
Fully Encrypted Machine Learning Protocol using

Functional Encryption

Seungwan Hong1, Jiseung Kim2, Changmin Lee3, and Minhye Seo4

1 Columbia University / New York Genome Center
shong@nygenome.org

2 Jeonbuk National University
jiseungkim@jbnu.ac.kr

3 Korea Institute for Advanced Study
changminlee@kias.re.kr

4 Duksung Women’s University
mhseo@duksung.ac.kr

Abstract. As privacy concerns have arisen in machine learning, privacy-preserving machine
learning (PPML) has received significant attention. Fully homomorphic encryption (FHE)
and secure multi-party computation (MPC) are representative building blocks for PPML.
However, in PPML protocols based on FHE and MPC, interaction between the client (who
provides encrypted input data) and the evaluator (who performs the computation) is es-
sential to obtain the final result in plaintext. Functional encryption (FE) is a promising
candidate to remove this constraint, but existing FE-based PPML protocols are restricted
to evaluating only simple ML models, such as one-layer neural networks, or they support
partially encrypted PPML, which makes them vulnerable to information leakage beyond the
inference results.
In this paper, we propose a fully encrypted FE-based PPML protocol, which supports the
evaluation of arbitrary functions over encrypted data with no information leakage during
computation, for the first time. To achieve this, we newly construct a vector functional en-
cryption scheme for quadratic polynomials and combine it with an inner product encryption
scheme. This enables multiple compositions of quadratic polynomials to compute arbitrary
complex functions in an encrypted manner.
Our FE-based PPML protocol is secure in the malicious model, which means that an ad-
versary cannot obtain any information about the input data even though they intentionally
deviate from the protocol. We then show how to use our protocol to build a fully encrypted
2-layer neural network model with quadratic activation functions and present experimental
results.

1 Introduction

Machine Learning (ML) has become a vital technology for companies across various industries,
as it enables them to provide services that enhance people’s quality of life. In traditional machine
learning, the data is generally centralized and available to the machine learning algorithm in its raw
form. However, when dealing with sensitive data, it is crucial to safeguard the privacy of individu-
als represented in the data. For example, in the healthcare industry, machine learning models are
used to analyze medical data for diagnosis, treatment, and drug discovery. However, medical data
is highly sensitive, containing personal information about patients [33, 38]. Similarly, in finance,
machine learning models are utilized for fraud detection, risk assessment, and other applications,
which often contain sensitive information about individuals’ income and spending habits [9, 36].
Additionally, online advertising, which employs machine learning models to personalize ads for
individual users, requires the protection of sensitive information such as browsing habits and in-
terests [8, 26]. As ML increasingly permeates various businesses and organizations, privacy issues
concerning the underlying data have become more prominent. Privacy-preserving machine learn-
ing (PPML) techniques and approaches have been developed to enable machine learning models to
provide a useful service while maintaining the data’s privacy. In line with this, research on PPML
has begun to draw significant attention [17,18,28,45].

The typical approaches to PPML are based on fully homomorphic encryption (FHE) and secure
multi-party computation (MPC). However, FHE-based and MPC-based PPML protocols have their

own limitations: MPC-based PPML protocols [28,31,35,40] require computations to be performed
in the online phase, necessitating the active involvement of the client who owns the data throughout
the entire process of evaluating computations. In FHE-based PPML protocols [13, 15, 20, 24], the
client does not have to remain online during computations, i.e., he/she encrypts the data prior to
the computation and needs not involve in any intermediate computation. However, after the com-
putation of encrypted data, the evaluator (performing the computations) should interact with the
client (data owner) to obtain decrypted results. Additionally, this limitation prevents FHE-based
PPML protocols from being deployed in certain applications, such as spam filtering. For example,
an e-mail server has to classify an encrypted incoming e-mail as spam or not, but filtering cannot
be done without the help of the client (e-mail recipient) because the result of the classification is
provided encrypted. After all, spam filtering requires constant user involvement, which is not what
we expect from spam filtering.

Functional Encryption (FE) is a promising approach for PPML, as it does not require any
interaction during computation. FE allows computation on ciphertexts while revealing only the
output of the computation and keeping the inputs private. There have been several studies on
FE-based PPML. However, they are limited to either partially encrypted or simple structured
ML models because efficient functional encryption schemes so far only support linear or quadratic
polynomials. Functional encryption for arbitrary functions can be achieved from various crypto-
graphic primitives such as multilinear map or indistinguishability obfuscation (iO) [4,12], but they
are so inefficient that these are only theoretically feasible. Thus, to date, FE schemes for inner-
product and quadratic functionalities have been taken to construct PPML [11,21,22,25,30,37,44]
along with an attempt to speed up using hardware accelerator [6]. But the thing is, most works
assume ‘partially encrypted setting’ which means that the first layer is encrypted, but operations
in subsequent layers are visible in clear.

Recently, Carpov et al. [7] proposed an attack where adversaries can exploit such cleartexts to
partially recover the original input data. That is, the intermediate values could yield information
leakage about the original encrypted input data, which leaves a gap with real-world scenarios.
Thus, it remains an open problem to achieve fully encrypted machine learning protocol via FE
that can support complex computations while maintaining strong privacy guarantees.

1.1 Contributions

In this paper, we propose a fully encrypted PPML protocol for the first time in the literature that

– does not require any involvement of the client (data owner) in the computation process, and
– allows the evaluator to obtain the final inference result without any interaction (since it is

output in plaintext in the output layer), and
– has no intermediate leakage while evaluating arbitrary functions over encrypted data.

We construct our PPML protocol using FE, which enables non-interactive computations on
encrypted data and reveals only the final output of the computation. However, to make it “fully
encrypted” for evaluating “arbitrary” functions (e.g., 3-degree polynomials or higher), we have
considered the following technical ideas:

1) Imitate the FHE from FE. Since existing FE could support computation on ciphertext only
once, FE-based PPML protocols had to be “partially encrypted”. The novel idea of our work is to
mimic the FHE in FE framework. To be precise, we consider a composition function of Enc ◦ f ,
where Enc is an encryption of FE scheme. This composition then allows that an output of evaluation
still remains encrypted. For ease of understanding, let fi be the function corresponding to the i-th
layer where i = 1, 2, 3 as in Fig. 1. In the existing FE-based PPML protocol, the output of the
first hidden layer f1(x) is given in plaintext whereas, in our PPML protocol, the output of the first
hidden layer Enc ◦ f1(x) is presented in ciphertext.

2) Introduce a new compact¶ FE scheme for function composition. The composition of
the encryption algorithm Enc and the function f is infeasible in the existing FE schemes. To make

¶There are two definition of the compactness of FE. We here adopt the definition in [3].FE scheme is
compact when its encryption time is a polynomial in the security parameter λ, the number of function
queries Q, and the size of input message m.

2

Fig. 1. Privacy-preserving machine learning based on functional encryption

the composition work, the structure of the encryption algorithm should be polynomial so that a
composition with functions (i.e., Enc ◦ f) is a polynomial as well, which is not supported by the
existing FE schemes. Therefore, we newly construct a compact FE scheme for quadratic polyno-
mials (composable-QFE in Section 4), such that its encryption algorithm can be represented by a
linear function, thereby resulting in ciphertexts that are vectors. Since the encryption algorithm is
a linear function, the composable-QFE supports the functionality Enc ◦ f and our protocol works
properly as long as the f is a quadratic polynomial. Since all complex functions can be decomposed
into a composition of quadratic polynomials, our protocol covers all polynomial functions.

3) Make the PPML protocol secure in the malicious model. We then construct a secure
computation protocol using composable-QFE scheme, called cFE-PPML protocol, and on top
of that, we propose a fully encrypted PPML protocol. Since the encryption algorithm of the
composable-QFE is a linear function, the composable-QFE is only secure under bounded ciphertext
cases. Note that IND-CPA security of the underlying FE scheme could not guarantee the security
of the PPML protocol [7]. To make our PPML protocol secure in the malicious model, we introduce
random linear functions hi, hi

−1 to randomize the functional keys. In addition, we consider random
linear functions γ and γ−1 to randomize the message. Taken together, our PPML protocol is proven
to be secure in the malicious model. This means that the adversary cannot obtain any information
about the client’s input data from the entire transcript of the protocol except for the final result
(in the output layer) even if the evaluator may deviate from the protocol arbitrarily and collude
with other clients. See more details in Section 5.

Furthermore, we validate the feasibility of our proposed protocol through experimental results.
To be precise, we provide an implementation result using inference of 2-layer neural network clas-
sifier on the IRIS and Breast Cancer dataset in the UCI Machine Learning Repository [10]. The
source code is available in https://github.com/swanhong/composable-fe-rs/.

1.2 Simple description of protocol

A brief description of our protocol is given here. Our protocol involves three parties: the key
distributor, the client, and the evaluator. For simplicity, we assume that an evaluator wants to
compute a function f3 ◦ f2 ◦ f1 for an input data x as in Fig. 1. We denote the underlying FE
scheme by {Setup,KeyGen,Enc,Dec}. Then the proposed protocol is proceeded as follows:

1. The key distributor runs Setup to obtain {pk,msk}, and samples random pairs (hi, hi
−1) for

i = 1, 2. The key distributor samples random linear functions (γ, γ−1) and sends (pk, γ) to the
client.

2. The client encrypts γ(x) with a message x and sends the ciphertext ctγ(x) ← Enc(pk, γ(x)) to
the evaluator.

3

https://github.com/swanhong/composable-fe-rs/

Research Type ML model Security model # parties # interactions (client)

ABY2.0 [31]

MPC1

NN3 semi-honest4 2

high

SecureML [28] General semi-honest 2
CRYPTGPU [39] NN semi-honest 3
CrypTFlow [19] NN semi-honest 3
Chameleon [34] NN semi-honest 3
SecureNN [40] NN malicious5 3
ABY3 [27] NN malicious 3

AdamInPrivate [5] NN malicious 3
FalconN [41] General malicious 3
BLAZE [32] General malicious 3

CryptoDL [16]
FHE2 NN semi-honest 2

low
CryptoNets [13] NN semi-honest 2

This work FE NN malicious 3 low

Table 1. Comparison with FHE/MPC-based PPML protocol for inference
1 Secure Multi-Party Computation , 2 Fully Homomorphic Encryption, 3 Neural Network, 4 Adversaries
follow the protocol but try to get more information. 5 Adversaries can deviate from the protocol to gain
an advantage.

Research FE type ML model Fully Encrypted

Linger et al. [22] IPFE1 ERT3 ✗

Xu et al. [44] IPFE 5-layer NN ✗

Sans et al. [11] QFE2 2-layer NN ✗

Ryfell et al. [37] QFE 2-layer NN ✗

This work IPFE / QFE 2-layer NN ✓

Table 2. Implementations of FE-based PPML protocol for inference
1Inner Product Functional Encryption 2 Quadratic Functional Encryption 3 Extremely Randomized
Trees

3. The evaluator sends functions f1, f2, f3 to the key distributor.
4. The key distributor computes functional keys fk1, fk2, fk3 and sends them to the evaluator:

– fk1 ← KeyGen(msk,Enc ◦ F1) where F1 = h1 ◦ f1 ◦ γ−1

– fk2 ← KeyGen(msk,Enc ◦ F2) where F2 = h2 ◦ f2 ◦ h−1
1

– fk3 ← KeyGen(msk, F3) where F3 = f3 ◦ h−1
2

5. The evaluator computes the following:
– cth1◦f1(x) ← Dec(fk1, ctγ(x))
– cth2◦f2◦f1(x) ← Dec(fk2, cth1◦f1(x))
– f3 ◦ f2 ◦ f1(x)← Dec(fk3, cth2◦f2◦f1(x))

Note that the evaluator can obtain f3 ◦ f2 ◦ f1(x) in plaintext at the end of the protocol.
Since our composable-QFE is constructed in the symmetric-key setting, we additionally adopt
an inner-product (public-key) encryption scheme (pkIPFE in Fig. 2) and combine it with the
composable-QFE in our protocol. The client encrypts the input data x using the pkIPFE scheme
in the public-key setting, and then the evaluator converts it into the ciphertext of composable-QFE
scheme. See Section 5 for more details.

1.3 Comparison and limitation

Compared to the aforementioned protocols - based on MPC, FHE, and FE - our protocol offers
the following advantages:

– MPC: Secure computation through MPC is highly regarded for its strong security and efficiency.
However, it requires the client to be online and engage in interactions with other parties. In
contrast, our protocol only necessitates the client to perform small computations.

4

– FHE: There is currently no protocol solely based on FHE that provides security in the malicious
model. However, our protocol operates securely under the malicious model, even though its
structure resembles that of an FHE-based protocol. In fact, when a corrupted party asks the
key distributor to decrypt a modified FHE encryption, the party can obtain the master secret
key. This is a basic attack against FHE-based protocols inspired by the fact that FHE does not
achieve the IND-CCA2 security. In other words, the corrupted party and the key distributor
act an adversary and the challenger of IND-CCA2 security game, respectively. Then, since
FHE is impossible to achieve the IND-CCA2 security, such protocol is insecure.

