄ti := (Kprd[i,π],i , Ki,scc[i,π], m̄i , prd[i, π], scc[i, π])
62 ¯IV ← {0, 1}κ �G0,b
63 w̄ := Hs̄t(¯IV , ki)⊕ s̄ti �G0,b
64 F [sID] := {(i, m̄i)}
65 state′[sID] := s̄ti
66 state[sID] := (¯IV , w̄) �G0,b
67 state[sID] := ⋄ �G1,b
68 stage[sID] := 4
69 return (sID, m̄i)

Der(sID,M̄)
70 parse {(j, m̄j)}j∈Pi := M̄
71 if stage[sID] ̸= 4 or |M̄| ̸= |peers[sID]| : return ⊥
72 if {j | ∃m̄j s. t. (j, m̄j) ∈ M̄} ̸= peers[sID] : return ⊥
73 if gKey[sID] ̸= ⊥ : return ⊥
74 (i,Pi) := (holder[sID], peers[sID])
75 peersCorr[sID] :=

∨
j∈Pi

corr[j]
76 M̄[sID] := M̄
77 parse (Kprd[i,π],i , Ki,scc[i,π], m̄i , prd[i, π], scc[i, π]) := state′[sID]
78 j := scc[i, π]
79 repeat
80 Kj,scc[j,π] := Htag(Kprd[j,π],j)⊕ m̄j
81 j := scc[j, π]
82 until j = i
83 M̄′

i := ((1, m̄′
1), . . . , (|Pi |+ 1, m̄′

|Pi |+1))
:= ((π(1), m̄π(1)), . . . , (π(|Pi |+ 1), m̄π(|Pi |+1)))

84 K̄ := (Kπ(1),π(2), . . . , Kπ(|P|+1),π(1))
85 K := Hgkey(K̄ ,M̄′

i)
86 gKey[sID] := K
87 stage[sID] := 5
88 return ϵ

Finalize(b′)
89 for sID∗ ∈ S :
90 for P ∈ peers[sID∗] :
91 if GValidPFS(sID∗, P) = false :
92 return 0
93 return b′

Fig. 9: Games G0,b , G1,b for the proof of Theorem 2. Adversary A has access to oracles
O := {Initialize,SessionB,SessionR,SessionF,Der,Reveal,Rev-State,Corrupt,
Test, Hst∗ , Hpk, Hgkey, Hukey, Hctxt, Htag Hprkey,Finalize}, where oracles Test and Reveal
are defined as in Figure 7 and all other oracles are defined in Figure 11.

Then, from equations 1 and 2 we have

|Pr[GA
1,b ⇒ 1]− Pr[GA

0,b ⇒ 1]| ≤ SqRS + NqC

2κ
.

Game G2,b . This is a bridging step. We essentially change how the keys K ′
UAKE,i are com-

puted and make them independent of all previously computed values while guaranteeing
consistency with all the queries of the attacker. We also introduce two helper variables,
uKey and uKey′, that store the keys KUAKE,i and K ′

UAKE,i for later use if needed.

Pr[GA
2,b ⇒ 1] = Pr[GA

1,b ⇒ 1] .

19

GAME G2,b
Initialize
00 (cnt1, N ,S) := (0, 0,∅)
01 par← SetupUAKE(1κ)
02 return par

KeyGeneration
03 N ++
04 (pkUAKE,N , skUAKE,N)← KeyGenUAKE(par)
05 (pkN , skN) := (pkUAKE,N , (skUAKE,N ,⊥))
06 return pkN

SessionB(i,Pi)
07 if Pi ̸⊆ [N] or i /∈ [N] or i ∈ Pi : return ⊥
08 cnt1 ++
09 sID := cnt1
10 holder[sID] := i
11 peers[sID] := Pi
12 compute the bijection π() with π([|Pi |+ 1]) = Pi ∪ {i}

s.t. PK′ := (pk′
1, . . . , pk′

|Pi |+1) := (pkπ(1), . . . , pkπ(|Pi |+1))
is lexicographically ordered

13 h = Hpk(PK′)
14 (M1,prd[i,π], stUAKE,prd[i,π])← Beg(pkprd[i,π])
15 mi := M1,prd[i,π]
16 sti := (pkprd[i,π], mi , h, prd[i, π], scc[i, π], stUAKE,prd[i,π])
17 I [sID] := {(i, mi)}
18 state′[sID] := sti
19 state[sID] := ⋄
20 stage[sID] := 2
21 return (sID, mi)

SessionR(sID,M)
22 parse {(j, mj)}j∈Pi :=M
23 if stage[sID] ̸= 2 or |M| ̸= |peers[sID]| : return ⊥
24 if {j | ∃mj s. t. (j, mj) ∈M} ≠ peers[sID] : return ⊥
25 (i,Pi) := (holder[sID], peers[sID])
26 peersCorr[sID] :=

∨
j∈Pi

corr[j]
27 M[sID] :=M
28 parse (pkprd[i,π], mi , h, prd[i, π], scc[i, π], stUAKE,prd[i,π])

:= state′[sID]
29 M′

i := ((1, m′
1), . . . , (|Pi |+ 1, m′

|Pi |+1))
:= ((π(1), mπ(1)), . . . , (π(|Pi |+ 1), mπ(|Pi |+1)))

30 ĥ = Hctxt(M′
i , h)

31 (M2,i , KUAKE,i)← DerR(skUAKE,i , mscc[i,π])
32 m̂i := M2,i
33 K ′

UAKE,i := Hprkey(KUAKE,i , m̂i , ĥ) �G1,b

34 if Hprkey[KUAKE,i , m̂i , ĥ] = K ′ ̸= ⊥ : �G2,b
35 K ′

UAKE,i := K ′ �G2,b
36 else �G2,b
37 K ′

UAKE,i ← {0, 1}τ �G2,b

38 ŝti := (pkprd[i,π], K ′
UAKE,i , m̂i , ĥ, prd[i, π], scc[i, π], stUAKE,prd[i,π])

39 R[sID] := {(i, m̂i)}
40 state′[sID] := ŝti
41 state[sID] := ⋄
42 stage[sID] := 3
43 uKey[sID] := KUAKE,i �G2,b
44 uKey′[sID] := K ′

UAKE,i �G2,b
45 return (sID, m̂i)

SessionF(sID,M̂)
46 parse {(j, m̂j)}j∈Pi := M̂
47 if stage[sID] ̸= 3 or |M̂| ̸= |peers[sID]| : return ⊥
48 if {j | ∃m̂j s. t. (j, m̂j) ∈ M̂} ̸= peers[sID] : return ⊥
49 (i,Pi) := (holder[sID], peers[sID])
50 peersCorr[sID] :=

∨
j∈Pi

corr[j]
51 M̂[sID] := M̂
52 parse (pkprd[i,π], K ′

UAKE,i , m̂i , ĥ, prd[i, π], scc[i, π], stUAKE,prd[i,π])
:= state′[sID]

53 M̂′
i := ((1, m̂′

1), . . . , (|Pi |+ 1, m̂′
|Pi |+1))

:= ((π(1), m̂π(1)), . . . , (π(|Pi |+ 1), m̂π(|Pi |+1)))
54 KUAKE,prd[i,π] := DerB(pkprd[i,π], m̂prd[i,π], stUAKE,prd[i,π])
55 K ′

UAKE,prd[i,π] := Hprkey(KUAKE,prd[i,π], m̂prd[i,π], ĥ) �G1,b

56 if ∃sID′ s.t. holder[sID′] = prd[i, π] and ĥ[sID′] = ĥ
and K ′

UAKE,prd[holder[sID′],π] = K ′′ ̸= ⊥ : �G2,b
57 K ′

UAKE,prd[i,π] := K ′′ �G2,b

58 if Hprkey[KUAKE,prd[i,π], m̂prd[i,π], ĥ] = K ′ ̸= ⊥ : �G2,b
59 K ′

UAKE,prd[i,π] := K ′ �G2,b
60 else �G2,b
61 K ′

UAKE,prd[i,π] ← {0, 1}τ �G2,b

62 Ki,scc[i,π] := Hukey(K ′
UAKE,i ,M̂′

i)
63 Kprd[i,π],i := Hukey(K ′

UAKE,prd[i,π],M̂′
i)

64 m̄i := Htag(Kprd[i,π],i)⊕Ki,scc[i,π]
65 s̄ti := (Kprd[i,π],i , Ki,scc[i,π], m̄i , prd[i, π], scc[i, π])
66 F [sID] := {(i, m̄i)}
67 state′[sID] := s̄ti
68 state[sID] := ⋄
69 stage[sID] := 4
70 uKey[sID] := KUAKE,prd[i,π] �G2,b
71 uKey′[sID] := K ′

UAKE,prd[i,pi] �G2,b
72 return (sID, m̄i)

Der(sID,M̄)
73 parse {(j, m̄j)}j∈Pi := M̄
74 if stage[sID] ̸= 4 or |M̄| ̸= |peers[sID]| : return ⊥
75 if {j | ∃m̄j s. t. (j, m̄j) ∈ M̄} ̸= peers[sID] : return ⊥
76 if gKey[sID] ̸= ⊥ : return ⊥
77 (i,Pi) := (holder[sID], peers[sID])
78 peersCorr[sID] :=

∨
j∈Pi

corr[j]
79 M̄[sID] := M̄
80 parse (Kprd[i,π],i , Ki,scc[i,π], m̄i , prd[i, π], scc[i, π]) := state′[sID]
81 j := scc[i, π]
82 repeat
83 Kj,scc[j,π] := Htag(Kprd[j,π],j)⊕ m̄j
84 j := scc[j, π]
85 until j = i
86 M̄′

i := ((1, m̄′
1), . . . , (|Pi |+ 1, m̄′

|Pi |+1))
:= ((π(1), m̄π(1)), . . . , (π(|Pi |+ 1), m̄π(|Pi |+1)))

87 K̄ := (Kπ(1),π(2), . . . , Kπ(|P|+1),π(1))
88 K := Hgkey(K̄ ,M̄′

i)
89 gKey[sID] := K
90 stage[sID] := 5
91 return ϵ

Finalize(b′)
92 for sID∗ ∈ S :
93 for P ∈ peers[sID∗] :
94 if GValidPFS(sID∗, P) = false :
95 return 0
96 return b′

Fig. 10: Game G2,b for the proof of Theorem 2. Adversary A has access to oracles
O := {Initialize,SessionB,SessionR,SessionF,Der,Reveal,Rev-State,Corrupt,
Test, Hst∗ , Hpk, Hgkey, Hukey, Hctxt, Htag Hprkey,Finalize}, where oracles Test and Reveal
are defined as in Figure 7 and all other oracles are defined in Figure 11.

Game G3,b . In the previous game we have already changed the way uKey′ is computed. In
particular, it is now independent of uKey while the simulation is still consistent. This holds
for all sessions. Now we partition the space of all sessions into two categories.
1) The set of sessions that still, when tested, could amount to a subset S of valid attacks

(with respect to the predicate GValid).
2) The set of sessions for which we already have certainty, that they can never amount to

a valid attack in S .
Specifically, we will show that sessions of type 1) imply the existence of an algorithm that
breaks the underlying UAKE scheme. Intuitively, the attacks in 1) will correspond to an
attacker that can compute the UAKE key in a non-trivial way. Essentially, the conditions

20

require sID to be a session that has successfully computed an UAKE key in SessionR (or
SessionF) via a successive run of Beg and DerB (or DerR). Technically, in this step, we abort
if the attacker has raised flag BAD in lines 68 and 73 (Fig. 11). We now need to show that
whenever this happens, we can immediately break the security of the underlying UAKE.
The flag BAD is only set in case some preliminary conditions are fulfilled. This is the case
if there is a specific query w = (K , m, h) to the random oracle Hprkey such that:
i) the query w has never been queried before to Hprkey;
ii) there exists a session sID that has helper variable uKey – which is either KUAKE,holder[sID]

of the holder of that session (case (a)) or KUAKE,prd[holder[sID],π] of the predecessor (case
(b)) – be equal to K ;

iii) the hash of the context so far ĥ[sID] = Hctxt(Mi [sID], h[sID]) is equal to h;
iv) the message m is equal to the message mholder[sID] in case (a) and mprd[holder[sID],π] in

case (b).
Now, the flag will only be set if additionally in case (a), we have that there is a non-

trivial attack when testing sID with peer scc[holder[sID], π] and in case (b) there is a non-
trivial attack with peer prd[holder[sID], π]. All these conditions map to a specific non-trivial
attack that transfers to an underlying attack on UAKEPFS: if there is a non-trivial attack
on GAKEPFS under these conditions we have that any of the lines (0), (1), (2), or (3) in
Table 1a are fulfilled. We show this by analyzing what – under the conditions i), ii), iii),
iv) respectively – a non-trivial attack on the GAKE protocol means. Importantly, we show
that under these conditions, attacks on the GAKE protocol will always result in an attack
on the UAKE protocol.

Let us begin by considering the reduction in Figure 12 and 13. Observe that the output
distribution of the queries Initialize, KeyGeneration, SessionB, SessionR, SessionF,
Corrupt, Der, Test, Finalize and all outputs of the queries to the random oracle are
distributed like in Game 2, except for Hprkey. Thus, we need to formally show that Hprkey, and
Rev-State are distributed like in Game 2 unless the GAKE attacker breaks the underlying
UAKE security game.

Let us begin with Rev-State. The introduced changes will complete the state of the
GAKE with the state of the underlying UAKE if needed. By the modifications made in the
last games, we have ensured that in no other place the state of the underlying UAKE is
required. Also, observe that the format of the full state of the GAKE protocol means that
only the last part of it refers to the underlying UAKE. So by appropriate projections, the
state state′[sID] can give information on both the underlying UAKE state and the remaining
state of the GAKE.

Now, let us have a look at the remaining query Hprkey. It makes the underlying UAKE
decide whether there has actually been a non-trivial attack on session sID∗. To this end, it
calls the Check query of the UAKE. We will in the following detail which subset of the
attacks on the GAKE will correspond to an attack on the UAKE by comparing the attack
tables that both schemes use. The query Hprkey uses the Check query of the UAKE to
identify if the input session key is consistent with some session sdcnt1[sID] or sdcnt2[sID].
Let us begin our analysis of the conditions in the attack tables: first, we consider all GAKE
attacks that would imply an attack on the UAKE according to line (0) in Table 1a. Such
an attack happens if, in any UAKE run, there is a receiver session such that there are
multiple initiator sessions that share the first message with the receiver (partially matching
sessions). However, since we have already excluded collisions in the first message due to its
high entropy this is impossible.

Let us now consider Table 2. Consider lines (0) to (8). The lines all imply that there
are two neighbors that have matching sessions since a partially matching session in GAKE
implies a fully matching session in the underlying UAKE. Since the underlying UAKE has
high entropy, we have that the GAKE attack of line (0) can be excluded with overwhelming
probability. We remark that, for the GAKE to have partially matching sessions, two sessions
must agree on the first two messages. However, each communication partner participates in

21

Htag(K)
00 if Htag[K] = t ̸= ⊥
01 return t
02 t ← {0, 1}τ

03 if ∃sID s.t. K = Kprd[holder[sID],π],holder[sID] and
GValidPFS[sID, prd[holder[sID], π]] = true : �G5,b

04 BADT := true �G5,b
05 abort �G5,b
06 Htag[K] := t
07 return t

Hukey(K ′,M)
08 if Hukey[K ′,M] = K ̸= ⊥
09 return K
10 K ← {0, 1}τ

11 if ∃sID s.t. K ′ = uKey′[sID] and
M = M̂′

holder[sID] : �G4,b
12 if GValidPFS[sID, scc[holder[sID], π]] = true : �G4,b
13 BADU := true �G4,b
14 abort �G4,b
15 return Kholder[sID],scc[holder[sID],π] �G4,b
16 if ∃sID s.t. K ′ = uKey′[sID] and
M = M̂′

holder[sID] : �G4,b
17 if GValidPFS[sID, prd[holder[sID], π]] = true : �G4,b
18 BADU := true �G4,b
19 abort �G4,b
20 return Kprd[holder[sID],π],holder[sID] �G4,b
21 Hukey[K ′,M] := K
22 return K

Rev-State(sID)
23 revState[sID] := true
24 if state[sID] = ⋄ : �G1,b
25 IV ← {0, 1}κ �G1,b
26 if Hst∗ [IV , kholder[sID]] ̸= ⊥ : �G1,b
27 BADIV := true �G1,b
28 abort �G1,b
29 w ← {0, 1}ℓ �G1,b
30 if corr[holder[sID]] = true : �G1,b
31 Hst∗ [IV , kholder[sID]] := w ⊕ state′[sID] �G1,b
32 state[sID] := (IV , w) �G1,b
33 return state[sID]

Corrupt(n)
34 corr[n] := true
35 if kn = ⊥ : �G1,b
36 kn ← {0, 1}κ �G1,b
37 if ∃IV s. t. Hst∗ [IV , kn] ̸= ⊥ : �G1,b
38 BADk := true �G1,b
39 abort �G1,b
40 skn := (skUAKE,n , kn) �G1,b
41 return skn

Hgkey(K ′,M)
42 if Hgkey[K ′,M] = K ̸= ⊥
43 return K
44 K ← KGAKE
45 if ∃sID s.t. K ′ = K̄ [sID] and M = M̄′

holder[sID] : �G6,b
46 for P ∈ peers[sID] : �G6,b
47 if GValidPFS[sID, P] = true : �G6,b
48 BADG := true �G6,b
49 abort �G6,b
50 return gKey[sID] �G6,b
51 Hgkey[K ′,M] := K
52 return K

Hpk(PK)
53 if Hpk[PK] = h ̸= ⊥
54 return h
55 h ← {0, 1}γ

56 Hpk[PK] := h
57 return h

Hctxt(M, h′)
58 if Hctxt[M, h′] = h ̸= ⊥
59 return h
60 h ← {0, 1}γ

61 Hctxt[M, h′] := h
62 return h

Hprkey(K , m, h)
63 if Hprkey[K , m, h] = K ′ ̸= ⊥
64 return K ′

65 K ′ ← {0, 1}τ

66 if ∃sID s.t. K = uKey[sID] and m = mholder[sID]

and h = ĥ[sID] : �G2,b
67 if GValidPFS[sID, scc[holder[sID], π]] = true : �G3,b
68 BAD := true �G3,b
69 abort �G3,b
70 return uKey′[sID] �G2,b
71 if ∃sID s.t. K = uKey[sID] and m = mprd[holder[sID]]

and h = ĥ[sID] : �G2,b
72 if GValidPFS[sID, prd[holder[sID], π]] = true : �G3,b
73 BAD := true �G3,b
74 abort �G3,b
75 return uKey′[sID] �G2,b
76 Hprkey[K , m, h] := K ′

77 return K ′

Hst∗ (IV , k)
78 if Hst∗ [IV , k] = φ ̸= ⊥ :
79 return φ
80 φ← {0, 1}ℓ

81 if ∃sID, w s. t. k = kholder[sID] ∧ state[sID] = (IV , w) : �G1,b
82 φ := w ⊕ state′[sID] �G1,b
83 Hst∗ [IV , k] := φ
84 return φ

Fig. 11: Additional oracles for games G0,b -G2,b in Figure 9 and Figure 10 where Hst∗ ∈
{Hst, Hŝt, Hs̄t}.

generating one of the messages via a contribution of high entropy messages. But, due to the
previous modifications of the security game where we excluded collisions, we will not see
the same message twice. So we can consider the lines (1) to (8) in the GAKE table that
will transfer to sessions of the UAKE that have a single matching session. By definition
of non-trivial GAKE attacks, we have that for both, the tested session and the partnered
sessions, it must hold that state and long-term key will never be revealed at the same time.
Both scenarios can be simulated efficiently without immediately presenting a trivial attack
according to the UAKE definition. The PFS notion guarantees that we cover corruptions of
the long-term key. (For this, WFS would actually be sufficient at this point in the proof.)
Importantly now, albeit for non-tested sessions revealing the state of the GAKE can be
transferred to revealing states in the UAKE, now the state of the UAKE will never be
revealed.

The underlying argument is that by revealing the state of the GAKE, the attacker only
obtains the encrypted UAKE state w = Hst(IV , k) + st (or ŵ = Hŝt(ˆIV , k) + ŝt or w̄ =
Hs̄t(¯IV , k) + s̄t). Moreover, the adversary can only obtain (with overwhelming probability)
the current underlying UAKE state (st, ŝt, or s̄t) at all, by obtaining not only the long-
term key k via a Corrupt query but also the initialization vector (IV , ˆIV , or ¯IV) via a

22

Rev-State query. We emphasize that by the changes introduced in the previous games,
there is indeed no other way for the attacker to obtain the UAKE state: since it is modeled
as a random oracle, the output of Hst∗ does not reveal anything about its inputs. It is drawn
as a uniformly random output and independent of any other values. Additionally, k will
never be used for any other purpose than computing encrypted states. As it is part of the
long-term key it will never be accessible via state revealing. The initialization vectors will
likewise never be used for any other purpose besides state encryption. Moreover, they will
only be stored in the state of sessions and are not part of the long-term key.

Now let us consider the remaining lines in the GAKE table, (9) and (10). These lines
indicate no partially matching session exists for the tested session. However, since the un-
derlying UAKE protocol has only two moves, this can either transfer to the existence of a
partially matching session in the UAKE table – line (2) – or the lack of it – line (3). We
note that in both cases we can exploit the PFS property of the UAKE in case the attacker
corrupts the holder of the test session.

Now consider lines (9) and (10) more closely and let us restrict our attention to the
sub-case where in the resulting UAKE table we have partially matching conversations, i.e.
the first message has not been modified on transit. With the same arguments as before
on state encryption, the conditions in the GAKE table for both lines guarantee that the
attacker will never see the secret state of any of the sessions. This in particular holds for the
computations of each GAKE session that correspond to the computations of the responder in
the underlying UAKE protocol. So this particular sub-case of attacks on the GAKE protocol
will always transfer to an attack according to line (2).

Finally, consider the remaining sub-class of attacks that are characterised by the lack of
sessions that do not have partially matching sessions with the tested session in the underlying
UAKE, i.e. they do not share the first message. The last line of the UAKE table essentially
says that in case no oracle shares the first message with the tested oracle, then all other
oracles might as well be fully under the control of the attacker. We do not require the peer
to be corrupted and have no other requirements on the remaining oracles (since they are not
fully nor partially matching the tested oracle). Also, the two lines in the GAKE table make
sure that there is no corruption of the holder of the tested session at all. So in particular,
there is no “early” corruption where peersCorr[sID∗] is true. Due to the state encryption
this immediately guarantees that the UAKE state of the tested session is never revealed.
Thus, this sub-case transfers to the sub-case (3) of the UAKE table.