– FE: Existing FE-based protocols only offer partially encrypted forms, resulting in informa-
tion leakage from intermediate values. Defining a comprehensive security model for such FE-
based protocols becomes challenging. In contrast, our protocol ensures complete encryption
and achieves a comparable level of security to other protocols.

For a detailed comparison of the protocols, please refer to Table 1 and Table 2.
While our algorithm excels in terms of security, it does have a significant drawback in terms of

operation time. Generating a ciphertext format necessitates considering a large underlying space.
Specifically, we have adopted the decision composite residuosity (DCR) based scheme to accommo-
date this extensive space. However, computations for the DCR scheme involve exponentiations and
multiplications, resulting in significant computational costs. Notably, exponentiation operations are
approximately 106× more time-consuming than multiplication operations, which is (normally) a
basic computation in other protocols. Nevertheless, we believe that our protocol serves as a new
approach to secure computations.

2 Preliminaries

2.1 Notation

Throughout this paper, we use bold letters to denote vectors and matrices. Let On be a zero matrix
of dimension n×n and In be an identity matrix of dimension n×n for any positive integer n. Let
Z be the set of all integers and N the set of all positive integers.

For any a, b ∈ Z, we simplify [a, b] ∩ Z as [a, b]. We also use other simplified interval notations.
For any N ≥ 2, we identify ZN as [−N/2, N/2) ∩ Z. For any finite set S, s ← S is denoted to
sampling s from the uniform distribution over S. We denote φ by the Euler’s totient function.

We describe a composition notation for functions. Let F be (f1, . . . , fk), where fi : Z
ℓ
N → ZN

is a quadratic function for every i. Then, a composite function F ◦ h is denoted by a function of
the form (f1 ◦ h, . . . , fk ◦ h), when the output dimension of the function h is ℓ. Similarly, h′ ◦ f ◦ h
is well-defined for a function h′ of input dimension k. For every positive integer i and proper input
x, (fi ◦ · · · ◦ f2 ◦ f1)(x) is simply denoted by ©i

t=1ft(x).
Given n-dimensional vector v = (v1, · · · , vn)T and group element g, we denote (gv1 , gv2 , · · · , gvn)T

by gv. Moreover, we use a bracket notation [a]g to denote ga. Similarly, for any vector v and matrix
A, gv and gA are denoted by [v]g and [A]g, respectively. Given two vectors v,w ∈ Zn, we define

[v]wg as gv
T ·w = g〈v,w〉. In addition, we denote their row concatenation as (v,w) and their column

concatenation as (v‖w). The Kronecker tensor products of vectors a ∈ Zn
N and b ∈ Zm

N or matrices
A ∈ Zn×m

N and B ∈ Zr×s
N are defined by

a⊗ b = (a1b, a2b, . . . , anb) ∈ Znm
N ,A⊗B =

a11B . . . a1mB
...

...
an1B . . . anmB

 ∈ Znr×ms

N .

2.2 Functional Encryption and Its Security

In this section, we describe the definitions of private-key and public-key functional encryption
schemes and their security models.

Definition 1 (Private-key functional encryption). Let F be a function space, andM a mes-
sage space. Then, a private key functional encryption scheme for F with M is composed of four
probabilistic polynomial-time (PPT) algorithms (Setup,KeyGen,Enc,Dec).

5

– Setup(λ,F): For the security parameter λ, it outputs the master secret key msk and the public
parameter pp.

– KeyGen(msk, f ∈ F , pp) : For msk and a function f from F , it outputs a functional key fkf .
– Enc(msk,m ∈M, pp) : For msk and a message m fromM, it outputs a ciphertext ctm.
– Dec(ctm, fkf , pp) : For ctm and fkf , it outputs a value α.

A private-key functional encryption scheme skFE = (Setup,KeyGen,Enc,Dec) is said to be correct
if for every security parameter λ, (msk, pp) ← Setup(λ,F), for all m ∈ M and f ∈ F , fkf ←
KeyGen(msk, f, pp), and ctm ← Enc(msk,m, pp), Dec(ctm, fkf , pp) = f(m) with all but a negligible
probability.

Definition 2 (Semi-adaptive Security of private-key FE [14,29,43]). A private-key func-
tional encryption scheme skFE = (Setup,KeyGen,Enc,Dec) for F withM is semi-adaptively secure
if for every PPT adversary A, there is a negligible function neg(·) such that

AdvA(λ) = |Pr [G(A, 0) = 1]− Pr [G(A, 1) = 1]| ≤ neg(λ) (1)

for λ ∈ N, where G(A, b) for b ∈ {0, 1} is a semi-adaptive security game between A and a challenger
defined as follows.

1. (Setup Phase) The challenger samples (msk, pp)← Setup(λ,F) and gives pp to A.
2. (Challenge Phase) A submits

(
(m0,1, . . . ,m0,T), (m1,1, . . . ,m1,T)

)
, where m0,i, m1,i ∈ M for

all i ∈ [1, T], and the challenger returns cti ← Enc(msk,mb,i) for all i ∈ [1, T] and a randomly
chosen b ∈ {0, 1}.

3. (Query Phase) A queries the challenger with f ∈ F such that f(m0,i) = f(m1,i) for all
i ∈ [1, T]. For each f , the challenger returns fkf .

4. (Output Phase) A outputs a bit b′ as an output of the game.

Definition 3 (Public-key functional encryption). Let F be a function space, andM a mes-
sage space. Then, a private key functional encryption scheme, pkFE, for F withM is composed of
four PPT algorithms (Setup,KeyGen,Enc,Dec).

– Setup(λ,F): For the security parameter λ, it outputs the master public/secret key pair (pk,msk).
– KeyGen(msk, f ∈ F) : For msk and a function f from F , it outputs a functional key fkf .
– Enc(pk,m ∈M) : For pk and a message m fromM, it outputs a ciphertext ctm.
– Dec(pk, ctm, fkf) : For ctm and fkf , it outputs a value α.

A public-key functional encryption scheme pkFE = (Setup,KeyGen,Enc,Dec) is said to be cor-
rect if for every security parameter λ, (pk,msk) ← Setup(λ,F), for all m ∈ M and f ∈ F ,
fkf ← KeyGen(msk, f), and ctm ← Enc(pk,m), Dec(pk, ctm, fkf) = f(m) with all but a negligible
probability.

Definition 4 (Adaptive simulation-based security of public-key FE [1]). A public-key
functional encryption scheme pkFE = (Setup,KeyGen,Enc,Dec) for F with M is adaptively sim-
ulation secure if for every PPT adversary A = (A1,A2), there exists a PPT simulator S =
(SetupS ,KeyGenS0 ,Enc

S ,KeyGenS1) such that the Real and the Ideal experiments, defined as follows,
are computationally indistinguishable.

– In the Real experiment:
1. (pk,msk)← Setup(λ,F)
2. (m∗, st)← AKeyGen(msk,·)

1 (pk)
3. ct← Enc(pk,m∗)

4. α← AKeyGen(msk,·)
2 (pk, ct, st)

5. Output (m∗, α)

– In the Ideal experiment:
1. (pkS ,mskS)← SetupS(λ,F)
2. (m∗, st)← AKeyGenS0 (mskS ,·)

1 (pkS)

3. Let V =
{
(fi, fi(m

∗), fkfi)
}k

i=1
where {fi ∈ F}ki=1 are the functions for which the adversary

requests their corresponding keys {fkfi}ki=1

6

4. ct∗ ← EncS(pkS ,mskS ,V, 1|m∗|)

5. α← AKeyGenS1 (mskS ,·)
2 (pkS , ct∗, st)

6. Output (m∗, α)

Definition 5. We say that a private key FE is Q-ciphertext bounded when the scheme is secure
for adversaries requesting Q-ciphertexts.

Definition 6 (Compact FE, Adaptation from [3]). We say that a Q-ciphertext bounded pri-
vate key FE scheme FE = (Setup,KeyGen,Enc,Dec) for F withM is compact if for all λ ∈ N, the
running time of the encryption algorithm Enc is a polynomial with respect to parameters λ,Q and
m, where m ∈M.

Remark 1. Even though the function space F is used as the input of the Setup algorithm in the
FE definition, we employ more specific notations instead of F .

2.3 Hardness Assumptions

This section provides the hardness assumption used in this paper. We consider groups of order
N · φ(N) where p, q are large primes such that factoring N is hard. In the following section, we
assume that the following assumptions hold.

Definition 7 (Bilinear map). Let Ga,Gb, and GT be groups. We say that e : Ga ×Gb → GT is
a bilinear map if e satisfies the following:

1. Ga,Gb,GT are groups of the same order that satisfy the discrete logarithm problem is hard on
each group.

2. For any ga ∈ Ga, gb ∈ Gb and xa, xb ∈ Z, it holds that

e(gxa
a , gxb

b) = e(ga, gb)
xaxb .

3. If ga, gb are generators of Ga,Gb respectively, then e(ga, gb) is a generator of GT .

Definition 8 (DCR assumption). Let p, q be prime numbers and N = pq. The decision com-
posite residuosity (DCR) assumption is that the following distributions are computationally indis-
tinguishable:

Dist1 : {z = zN0 mod N2 | z0 ← Z∗
N}

Dist2 : {z ← Z∗
N2},

where Z∗
N is a multiplicative group of ZN .

Definition 9 (DDH assumption). For N = pq with primes p and q, let G be a group of order
N · φ(N) and g a generator of G.

The decisional Diffie-Hellman (DDH) assumption over G is that the following distributions are
computationally indistinguishable:

Dist1 : {(g, gx, gy, gxy) | x, y ← ZN ·φ(N)}
Dist2 : {(g, gx, gy, gz) | x, y, z ← ZN ·φ(N)}.

Definition 10 (χ-MDDH assumption). For N = pq with primes p and q, let G be a group of
order N · φ(N) and g a generator of G.

Let χ be a distribution which returns a vector over G2. Then, χ-MDDH assumption holds on
G with a generator g if any PPT adversary A cannot distinguish the following distributions.

Dist1 : {[a]g, [a · w]g : A← χ,w ← ZN ·φ(N)}
Dist2 : {[a]g, [u]g : a← χ,u← G2}.

There is a simple reduction from DDH to χ-MDDH, so it holds that DDH≤ χ-MDDH. When a
bilinear map e : Ga ×Gb → Z∗

N2 is given, the DDH problem over two groups would be considered
simultaneously. We describe the problem, the so-called Bilateral 2-LIN assumption, which is used
in security proof for bilinear map-based schemes [43].

7

Definition 11 (Bilateral 2-LIN assumption). Let Ga,Gb be groups of order N · φ(N) and
e : Ga × Gb → Z∗

N2 a bilinear group. We say bilateral 2-LIN assumption holds on groups Ga and
Gb if

{[x]ga , [y]ga , [xy]ga , [x]gb , [y]gb , [xy]gb} ≈ {[x]ga , [y]ga , [z]ga , [x]gb , [y]gb , [z]gb},

where x, y, z ← ZN ·φ(N), ga ∈ Ga and gb ∈ Gb.

2.4 DCR-based Inner Product Encryption

This section introduces a DCR-based inner product encryption (IPFE) cryptosystem, which em-
ploys inner product functionality to design our secure inference protocol. Whereas there are sev-
eral forms of DCR-based cryptosystems, we serve a scheme, inspired by a functional encryption
scheme [1], to guarantee simulation-based security. We let BX (resp. BF) denote a size bound of
a message (resp. function coefficients).Furthermore, we use a function DCR.pp(1λ) that outputs a
pair (N, p, q, g) such that N = p · q, p = 2p′+1, q = 2q′+1 ∈ Z are primes, where p′ and q′ are also
primes, and g is a group generator of Z∗

N2 . This parameter is set to robust against known attacks.
For consistency with the main body, we let pkIPFE denote this DCR-based scheme. The detailed

construction of pkIPFE is given by Fig. 2.

– SetuppkIPFE(λ, ℓ, BX , BF):
1. (N, p, q, g)← DCR.pp(1λ), such that ℓBXBF < p · q/2.
2. For S = 2λ+ℓ−1 ·

(
BX + ℓ(

√
ℓBF)

ℓ
)ℓ−1

· ℓN2, sample a secret vector s = (s1, . . . , sℓ)←
U([−S, S] ∩ Z) and then compute gi = gsi mod N2.

3. Return pk = (N, g, {gi}1≤i≤ℓ, BX , BF) and msk = ({si}1≤i≤ℓ).
– KeyGenpkIPFE(msk,y):

1. Return fky := (〈y,msk〉,y).
– EncpkIPFE(pk,m):

1. Given m ∈ [−BX , BX]ℓ, sample r ← {0, . . . , ⌊N/4⌋} and compute

C0 = gr mod N2,

Ci = (1 +mi ·N) · gri mod N2 for 1 ≤ i ≤ ℓ.