To win, the adversary must successfully guess a crucial input to the computation of
KUAKE,i or K ′

UAKE,i and thus would be able to compute these keys directly. In particular, the
attacker has generated an input to the random oracle Hprkey that constitutes a valid attack.
This now immediately reduces to the OW-UAKE-G security game.

|Pr[GA
3,b ⇒ 1]− Pr[GA

2,b ⇒ 1]| ≤ Pr[BAD] ≤ AdvPFS
UAKEPFS

(B) .

Game G4,b . We raise flag BADU in lines 13 and 18 (Fig. 11) and abort if there exists a session
sID such that a (prime) predecessor UAKE key K ′

UAKE,prd[holder[sID],π] or a (prime) successor
UAKE key K ′

UAKE,holder[sID] have been queried (in a valid attack) with the predecessor or,
respectively, the successor as peer. The probability that BADU is raised for a specific derived
key is at most qHukey /2τ , where qHukey are queries issued to random oracle Hukey and qHukey ≤ q.
An union bound, over the number of sessions, gives us

|Pr[GA
4,b ⇒ 1]− Pr[GA

3,b ⇒ 1]| ≤ Pr[BADU] ≤
SqHukey

2τ
.

Game G5,b . We raise flag BADT in line 04 (Fig. 11) and abort if there is a session sID
such that a derived predecessor key Kprd[holder[sID],π],holder[sID] is issued in a valid attack. The
probability that BADT is raised for a specific Kprd[holder[sID],π],holder[sID] is at most qHtag /2τ ,
where qHtag are queries issued to random oracle Htag and qHtag ≤ q. Again, an union bound

23

Adversary BÕ

Initialize
00 (cnt1, N ,S) := (0, 0,∅)
01 par← ˜Initialize
02 return par

KeyGeneration
03 N ++
04 pkN ← ˜KeyGeneration(par)
05 return pkN

SessionB(i,Pi)
06 if Pi ̸⊆ [N] or i /∈ [N] or i ∈ Pi : return ⊥
07 compute the bijection π() with π([|Pi |+ 1]) = Pi ∪ {i}

s.t. PK′ := (pk′
1, . . . , pk′

|Pi |+1) := (pkπ(1), . . . , pkπ(|Pi |+1))
is lexicographically ordered

08 h = Hpk(PK′)
09 cnt1 ++
10 sID := cnt1
11 (sIDUAKE,1, M̃1)← SBeg(i, prd[i, π])
12 sdcnt1[sID] := sIDUAKE,1
13 holder[sID] := i
14 peers[sID] := Pi

15 mi := M̃1
16 sti := (pkprd[i,π], mi , h, prd[i, π], scc[i, π]) �One element short
17 I [sID] := {(i, mi)}
18 state′[sID] := sti
19 state[sID] := ⋄
20 stage[sID] := 2
21 return (sID, mi)

SessionR(sID,M)
22 parse {(j, mj)}j∈Pi :=M
23 if stage[sID] ̸= 2 or |M| ̸= |peers[sID]| : return ⊥
24 if {j | ∃mj s. t. (j, mj) ∈M} ≠ peers[sID] : return ⊥
25 (i,Pi) := (holder[sID], peers[sID])
26 peersCorr[sID] :=

∨
j∈Pi

corr[j]
27 M[sID] :=M
28 parse (pkprd[i,π], mi , h, prd[i, π], scc[i, π])

:= state′[sID]
29 M′

i := ((1, m′
1), . . . , (|Pi |+ 1, m′

|Pi |+1))
:= ((π(1), mπ(1)), . . . , (π(|Pi |+ 1), mπ(|Pi |+1)))

30 ĥ = Hctxt(M′
i , h)

31 (sIDUAKE,2, M̃2)← SDerR ((scc[i, π], i), mscc[i,π])
32 sdcnt2[sID] := sIDUAKE,2

33 m̂i := M̃2
34 K ′

UAKE,i ← {0, 1}τ

35 ŝti := (pkprd[i,π], K ′
UAKE,i , m̂i , ĥ, prd[i, π], scc[i, π])

�One element short
36 R[sID] := {(i, m̂i)}
37 state′[sID] := ŝti
38 state[sID] := ⋄
39 stage[sID] := 3
40 uKey[sID] := ⊥
41 uKey′[sID] := K ′

UAKE,i
42 return (sID, m̂i)

SessionF(sID,M̂)
43 parse {(j, m̂j)}j∈Pi := M̂
44 if stage[sID] ̸= 3 or |M̂| ̸= |peers[sID]| : return ⊥
45 if {j | ∃m̂j s. t. (j, m̂j) ∈ M̂} ̸= peers[sID] : return ⊥
46 (i,Pi) := (holder[sID], peers[sID])
47 peersCorr[sID] :=

∨
j∈Pi

corr[j]
48 M̂[sID] := M̂
49 parse (pkprd[i,π], K ′

UAKE,i , m̂i , ĥ, prd[i, π], scc[i, π])
:= state′[sID]

50 M̂′
i := ((1, m̂′

1), . . . , (|Pi |+ 1, m̂′
|Pi |+1))

:= ((π(1), m̂π(1)), . . . , (π(|Pi |+ 1), m̂π(|Pi |+1)))
51 ϵ← SDerB (sdcnt1[sID], m̂prd[i,π])
52 if ∃sID′ s.t. holder[sID′] = prd[i, π] and ĥ[sID′] = ĥ

and K ′
UAKE,prd[holder[sID′],π] = K ′′ ̸= ⊥ :

53 K ′
UAKE,prd[i,π] := K ′′

54 else
55 K ′

UAKE,prd[i,π] ← {0, 1}τ

56 Ki,scc[i,π] := Hukey(K ′
UAKE,i ,M̂′

i)
57 Kprd[i,π],i := Hukey(K ′

UAKE,prd[i,π],M̂′
i)

58 m̄i := Htag(Kprd[i,π],i)⊕Ki,scc[i,π]
59 s̄ti := (Kprd[i,π],i , Ki,scc[i,π], m̄i , prd[i, π], scc[i, π])
60 F [sID] := {(i, m̄i)}
61 state′[sID] := s̄ti
62 state[sID] := ⋄
63 stage[sID] := 4
64 uKey[sID] := ⊥
65 uKey′[sID] := K ′

UAKE,prd[i,pi]
66 return (sID, m̄i)

Der(sID,M̄)
67 parse {(j, m̄j)}j∈Pi := M̄
68 if stage[sID] ̸= 4 or |M̄| ̸= |peers[sID]| : return ⊥
69 if {j | ∃m̄j s. t. (j, m̄j) ∈ M̄} ̸= peers[sID] : return ⊥
70 if gKey[sID] ̸= ⊥ : return ⊥
71 (i,Pi) := (holder[sID], peers[sID])
72 peersCorr[sID] :=

∨
j∈Pi

corr[j]
73 M̄[sID] := M̄
74 parse (Kprd[i,π],i , Ki,scc[i,π], m̄i , prd[i, π], scc[i, π]) := state′[sID]
75 j := scc[i, π]
76 repeat
77 Kj,scc[j,π] := Htag(Kprd[j,π],j)⊕ m̄j
78 j := scc[j, π]
79 until j = i
80 M̄′

i := ((1, m̄′
1), . . . , (|Pi |+ 1, m̄′

|Pi |+1))
:= ((π(1), m̄π(1)), . . . , (π(|Pi |+ 1), m̄π(|Pi |+1)))

81 K̄ := (Kπ(1),π(2), . . . , Kπ(|P|+1),π(1))
82 K := Hgkey(K̄ ,M̄′

i)
83 gKey[sID] := K
84 stage[sID] := 5
85 return ϵ

Finalize(b′)
86 for sID∗ ∈ S :
87 for P ∈ peers[sID∗] :
88 if GValidPFS(sID∗, P) = false :
89 return 0
90 return b′

Fig. 12: Adversary B against OW-UAKE-GPFS for the proof of Theorem 2. It has access to ora-
cles Õ := { ˜Initialize, ˜KeyGeneration,SBeg,SDerR ,SDerB , ˜Rev-State, ˜Corrupt,Check,

˜Finalize}. The remaining oracles are described in Figure 13.

gives us

|Pr[GA
5,b ⇒ 1]− Pr[GA

4,b ⇒ 1]| ≤ Pr[BADT] ≤
SqHtag

2τ
.

Game G6,b . We raise flag BADG in line 48 (Fig. 11) and abort if there exists a session sID
such that a sorted key K̄ is issued in a valid attack for all the peers of the session. The
probability that BADG is raised for a specific K̄ is at most qHgkey /|KGAKEPFS |, where qHgkey are
queries issued to random oracle Hgkey and qHgkey ≤ q. An union bound gives us

|Pr[GA
6,b ⇒ 1]− Pr[GA

5,b ⇒ 1]| ≤ Pr[BADG] ≤
SqHgkey

|KGAKEPFS |
.

24

Rev-State(sID)
00 revState[sID] := true
01 if state[sID] = ⋄ :
02 IV ← {0, 1}κ

03 if Hst∗ [IV , kholder[sID]] ̸= ⊥ :
04 BADIV := true
05 abort
06 w ← {0, 1}ℓ

07 if corr[holder[sID]] = true :
08 if stage[sID] ∈ 2, 3 : �extending state
09 state′[sID] = (state′[sID], ˜Rev-State(sdcnt1[sID]))
10 Hst∗ [IV , kholder[sID]] := w ⊕ state′[sID]
11 state[sID] := (IV , w)
12 return state[sID]

Corrupt(n)
13 corr[n] := true
14 if kn = ⊥ :
15 kn ← {0, 1}κ

16 if ∃IV s. t. Hst∗ [IV , kn] ̸= ⊥ :
17 BADk := true
18 abort
19 skUAKE,n ← ˜Corrupt(n)
20 skn := (skUAKE,n , kn)
21 return skn

Test(sID)
22 if sID ∈ S : return ⊥
23 if gKey[sID] = ⊥ : return ⊥
24 S := S ∪ {sID}
25 K∗

0 := gKey[sID]
26 K∗

1 ← K
27 return K∗

b

Hprkey(K , m, h)
28 if Hprkey[K , m, h] = K ′ ̸= ⊥
29 return K ′

30 K ′ ← {0, 1}τ

31 if ∃sID s.t. m = mholder[sID] and h = ĥ[sID] :
32 if Check(sdcnt1[sID], K) = true:
33 if GValidPFS[sID, scc[holder[sID], π]] = true :
34 BAD := true
35 ˜Finalize
36 abort
37 return uKey′[sID]
38 if ∃sID s.t. m = mprd[holder[sID]] and h = ĥ[sID] :
39 if Check(sdcnt2[sID], K) = true:
40 if GValidPFS[sID, prd[holder[sID], π]] = true :
41 BAD := true
42 ˜Finalize
43 abort
44 return uKey′[sID]
45 Hprkey[K , m, h] := K ′

46 return K ′

Hst∗ (IV , k)
47 if Hst∗ [IV , k] = φ ̸= ⊥ :
48 return φ
49 φ← {0, 1}ℓ

50 if ∃sID, w s. t. k = kholder[sID] ∧ state[sID] = (IV , w) :
51 φ := w ⊕ state′[sID]
52 Hst∗ [IV , k] := φ
53 return φ

Fig. 13: Additional oracles for adversary B described in Figure 12.

Now, observe that the attacker does not have any advantage in distinguishing the session
key from a random key since for all non-trivial attacks the session key is a random key by
the modifications that we made in the sequence of games.