2. Return ctm = (C0, . . . Cℓ).
– DecpkIPFE(fky, ctm):

1. Given ctm = (C0, . . . , Cℓ), output

((
∏ℓ

i=1 C
yi

i)/C
〈y,msk〉
0 mod N2)− 1

N
.

Fig. 2. DCR-based pkIPFE [1].

Simulator. For the proof of Theorem 1 and Theorem 3, a simulator of the DCR-based scheme is
required. The simulator consists of the following algorithms:

SetupS ,KeyGenS0 ,Enc
S ,KeyGenS1 ,Enc,Dec.

KeyGenS0 is only used before the challenge query. KeyGenS1 is used in the post-challenge key queries.
The message in challenge phase is denoted by x∗. The detailed construction of simulators is given
by Fig. 3. The Enc and Dec algorithm exactly coincide with the EncpkIPFE and DecpkIPFE. Thus we
do not provide an algorithm description.

Theorem 1 ([1]). The scheme holds semi-adaptive security under the DCR assumption. In par-
ticular, it holds AdvpkIPFE ≤ AdvDCR.

8

– SetupS(λ, ℓ, BX , BF): This step is identical to Setup except that primes p, q are included
in the msk. That is, this algorithm returns pkS = (N, g, {gi}1≤i≤ℓ, BX , BF) and mskS =
({si}1≤i≤ℓ, p, q).

– KeyGenS0 (mskS ,y): For y ∈ [−BF , BF]
ℓ, it returns fky = (〈y,mskS〉,y).

– EncS(pkS , {(yi, zi)}ki=1): For pre-challenge queries (yi, zi) with zi = 〈x∗,yi〉, the algorithm
computes ct∗ = (c∗0, {c∗i }ℓi=1) ∈ (Z∗

N2)ℓ+1 computed as follows:
1. Compute x ∈ Zℓ such that 〈x,yi〉 = zi for all i ∈ [k].
2. Sample a← ZN and b← Zφ(N) with φ(N) = p′ · q′ and computes

c∗0 = (1 + aN) · gb mod N2,

c∗i = (1 + xiN) · (c∗0)si mod N2.

3. Return ct∗ along with a state st = (x, a, φ(N)).

– KeyGenS1 (mskS ,y, z = 〈y,x∗〉, st) :
1. Compute α = (a−1 mod N) · vφ(N) mod Nφ(N), where v = φ(N)−1 mod N .
2. Return fk′y =

(
〈mskS ,y〉 − α · (z − 〈x,y〉),y

)
.

Fig. 3. Simulator of pkIPFE [1].

Remark 2. For a matrix Y, we define its functional key by (Y,Y · msk). Then one can securely
compute a matrix multiplication Y · x as well. By an abuse of notation, we will denote it as
pkIPFE.KeyGen(msk, Y).

3 Composable FE-based Privacy Preserving Machine Learning

The primary objective of this section is to clearly distinguish between FE-PPML protocol security
and FE security, including selective security, semi-adaptive security, and adaptive security. This
distinction is required because FE schemes that achieve the cryptographic security may still have
information leakage when they are used in PPML protocols. Thus, it is essential to consider both
types of security when developing FE-PPML protocols.

For example, Ryffel et al. [37] proposed an IND-CPA secure QFE scheme for a practical and
secure image classification algorithm based on a partially encrypted machine learning framework.
The term “partially encrypted” indicates that only the first hidden layer in a neural network is
encrypted. This framework is based on the FE definition, which ensures that given a ciphertext
xb ∈ {x0,x1} and an activation function f of the first hidden layer, the condition f(x0) = f(x1)
always holds. Consequently, this results in the same intermediate values in subsequent layers,
preventing the adversary from determining the message of the ciphertext.

However, this partially encrypted framework for PPML leads to significant information leakage
[7], implying that IND-CPA security of the underlying FE scheme is insufficient for achieving a
secure inference protocol. Since the attack exploits the plain intermediate values of hidden layers,
this attack still affects the security of partially encrypted PPML even if the FE scheme of IND-CPA
is replaced with that of simulation-based security.

To circumvent this limitation, we propose a new concept called a composable functional en-
cryption. Intuitively, this approach allows us to generate a functional key of Enc ◦ f , where Enc is
an encryption algorithm, and f is a function.

Definition 12 (composable FE). Let FEi = (Setupi,KeyGeni,Enci,Deci) be a set of functional
encryption schemes for a function class Fi, where 1 ≤ i ≤ E. When Fi includes Enci+1 ◦ f for any
function f , we say that {FEi}1≤i≤E is an E-composable FE.

Specifically, if Fi accommodates Enci+1 ◦ f , where f is a quadratic polynomial f , this scheme
is referred to as E-composable quadratic FE, or E-cQFE for short.

9

Later, we adopt a composable FE to design a fully encrypted PPML. The PPML protocol using
composable functional encryption (cFE-PPML) should have no intermediate leakages to ensure a
secure inference.

3.1 Definition of cFE-PPML

We consider a privacy-preserving machine learning protocol using composable functional encryption
(cFE-PPML) as a secure inference on encrypted data. Our cFE-PPML protocol involves three types
of entities: a key distributor (KD), an evaluator (E), and a set of clients (Cj for j ∈ [0, J]). The
key distributor is a trusted third-party authority to generate a public key (pk) and a master secret
key (msk) and providing functional keys (fk) based on the evaluatior’s query.

Specifically, we assume that an evaluator possesses machine learning models in advance. The
client encrypts the data using pk and sends the ciphertext (ct) to the evaluator. The evaluator
performs inference on the encrypted data by obtaining a functional key fkF associated with a pre-
trained model F from the key distributor and the ciphertext ctx associated with the input data x,
and then outputs the computation result F (x) in plaintext. We consider a machine learning model
of E layers as a composition of functions ©E

i=1fi = fE ◦ · · · ◦ f1, where the function fi represents
the computation of i-th layer of the model. That is, the inference result F (x) can be represented
by ©E

i=1fi(x) = (fE ◦ · · · ◦ f1)(x).
We now describe the formal definition of cFE-PPML. The notation AB(·)(Q) implies that an

algorithm B is executed by an entity A with the input Q. Also, the notation A

(
CB(·)

)
(Q) indicates

that A sends a query Q to entity C, C executes CB(·)(Q) and responds to the query.

Definition 13 (cFE-PPML). Let KD, E, and C denote the (trusted) key distributor, evaluator,
and client, respectively, which are participants in the protocol. Let cFE = (Setup,KeyGen,Enc,Dec)
denote the public-key composable functional encryption scheme. We define the cFE-PPML protocol
P as follows:

1. (pk,msk)← KDSetup(·)(1λ)
2. ctxj

← CEnc(pk,·)(xj)

3. fkFl
← EKDKeyGen(msk,·)

(Fl)
4. Fl(xj)← EDec(·,·)(ctxj

, fkFl
)

where λ is a security parameter, xj is an input data of Cj, and Fl =©E
i=1fl,i is a machine learning

model owned by E. The functional key fkFl
is a set of {fkfl,i}i∈[1,E] where fkfl,i ← KeyGen(msk,Enc◦

fl,i) for i ∈ [1, E − 1] and fkfl,E ← KeyGen(msk, fl,E).

3.2 General framework for cFE-PPML protocol

We construct a cFE-PPML protocol for multiple clients by adopting E-composable functional
encryption scheme for general circuits as in Fig. 4.

The problem is that previously known functional encryption (FE) schemes for general circuits
are infeasible, and the same is true for composable FE. Therefore, we aim to demonstrate how
to construct a secure cFE-PPML protocol using a composable FE scheme for quadratic functions
(composable-QFE), which is truly feasible for real-world implementations. In brief, we first convert
a pre-trained model Fl for l ∈ [0, ζ] into compositions of quadratic functions Fl = ©E

i=1fl,i,
and then apply composable-QFE iteratively. In Section 4, we construct a (ciphertext-bounded)
composable-QFE scheme. In composable-QFE, an encryption algorithm (denoted by Enc) itself can
be represented as a linear function. This allows us to generate a functional key for the composition
of encryption algorithm and arbitrary quadratic function f (i.e., Enc ◦ f). Note that existing FE
schemes cannot support this property, and therefore the composition of Enc and a function f is
not possible. A full description of cFE-PPML protocol is given in Fig. 9.

3.3 Security of cFE-PPML

We revisit the security definition for PPML protocol in the malicious model by adapting the
security by Lindell [23]. In the cFE-PPML, the following parties are involved in the protocol.

10

Participants: Clients ({Cj}j∈[0,J]), key distributor (KD), and evaluator (E)
Protocol:

Protocol Setup by KD
1. KD samples (pk,msk)← Setup(λ, ζ) for the security parameter λ and pre-determined param-

eter ζ and sends pk to every client.

Encryption by C
1. Let xj be the input data of Cj for j ∈ [0, J]. Every Cj encrypts a message to generate

ctxj
← Enc(pk,xj) and sends the ciphertext to E.

Functional Key Generation between KD and E
1. Let {Fl}l∈[0,ζ] be a set of (pre-trained) machine learning models of the form Fl = fl,E ◦· · ·◦fl,1

for any function fl,i. E sends the family of models {Fl}l∈[0,ζ] to KD.
2. KD computes a set of functional keys {fkEnc◦fl,i}l∈[0,ζ],i∈[1,E−1] and {fkfl,E}l∈[0,ζ] defined as

below. Then, KD sends them to E.

fkEnc◦fl,i ← KeyGen(msk,Enc ◦ fl,i)
fkfl,E ← KeyGen(msk, fl,E)

Model Evaluation by E
1. For each j ∈ [0, J], E computes Enc(fl,1(xj)) ← Dec(pk, fkEnc◦fl,1 , ctxj

) for every l ∈ [0, ζ].

Sequentially, E computes Enc(©E−1
i=1 fl,i(xj)) for each j ∈ [0, J].

2. Using fkfl,E for every l ∈ [0, ζ], E obtains Fl(xj) for each j ∈ [0, J].

Fl(xj)← Dec(pk, fkfl,E , ct©E−1
i=1 fl,i(xj)

)

Fig. 4. General framework for cFE-PPML.

– the key distributor, denoted by KD.
– the honest client C0 and other (malicious) clients {Cj}j∈[1,J] that have a message xj for

j ∈ [0, J].
– the adversary A
– the evaluator E which has several machine learning models {Fl} where {Fl}l∈[0,ζ] is a set of

machine learning models of the form

Fl =©E
i=1fl,i = fl,E ◦ . . . ◦ fl,1

for some functions fl,i.

We note that there exist a bunch of intermediate values, which can be used to get information
associated with x0, in the PPML protocol such as Enc((fl,i ◦ fl,i−1 ◦ . . . ◦ fl,1)(xj)) for any indices
l, i, j. We say that cFE-PPML is secure when A cannot learn any information of x0 even if A
interacts with clients {Cj}j∈[1,J] and the evaluator E. More formally, it can be defined as follows:

Definition 14. We say that the cFE-PPML protocol P securely computes {Fl(x0)} for l ∈ [0, ζ]
in the presence of static malicious adversaries if for every probabilistic polynomial-time adversary
A in the real-world, there exists a probabilistic polynomial-time algorithm S in the ideal-world
such that for every input data xj and machine learning model Fl, we have that the following two
distribution ensembles (over the security parameter λ) are computationally indistinguishable:

{REALP,A({xj}j∈[0,J], {Fl}l∈[0,ζ], λ, ζ)}
c≈ {IDEALS({xj}j∈[0,J], {Fl}l∈[0,ζ], λ, ζ)},

where {REALP,A({xj}j∈[0,J], {Fl}l∈[0,ζ], λ, ζ)} denotes the view of the corrupted clients and the
adversary A from the real execution of P on inputs (xj , Fl, λ, ζ) for j ∈ [0, J] and l ∈ [0, ζ], and
{IDEALS({xj}j∈[0,J], {Fl}l∈[0,ζ], λ, ζ)} denotes the (simulated) view of corrupted clients and the
simulator S from the ideal execution of I on inputs (xj , Fl, λ, ζ) for j ∈ [0, J] and l ∈ [0, ζ]. Both
views are defined as the outputs of the following experiments:

11

– In the REALP,A({xj}j∈[0,J], {Fl}l∈[0,ζ], λ, ζ):

1. pk← KDSetup(1λ,ζ)

2. fl,i ← E for l ∈ [0, ζ], i ∈ [1, E]
3. ctx0

← C
Enc(pk,x0)
0

4. (ctxj
,xj)← C

Enc(pk,xj)
j for j ∈ [1, J]

5. fkEnc◦fl,i ← KDKeyGen(msk,Enc◦fl,i) for l ∈ [0, ζ], i ∈ [1, E]
6. Enc(©i

t=1fl,t(xj))← E
Dec(pk,fkEnc◦fl,t ,ct©i−1

t=1fl,t(xj)
)

7. Fl(xj)← EDec(pk,fkfl,E ,Enc(©E−1
i=1 fl,i(xj))

– In the IDEALS({xj}j∈[0,J], {Fl}l∈[0,ζ], λ, ζ):

1. pkS ← KDSetupS(1λ,ζ)

2. fl,i ← E for l ∈ [0, ζ], i ∈ [1, E]
3. ctx0

← C
EncS(pkS ,Fl(x0))
0

4. (ctxj
,xj)← C

Enc(pkS ,xj)
j for j ∈ [1, J]

5. fkEnc◦fl,i ← KDKeyGenS(msk,Enc◦fl,i) for l ∈ [0, ζ], i ∈ [1, E]
6. Enc(©i

t=1fl,t(xj))← E
DecS(pkS ,fkEnc◦fl,t ,ct©i−1

t=1fl,t(xj)
)

7. Fl(xj)← EDecS(pkS ,fkfl,E ,Enc(©E−1
i=1 fl,i(xj))

In Section 6.1, we will prove that the protocol in Fig. 9 achieves the security. Here, we consider
the evaluator E as the malicious party.

4 Candidate for Composable Functional Encryption Scheme

4.1 Technical Overview

Our primary technical insight involves incorporating the encryption algorithm into the function
itself and considering a key generation algorithm on the composition of the encryption and the
function. This approach enables us to obtain a functional key fkEnc◦f which corresponds to the key
generation algorithm applied to Enc ◦ f . Using the decryption algorithm on (fkEnc◦f , ctm), we can
produce an evaluated value in the form of an encrypted ciphertext ctf(m). Since the output is still
encrypted, we can proceed with the decryption iteratively. Specifically, we compute the decryption
algorithm as

Dec(fkEnc◦fi+1
, ct©i

t=1ft(m))

for i = 1, . . . , E , where E is the number of functions to be computed. This framework is illustrated
in Fig. 1.(b).

One major challenge in computing the functional key fkEnc◦f is that existing functional en-
cryption schemes for arbitrary circuits are truly infeasible. To address this limitation, we restrict
functionalities to quadratic polynomials, and instantiate the scheme by modifying the Musciagna
FE scheme [29] so that the Enc can be represented by a linear function.

To provide an intuition, we briefly describe the FE scheme in terms of an IPFE. Let F : Zℓ →
Zm be a linear multivariate function and MF ∈ Zm×ℓ be its matrix representation satisfying
F (x) = MF · x. Consider a ciphertext as an encryption of a message m from a message space
M = Zℓ using inner product encryption. The functional key is represented by fkF = MF ·D0, and
the ciphertext is of the form ctm = [D0

−1 ·m]g, where g is a public group element and D0 is an
invertible matrix of size ℓ×ℓ computed with the master secret key. Then, the decryption algorithm
for this scheme can be computed as

logg(ct
fkF
m) = logg([MF ·D0 ·D−1

0 ·m]g) = F (m),

where logg is a discrete logarithm over a group with base g.
We now introduce a concept to develop a desired functional encryption algorithm. To be precise,

we consider a functional key for a composition function Enc ◦ F using another secret invertible
matrix D1:

fkEnc◦F = [D−1
1 ·MF ·D0]g.

12

It is clear that the decryption algorithm on a pair (fkEnc◦F , ctm = D−1
0 ·m) outputs a value

logg((fkEnc◦F)
ctm) = D−1

1 ·MF ·m = ctF (m).

Hence, the decryption output is a new ciphertext representing the evaluation of F and the original
message m using another secret.

Another challenge is efficiently solving the discrete log problem (logg(·)) in the decryption
algorithm. While an elliptic curve-based FE scheme is efficient, it should have a relatively small
message space since the decryption algorithm requires to solve the discrete log problem. This small
message space would imply the security issue that the size of every intermediate ciphertext obtained
by decryption algorithm of (fkEnc◦F , ctm) is small. Thus, we need a large message space with an
efficient decryption process. To address this, we use a decision composite residuosity (DCR)-based
FE scheme that enables efficient solving of the discrete log problem for a relatively large message
set. Therefore, we had to consider a group-based FE in which DCR groups could be used, so we
modified the DCR-based Musciagna scheme. The detailed discussion of the security of the modified
FE scheme and original scheme description is given in Appendix B.

4.2 Ciphertext-bounded composable-QFE

We present a composable private-key ciphertext-bounded quadratic functional encryption (QFE)
scheme, for short composable-QFE, of which ciphertexts are vectors. We note that it is sufficient
to generate the composable-QFE because any polynomial can be represented as a composite of
quadratic polynomials. This scheme can be employed to instantiate a secure computation protocol
described in Section 3.

We first clarify a set of quadratic functionalities F of our composable-QFE. The functionality
F corresponds to a set of functions of the form ((x‖1) ⊗ (x‖1))T · cf for some x ∈ Zℓ, and

cf ∈ Z(ℓ+1)2 such that ‖x‖∞ ≤ BX and ‖cf‖∞ ≤ BF . Here, cf is a coefficient vector corresponding
to a quadratic function f . This section provides only a scheme description of ciphertext-bounded
composable-QFE. Its security proof is deferred to Appendix B when the composable-QFE allows
only a bounded number of ciphertexts.

Notation. We introduce notations to describe the composable-QFE. Thus, the underlying group
size is N · φ(N) while the message space is ZN . Throughout this paper, we denote N · φ(N) by ∆
for simplicity. Since our algorithm is based on the DCR scheme, we employ the DCR.pp function
described in the Section 2.4

As a building block of our scheme, given a wide matrix D ∈ Zm×n
∆ (m < n), we define sets of

(the right) kernel and inverse as following.

– Ker(D) = {D⊥ ∈ Z
n×(n−m)
∆ : D ·D⊥ = O mod ∆}

– Rinv(D) = {D−1 ∈ Zn×m
∆ : D ·D−1 = Im mod ∆}

Composable-IPFE. To construct the composable-QFE, we first describe an inner products en-
cryption scheme (composable-IPFE) as an ingredient The goal of composable-IPFE is to compute
the inner product [yT · x]g for two inputs; a message x ∈ Zℓ

N and a function y ∈ Zℓ
N by running

the decryption algorithm. The detailed construction of composable-IPFE is given by Fig. 5.

Correctness (of composable-IPFE in Fig. 5). To this end, it suffices to show that DecIPFE(pp, fky, ctx) =
[yT ·x]g. It can be easily proven by examining the decryption procedure. Specifically, we can observe
that:

fkctxy =

[(
−UT · y

y

)T

·D · ctx
]

g

=

[(
−UT · y

y

)T

·D ·D⊥ · r̃+
(
−UT · y

y

)T

D ·D−1 ·
(

r · a
x+ r ·U · a

)]

g

=

[(
−UT · y

y

)T

·
(

r · a
x+ r ·U · a

)]

g

13

• SetupIPFE(λ, ℓ,Q):
1. Choose (N, p, q, g)← DCR.pp(λ) and define ∆ = N · φ(N).

2. Sample a← Z2
∆, U← Zℓ×2

∆ , and D← Z
(ℓ+2)×(ℓ+2+Q)
∆ .

3. Sample D⊥ ← Ker(D) and D−1 ← Rinv(D)

4. Return
msk = {a,U,D,D⊥,D−1} and pp = {g,N,∆}.

• KeyGenIPFE(msk, pp,y ∈ Zℓ
N):

1. Return

fky =

[(
−UT · y

y

)T

·D
]

g

.

• EncIPFE(msk, pp,x ∈ Zℓ
N):

1. Sample r ← Z∆ and r̃← Z
Q
∆.

2. Return

ctx = D⊥ · r̃+D−1 ·
(

r · a
x+ r ·U · a

)
∈ Z

ℓ+2+Q
∆ .

• DecIPFE(pp, fky, ctx):
1. Return fkctxy .

Fig. 5. composable-IPFE.

=
[
(−UT · y)T · r · a+ yT · x+ r · yT ·U · a

]
g
=

[
yT · x

]
g

This completes the correctness.

Composable-QFE. We now introduce the composable-QFE, built from composable-IPFE. The
detailed construction of composable-QFE is then given by Fig. 6.

Correctness (of composable-QFE in Fig. 6). We first observe the term e1 = [(D0⊗D1)
T ·cf](ct0⊗ct1)

g :

e1 = [(D0 ⊗D1)
T · cf](ct0⊗ct1)

g = [〈(D0 ⊗D1)
T · cf , (ct0 ⊗ ct1)〉]g

= [cTf · ((D0 · ct0)⊗ (D1 · ct1))]g =
[
cTf ·

(
(c · x+V · r0)⊗ (x+W · r1)

)]
g

=
[
cTf ·

(
c · x⊗ x+ c · x⊗W · r1 +V · r0 ⊗ x+V · r0 ⊗W · r1

)]
g

=
[
cTf ·

(
c · x⊗ x+ (V · r0)⊗ x+ (c · x+V · r0)⊗ (W · r1)

)]
g

=
[
cTf ·

(
c · x⊗ x+ (V ⊗ Iℓ+1) · (r0 ⊗ x) + (Iℓ+1 ⊗W) · ((c · x+V · r0)⊗ r1)

)]
g

=

c · c

T
f · (x⊗ x) +

(
r0 ⊗ x

(c · x+V · r0)⊗ r1

)T

︸ ︷︷ ︸
hT

(
VT ⊗ Iℓ+1

Iℓ+1 ⊗WT

)
· cf

︸ ︷︷ ︸
fk0·cf

g

.

On the other hand, by the correctness of DecIPFE, we obtain that

e2 = [DecIPFE(ppIPFE, fkIPFE, ctIPFE)]g = [hT · fk0 · cf]g.

The ratio e1/e2 is then identical to

[c · cTf · (x⊗ x)]g = (1 +N)c
T
f ·(x⊗x) = (1 +N)f(x).

Hence, the log(1+N)(e1/e2) outputs f(x) mod N . It directly implies that DecQFE(pp, fkf , ct) = f(x)
as long as |f(x)| < N/2.

14

• SetupQFE(λ, ℓ,Q):
1. Sample (mskIPFE, ppIPFE = {g,N,∆})← SetupIPFE(λ, 4ℓ+ 4, Q).

2. Let c0 be a inverse of (gφ(N) mod N2)−1
N

modulo N and c = c0 · φ(N) so that it satisfies gc =
1 +N mod N2.

3. Sample V← Z
(ℓ+1)×2
∆ , W← Z

(ℓ+1)×2
∆ .

4. Sample Db ← Z
(ℓ+1)×(ℓ+1+Q)
∆ for b ∈ {0, 1}.

5. Sample D⊥
b ← Ker(Db) and D−1

b ← Rinv(Db) for b ∈ {0, 1}.

6. Return (pp,msk) where pp = ppIPFE and

msk =
{
V,W, {Db,D

⊥
b ,D

−1
b }b∈{0,1}, c,mskIPFE

}
.

• KeyGenQFE(msk, pp, cf ∈ Z(ℓ+1)2):
1. Sample fkIPFE ← KeyGenIPFE(mskIPFE, ppIPFE, fk0 · cf) where

fk0 =

(
VT ⊗ Iℓ+1

Iℓ+1 ⊗WT

)
∈ Z

4(ℓ+1)×(ℓ+1)2

∆ .

2. Compute fk1 =
[
(D0 ⊗D1)

T · cf
]
g
∈ G(ℓ+1+Q)2

3. Return fkf = {fkIPFE, fk1}.

• EncQFE(msk, pp,x ∈ Zℓ):
1. Set x = (x‖1).

2. Sample rb ← Z2
∆ for b ∈ {0, 1}.

3. Compute ctb for b ∈ {0, 1} as follows.

ct0 = D
⊥
0 · r̃0 +D

−1
0 · (c · x+V · r0) ∈ Z

ℓ+1+Q
∆

ct1 = D
⊥
1 · r̃1 +D

−1
1 · (x+W · r1) ∈ Z

ℓ+1+Q
∆ .

4. Sample ctIPFE ← EncIPFE(mskIPFE,h) for

h =
(
(r0 ⊗ x) ‖ ((c · x+V · r0)⊗ r1)

)
∈ Z

4(ℓ+1)
∆ .

5. Return ct defined as follows:
ct =

{
{ctb}b∈{0,1}, ctIPFE

}

• DecQFE(pp, fkf , ct):
1. Compute e1 and e2 as follows.

e1 = fk
ct0⊗ct1
1 ,

e2 =
[
DecIPFE(ppIPFE, fkIPFE, ctIPFE)

]
g
.

2. Return log(1+N)(e1/e2).

Fig. 6. composable-QFE.

Remark 3. The operations KeyGenIPFE,QFE (resp. EncIPFE,QFE) were performed on a matrix M in
a column-by-column manner. To illustrate, the function KeyGenIPFE(msk, pp,M) is defined by the
expression (KeyGenIPFE(msk, pp,M[i]))i∈[1,col], where the notation (M[i])i∈[1,col] represents the set
of all column vectors of length col comprising the matrix M.