Combining all probabilities, we obtain the bound stated in Theorem 2. ⊓⊔

6 Final GAKE Protocol

We first describe how to construct UAKE from KEMs. Then we give the final construction
which uses all transformations from KEM to GAKE.

6.1 UAKE from KEMs

We introduce the syntax for key encapsulation mechanisms and provide the definitions of
correctness and min-entropy. The latter is extremely useful for the initial step of the security
proof of the UAKE based on KEMs.
Syntax. A key encapsulation mechanism KEM := (Setup, KeyGen, Encaps, Decaps) consist
of four polynomial-time algorithms:

– par ← Setup(1κ) : The probabilistic setup algorithm Setup takes as input the security
parameter κ in unary and returns global system parameters par that implicitly define
ciphertext space C, the public key space PK, the secret key space SK and the key space
K.

– (pk, sk) ← KeyGen(par) : The probabilistic key generation algorithm KeyGen takes as
input the parameters par and returns a public key pk ∈ PK and a secret key sk ∈ SK.

– (ct, K) ← Encaps(pk) : The probabilistic encapsulation algorithm Encaps takes as input
a public key pk and returns a ciphertext ct ∈ C and a key K ∈ K.

25

GAME OW-PCVA-CR
Initialize
00 (N ,LEnc,LCorr,LRev) := (0,∅,∅,∅)
01 par← Setup
02 return par

KeyGeneration(par)
03 N ++
04 (pkN , skN)← KeyGen(par)
05 return pkN

Enc(i)
06 (c, K)← Encaps(pki)
07 LEnc := LEnc ∪ {(i, c, K)}
08 return c

Corr(i)
09 LCorr := LCorr ∪ {i}
10 return ski

Rev(i, c)
11 if ∃K s. t. (i, c, K) ∈ LEnc :
12 LRev := LRev ∪ {(i, c)}
13 return K
14 return ⊥

Cvo(i, c′)
15 if ∃K ′ s. t. (i, c′, K ′) ∈ LEnc : return ⊥
16 K ′ := Decaps(ski , c′)
17 return JK ′ ∈ KK

Check(i, c, K)
18 return JDecaps(ski , c) = KK

Finalize(i∗, c∗, K∗)
19 if (i∗, c∗, K∗) /∈ LEnc : return 0
20 if i∗ ∈ LCorr : return 0
21 if (i∗, c∗) ∈ LRev : return 0
22 return 1

Fig. 14: Game OW-PCVA-CR for KEM. Adversary A has access to oracles O := {Initialize,
KeyGeneration,Enc,Cvo,Rev,Check,Corr,Finalize}.

– K := Decaps(sk, ct) : The deterministic decapsulation algorithm Decaps takes as input a
secret key sk and a ciphertext ct and returns a key K ∈ K.

Definition 10 (Correctness KEM). We say that KEM is ρ-correct, if for any par ←
Setup(1κ) we have:

Pr[K = K ′ | (pk, sk)← KeyGen(par), (ct, K)← Encaps(pk), K ′ = Decaps(sk, ct)] ≥ ρ.

Definition 11 (Min-Entropy of KEM). We say that KEM has min-entropy µ if:
– It has key min-entropy µ′ ≥ µ: for all pk′ ∈ PK we have Pr[pk = pk′ : (pk, sk) ←

KeyGen(par)] ≤ 2−µ′ for some par.
– It has ciphertext min-entropy µ′′ ≥ µ: for all ct′ ∈ C we have Pr[ct = ct′ : (ct, K) ←

Encaps(pk)] ≤ 2−µ′′ for some pk ∈ PK.

Security Notion for KEM. We recall the security notion recently used to analyze two-
party key exchange with key confirmation from [PRZ24], which is a multi-user version of
one-way security with corruptions under plaintext checking and ciphertext validity attacks.

Definition 12. The game OW-PCVA-CR is defined as in Figure 14. The advantage of an
adversary A against KEM in this game is defined as

AdvOW-PCVA-CR
KEM (A) := Pr[OW-PCVA-CRA ⇒ 1] .

UAKE construction. We construct a UAKE protocol from two KEMs as shown in Fig-
ure 15. Let us first prove correctness.

Lemma 3. Consider the construction in Figure 8. If both KEMe and KEML have over-
whelming correctness of at least ρ = 1 − 1/2v for some v ∈ Ω(κ) and the attacker makes q
queries overall, then UAKEWFS has overwhelming correctness at least 1− q/2v−2.

Proof. We give a crude bound. The proof closely follows the proof of the main construction.
Assume each of the two KEM schemes has at least overwhelming correctness ρ = 1 − 1/2v

for some v ∈ Ω(κ). Observe that by setup the KEMs are the only source of incorrectness
in the entire protocol construction. Next, observe that if we condition the KEMs to have no
correctness error at all, then we will not have a correctness error in UAKEWFS as well. So we
only have to analyse the influence of the KEMs on the overall correctness. Now, since a single
application of a single KEM has overwhelmingly high correctness ρ the probability for both

26

Setup(1κ)
00 pare ← Setupe(1κ)
01 parL ← SetupL(1κ)
02 return par := (pare, parL)

KeyGen(par)
03 (pkL, skL)← KeyGenL(parL)
04 return (pk, sk) := (pkL, skL)

Beg(pk)
05 (pke, ske)← KeyGene(pare)
06 (cL, KL)← EncapsL(pkL)
07 M1 := (pke, cL)
08 st := (ske, KL)
09 return (M1, st)

DerR(sk, M1)
10 parse (pke, cL) := M1
11 (ce, K e)← Encapse(pke)
12 KL := DecapsL(skL, cL)
13 K := (K e, KL)
14 M2 := ce

15 return (M2, K)

DerB(pk, M2, st)
16 parse (ske, KL) := st
17 K e := Decapse(ske, M2)
18 K := (K e, KL)
19 return K

Fig. 15: Generic construction of UAKEWFS from KEMe and KEML.

KEMs to simultaneously have no correction error is lower bounded by ρ′ = ρ2 ≥ 1− 1/2v−2.
A q-time call of the KEMs will thus result in a correctness of (1 − 1/2v−2)q. This can be
lower bounded via (1 − 1/2v−2)q ≥ (1 − q/2v−2) for some arbitrary polynomial q = q(κ)
which shows that the resulting correctness is still overwhelming. ⊓⊔

Theorem 3 (KEM to UAKEWFS). For any adversary A against OW-UAKE-GWFS with
protocol UAKEWFS with N parties that establish at most S sessions and issues at most q
queries to the oracles, there exist adversaries B and C against OW-PCVA-CR security of
KEMe and KEML with respectively min-entropy µe and µL and correctness (1 − 1/2v) for
both, such that

AdvWFS
UAKEWFS

(A) ≤ AdvOW-PCVA-CR
KEMe (B) + AdvOW-PCVA-CR

KEML (C) + 2S2

2µe + N 2 + S2

2µL + q
2v−2 ,

where the running time of B and C is about that of A.

We provide the proof in Appendix B.

6.2 Putting Things Together

The protocol given in Figure 16 is our final GAKE protocol based on KEMs. The idea is
the same showed previously in Figure 1. It is a multi-party three-round protocol. We collect
the bounds from Theorems 1 to 3 in the following corollary.

Corollary 1 (KEMs to GAKE). For any adversary A against GAKE-GPFS with protocol
GAKEPFS with N parties that establish at most S sessions and issues at most q queries to the
oracles, there exist adversaries B and C against OW-PCVA-CR security of KEMe and KEML

with respectively min-entropy µe and µL and correctness (1− 1/2v) for both, such that

AdvPFS
GAKEPFS

(A) ≤ AdvOW-PCVA-CR
KEMe (B) + AdvOW-PCVA-CR

KEML (C)

+ SqRS + NqC + N 2 + 3S2

2κ
+ 3SqRO + 2q2

RO + S + qCh

2ζ

+ 3(N 2 + S2)
2µL + 2S2 + SqRO

2µe + 5q + 2S
2v ,

where ζ is the lower bound for all dimensions of the random oracle outputs and qRO, qCh, qRS , qC
are the number of random oracle, check, reveal state and corrupt queries that A makes. Fur-
ther, the running time of B and C are about that of A.

27

Setup(1κ)
00 pare ← SetupL(1κ)
01 parL ← Setupe(1κ)
02 return par := (pare, parL)

KeyGen(par)
03 (pkL, skL)← KeyGenL(parL)
04 k ← {0, 1}κ

05 return (pk, sk) := (pkL, (skL, k))

Begin(ski , pki , {pkj}j∈Pi)
06 compute the bijection π() with π([|Pi |+ 1]) = Pi ∪ {i}

s.t. PK′ := (pk′
1, . . . , pk′

|Pi |+1) := (pkπ(1), . . . , pkπ(|Pi |+1))
is lexicographically ordered

07 h := Hpk(PK′)
08 (cL

prd[i,π], KL
prd[i,π])← EncapsL(pkL

prd[i,π])
09 (pke

i , ske
i)← KeyGene(pare)

10 mi := (pke
i , cL

prd[i,π])
11 sti := (pkL

prd[i,π], mi , h, prd[i, π], scc[i, π], ske
i , KL

prd[i,π])
12 IV ← {0, 1}κ

13 w := Hst(IV , ki)⊕ sti
14 st′

i := (IV , w)
15 return (mi , st′

i)

Respond(ski , st′
i ,Mi)

16 parse {(j, mj)}j∈Pi :=Mi
17 parse (IV , w) := st′

i
18 sti := Hst(IV , ki)⊕ w
19 parse (pkL

prd[i,π], mi , h, prd[i, π], scc[i, π], ske
i , KL

prd[i,π]) := sti
20 M′

i := ((1, m′
1), . . . , (|Pi |+ 1, m′

|Pi |+1))
:= ((π(1), mπ(1)), . . . , (π(|Pi |+ 1), mπ(|Pi |+1)))

21 ĥ = Hctxt(M′
i , h)

22 parse (pke
scc[i,π], cL

i) := mscc[i, π]
23 (ce

scc[i,π], K e
scc[i,π])← Encapse(pke

scc[i,π])
24 KL

i := Decaps(skL
i , cL

i)
25 Ki := (K e

scc[i,π], KL
i)

26 ti := H(Ki , ctxt)
27 m̂i := (ce

scc[i,π], ti)
28 K ′

i := Hprkey(Ki , m̂i , ĥ)
29 ŝti := (pkL

prd[i,π], K ′
i , m̂i , ĥ, prd[i, π], scc[i, π], ske

i , KL
prd[i,π])

30 ˆIV ← {0, 1}κ

31 ŵ := Hŝt(ˆIV , ki)⊕ ŝti
32 ŝt′

i := (ˆIV , ŵ)
33 return (m̂i , ŝt′

i)

Final(ski , ŝt′
i ,M̂i)

34 parse {(j, m̂j)}j∈Pi := M̂i
35 parse (ˆIV , ŵ) := ŝt′

i
36 ŝti := Hŝt(ˆIV , ki)⊕ ŵ
37 parse (pkL

prd[i,π], K ′
i , m̂i , ĥ, prd[i, π], scc[i, π], ske

i , KL
prd[i,π])

:= ŝti
38 M̂′

i := ((1, m̂′
1), . . . , (|Pi |+ 1, m̂′

|Pi |+1))
:= ((π(1), m̂π(1)), . . . , (π(|Pi |+ 1), m̂π(|Pi |+1)))