Composite evaluation via composable QFE. We emphasize that for fixed randomness in the
encryption of the QFE scheme, EncQFE(mskQFE, ppQFE, ·) is a linear function for a message. This
implies that, rather than requesting the vector quadratic function F : Zℓ → Zm during the key
generation process, as in traditional FE, one can query the coefficient vector of the composite
function EncQFE(mskQFE, pp, ·) ◦ F .

To enable this, we exploit the EncQFE algorithm for a linear or quadratic function input F with
a matrix representation MF . Specifically, F (x) = MF · ((x‖1)⊗ (x‖1)) (or F (x) = MF · (x‖1)

15

if F is linear) and outputs a composition of encryption and the function evaluation MEnc◦F . We
denote this algorithm by cEnc, representing the composition of encryption and a function.

For further composite evaluations, we incorporate two subroutines into the description of the
algorithm and will now detail them. For these evaluations, it is necessary to get an encryption of
(F (x)‖1). Therefore, we define the expanded matrix representation of F , MF , by concatenation of
the unit vector (0, . . . , 0, 1) as the last row of the matrix MF . It is clear that MF ·((x‖1)⊗ (x‖1)) =
(F (x)‖1).

We then implement a functional key of EncQFE ◦ F and its decryption process by using the
expanded matrix representation. The detailed algorithms are given by Fig. 8. In the description,
we denote MF [i] as the i-th column vector of MF .

In order to compute composite evaluations, it is necessary to impose size restrictions on the
ciphertexts of the composable-QFE since the correctness of composable-QFE only works when an
evaluated value is less than N/2. For this purpose, given L ∈ Z, we set Y = ⌊∆1/L⌉. In other words,
it holds that Y L−1 < ∆ < Y L. To restrict the size of ciphertexts, we then define two functions:

DecompL : Z∆ 7→ ZL

v → (v0, v1, . . . , vL−1)

PowerL : ZL 7→ Z

(w0, w1, . . . , wL−1)→
L−1∑

i=0

wi · Y i,

where the {vi} holds that
∑L−1

i=0 vi · Y i = v. By the definition of both functions, it is clear that

PowerL(DecompL(v)) = v.

In the case where the input is a matrix, we apply the DecompY function to each entry. The power
map is then properly defined as an inverse map of the decomposition function on matrices. We
now show the details of the algorithm in Fig. 7.

Correctness (of Fig. 7 and Fig. 8). Due to the decryption correctness of composable-QFE, cDecQFE

returns a vector of the form PowerL(t) for t =
(
Mdecomp

Enc◦F · y
)
, where y is (x‖1) ⊗ (x‖1). Let BX

be a bound of x. Since each entry of Mdecomp
Enc◦F is less than Y = ⌊∆1/L⌉, each entry of the product

Mdecomp
Enc◦F · ((x‖1)⊗ (x‖1)) is less than Y ·BX · (ℓ+1)2. Thus, if we choose large enough L to satisfy

Y ·BX ·(ℓ+1)2 < N/2, then cDecQFE in Fig. 8 will output an exact decryption value tidx. Similarly,
cDecpkIPFE yields an exact decryption value tidx as long as Y ·BX · (ℓ+ 1) < N/2.

Hence, from the linear property, DecompL(t) is represented by a vector (ct0, ct1, ctIPFE) of the
form

ct0 = D⊥
0 · r̃0 +D−1

0 · (c · (F (x)‖1) +V · r0) mod ∆

ct1 = D⊥
1 · r̃1 +D−1

1 · ((F (x)‖1) +W · r1) mod ∆

ctIPFE = EncIPFE(mskIPFE,h)

with h =
(
r0 ⊗ F (x)‖(c · F (x) +V · r0)⊗ r1

)
for some r̃0 and r̃1. Thus, the output of both cDec

can be regarded as a ciphertext of message F (x).

Remark 4. The randomness (r0, r1) in cDecQFE(ppQFE, fkEnc◦F , ct, L) is shared with that of fkEnc◦F .
Therefore, it cannot be guaranteed that the ciphertext is secure. Accordingly, when instantiating
cFE-PPML using the current composable-QFE, an additional factor is required to ensure sufficient
randomness. This additional factor will be discussed in greater detail in Section 5.

4.3 Security proof of composable FE

This section demonstrates that the composable-QFE satisfies the semi-adaptive security when the
number of ciphertexts is Q-bounded.

16

Theorem 2. The composable-QFE described in Section 4 is semi-adaptively secure under the
MDDH and bilateral 2-LIN assumptions for Q-bounded ciphertexts. In particular, it holds that

AdvcQFE ≤ AdvMDDH + 2 · Adv2-Lin.

To prove this theorem, our strategy is to provide a polynomial time reduction from the quadratic
functional encryption scheme, Mus.QFE with Q ciphertexts, which is suggested by Musciagna [29]
to the composable-QFE scheme.

On the other hand, [29] proved that the Mus.QFE scheme achieves the semi-adaptive simulation
security under MDDH and 2-Lin assumptions. When these conditions are met, the following can
be concluded:

AdvcQFE ≤ AdvMus.QFE ≤ AdvMDDH + 2 · Adv2-Lin.

We provide both the description and reduction of the Mus.QFE in the Appendix A. The proof of
Theorem 2 will be given by Appendix B.

5 Secure Protocol for Function Compositions

In this section, we propose a secure protocol for function compositions using functional encryption
for quadratic polynomials. We will demonstrate the application of our protocol through privacy-
preserving quadratic neural networks, as detailed in Section 7.3. Our approach effectively addresses
the pervasive issue of intermediate leakage, which has been identified as a significant challenge in
existing FE-based PPML solutions.

The protocol P is constructed using a (public-key) inner product encryption scheme, pkIPFE
in Fig. 2, and a composable FE scheme for quadratic polynomials, composable-QFE in Fig. 6. The

• cEnc(mskQFE, ppQFE,MF , L)
1. Sample rb ← Z2

∆ for b ∈ {0, 1}.

2. Let m and col be the number of rows and columns of MF , respectively, and define MF =

(
MF

ecol

)
,

where ecol is a unit vector (0, . . . , 0, 1) of length col.

3. For 1 ≤ i < col, sample r̃b,i ← Z
Q
∆ for b ∈ {0, 1} and compute the following:

ct0,i = D
⊥
0 · r̃0,i +D

−1
0 · c ·MF [i] ∈ Z

m+1+Q
∆

ct1,i = D
⊥
1 · r̃1,i +D

−1
1 ·MF [i] ∈ Z

m+1+Q
∆

ctIPFE,i ← EncIPFE(mskIPFE, ppIPFE,hi),

where hi =
(
(r0 ⊗MF [i])‖(c ·MF [i]⊗ r1)

)
∈ Z

4(m+1)
∆ .

4. Sample r̃b,col ← Z
Q
∆ for b ∈ {0, 1} and compute the following:

ct0,col = D
⊥
0 · r̃0,col +D

−1
0 · (c ·MF [col] +V · r0) mod ∆

ct1,col = D
⊥
1 · r̃1,col +D

−1
1 · (MF [col] +W · r1) mod ∆

ctIPFE,col ← EncIPFE(mskIPFE,hcol),

where hcol =
(
r0 ⊗MF [col]‖(c ·MF [col] +V · r0)⊗ r1

)
∈ Z

4(m+1)
∆ .

5. Set a matrix MEnc◦F of which i-th column vector is the concatenation of three ciphertexts, i.e. for
1 ≤ i ≤ col, define

MEnc◦F [i]← (ct0,i‖ct1,i‖ctIPFE,i) ∈ Z
6m+3Q+8
∆ .

6. Decompose MEnc◦F over columns to get Mdecomp
Enc◦F ∈ Z

L(6m+3Q+8)×col

∆

7. Return M
decomp
Enc◦F .

Fig. 7. Composition algorithm of EncQFE and a matrix MF , a matrix representation of a function F . Recall
that MF [i] is ith column of the matrix MF .

17

• cKeyGenpkIPFE(mskpkIPFE, pkpkIPFE,mskQFE, ppQFE, f : Zℓ → Zm, L)

1. For given a linear function f , Let Mf ∈ Zm×ℓ be a matrix representation of f such that f(x) =
Mf · x.

2. Compute M
decomp
Enc◦f ← cEnc(mskQFE, ppQFE,Mf , L)

3. For every 1 ≤ idx ≤ L(6m+ 3Q+ 8), compute

fkEnc◦F [idx]← KeyGenpkIPFE(mskpkIPFE, pkpkIPFE, (M
decomp
Enc◦f)T [idx]),

where MT
Enc◦f [idx] is the idx-th column vector of MT

Enc◦f ,

4. Return a set of functional keys fkEnc◦f = {fkEnc◦f [idx]}
L(6m+3Q+8)
idx=1 .

• cDecpkIPFE(pkpkIPFE, fkEnc◦f , ct, L)

1. Parse fkEnc◦f = {fkEnc◦f [idx]}idx. Compute t ∈ ZL(6m+3Q+8) where idx-th entry of t is

tidx ← DecpkIPFE(pkpkIPFE, fkEnc◦f [idx], ct).

2. Return a vector PowerL(t).

• cKeyGenQFE(mskQFE, ppQFE,mskQFE′ , ppQFE′ , F : Zℓ → Zm, L)

1. For given quadratic function F , let MF ∈ Zm×(ℓ+1)2 be a matrix representation of F s.t. F (x) =
MF · (x⊗ x), where x = (x‖1).

2. Compute M
decomp
Enc◦F ← cEnc(mskQFE′ , ppQFE′ ,MF , L)

3. For every 1 ≤ idx ≤ L(6m+ 3Q+ 8), compute

fkEnc◦F [idx]← KeyGenQFE(mskQFE, ppQFE, (M
decomp
Enc◦F)T [idx]),

where MT
Enc◦F [idx] is the idx-th column vector of MT

Enc◦F .

4. Return a set of functional keys fkEnc◦F = {fkEnc◦F [idx]}
L(6m+3Q+8)
idx=1 .

• cDecQFE(ppQFE, fkEnc◦F , ct, L)

1. Parse fkEnc◦F = {fkEnc◦F [idx]}idx. Compute t ∈ ZL(6m+3Q+8) where idx-th entry of t is

tidx ← DecQFE(ppQFE, fkEnc◦F [idx], ct).

2. Return a vector PowerL(t).

Fig. 8. Composite evaluation.

final result of the protocol is the composition of quadratic polynomials ©E
i=1fi(x), where each

fi : Z
ℓi → Zℓi+1 is a vector quadratic polynomial. Throughout this paper, we set ℓi = ℓi+1 for all

indices for simplicity. To ensure the correctness and the security of P, specific requirements and
conditions must be met by composable-QFE. Subsequent sections will provide a detailed analysis
of these aspects, with a view to evaluating the reliability and security of the protocol.

5.1 Building block: integrating linear functions for security

Our main idea is to express higher-order polynomial operations required in ML as composi-
tions of quadratic polynomials as F = ©E

i=1fi, and to perform each quadratic polynomial us-
ing composable-QFE. To ensure security, instead of directly generating functional keys of fi, we
compute functional keys for EncQFE(mskQFE, ppQFE, ·) ◦ fi. Consequently, the decryption algorithm
DecQFE using such a functional key outputs the encrypted ciphertext of intermediate evaluations.
However, this approach renders the encryption deterministic, thereby compromising security. To
reintroduce randomness for security, we compose linear functions during key generation. Specifi-
cally, for a function fi : Zℓ → Zℓ, we define a function Gi : Zℓ+k

N → Zℓ+k
N for i ∈ [1, E − 1] by

Gi = hi ◦ fi ◦ h′
i−1. Here, hi and h′

i are linear functions that serve to calculate the composition
order and substantiate the security of our protocol.

Given positive integers ℓ, N , k and BH, we sample a matrix H ∈ Z(ℓ+k)×ℓ and its left-inverse
H′ ∈ Zℓ×(ℓ+k), and then define linear functions h(x) = H · x and h′(x) = H′ · x. The explicit
algorithm is described in Alg. 1. Furthermore, in order to guarantee the security of the protocol,

18

we consider a matrix Γ ∈ {0, 1}2ℓ×ℓ and its left-inverse Γ−1 ∈ Zℓ×2ℓ
N to randomize the messages

in the protocol. We denote that γ and γ−1 are linear functions that correspond to Γ and Γ−1,
respectively.

Algorithm 1 Algorithm for generating linear functions h and h′ for randomness

1: function genLin(ℓ,N, k,BH)
2: Sample a matrix U← {−1, 0, 1}(ℓ+k)×k such that U[i]T ·U[j] = 0 for all i 6= j
3: Compute a kernel matrix V ∈ Zℓ×(ℓ+k) such that V ·U = O
4: H← [−BH, BH](ℓ+k)×ℓ until V ·H is left-invertible over ZN

5: Define T ∈ Zℓ×ℓ
N as the left inverse of V ·H over ZN

6: Define h(x) = H · x, h′(x) = H′ · x for H′ = T ·V mod N
7: return h, h′

8: end function

For the sake of security, the parameter for k requires a condition to ensure the sufficient number
of possible H’s for sampling.