39 parse (ce
i , ti−1) := m̂prd[i,π]

40 K e
i := Decapse(ske

i , ce
i)

41 Kprd[i,π] := (K e
i , KL

prd[i,π])
42 K ′

prd[i,π] := Hprkey(Kprd[i,π], m̂prd[i,π], ĥ)
43 Ki,scc[i,π] := Hukey(K ′

i ,M̂′
i)

44 Kprd[i,π],i := Hukey(K ′
prd[i,π],M̂′

i)
45 m̄i := Htag(Kprd[i,π],i)⊕Ki,scc[i,π]
46 s̄ti := (Kprd[i,π],i , Ki,scc[i,π], m̄i , prd[i, π], scc[i, π])
47 ¯IV ← {0, 1}κ

48 w̄ := Hs̄t(¯IV , ki)⊕ s̄ti
49 s̄t′

i := (¯IV , w̄)
50 return (m̄i , s̄t′

i)

Derive(ski , s̄t′
i ,M̄i)

51 parse {(j, m̄j)}j∈Pi := M̄i
52 parse (¯IV , w̄) := s̄t′

i
53 s̄ti := Hs̄t(¯IV , ki)⊕ w̄
54 parse (Kprd[i,π],i , Ki,scc[i,π], m̄i , prd[i, π], scc[i, π]) := s̄ti
55 j := scc[i, π]
56 repeat
57 Kj,scc[j,π] := Htag(Kprd[j,π],j)⊕ m̄j
58 j := scc[j, π]
59 until j = i
60 M̄′

i := ((1, m̄′
1), . . . , (|Pi |+ 1, m̄′

|Pi |+1))
:= ((π(1), m̄π(1)), . . . , (π(|Pi |+ 1), m̄π(|Pi |+1)))

61 K̄ := (Kπ(1),π(2), . . . , Kπ(|P|+1),π(1))
62 K := Hgkey(K̄ ,M̄′

i , h̄)
63 return K

Fig. 16: Generic construction of GAKE from KEMe = (Setupe, KeyGene, Encapse, Decapse)
and KEML = (SetupL, KeyGenL, EncapsL, DecapsL). We use the helper function prd[i, π] :=
π((π−1(i)−2 mod (|Pi |+1))+1) and scc[i, π] := π((π−1(i) mod (|Pi |+1))+1) for a bijection
π : [|Pi |+ 1]→ Pi ∪ {i}. For an intuitive overview see also Figure 1.

Instantiations from DDH and LWE. Let us now show how we can instantiate the un-
derlying KEM with existing constructions. The first implementation is the DDH-based KEM
introduced in [JKRS21]. As shown in [PWZ23a,PRZ24] this scheme achieves OW-PCVA-CR
security. Ciphertexts consist of two group elements, whereas public keys consist of a single
group element. Overall we thus need to transfer two ciphertext and one ephemeral public
key in the UAKE protocol with WFS. The UAKE protocol with PFS adds to this a MAC
which accounts for a bitstring of size 256 bits. Finally, in the second phase, we exchange
symmetric ciphertexts of size 256 bits. In total, this accounts for 5 group elements and 2
strings of size 256 bits.

In comparison, the tightly secure protocol by [PQR22] requires to send 2 group elements
for the underlying BD protocol. They use signature schemes over each BD message for au-
thentication. Unfortunately, at the time their paper was published no efficient signature
scheme was known that fulfilled the security notion that they require in a tightly secure
way. This is why they used Schnorr signatures while providing a proof of tight security in
the generic group model. However, at the same time, the work in [FJS14] shows that Schnorr
signatures cannot provide tight security under any non-interactive security assumption. This

28

indicates that the results of [PQR22] will lose its tight security guarantees when leaving the
GGM model and reducing to non-interactive security assumptions. Based on this instantia-
tion, their protocol accounts for overall 2 group elements and 4 exponents in Zp where p is
the group order. However, the recent signature scheme in [DGJL21] can now be used as a
drop-in for their protocol to obtain a proof under the DDH assumption that does not rely on
the generic group model. This signature scheme has signatures that consist of 3 elements in
Zp. When using it in [PQR22] this accounts for 6 elements in Zp and 2 group elements. We
can now instantiate all schemes in elliptic curve groups with group element representation
of around 256 bits.

As a result, we can see that our protocol is more efficient when reducing to non-interactive
security assumptions and not relying on GGM proofs. At the same time, we stress that we
prove security in a much stronger model that allows the attacker to reveal secret states.

Our second instantiation uses the recent scheme by [PWZ23a] that is based on the
LWE assumption. It is thus secure in the PQ-setting. The construction relies on a double
encryption approach and is given in Appendix C along with an analysis that shows that its
correctness bounds are suitable for our transformation.
On Extending the Results to the QROM. Since the proof for our protocol heavily
relies on the ROM, we expect a proof in the quantum random oracle model (QROM) to
be more complicated and to not achieve as tight bounds. In the 2-party setting, the first
tightly-secure lattice-based AKE was given in the ROM [PWZ23a] which served as a basis for
follow-up works [PWZ23b,PRZ24] which improved QROM bounds. However, the latter still
have a loss linear in the number of users. We are hopeful that our protocol (without the state-
encryption trick) will be able to achieve similar bounds and that any future improvement in
the 2-party case is likely to be useful for our setting. Additionally, the currently best tightly-
secure instantiation for a KEM in the standard model [HLWG23] is “not quite practical at
the moment” due to the NIZK it requires. We therefore believe that a ROM proof is an
important first step and consider tight(er) security in the QROM (or standard model) as an
important future direction.

Acknowledgements

Emanuele Di Giandomenico and Sven Schäge were supported by the Smart Networks and
Services Joint Undertaking (SNS JU) under the European Union’s Horizon Europe research
and innovation programme in the scope of the CONFIDENTIAL6G project under Grant
Agreement 101096435. The contents of this publication are the sole responsibility of the
authors and do not in any way reflect the views of the EU. Doreen Riepel was supported in
part by Mihir Bellare’s KACST grant.

References

ABGS07. Michel Abdalla, Jens-Matthias Bohli, María Isabel González Vasco, and Rainer Stein-
wandt. (Password) authenticated key establishment: From 2-party to group. In Salil P.
Vadhan, editor, TCC 2007, volume 4392 of LNCS, pages 499–514. Springer, Berlin,
Heidelberg, February 2007.

ACDT20. Joël Alwen, Sandro Coretti, Yevgeniy Dodis, and Yiannis Tselekounis. Security anal-
ysis and improvements for the IETF MLS standard for group messaging. In Daniele
Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part I, volume 12170 of
LNCS, pages 248–277. Springer, Cham, August 2020.

ACJM20. Joël Alwen, Sandro Coretti, Daniel Jost, and Marta Mularczyk. Continuous group
key agreement with active security. In Rafael Pass and Krzysztof Pietrzak, editors,
TCC 2020, Part II, volume 12551 of LNCS, pages 261–290. Springer, Cham, November
2020.

29

ADGK19. Daniel Apon, Dana Dachman-Soled, Huijing Gong, and Jonathan Katz. Constant-
round group key exchange from the ring-LWE assumption. In Jintai Ding and Rainer
Steinwandt, editors, Post-Quantum Cryptography - 10th International Conference,
PQCrypto 2019, pages 189–205. Springer, Cham, 2019.

BD95. Mike Burmester and Yvo Desmedt. A secure and efficient conference key distribution
system (extended abstract). In Alfredo De Santis, editor, EUROCRYPT’94, volume
950 of LNCS, pages 275–286. Springer, Berlin, Heidelberg, May 1995.

BDG+22. Alexander Bienstock, Yevgeniy Dodis, Sanjam Garg, Garrison Grogan, Mohammad
Hajiabadi, and Paul Rösler. On the worst-case inefficiency of CGKA. In Eike Kiltz
and Vinod Vaikuntanathan, editors, TCC 2022, Part II, volume 13748 of LNCS, pages
213–243. Springer, Cham, November 2022.

BJLS16. Christoph Bader, Tibor Jager, Yong Li, and Sven Schäge. On the impossibility of
tight cryptographic reductions. In Marc Fischlin and Jean-Sébastien Coron, editors,
EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 273–304. Springer, Berlin,
Heidelberg, May 2016.

CC17. Katriel Cohn-Gordon and Cas Cremers. Mind the gap: Where provable security and
real-world messaging don’t quite meet. Cryptology ePrint Archive, Report 2017/982,
2017.

CCG+18. Katriel Cohn-Gordon, Cas Cremers, Luke Garratt, Jon Millican, and Kevin Milner. On
ends-to-ends encryption: Asynchronous group messaging with strong security guaran-
tees. In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors,
ACM CCS 2018, pages 1802–1819. ACM Press, October 2018.

DB05. Ratna Dutta and Rana Barua. Constant round dynamic group key agreement. In
Jianying Zhou, Javier Lopez, Robert H. Deng, and Feng Bao, editors, ISC 2005, volume
3650 of LNCS, pages 74–88. Springer, Berlin, Heidelberg, September 2005.

DF17. Yevgeniy Dodis and Dario Fiore. Unilaterally-authenticated key exchange. In Aggelos
Kiayias, editor, FC 2017, volume 10322 of LNCS, pages 542–560. Springer, Cham,
April 2017.

DGJL21. Denis Diemert, Kai Gellert, Tibor Jager, and Lin Lyu. More efficient digital signatures
with tight multi-user security. In Juan Garay, editor, PKC 2021, Part II, volume 12711
of LNCS, pages 1–31. Springer, Cham, May 2021.

DRS24. Emanuele Di Giandomenico, Doreen Riepel, and Sven Schäge. Tightly-secure group key
exchange with perfect forward secrecy. In ASIACRYPT, LNCS. Springer, Singapore,
December 2024.

FJS14. Nils Fleischhacker, Tibor Jager, and Dominique Schröder. On tight security proofs for
Schnorr signatures. In Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014,
Part I, volume 8873 of LNCS, pages 512–531. Springer, Berlin, Heidelberg, December
2014.

GBG09. M. Choudary Gorantla, Colin Boyd, and Juan Manuel González Nieto. Modeling key
compromise impersonation attacks on group key exchange protocols. In Stanislaw
Jarecki and Gene Tsudik, editors, PKC 2009, volume 5443 of LNCS, pages 105–123.
Springer, Berlin, Heidelberg, March 2009.

HJK+21. Shuai Han, Tibor Jager, Eike Kiltz, Shengli Liu, Jiaxin Pan, Doreen Riepel, and Sven
Schäge. Authenticated key exchange and signatures with tight security in the standard
model. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part IV, volume
12828 of LNCS, pages 670–700, Virtual Event, August 2021. Springer, Cham.

HKSU20. Kathrin Hövelmanns, Eike Kiltz, Sven Schäge, and Dominique Unruh. Generic au-
thenticated key exchange in the quantum random oracle model. In Aggelos Kiayias,
Markulf Kohlweiss, Petros Wallden, and Vassilis Zikas, editors, PKC 2020, Part II,
volume 12111 of LNCS, pages 389–422. Springer, Cham, May 2020.

HLWG23. Shuai Han, Shengli Liu, Zhedong Wang, and Dawu Gu. Almost tight multi-user security
under adaptive corruptions from LWE in the standard model. In Helena Handschuh
and Anna Lysyanskaya, editors, CRYPTO 2023, Part V, volume 14085 of LNCS, pages
682–715. Springer, Cham, August 2023.