Lemma 1. Given (h, h′) ← genLin(ℓ,N, k,BH), there exist at least (2 · BH)ℓk-matrices H ∈
[−BH, BH](2ℓ+k)×ℓ such that H′ ·H = Iℓ.

Proof. Given the definitions of matrices U and V, it holds that

H′ · (H+U ·B) = Iℓ mod ZN

for any matrix B ∈ Zk×ℓ. This requires us to enumerate the matrices B such that (H+U ·B) ∈
[−BH, BH](ℓ+k)×ℓ.

Define B[i] and H[i] as the i-th column vector of B and H, respectively. The task then is to
determine the cardinality of the set:

Si := {B[i] | H[i] +U ·B[i] ∈ [−BH, BH]}.

The total number of suitable matrices B is given by the product
∏ℓ

i=1 |Si|.
According to the Alg. 1, the orthogonality of U’s column vectors implies that the entries of

B[i] do not interfere with each other’s magnitudes. This allows for the assessment of each entry’s
potential size in B[i] and the computation of the set Si’s size.

Only the possible coefficients for the first entry need to be counted for each B[i] due to sym-
metry. Therefore, the problem simplifies to counting the number of c1 such that each entry size of
H[i]+U[1] · c1 remains below BH. Initially, counting occurrences where U[1] · c1 fits within the set
[−BH, BH]ℓ+k indicates c1 ∈ [−BH, BH], yielding exactly 2 · BH + 1 possibilities. The focus is on
shifted instances from these cases. Decomposing the H[i] into c′1 ·H[i]+H[i]⊥, where H[i]⊥ is an or-
thogonal vector toH[i], it is required to c1+c′1 ∈ [−BH, BH] so thatH[i]+c1 ·U[1] ∈ [−BH, BH]ℓ+k.
It guarantees at least 2 ·BH cases for c1. As a result, for all U[i], (2 ·BH)k cases are possible and
|Si| ≥ (2 ·BH)k.

Combining all indices, we have
∏ℓ

i=1 |Si| ≥ (2 ·BH)ℓk, which completes the proof.

From Lemma 1, we set the parameters k and BH to satisfy the following condition.

(2 ·BH)ℓk ≥ 2λ (2)

This ensures a sufficiently large number of possible H configurations for security.

5.2 Protocol description

This section provides a secure protocol P for function compositions. The participants of our pro-
tocol consist of three types of entities: clients {Cj}j∈[0,J], a key distributor KD, and an evaluator
E. As discussed, instead of generating functional keys for fi directly, we compose linear func-
tions to add randomness. In the protocol, the key distributor generates a pair of linear function

19

(γ, γ−1) as described in Section 5.1 and E distinct pairs of linear functions {(hi, h
′
i)} using Alg. 1

for i ∈ [0, E − 1], then define Gi by hi ◦ fi ◦ h′
i−1 for each i ∈ [1, E − 1] and GE by fE ◦ h′

E−1. Then,
we observe that for any i ∈ [1, E − 1] and a vector x,

Gi+1(hi(x)) = (hi+1 ◦ fi+1 ◦ h′
i)(hi(x)) = hi+1(fi+1(x)) mod N,

(
©i

t=1Gt

)
(h0(x)) = hi(©i

t=1ft(x)) mod N,
(
©E

t=1Gt

)
(h0(x)) =©E

t=1ft(x) mod N.

The whole progress of our protocol is described in Fig. 9. In the protocol, there are two addi-
tional subscripts, denoted by l and j. The index l indicates several machine learning model Fl that
is compositions of quadratic polynomials fl,i, and the other index j indicates a client Cj .

Correctness (of secure protocol in Fig. 9). By definition of fkE1◦Gl,0,j
, it holds that

Ml,0,j = cDecpkIPFE(pkpkIPFE, fkE1◦Gl,0,j
, ctl,j , L)

= (E1 ◦ hl,0,j ◦ γ−1
l,j)(γl,j(xj)) = E1(hl,0,j(xj)).

Furthermore, we claim that Ml,i,j = Ei+1(hl,i,j©i
t=1 fl,t(xj)) for each i ∈ [1, E − 1]. Using the fact

that h′
l,i,j ◦ hl,i,j is an identity function for each i, it can be checked inductively as follows:

Ml,i,j = cDecQFE(ppQFE,i, fkEi+1◦Gl,i,j
,Ml,i−1,j , L)

= (Ei+1 ◦ hl,i,j ◦ fl,i ◦ h′
l,i−1,j)

(
(hl,i−1,j ©i−1

t=1 fl,t(xj)
)

= (Ei+1 ◦ hl,i,j)(©i
t=1fl,t(xj)).

Therefore, it satisfies

Ml,E−1,j = (EE ◦ hl,E−1,j)(©E−1
t=1 fl,t(xj)).

Then the final result is:

Ml,E,j = DecQFE(ppQFE,E , fkGl,E,j
,Ml,E−1,j)

= (fl,E ◦ h′
l,E−1,j)

(
(hl,E−1,j ©E−1

t=1 fl,t(xj)
)

=©E
i=1fl,i(xj) = Fl(xj).

Time complexity. Let {fl,i} be a family of quadratic functions and {hl,i,j} be a family of
invertible linear functions in Section 5.1. It is clear that the underlying algorithms including
cDec, cKeygen,Enc terminates in polynomial time in input parameters. Then Fig. 9 terminates
in polynomial time in input parameters as well.

6 Security Proof

In this section, we show that the protocol P described in Fig. 9 does not reveal information about
an unknown message under a malicious model. We recall the malicious security of the protocol
based on Definition 14. Let KD, E, and {Cj}j∈[0,J] denote the (trusted) key distributor, evaluator,
and clients, respectively, who are participants in the protocol. We here note that C0 is only one
honest client, and the evaluator E has ζ + 1 machine learning models. Each model consists of a
series of quadratic polynomials. Let F0 =©E

i=1f0,i be a machine learning model requested by C0.
The other models, denoted as {Fl}l∈[1,ζ] := {©E

i=1fl,i}l∈[1,ζ], are not requested by C0.
The objective is to demonstrate that an adversary A cannot distinguish between a protocol

P and an ideal protocol from its view. Then, it ensures the privacy of any intermediate values of
the honest client C0 during machine learning model computations because A cannot distinguish
where the intermediate value comes from. This indistinguishability holds even if A interacts with
other clients {Cj}j∈[1,J] and an evaluator E. To elucidate the adversary’s view, we describe both
real-world and ideal-world protocols.

Real-World. A interacting with the corrupted clients and an evaluator can be described as follows:

20

Participants: Clients ({Cj}j∈[0,J]), key distributor (KD), and evaluator (E)
Protocol:

Protocol Setup by KD
1. KD samples keys of pkIPFE:

{mskpkIPFE, pkpkIPFE} ← SetuppkIPFE(λ, 2ℓ, BX , BF)

2. KD samples keys of composable-QFE E times for i ∈ [1, E]:

{mskQFE,i, ppQFE,i} ← SetupQFE(λ, ℓ, 2ℓ+ 1)

3. KD sets the smallest integer k as Eq. (2) and samples pairs of linear functions (hl,i,j , h
′
l,i,j) as

Alg. 1 for each l ∈ [0, ζ], i ∈ [0, E − 1], and j ∈ [0, J].

(hl,i,j , h
′
l,i,j)← genLin(ℓ,N, k,BH)

4. For every l, j, KD samples Γl,j ← {0, 1}2ℓ×ℓ until there exists its left-inverse Γ−1
l,j . Define

γl,j(x) = Γl,j · x and γ−1
l,j (x) = Γ−1

l,j · x for any x.
5. Set {mskj}j∈[0,J] and pk as follows:

mskj = {mskpkIPFE, {mskQFE,i}i∈[1,E], {hl,i,j , h
′
l,i,j}l∈[0,ζ],i∈[0,E−1]}

pk = {pkpkIPFE, {ppQFE,i}i∈[1,E]}.

Encryption between Cj and KD
1. KD sends a tuple (pkpkIPFE, {hl,0,j ◦ γ−1

l,j }l∈[0,ζ], γl,j) to Cj .
2. Cj encrypts γl,j(xj) to generate ctl,j :

ctl,j ← EncpkIPFE(pkpkIPFE, γl,j(xj))

3. Cj sends ctl,j to the E.

Functional key generation between KD and E
1. E sends a model Fl =©E

i=1fl,i for a certain l to KD.
2. With an encryption map Ei : x 7→ EncQFE(mskQFE,i, ppQFE,i,x), KD sends a set of functional

keys Fl,j := {fkEi+1◦Gl,i,j
}i∈[0,E−1],j∈[0,J] ∪ {fkGl,E,j

} to E. For every i ∈ [1, E − 1], j ∈ [0, J],
and a decomposition parameter L, define functional keys as follows:
– fkE1◦Gl,0,j

← cKeyGenpkIPFE(mskpkIPFE, pkpkIPFE,mskQFE,1, ppQFE,1, hl,0,j ◦ γ−1
l,j︸ ︷︷ ︸

:=Gl,0,j

, L)

– fkEi+1◦Gl,i,j
← cKeyGenQFE(mskQFE,i, ppQFE,i,mskQFE,i+1, ppQFE,i+1, hl,i,j ◦ fl,i ◦ h′

l,i−1,j︸ ︷︷ ︸
:=Gl,i,j

, L)

– fkGl,E,j
← KeyGenQFE(mskQFE,E , ppQFE,E , fl,E ◦ h′

l,E−1,j︸ ︷︷ ︸
:=Gl,E,j

, L)

Model Evaluation by E
1. E inductively computes the following:

– Ml,0,j ← cDecpkIPFE(pkpkIPFE, fkE1◦Gl,0,j
, ctl,j , L)

– Ml,i,j ← cDecQFE(ppQFE,i, fkEi◦Gl,i,j
,Ml,i−1,j , L) for i ∈ [1, E − 1]

– Ml,E,j ← DecQFE(ppQFE,i, fkGl,E,j
,Ml,E−1,j)

2. E obtains Ml,E,j .

Fig. 9. Secure computation protocol P for function compositions ©E
i=1fl,i(x).

– Functional Keys: E queries several models {Fl}l∈[0,ζ] corresponding to all clients to KD and
transmits {Fl,j}l∈[0,ζ],j∈[0,J] with Fl,j = {fkEi+1◦Gl,i,j

}i∈[0,E−1] ∪ fkGl,E,j
to A, where Gl,i,j =

hl,i,j ◦ fl,i ◦ h′
l,i−1,j as in the Fig. 9.

– Target ciphertext: The honest client C0 selects a message x0 and makes a ciphertext ct0 := ct0,0 =
EncpkIPFE(pkpkIPFE, γ0,0(x0)), given a linear function γ0,0. Then, C0 sends it to E.

– Additional Ciphertexts: For l ∈ [0, ζ] and j ∈ [1, J], each client Cj also generates a ciphertext
ctl,j := EncpkIPFE(pkpkIPFE, γl,j(xj)) for some message xj and a linear function γl,j , and sends
ctl,j to E and (ctl,j ,xj) to A.

– Evaluation: For every i ∈ [1, E − 1], l ∈ [0, ζ] and j ∈ [0, J], E computes intermediate values
(Ei(hl,i−1,j ©i−1

t=1 fl,t(xj))) from ciphertexts and functional keys, and final results of the form
Fl(xj). E sends them to A.

Based on the description of P, we define REALP(x0, {xj}j∈[1,J], {Fl}l∈[0,ζ], λ, ζ) to be the view of
A in the real world.

REALP,A =
{
{xj}j∈[1,J], {Fl}l∈[0,ζ], {Fl(xj)}l∈[0,ζ],j∈[0,J], {Fl,j}l∈[0,ζ],j∈[0,J]

{ctl,j}l∈[0,ζ],j∈[0,J], {Ei(hi−1,j ©i−1
t=1 fl,t(xj))}i∈[1,E−1],l∈[0,ζ],j∈[0,J]

}

Ideal-World. In an ideal-world, there exists a simulator S for a client C0, which mimics the
KeyGen and EncpkIPFE. An ideal-world interaction then coincides with the real-world except for
terms related to the honest client C0; the target ciphertext and functional key:

– Functional Keys for client C0: E queries function {Fl}l∈[0,ζ] corresponding to all clients to KD.
Then KD transmits functional keys {FS

l,0}l∈[0,ζ] with FS
l,0 = {fkEi+1◦GS

l,i,0
}i∈[0,E−1] ∪ fkGS

l,E,j
to

A.
– Target ciphertext: The honest client C0 sends a ciphertext

ct∗0 := EncSpkIPFE(pk
S
pkIPFE, {h0,0,0 ◦ γ0,0−1, h0,0,0(x0)})

to E.