IY22. Ren Ishibashi and Kazuki Yoneyama. Post-quantum anonymous one-sided authenti-
cated key exchange without random oracles. In Goichiro Hanaoka, Junji Shikata, and
Yohei Watanabe, editors, PKC 2022, Part II, volume 13178 of LNCS, pages 35–65.
Springer, Cham, March 2022.

30

JKRS21. Tibor Jager, Eike Kiltz, Doreen Riepel, and Sven Schäge. Tightly-secure authenticated
key exchange, revisited. In Anne Canteaut and François-Xavier Standaert, editors,
EUROCRYPT 2021, Part I, volume 12696 of LNCS, pages 117–146. Springer, Cham,
October 2021.

KPPW+21. Karen Klein, Guillermo Pascual-Perez, Michael Walter, Chethan Kamath, Margarita
Capretto, Miguel Cueto, Ilia Markov, Michelle Yeo, Joël Alwen, and Krzysztof
Pietrzak. Keep the dirt: Tainted TreeKEM, adaptively and actively secure contin-
uous group key agreement. In 2021 IEEE Symposium on Security and Privacy, pages
268–284. IEEE Computer Society Press, May 2021.

Kra05. Hugo Krawczyk. HMQV: A high-performance secure Diffie-Hellman protocol. In Victor
Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages 546–566. Springer, Berlin,
Heidelberg, August 2005.

LLM07. Brian A. LaMacchia, Kristin Lauter, and Anton Mityagin. Stronger security of au-
thenticated key exchange. In Willy Susilo, Joseph K. Liu, and Yi Mu, editors, ProvSec
2007, volume 4784 of LNCS, pages 1–16. Springer, Berlin, Heidelberg, November 2007.

MTC13. Ueli Maurer, Björn Tackmann, and Sandro Coretti. Key exchange with unilateral au-
thentication: Composable security definition and modular protocol design. Cryptology
ePrint Archive, Report 2013/555, 2013.

MY99. Alain J. Mayer and Moti Yung. Secure protocol transformation via “expansion”: From
two-party to groups. In Juzar Motiwalla and Gene Tsudik, editors, ACM CCS 99,
pages 83–92. ACM Press, November 1999.

PQR22. Jiaxin Pan, Chen Qian, and Magnus Ringerud. Signed (group) Diffie-Hellman key
exchange with tight security. Journal of Cryptology, 35(4):26, October 2022.

PRSS21. Bertram Poettering, Paul Rösler, Jörg Schwenk, and Douglas Stebila. SoK: Game-
based security models for group key exchange. In Kenneth G. Paterson, editor, CT-
RSA 2021, volume 12704 of LNCS, pages 148–176. Springer, Cham, May 2021.

PRZ24. Jiaxin Pan, Doreen Riepel, and Runzhi Zeng. Key exchange with tight (full) forward
secrecy via key confirmation. In Marc Joye and Gregor Leander, editors, EURO-
CRYPT 2024, Part VII, volume 14657 of LNCS, pages 59–89. Springer, Cham, May
2024.

PW22. Jiaxin Pan and Benedikt Wagner. Lattice-based signatures with tight adaptive cor-
ruptions and more. In Goichiro Hanaoka, Junji Shikata, and Yohei Watanabe, editors,
PKC 2022, Part II, volume 13178 of LNCS, pages 347–378. Springer, Cham, March
2022.

PWZ23a. Jiaxin Pan, Benedikt Wagner, and Runzhi Zeng. Lattice-based authenticated key
exchange with tight security. In Helena Handschuh and Anna Lysyanskaya, editors,
CRYPTO 2023, Part V, volume 14085 of LNCS, pages 616–647. Springer, Cham,
August 2023.

PWZ23b. Jiaxin Pan, Benedikt Wagner, and Runzhi Zeng. Tighter security for generic authen-
ticated key exchange in the QROM. In Jian Guo and Ron Steinfeld, editors, ASI-
ACRYPT 2023, Part IV, volume 14441 of LNCS, pages 401–433. Springer, Singapore,
December 2023.

Sho94. Peter W. Shor. Algorithms for quantum computation: Discrete logarithms and factor-
ing. In 35th FOCS, pages 124–134. IEEE Computer Society Press, November 1994.

Sho04. Victor Shoup. Sequences of games: a tool for taming complexity in security proofs.
Cryptology ePrint Archive, Report 2004/332, 2004.

A Proof of Theorem 1

Proof. Let A be an adversary against UAKEPFS. We consider a sequence of games G0 to G3,
as shown in Figure 17.
Game G0. This is the original OW-UAKE-GPFS game, but we also implicitly exclude colli-
sions. That is, if the same public key or message is chosen twice, the experiment aborts.
Using the fact that UAKE has min-entropy µ, the upper bound for key collisions is N 2/2µ

and for message collisions, it is S2/2µ. In the end, we also aim for random oracle outputs to
be unique. Assuming ζ is the lower bound for the dimensions of the tag space and key space,

31

GAMES G0-G3
Initialize
00 (cnt, N) := (0, 0)
01 attFound := 0
02 par← Setup(1κ)
03 return par

KeyGeneration
04 N ++
05 (pkN , skN)← KeyGen(par)
06 return pkN

Finalize
07 return attFound

SBeg((i, r))
08 if (i, r) ̸∈ [N]2 : return ⊥
09 cnt ++
10 sID := cnt
11 (ini[sID], res[sID]) := (i, r)
12 type[sID] := “In”
13 (M1, st)← Beg(pkr)
14 I [sID] := M1
15 state[sID] := st
16 return (sID, M1)

SDerR ((i, r), M1)
17 if (i, r) ̸∈ [N]2 : return ⊥
18 cnt ++
19 sID := cnt
20 (ini[sID], res[sID]) := (i, r)
21 type[sID] := “Re”
22 (M2, K ′)← DerR(skr , M1)
23 t := H(pkr , M1, M2, K ′) �G0
24 K := Hukey(pkr , M1, M2, K ′) �G0
25 if H[pkr , M1, M2, ·] ̸= ⊥

or Hukey[pkr , M1, M2, ·] ̸= ⊥ �G1-G3
26 abort �G1-G3
27 t ← {0, 1}λ, K ← K �G1-G3
28 tag[sID] := t �G1-G3
29 K ′[sID] := K ′ �G1-G3
30 ctxt[sID] := (pkr , M1, M2) �G1-G3
31 I [sID] := M1
32 R[sID] := (M2, t)
33 sKey[sID] := K
34 return (sID, (M2, t))

SDerB (sID, (M2, t))
35 if state[sID] = ⊥ : return ⊥
36 if sKey[sID] ̸= ⊥ : return ⊥
37 (i, r) := (ini[sID], res[sID])
38 peerCorr[sID] := corr[r]
39 (st, M1) := (state[sID], I [sID])
40 R[sID] := (M2, t)
41 K ′ := DerB(pkr , M2, st)
42 if t ̸= H(pkr , M1, M2, K ′) �G0
43 sKey[sID] := rej �G0
44 return ϵ �G0
45 if ∃sID′ s. t. ctxt[sID′] = (pkr , M1, M2) �G1-G3
46 if t ̸= tag[sID′]: �G1-G3
47 sKey[sID] := rej �G1-G3
48 else �G1-G3
49 sKey[sID] := sKey[sID′] �G1-G3
50 K ′[sID] := K ′[sID′] �G1-G3
51 tag[sID] := t �G1-G3
52 return ϵ �G1-G3
53 if H[pkr , M1, M2, K ′] = t �G1-G3
54 if peerCorr[sID] = false

and revState[sID] = false �G3
55 BADOW := true �G3
56 abort �G3
57 sKey[sID] := Hukey(pkr , M1, M2, K ′) �G1-G3
58 K ′[sID] := K ′ �G1-G3
59 tag[sID] := t �G1-G3
60 return ϵ �G1-G3
61 if H[pkr , M1, M2, K ′] = ⊥ �G1-G3
62 H[pkr , M1, M2, K ′]← {0, 1}λ �G1-G3
63 if t = H[pkr , M1, M2, K ′] �G1-G3
64 sKey[sID] := Hukey(pkr , M1, M2, K ′) �G1-G3
65 BADT := true �G2-G3
66 abort �G2-G3
67 return ϵ �G1-G3
68 sKey[sID] := rej �G1-G3
69 return ϵ �G1-G3

H(pk, M1, M2, K ′)
70 if H[pk, M1, M2, K ′] = t ̸= ⊥ :
71 return t
72 if ∃sID s. t. ctxt[sID] = (pk, M1, M2) �G1-G3
73 if K ′[sID] = K ′ �G1-G3
74 if UValidWFS(sID) �G3
75 BADOW := true �G3
76 abort �G3
77 return tag[sID] �G1-G3
78 t ← {0, 1}λ

79 H[pk, M1, M2, K ′] := t
80 return t

Fig. 17: Games G0-G3 for the proof of Theorem 1. A has access to oracles O := {SBeg,
SDerR ,SDerB ,Rev-State,Corrupt,Check, H, Hukey}, where Hukey is simulated as H, using
variable sKey[sID] instead. Further, oracles Rev-State,Corrupt and Check are as in
Figure 4.

collisions are excluded with a probability of at most q2
RO/2ζ , where qRO is the number of

random oracle queries. All the probabilities follow from the birthday bound. Hence, we have

AdvPFS
UAKEPFS

(A) ≤ Pr[GA
0 ⇒ 1] + N 2 + S2

2µ
+ q2

RO
2ζ

.

Game G1. Game G1 aborts when SDerR computes a message M2 and there already exists
a random oracle entry with (pkr , M1, M2, ·), where pkr is the session holder’s public key
and M1 is the message given as input to SDerR . Since UAKE has at least min-entropy µ, the
probability that the game aborts can be upper bounded by S ·qRO ·2−µ via a union bound over
all sessions. If the game does not abort, the tag and key are chosen uniformly at random and
stored in variables tag[sID] and sKey[sID]. We also store the intermediate UAKE key K ′ as

32

well as the context (pkr , M1, M2) in additional variables K ′[sID] and ctxt[sID], respectively.
These are used to simulate the random oracles and oracle SDerB correctly. The latter changes
are not noticeable to A unless a correctness error occurs. Hence, we get∣∣Pr[GA

0 ⇒ 1]− Pr[GA
1 ⇒ 1]

∣∣ ≤ SqRO

2µ
+ S

2v .

Game G2. This game raises flag BADT and aborts when the adversary guesses a tag that
is accepted by SDerB , but it has not queried the random oracle before. Such a tag will only
be accepted with small statistical probability, namely, 2−λ for each session. Hence,∣∣Pr[GA

1 ⇒ 1]− Pr[GA
2 ⇒ 1]

∣∣ ≤ S
2λ

.

Game G3. In game G3, we raise a flag BADOW when the adversary manages to forge a
tag for a valid session (which means it must have queried the correct key to H) or when it
queries Hukey on the underlying key of UAKEWFS. In those cases, the game aborts. We have∣∣Pr[GA

2 ⇒ 1]− Pr[GA
3 ⇒ 1]

∣∣ ≤ Pr[BADOW] .

To bound BADOW, we will construct a reduction B and show that

Pr[BADOW] ≤ AdvWFS
UAKEWFS

(B) + S
2v .

Our reduction B is given in Figure 18. Since B has access to almost the same interfaces as
A, oracles KeyGeneration, SBeg, SDerR , Rev-State and Corrupt can be simulated in
a straightforward way using B’s own oracles. Care needs to be taken when simulating the
initiator’s derivation oracle and the random oracles which is where B wants to extract the
solution to its UAKE game. Whenever the game G3 performs an equivalence check of the
underlying UAKE keys with the query provided by A, B uses its Check oracle. It also checks
(as in G3) whether the session in question is still valid and if both these checks succeed, then
this means that A has found the underlying UAKE key for a valid session. Hence, B directly
stops and calls its finalize oracle.

Finally, note that in G3, the adversary can only have guessed a correct session key. Since
the adversary must specify sID for each query to Check and all sessions’ contexts are
distinct, each query can only be successful with probability 1/|K|. Union bound over all
queries gives us

Pr[GA
3 ⇒ 1] ≤ qCh

|K|
,

which completes the proof. ⊓⊔

B Proof of Theorem 3

Proof. Let A be an adversary against protocol UAKEWFS. We consider the games in Fig-
ure 19.
Game G0. This is the same as OW-UAKE-GWFS, except for small changes. We implicitly
exclude collisions (if a collision happens at any time in the game, it aborts). We assume that
both ephemeral and long-term key pairs and ciphertexts are distinct. Using the fact that
KEMe and KEML have min-entropy µe and µL respectively and due the birthday bound, the
upper bound for ephemeral key collisions and for ephemeral ciphertext collisions is 2S2/2µL ,
and for long-term key collisions and for long-term ciphertext collisions is (N 2 + S2)/2µL .
Finally, in this step we abort if any of the KEM runs of the challenger do not feature
correctness. However, as stated in Lemma 3, this only happens with probability q/2v−2.

33

Adversary BÕ

Initialize
00 (cnt, N) := (0, 0)
01 par← ˜Initialize
02 return par

KeyGeneration
03 N ++
04 pkN ← ˜KeyGeneration
05 return pkN

SBeg((i, r))
06 if (i, r) ̸∈ [N]2 : return ⊥
07 (ini[sID], res[sID]) := (i, r)
08 type[sID] := “In”
09 (sID, M1)← S̃Beg(i, r)
10 I [sID] := M1
11 return (sID, M1)

SDerR ((i, r), M1)
12 if (i, r) ̸∈ [N]2 : return ⊥
13 (ini[sID], res[sID]) := (i, r)
14 type[sID] := “Re”
15 (sID, M2)← S̃DerR ((i, r), M1)
16 if H[pkr , M1, M2, ·] ̸= ⊥

or Hukey[pkr , M1, M2, ·] ̸= ⊥
17 abort
18 t ← {0, 1}λ, K ← K
19 tag[sID] := t
20 ctxt[sID] := (pkr , M1, M2)
21 I [sID] := M1
22 R[sID] := (M2, t)
23 sKey[sID] := K
24 return (sID, (M2, t))

Check(sID, K)
25 Let pk, M1, M2 be the context of sID
26 if ∃K ′ s.t. Hukey[pk, M1, M2, K ′] = K :
27 if C̃heck(sID, K ′) :
28 return 1
29 return 0

Corrupt(n)
30 skn ← ˜Corrupt(n)
31 corr[n] := true
32 return skn

SDerB (sID, (M2, t))
33 if state[sID] = ⊥ : return ⊥
34 if sKey[sID] ̸= ⊥ : return ⊥
35 (i, r) := (ini[sID], res[sID])
36 peerCorr[sID] := corr[r]
37 M1 := I [sID]
38 R[sID] := (M2, t)
39 S̃DerB (sID, M2)
40 if ∃sID′ s. t. ctxt[sID′] = (pkr , M1, M2) :
41 if t ̸= tag[sID′]:
42 sKey[sID] := rej
43 else
44 sKey[sID] := sKey[sID′]
45 tag[sID] := t
46 return ϵ
47 if ∃K ′ s. t. H[pkr , M1, M2, K ′] = t :
48 if C̃heck(sID, K ′) :
49 if peerCorr[sID] = false

and revState[sID] = false: ˜Finalize
50 tag[sID] := t
51 sKey[sID] := Hukey(pkr , M1, M2, K ′)
52 return ϵ
53 sKey[sID] := rej
54 return ϵ

Rev-State(sID)
55 if type[sID] ̸= “In” : return ⊥
56 revState[sID] := true
57 st← ˜Rev-State(sID)
58 return st

Hukey(pk, M1, M2, K ′)
59 if Hukey[pk, M1, M2, K ′] = t ̸= ⊥ :
60 return t
61 if ∃sID s. t. ctxt[sID] = (pk, M1, M2) :
62 if C̃heck(sID, K ′) :
63 if UValidWFS(sID) : ˜Finalize(sID, K ′) :
64 return tag[sID]
65 t ← {0, 1}λ

66 Hukey[pk, M1, M2, K ′] := t
67 return t

Finalize
68 return ⊥

Fig. 18: Adversary B for the proof of Theorem 1. A has access to oracles O := {Initialize,
SBeg,SDerR ,SDerB ,Rev-State,Corrupt,Check, H, Hukey,Finalize}, where Hukey is simu-
lated as H.

We get

∣∣∣Pr[OW-UAKE-GA
WFS ⇒ 1]− Pr[GA

0 ⇒ 1]
∣∣∣ ≤ 2S2

2µe + N 2 + S2

2µL + q
2v−2 .

Game G1. Now, we raise flag BADe in line 55 (Fig. 19) if a session sID and a session key
K are issued to the check oracle Check with a valid attack. That means, if there exists a
(partially) matching session sID′ to session sID and if sID is an initiator type “In” session
and its state is not revealed, or if sID is a responder type “Re” session and the state of sID′

is not revealed, then we abort. To upper bound the probability that BADe is raised, we
design an adversary B (Fig. 20) against the OW-PCVA-CR of the underlying KEMe. We have
to track the new ephemeral public keys since they are related to initiator type sessions, so
we introduce a new counter m that we store in the new variable kgcnt. Then, the adversary
simulate every ephemeral outputs properly and if in the check oracle Check it issued a
session sID and a session key K such that there exists a (partially) matching session, the

34

GAMES G0-G2
Initialize
00 (cnt, N , attFound) := (0, 0, 0)
01 parL ← SetupL(1κ)
02 pare ← Setupe(1κ)
03 par := (parL, pare)
04 return par

KeyGeneration(par)
05 N ++
06 (pkL

N , skL
N)← KeyGenL(parL)

07 (pkN , skN) := (pkL
N , skL

N)
08 return pkN

SBeg((i, r))
09 if (i, r) ̸∈ [N]2 : return ⊥
10 cnt ++
11 sID := cnt
12 (ini[sID], res[sID]) := (i, r)
13 type[sID] := “In”
14 (pke, ske)← KeyGene(pare)
15 (cL, KL)← EncapsL(pkL

r)
16 M1 := (pke, cL)
17 st := (ske, KL)
18 I [sID] := M1
19 state[sID] := st
20 return (sID, M1)

SDerR ((i, r), M1)
21 if (i, r) ̸∈ [N]2 : return ⊥
22 cnt ++
23 sID := cnt
24 (ini[sID], res[sID]) := (i, r)
25 type[sID] := “Re”
26 parse (pke, cL) := M1
27 (ce, K e)← Encapse(pke)
28 KL := DecapsL(skL, cL)
29 K := (K e, KL)
30 M2 := ce

31 I [sID] := M1
32 R[sID] := M2
33 sKey[sID] := K
34 return (sID, M2)

SDerB (sID, M2)
35 if state[sID] = ⊥ : return ⊥
36 if sKey[sID] ̸= ⊥ : return ⊥
37 (i, r) := (ini[sID], res[sID])
38 peerCorr[sID] := corr[r]
39 parse ce := M2
40 parse (ske, KL) := state[sID]
41 K e := Decapse(ske, ce)
42 K := (K e, KL)
43 R[sID] := M2
44 sKey[sID] := K
45 return ϵ

Rev-State(sID)
46 if type[sID] ̸= “In” : return ⊥
47 revState[sID] := true
48 return state[sID]

Corrupt(n)
49 corr[n] := true
50 return skn

Check(sID, K)
51 if K = ⊥ : return ⊥
52 if attFound = 0 and JsKey[sID] = KK = true :
53 if ∃sID′ s. t. sID′ ∈M(sID) or sID′ ∈ P(sID) :
54 if type[sID] = “In” and revState[sID] = false

or type[sID] = “Re” and revState[sID′] = false :
55 BADe := true �G1-G2
56 abort �G1-G2
57 attFound := 1
58 else
59 if type[sID] = “In” and corr[res[sID]] = false :
60 BADL := true �G2
61 abort �G2
62 attFound := 1
63 return JsKey[sID] = KK

Finalize
64 return attFound

Fig. 19: Games G0-G2 for the proof of Theorem 3. Adversary A has access to oracles O :=
{Initialize,SBeg,SDerR ,SDerB ,Rev-State,Corrupt,Check,Finalize}.

state is not revealed and the underlying ephemeral check oracle C̃heck output true (which
is exactly the bad event BADe), then it won since it found a valid attack.

We get ∣∣Pr[GA
1 ⇒ 1]− Pr[GA

0 ⇒ 1]
∣∣ ≤ Pr[BADe] ≤ AdvOW-PCVA-CR

KEMe (B) .

Game G2. This game is similar to the previous one. We raise flag BADL in line 60 (Fig.
19) if a session sID and a session key K are issued to the check oracle Check with a valid
attack. That means, if there exists a (partially) matching session sID′ to an initiator type “In”
session sID and its responder is not corrupted, then we abort. To upper bound the probability
that BADL is raised, we design an adversary C (Fig. 21) against the OW-PCVA-CR of the
underlying KEML. As the previous game, the adversary simulate every long-term outputs
properly and if in the check oracle Check it issued a session sID and a session key K such
that there exists a (partially) matching session, the session sID is an initiator type session,
the responder is not corrupted and the underlying long-term check oracle C̃heck output
true (which is exactly the bad event BADL), then it won since it found a valid attack.

We get ∣∣Pr[GA
2 ⇒ 1]− Pr[GA

1 ⇒ 1]
∣∣ ≤ Pr[BADL] ≤ AdvOW-PCVA-CR

KEML (C) .