– Additional ciphertexts: These ciphertexts are generated by ctl,j := EncpkIPFE(pk
S
pkIPFE, γl,j(xj)).

Analogues to the real-world, we define IDEALS(x0, {xj}j∈[1,J], {Fl}l∈[0,ζ], λ, ζ) to be the view of A
in the ideal-world.

IDEALS =
{
{xj}j∈[1,J], {Fl}l∈[0,ζ], {Fl(xj)}l∈[0,ζ],j∈[0,J], {FS

l,j}l∈[0,ζ],j∈[0,J]

ct∗0, {ctl,j}l∈[0,ζ],j∈[0,J], {Ei(hi−1,j ©i−1
t=1 f0,t(xj))}i∈[1,E−1],l∈[0,ζ],j∈[0,J]

}

We then aim to show that the following two distributions are computationally indistinguishable:

REALP,A(x0, {xj}j∈[1,J], {Fl}l∈[0,ζ], λ, ζ)
c≈ IDEALS({Fl(x0)}, {xj}j∈[1,J], {Fl}l∈[0,ζ], λ, ζ). (3)

As a high-level idea for proof, a collection of linear functions {hl,i,j} (represented by {Hl,i,j}
for each l, i and j) plays a significant role in ensuring security. This matrix allows composite op-
erations only when each l, j is coincided. Hence, the matrix {Hl,i,0} are independent to other
matrices. In other words, the diversity of {hl,i,0} compensates for the lack of randomness of
an encryption function corresponding to Ei. Given that the evaluator lacks knowledge of hl,i,0,
Ei(hl,i−1,j(©i−1

t=1fl,t(xj))) for any i ∈ [1, E − 1] seems to be an encryption of random value in the
adversary’s view. In addition, other clients’ ciphertext is not helpful. In the following, we show that
there are at least 2λ-ensembles (hl,i−1,0,k,x0,k) Ei(hl,i−1,0(©i−1

t=1fl,t(x0))) = Ei(hl,i−1,0,k(x0,k)).
Consequently, the adversary is unable to distinguish fl,i−1(x0) and x0,k, even if A is already fa-
miliar with the function Fl.

6.1 Security proof of the protocol

The primary purpose of this section is to prove the following theorem, which implies the security
of a protocol P of Fig. 9.

22

Theorem 3. Let λ be the security parameter and (k,BH) be integers such that (2·BH)ℓk ≥ 2λ. The
protocol in Fig. 9 securely computes F0 =©E

t=1f0,t over Z
ℓ, when pkIPFE is adaptively simulation

secure and composable-QFE is (2ℓ+ 1)-ciphertext bounded semi-adaptively secure. More precisely,
there exists a simulator S such that any adversary A cannot distinguish the Eq. (3) except for the
following advantages:

AdvpkIPFE + E · AdvcQFE +
E
2λ

where AdvpkIPFE,AdvcQFE are the advantages of pkIPFE and composable-QFE, respectively.

Proof of Theorem 3. In the security of the protocol P in Fig. 9, the adversary is provided with a
distribution

D = REALP,A(x0, {xj}Jj=1, {Fl}ζl=0, λ).

We then consider (E + 1)-modified protocols denoting P1 and P2,i for i ∈ [1, E] such that

P2,ε = IDEALS(x0, {xj}Jj=1, {Fl}ζl=0, λ).

These modified protocols coincide with P for clients {Cj}Jj=1 except for C0. We therefore only
describe the protocols for the client C0. For ease of exposition, we denote that P1 (resp. P2,i)
yields a distribution D1 (resp. D2,i).

The main objective is to demonstrate that the (E+1)-protocols adhere to the following relation

P
AdvpkIPFE≈ P1

AdvcQFE≈ P2,1

AdvcQFE≈ . . .
AdvcQFE≈ P2,E ,

where the notation
Adv≈ indicates that the distributions cannot be distinguished with the advantage

Adv. It immediately says that the advantage for distinguishing between D and D2,E is less than

AdvpkIPFE + E · AdvcQFE,

where AdvpkIPFE,AdvcQFE are the advantages corresponding to pkIPFE and composable-QFE, re-
spectively. As the last step, we show that theD2,E does not leak information about x0. By combining
the two statements, we conclude the proof. In the following, we will prove that each statement is
correct.

Protocol P1. First of all, we introduce a protocol P1. Intuitively, the protocol is identical to the
original protocol P except for C0, and the only difference between P and P1 is how to implement
pkIPFE algorithm. We thus mainly introduce how protocol P1 is executed for an honest client C0.
We let

pkIPFES = {SetupSpkIPFE,KeyGenSpkIPFE,0,KeyGenSpkIPFE,1,EncSpkIPFE,DecpkIPFE}

denote the simulator.

The protocol P1 is exactly the same as P except for the algorithm related to pkIPFE. The
detailed description of P1 is given in Fig. 10.

Let P0 be the origin protocol P, and Gi be a game in which the challenger interacts with
the adversary of Pi with i ∈ {0, 1}. At the start of the game, the challenger randomly chooses
b ← {0, 1} and interacts with the adversary in Gb. At the end of the game, A returns b′ ∈ {0, 1}.
We define Adv01(A) as |Pr[b′ = b]− 1/2|. We directly obtain Lemma 2 from the results in [1].

Lemma 2. P and P1 are computationally indistinguishable under the assumption that pkIPFE is
adaptively simulation secure. More precisely, it holds that Adv01(A) ≤ AdvpkIPFE.

Proof of Lemma 2. The only difference between P0 and P1 is the usage of pkIPFE. P0 exploits a
real pkIPFE and P1 uses a simulator of pkIPFE. Thus, under the assumption that pkIPFE achieves
simulation-based security proved by [1], this modification cannot affect A’s view, which yields that
Adv01(A) ≤ AdvpkIPFE.

23

Participants: Client (C0), key distributor (KD), and evaluator (E)
Protocol:

Protocol Setup by KD
1. KD samples keys of pkIPFE:

{mskSpkIPFE, pk
S
pkIPFE} ← SetupSpkIPFE(λ, 2ℓ, BX , BF)

2. KD samples keys of composable-QFE E times for i ∈ [1, E]:

{mskQFE,i, ppQFE,i} ← SetupQFE(λ, ℓ, 2ℓ+ 1)

3. KD sets the smallest integer k as Eq. (2) and samples pairs of linear functions (hl,i,0, h
′
l,i,0) as

Alg. 1 for each l ∈ [0, ζ] and i ∈ [0, E − 1].

(hl,i,0, h
′
l,i,0)← genLin(ℓ,N, k,BH)

4. KD samples Γ0,0 ← {0, 1}2ℓ×ℓ until there exists its left-inverse Γ−1
0,0. Define γ0,0(x) = Γ0,0 · x

and γ−1
0,0(x) = Γ−1

0,0 · x.
5. Set msk0 and pk as follows:

msk0 = {mskSpkIPFE, {mskQFE,i}i∈[1,E], {hl,i,0, h
′
l,i,0}l∈[0,ζ],i∈[0,E−1]}

pk = {pkSpkIPFE, {ppQFE,i}i∈[1,E]}.

Encryption between C0 and KD
1. KD sends a tuple (pkpkIPFE, h0,0,0 ◦ γ−1

0,0 , γ0,0) to C0.
2. C0 encrypts γ0,0(x0) to generate ct∗0:

ct∗0 ← EncSpkIPFE(pk
S
pkIPFE, h0,0,0(x0))

3. C0 sends ct∗0 to the E.

Functional key generation between KD and E
1. E sends a model F0 =©E

i=1f0,i to KD.
2. With an encryption map Ei : x 7→ EncQFE(mskQFE,i, ppQFE,i,x), KD sends a set of functional

keys F0,0 := {fkEi+1◦G0,i,0
}i∈[0,E] ∪ fkG0,E,0

to E. For every i ∈ [1, E − 1], and a decomposition
parameter L, define functional keys as follows:
– fkE1◦G0,0,0

← cKeyGenpkIPFE(mskpkIPFE, pkpkIPFE,mskQFE,1, ppQFE,1, h0,0,0 ◦ γ−1
0,0︸ ︷︷ ︸

:=G0,0,0

, L)

– fkEi+1◦G0,i,0
← cKeyGenQFE(mskQFE,i, ppQFE,i,mskQFE,i+1, ppQFE,i+1, h0,i,0 ◦ f0,i ◦ h′

0,i−1,0︸ ︷︷ ︸
:=G0,i,0

, L)

– fkG0,E,0
← KeyGenQFE(mskQFE,E , ppQFE,E , f0,E ◦ h′

0,E−1,0︸ ︷︷ ︸
:=G0,E,0

, L)

Model Evaluation by E
1. E inductively computes the following:

– M0,0,0 ← cDecpkIPFE(pkpkIPFE, fkE1◦G0,0,0
, ct∗0, L)

– M0,i,0 ← cDecQFE(ppQFE,i, fkEi◦G0,i,0
,M0,i−1,0) for i ∈ [1, E − 1]

– M0,E,0 ← DecQFE(ppQFE,i, fkG0,E,0
,M0,E−1,0)

2. E obtains M0,E,0.

Fig. 10. Protocol P1 for a client C0.

Protocol P2,1. Let P2,1 be a protocol identical to P1 except for generating a functional key

fkG0,0,0
.To this end, we define the function cKeyGenSpkIPFE,0, which mirrors the cKeyGen function

except in its execution of KeyGen. Instead of the standard KeyGen component, it executes KeyGenS0 .
The new functional key fkE1◦GS

0,0,0
in P2,1 is then generated by

fkE1◦GS
0,0,0
← cKeyGenSpkIPFE,0(mskSpkIPFE, pk

S
pkIPFE,mskQFE,1, ppQFE,1, G

S
0,0,0, L)

where GS
0,0,0 = h0,0,0 ◦ γ−1

0,0 is a linear function that has a representation matrix H0,0,0 · Γ−1
0,0 such

that

H′
0,0,0 ·H0,0,0 · Γ−1

0,0 = H′
0,0,0 ·H0,0,0 · Γ−1

0,0 mod ∆. (4)

The matrix H0,0,0 satisfying Eq. (4) always exists from the Lemma 1. Then, the following lemma
holds.

Lemma 3. P1 and P2,1 are computationally indistinguishable under the assumption that E1 is
(2ℓ + 1) ciphertext-bounded semi-adaptively secure. The advantage of distinguishing between D1

and D2,1 is smaller than AdvcQFE.
Furthermore, no one computationally obtains any information about x0 from E1(h0,0,0(x0)).

Proof of Lemma 3. We first note that E1 is also a linear function. That is, there exists a matrixC2,1

such that E1(x) = C2,1 · x with x = (x‖1). It also holds that E1(H0,0,0 ·Γ−1
0,0) = C2,1 ·H0,0,0 · Γ−1

0,0

with H0,0,0 · Γ−1
0,0 =

(
H0,0,0 · Γ−1

0,0

1col

)
, where col is the number columns of H0,0,0 · Γ−1

0,0 and 1col is a

vector (1, . . . , 1, 1) of length col.
The functional key fkE1◦G0,0,0

in P1 can be represented as (A ·mskSpkIPFE,A), where A = C2,1 ·
H0,0,0 · Γ−1

0,0 and mskSpkIPFE is the secret key of pkIPFES . By definition, we also observe that

(A ·mskSpkIPFE,A) = (E1(H0,0,0 · Γ−1
0,0 ·mskSpkIPFE),E1(H0,0,0 · Γ−1

0,0)),

where mskSpkIPFE = (mskSpkIPFE‖1) We note that this fkE1◦G0,0,0
exactly corresponds to (2ℓ + 1)-

ciphertexts of E1 algorithm. For the sake of simplicity, we let fkE1◦G0,0,0
[idx] denote the idx-th

column vector of (A · mskSpkIPFE,A) in this proof. Then, each fkE1◦G0,0,0
[idx] is a ciphertext of the

form

fkE1◦G0,0,0
[idx] =

{
E1(H0,0,0 · Γ−1

0,0 ·mskSpkIPFE) if idx = 1

E1(H0,0,0 · Γ−1
0,0[idx]) if 2 ≤ idx ≤ 2ℓ+ 1.

On the other hand, fkE1◦GS
0,0,0

in P2,1 is of the form

(E1(H0,0,0 · Γ−1
0,0 ·mskSpkIPFE),E1(H0,0,0 · Γ−1

0,0)),

which corresponds to (2ℓ+1)-ciphertexts of the form (E1(H0,0,0 ·Γ−1
0,0 ·mskSpkIPFE),E1(H0,0,0 ·Γ−1

0,0)).
Similarly, fkE1◦GS

0,0,0
[idx] is denoted by the idx-th column vector. From the constraint in Eq. (4)

and definition of Fig. 10, it implies that for idx ∈ [1, 2ℓ], we have

cDecQFE(ppQFE,2, fkE2◦G0,2,0
, ct0,1,0[idx]) = cDecQFE(ppQFE,2, fkE2◦G0,2,0

,E1(H0,0,0 · Γ−1
0,0[idx]))

= cDecQFE(ppQFE,2, fkE2◦G0,2,0
,E1(H0,0,0 · Γ−1

0,0[idx]))

= cDecQFE(ppQFE,2, fkE2◦G0,2,0
, fkE1◦GS

0,0,0
[idx])

(5)

where fkE2◦G0,2,0
is defined as Fig. 10, and ct0,1,0[idx] = fkE1◦G0,0,0

[idx]. We briefly remark that the
second equality holds due to Eq. (4).