35

Adversary BÕ

Initialize
00 (cnt, N , attFound) := (0, 0, 0)
01 m := 0
02 parL ← SetupL(1κ)
03 pare ← ˜Initialize
04 par := (parL, pare)
05 return par

KeyGeneration
06 N ++
07 (pkL

N , skL
N)← KeyGenL(parL)

08 (pkN , skN) := (pkL
N , skL

N)
09 return pkN

SBeg((i, r))
10 if (i, r) ̸∈ [N]2 : return ⊥
11 cnt ++
12 sID := cnt
13 (ini[sID], res[sID]) := (i, r)
14 type[sID] := “In”
15 m ++
16 kgcnt[sID] := m
17 pke ← ˜KeyGeneration
18 (cL, KL)← EncapsL(pkL

r)
19 M1 := (pke, cL)
20 st := (ske, KL)
21 I [sID] := M1
22 state[sID] := st
23 return (sID, M1)

SDerR ((i, r), M1)
24 if (i, r) ̸∈ [N]2 : return ⊥
25 cnt ++
26 sID := cnt
27 (ini[sID], res[sID]) := (i, r)
28 type[sID] := “Re”
29 parse (pke, cL) := M1
30 KL := DecapsL(skL, cL)
31 if ∃(sID′, m) s.t. kgcnt[sID′] = m :
32 ce ← Enc(m)
33 else
34 (ce, K e)← Encapse(pke)
35 K := (·, KL)
36 M2 := ce

37 I [sID] := M1
38 R[sID] := M2
39 sKey[sID] := K
40 return (sID, M2)

SDerB (sID, M2)
41 if state[sID] = ⊥ : return ⊥
42 if sKey[sID] ̸= ⊥ : return ⊥
43 (i, r) := (ini[sID], res[sID])
44 peerCorr[sID] := corr[r]
45 parse ce := M2
46 parse (ske, KL) := state[sID]
47 if ce ̸= R[sID] and ∃(sID′, m) s.t. kgcnt[sID′] = m :
48 Cvo(m, ce)
49 K := (·, KL)
50 R[sID] := M2
51 sKey[sID] := K
52 return ϵ

Rev-State(sID)
53 if type[sID] ̸= “In” : return ⊥
54 revState[sID] := true
55 ske ← Corr(kgcnt[sID])
56 state[sID] := (ske, ·)
57 return state[sID]

Corrupt(n)
58 corr[n] := true
59 return skn

Check(sID, K)
60 if K = ⊥ : return ⊥
61 parse (K e, KL) := K
62 if attFound = 0 and JsKey[sID] = KK = true :
63 if ∃sID′ s. t. sID′ ∈M(sID) or sID′ ∈ P(sID) :
64 if (type[sID] = “In” and revState[sID] = false

and true← C̃heck(kgcnt[sID], R[sID′], K e))
65 ˜Finalize(kgcnt[sID], R[sID′], K e)

else if (type[sID] = “Re” and revState[sID′] = false
and true← C̃heck(kgcnt[sID′], R[sID], K e)) :

66 ˜Finalize(kgcnt[sID′], R[sID], K e)
67 return JsKey[sID] = KK

Finalize
68 return ⊥

Fig. 20: Adversary B against OW-PCVA-CR for KEMe for the proof of Theorem 3. It
has access to oracles Õ := { ˜Initialize, ˜KeyGeneration,Enc,Dec,Corr,Rev, C̃heck,

˜Finalize}.

Finally, it is easy to see that attFound cannot be ever set to 1. Then,

Pr[GA
2 ⇒ 1] = 0 .

Combining all the probabilities, we finally obtain the bound stated in Theorem 3. ⊓⊔

C The KEMLWE

We introduce the KEMLWE described in [PWZ23a]. The KEMLWE is a tightly OW-ChCCA
secure under the LWE assumption key encapsulation mechanism. The scheme is described
in Figure 22. It utilizes algorithms SampleD and Round:

36

Adversary CÕ
Initialize
00 (cnt, N , attFound) := (0, 0, 0)
01 parL ← ˜Initialize
02 pare ← Setupe(1κ)
03 par := (parL, pare)
04 return par

KeyGeneration
05 N ++
06 (pkL

N , skL
N)← ˜KeyGeneration

07 (pkN , skN) := (pkL
N , skL

N)
08 return pkN

SBeg((i, r))
09 if (i, r) ̸∈ [N]2 : return ⊥
10 cnt ++
11 sID := cnt
12 (ini[sID], res[sID]) := (i, r)
13 type[sID] := “In”
14 (pke, ske)← KeyGene(pare)
15 cL ← Enc(r)
16 M1 := (pke, cL)
17 st := (ske, ·)
18 I [sID] := M1
19 state[sID] := st
20 return (sID, M1)

SDerR ((i, r), M1)
21 if (i, r) ̸∈ [N]2 : return ⊥
22 cnt ++
23 sID := cnt
24 (ini[sID], res[sID]) := (i, r)
25 type[sID] := “Re”
26 parse (pke, cL) := M1
27 (ce, K e)← Encapse(pke)
28 if ∄sID′ s.t. type[sID′] = “In” and I [sID′] = cL :
29 Cvo(res[sID′], cL)
30 K := (K e, ·)
31 M2 := ce

32 I [sID] := M1
33 R[sID] := M2
34 sKey[sID] := K
35 return (sID, M2)

SDerB (sID, M2)
36 if state[sID] = ⊥ : return ⊥
37 if sKey[sID] ̸= ⊥ : return ⊥
38 (i, r) := (ini[sID], res[sID])
39 peerCorr[sID] := corr[r]
40 parse ce := M2
41 parse (ske, KL) := state[sID]
42 K e := Decapse(ske, ce)
43 K := (K e, KL)
44 R[sID] := M2
45 sKey[sID] := K
46 return ϵ

Rev-State(sID)
47 if type[sID] ̸= “In” : return ⊥
48 revState[sID] := true
49 (pke, cL) := I [sID]
50 KL ← Rev(res[sID], cL)
51 state[sID] := (·, KL)
52 return state[sID]

Corrupt(n)
53 corr[n] := true
54 skL ← Corr(n)
55 skn := skL

n
56 return skn

Check(sID, K)
57 if K = ⊥ : return ⊥
58 parse (K e, KL) := K
59 (pke, cL) := I [sID]
60 if attFound = 0 and JsKey[sID] = KK = true :
61 if ∃sID′ s. t. sID′ ∈M(sID) or sID′ ∈ P(sID) :
62 if type[sID] = “In” and revState[sID] = false

or type[sID] = “Re” and revState[sID′] = false :
63 abort
64 else
65 if type[sID] = “In” and corr[res[sID]] = false

and true← C̃heck(res[sID], cL, KL) :
66 ˜Finalize(res[sID], cL, KL)
67 return JsKey[sID] = KK

Finalize
68 return ⊥

Fig. 21: Adversary C against OW-PCVA-CR for KEML for the proof of Theorem 3. It
has access to oracles Õ := { ˜Initialize, ˜KeyGeneration,Enc,Dec,Corr,Rev, C̃heck,

˜Finalize}.

– e← SampleD(m, α′; ρ) : Sample Gaussian e← Dm
Z,α′ using random coins ρ ∈ {0, 1}κ.

– h ← Round(t) : Do component-wise rounding of t ∈ Zκ
q to get h ∈ {0, 1}κ, i.e. for all

i ∈ [κ], hi = 0 is closer to 0 than to ⌊q/2⌉, and hi = 1 otherwise.
The scheme is parameterized by matrix dimensions n, m, k ∈ N, a modulus q ∈ N, and
(Gaussian) widths α, α′, γ, η > 0.

KEMLWE exhibits deterministic ciphertext derivation. The strategy follows a classical
double encryption approach where one of the secret keys is always known to the reduc-
tion. In this way, the reduction does not have to rely on any non-tight guessing arguments.
Accordingly, the ciphertext is split into two parts, each potentially recoverable using a cor-
responding secret key. The use of LWE is employed to modify the setup parameters, all
other modifications account only for statistically small changes in the success probability
of the attacker. Overall yields a tight proof. This strategy, although feasible for providing
a corruption oracle, becomes more intricate when simulating a decapsulation oracle. The
challenge is to ensure that the simulated decapsulation does not reveal crucial information.
This is addressed by deterministically deriving ciphertext parts from the encapsulated key
and implementing deterministic functions for consistency checks. Another challenge arises
from the reveal oracle, which requires ensuring consistency in ciphertexts once revealed. This

37

Setup(1κ)

00 return par := A $←− Zn×m
q

KeyGen(par)

01 b $←− {0, 1}, Zb ← Dm×κ
Z,α

02 Ub := AZb, U1−b
$←− Zn×κ

q
03 pk := (U0, U1), sk := (Zb, b)
04 return (pk, sk)

Encaps(pk)

05 R $←− {0, 1}κ, (s, ρ, h0, h1) := G(R)
06 e := SampleD(m, α′; ρ)
07 x := Ats + e
08 ĥ0 := Ut

0s + h0⌊q/2⌉ ∈ Zκ
q

09 ĥ1 := Ut
1s + h1⌊q/2⌉ ∈ Zκ

q

10 K̂0 := H(x, ĥ0, h0), C0 := K̂0 ⊕ R
11 K̂1 := H(x, ĥ1, h1), C1 := K̂1 ⊕ R
12 ct := (C0, C1, x, ĥ0, ĥ1)
13 return (ct, K := R)

Decaps(sk, ct)
14 let ct = (C0, C1, x, ĥ0, ĥ1)
15 let sk = (Zb, b)
16 h′

b := Round(ĥb − Zt
bx) ∈ {0, 1}κ

17 K̂b := H(x, ĥb, h′
b)

18 R := Cb ⊕ K̂b
19 (s, ρ, h0, h1) := G(R)
20 e := SampleD(m, α′; ρ)
21 ĥ′

1−b := Ut
1−bs + h1−b⌊q/2⌉

22 K̂1−b := H(x, ĥ′
1−b, h1−b)

23 if x ̸= Ats + e : return ⊥
24 if K̂1−b ⊕ R ̸= C1−b : return ⊥
25 if h′

b ̸= hb : return ⊥
26 if ĥ′

1−b ̸= ĥ1−b : return ⊥
27 return K := R

Fig. 22: The key encapsulation mechanism KEMLWE = (Setup, KeyGen, Encaps, Decaps),
where H : {0, 1}∗ → {0, 1}κ and G : {0, 1}∗ → [−η, η]n × {0, 1}κ × {0, 1}κ × {0, 1}κ are
random oracles.

is achieved through careful utilization of a random oracle to make inconsistent ciphertexts
consistent again.

Re-Evaluating Correctness. For our purpose, it is important to analyse the correctness of
the scheme in more detail. The correctness is given by the authors as 1− ϵ where ϵ = ϵ(κ) is
a negligible function. However, for our results to hold, we need that ϵ is statistically small.
Luckily, the scheme does actually guarantee that ϵ is indeed statistically small. To see this
observe that in their proof of correctness, the authors need to bound two quantities in size
∥zt

b,i∥ and ∥e∥, where zt
b,i is column i of Zb for i ∈ [κ], to conclude that their product is

bounded accordingly. As the authors already observe (Appendix B of [PWZ23a]) the bounds
on these two values hold unconditionally except for statistically low probability 2−w+1 where
w = O(κ log(κ)). However, this analysis only holds for a single i. The probability that
these bounds are met for all i ∈ [κ] can be bounded by (1 − 2−w+1)κ ≥ (1 − κ/2w+1) by
Bernouilli’s inequality. Since w = O(κ log(κ)), the probability (1 − κ/2w+1) is statistically
close to uniform again.

Security. For completeness we also provide the main theorem of [PWZ23a] who prove secu-
rity w.r.t. their security notion OW-ChCCA security. Since OW-PCVA-CR is a relaxation of
that notion [PRZ24], we get the following lemma.

Lemma 4 (LWE to KEM [PWZ23a,PRZ24]). For any adversary A against OW-PCVA-CR
with protocol KEM, there exists an adversary B against LWEk,m,q,DZ,γ

assumption, such that

AdvOW-PCVA-CR
KEMLWE

(A) ≤ 6nAdvLWEk,m,q,DZ,γ (B) + negl(κ) ,

where the running time of B is about that of A.

38

	 Tightly-Secure Group Key Exchange with Perfect Forward Secrecy
	Introduction
	Contribution
	Security Model
	Related Work

	Preliminaries
	Unilateral Authenticated Key Exchange
	Security for UAKE
	From WFS to PFS Secure UAKE

	Group Authenticated Key Exchange
	GAKE from UAKE
	Correctness
	Security

	Final GAKE Protocol
	UAKE from KEMs
	Putting Things Together

	Proof of thm:wfs-to-pfs
	Proof of thm:kem-to-uake
	The KEM_LWE