In summary, we observe that fkE1◦G0,0,0
and fkE1◦GS

0,0,0
are both considered as (2ℓ+1) ciphertexts

of E1. Moreover, they provide the same evaluated values given functional keys fkE2◦G0,2,0
due to

Eq. (5).

25

Any adversaryA in distinguishing between P1 and P2,1 can obtain (2ℓ+1) ciphertexts fkE1◦G0,0,0

or fkE1◦GS
0,0,0

depending on a protocol. However, A cannot distinguish between P1 and P2,1 using

this information since E1 is (2ℓ+ 1) ciphertext-bounded semi-adaptively secure.
We further argue that the information of x0 computationally is hidden. We point out that an

adversary can obtain E1(h0,0,0(x0)) under the protocol P2,1.
We may assume that the adversary learns exactly H0,0,0 · x0 from the E1(h0,0,0(x0)). Since

H0,0,0 is a tall matrix, determining H0,0,0 immediately recovers x0. That is the number of possible
candidates of x0 is obtained from that of H0,0,0. As discussed in Lemma 1, the possible number of
H0,0,0 is larger than 2λ by the setup. Hence, the message x0 can be recovered with probability at
most 1

2λ
.

Protocol P2,i. For i ≥ 1, P2,i+1 is the same protocol as P2,i except for the i-th functional key of
composable-QFE. As P2,1 is defined in the above, P2,i with i ≥ 2 could be well defined. To this
end, we define some notations. For each i ∈ [1, E), let H0,i,0 be a matrix such that

H′
0,i,0 ·H0,i,0 = H′

0,i,0 ·H0,i,0 mod ∆ (6)

and h0,i,0 is a linear function that corresponds to H0,i,0 for each 1 ≤ i < E . Given functions GS
0,i,0 =

h0,i,0 ◦ f0,i ◦ h′
0,i−1,0, the modified functional keys fkEi+1◦GS

0,i,0
of P2,i+1 are then generated by

fkEi+1◦GS
0,i,0
← cKeyGenQFE(mskQFE,i, ppQFE,i,mskQFE,i+1, ppQFE,i+1, G

S
0,i,0, L).

Similarly to Lemma 3, we remark that fkEi+1◦G0,i,0
is (2ℓ+ 1) ciphertexts of the form

fkEi+1◦G0,i,0
[idx] =

{
Ei+1(H0,i,0 ·Mf0,i · (H′

0,i−1,0 ⊗H′
0,i−1,0) · skQFE,i) if idx = 1

Ei+1(H0,i,0 ·Mf0,i · (H′
0,i−1,0 ⊗H′

0,i−1,0)[idx]) o.w

where skQFE,i = (skQFE,i‖1) with skQFE,i, a certain secret vector andMf0,i is a matrix representation
of f0,i. Then, with the same argument of Eq. (5) and the constraint in Eq. (6), it holds that

cDec(ppQFE,i+1, fkEi+2◦G0,i+1,0
, ct0,i,0[idx], L) = cDecQFE(ppQFE,i+1, fkEi+2◦G0,i+1,0

, ct0,i,0[idx], L).

where ct0,i,0[idx] = fkEi+1◦G0,i,0
[idx] and ct0,i,0[idx] = fkEi+1◦GS

0,i,0
[idx] respectively.

According to the hardness proof of the composable-QFE, an adversary A cannot distinguish
between P2,i and P2,i+1. For more details, we leave this proof in the Lemma 5. For a P2,i+1, a
matrix for a randomness is converted into H0,i,0. In the same vein as the above, thus A cannot
obtain information related to ©i

t=1fl,t(x0) from an intermediate value Ei+1(hi©i
t=1 fl,t(x0)) for a

protocol P2,i+1.
In summary, we demonstrate that any adversary A only distinguishes between (D,D2,E) with

at most advantage Adv ≤ AdvpkIPFE + E · AdvcQFE. Although, D2,E) for 0 ≤ i < E gives every inter-
mediate values Ei+1(h0,i,0(©i

t=1fl,t(x0))). the message ©i
t=1fl,t(x0) for some i can be recovered

with probability at most E
2λ
. Putting it together, the advantage of adversary A in revealing any

information about the message x0 is at most AdvpkIPFE + E · AdvcQFE + E
2λ
.

7 Benchmarks and Applications to ML Classification

In this section, we present the results of our protocol’s performance and demonstrate its applica-
tion in secure inference for classification. All benchmarks were performed on Linux with Intel(R)
Xeon(R) Silver 4208 CPU @ 2.10GHz with 30GB RAMS.

7.1 Benchmarks

First, we provide the benchmarks of our protocol with toy parameters. Our implementation utilizes
a public key IPFE [1] based on the Decisional composite residuosity (DCR) assumption. To achieve

26

128-bit security, we preselect p and q by 3072-bit primes for both DCR-based IPFE and our
protocol. These values are hard-coded into our implementation.

Under the above settings, we execute our protocol Fig. 9 for two-layer model across various
dimensions ℓ, where ℓ ranges from 1 to 6. As an input, we randomly set a set of vectors {ci}i∈[1,ℓ] ⊂
Zℓ and d ∈ Zℓ. Then, we consider a composition of two quadratic functions as an evaluation model:
a multinomial polynomial f1 : Zℓ → Zℓ and f2 : Zℓ → Z, defined as the following formula.

f1(x) =
(
(〈ci,x〉)2

)
1≤i≤ℓ

, f2(x) = (〈d,x〉)2

Consequently, the protocol outputs the evaluation of two quartic functions f2 ◦ f1(x) for an input
x. It is important to note that the time cost of the protocol is independent of the size of an input
vector and the coefficients of the functions. Therefore, these parameters are randomly chosen from
small integers.

The result is in the Table 3. The time cost is summed up by the Setup, KeyGen, Enc, and Dec
categories. In details, using the notation of protocol in Fig. 9, we elaborate as following.

– “Setup” in the Key Distributor involves “Protocol Setup” step.
– “KeyGen” in the Key Distributor implies “Functional Key Generation” step.
– “Enc” in the Client implies “Encryption” step.
– “Dec” in the Evaluator implies “Model Evaluation” step.

Note that every Setup and KeyGen algorithms in Fig. 9 are computed by a key distributor, and
both the client and evaluator are only required to compute encryption and decryption, respectively.

We note that the KeyGen and Dec steps in our experimental results significantly dominate
the total time costs. This is because both steps involve power operations on a group, specifically
computing the power of an integer sampled in a 12288-bit space. Additionally, since we use the
DCR group in our implementation, the discrete logarithm with base N +1 can be performed using
simple arithmetic operations, which does not require much time. In addition, other parameters in
our protocol are set to Qi = 2ℓi + 1 and k = 1. The details of our implementation can be found in
the github repository‖.

Dim (ℓ)
Key Distributor Evaluator Client

Setup KeyGen Dec Enc

1 0.69s 0.55h 0.58h 0.70s
2 0.70s 0.60h 0.64h 0.75s
3 0.87s 1.08h 1.13h 0.77s
4 1.17s 1.79h 1.84h 0.97s
5 1.46s 2.75h 2.78h 1.02s
6 1.74s 4.04h 4.02h 1.11s

Table 3. Benchmarks for protocol under 128-bit security level. The protocol runs for two-layer model with
input and intermediate dimension ℓ and outputs a scalar value. Note that we precompute 3072-bit prime
in advance so the time to select 3072-bit prime is not included during the Setup.

7.2 Complexity Analysis

In this section, we provide a detailed complexity analysis of our proposed method for evaluating
multi-layer neural networks. Our analysis focuses on the computational complexities of dominant
operations. In our case, assuming that we only deal with small dimensions in neural networks and
a group for a 128-bit security parameter, the dominant operation is the exponentiation over Z∗

N2

with N = p · q, the product of two 3072-bit primes p, q. We let ℓi denote the message dimension of
the i-th layer in neural networks and L be a decomposition parameter.

Adapting algorithms and parameters from Fig. 9, the complexity for each step in our algorithm
is as below. Note that we set k = O(1), L = O(log ℓi+1), and Qi = O(ℓi) for the QFE of i-th layer.

‖https://github.com/swanhong/composable-fe-rs

27

https://github.com/swanhong/composable-fe-rs

– Encryption (Enc): The encryption step computes pkIPFE encryption for a vector of dimension
2ℓ1, which costs O(ℓ1) exponentiations.

– Functional Key Generation (Keygen): In the functional key generation step, the key distributor
generates one pkIPFE functional key of dimension ℓ1+ k and a QFE key of dimension ℓi+ k for
ℓi+1 times for each i ∈ [1, E − 1]. For the last layer, a QFE key is generated for dimension ℓE .

Hence, the total number of exponentiations is
∑E−1

i=1 O(ℓ2i · ℓi+1) +O(ℓE), where the last O(ℓE)
term can be omitted.

– Evaluation (First Layer): For the first layer, the evaluator computes pkIPFE decryption, which
requires L ·O(ℓ1) = O(ℓ1 log ℓ2) exponentiations.

– Evaluation (Intermediate Layers): For each intermediate layer i (where i ∈ [2, E − 1]), the
evaluator performs QFE decryption, which evaluates the quadratic function of input dimension
ℓi and output dimension ℓi+1. This requires L · O(ℓi+1) = O(ℓi+1 log ℓi+1) number of QFE

decryption operations of input dimension ℓi, totaling O(ℓ2i ℓi+1 log ℓi+1) exponentiations.
– Evaluation (Last Layer): For the last layer, a single QFE decryption from dimension ℓE−1 to

ℓE costs O(ℓ2E−1ℓE) exponentiations.

Table 4 summarizes the complexity analysis and shows the comparison with [37].

Enc Keygen First Layer Intermediate Layer Last Layer

[37] O(ℓ1)(E1 + E2) E2 O(ℓ21)(E1 + P) ∗ ∗
ours O(ℓ1)E

(∑E−1
i=1 O(ℓ2i · ℓi+1)

)
E O(ℓ1 log ℓ2)E O(ℓ2i ℓi+1 log ℓi+1)E O(ℓ2E−1ℓE)E

Table 4. Comparison of the complexity analysis for evaluating multi-layer neural networks. [37] utilizes a
pairing mapG1×G2 → GT over the groupsG1, G2, andGT , whereas our method employs a groupG = ZN2 .
We denote the exponentiation complexities over G1, G2, and G by E1, E2, and E, respectively, and the
pairing complexity by P . In our environment, each operation costs on average E1 = 16ms, E2 = 16ms, and
P = 22ms using the Charm library [2], and E = 321ms in our implementation. An asterisk(∗) indicates
that all computations in the layer are performed in plaintext.

7.3 Application to Quadratic Neural Networks with UCI Datasets

In this section, we briefly introduce Quadratic Neural Networks (QNN) and their application in
secure inference for image classification.

Quadratic Neural Networks. Quadratic Neural Networks (QNN) utilize a neural network model
with a quadratic activation function, which is mainly used for data classification. The input data
consists of pairs (ak, bk), where ak ∈ Rℓ represents the input features, and bk ∈ [d] is a discrete
class label, where d is the number of classes. The primary goal of a neural network for classification
is to predict the probability that an input belongs to a specific class.

We consider a two-layer neural network, so that we assume the presence of u units in the hidden
layer and d distinct classes. The model involves two steps of computation:

1. In the hidden layer, each unit computes fh(x) =
(
(〈Wh,i,x〉+ βh,i)

2
)
1≤i≤u

, where Wh =

(Wh,1, . . . ,Wh,u) ∈ Ru×ℓ is a weight matrix and βh ∈ Ru is a bias.
2. In the output layer, each unit calculates fo(x) =

(
(〈Wo,j ,x〉+ βo,j)

2
)
1≤j≤d

, where Wo =

(Wo,1, . . . ,Wo,d) ∈ Rd×u is a weight matrix and βo ∈ Rd is a bias.

After training phase, we find the models fh = (fh,1, fh,2, . . . , fh,u) and fo = (fo,1, fo,2, . . . , fo,d)
for some univariate functions {fh,i}ui=1 and {fo,j}dh=1, and then the inference phase can get a
prediction vector b of a new input data a by computing following multinomial quadratic formulas:

a∗ = (fh,1(a), fh,2(a), . . . , fh,u(a)) ,b = (fo,1(a
∗), fo,2(a

∗), . . . , fo,d(a
∗))

Application to UCI Datasets. In this section, we describe the implementation of the inference
step of QNN with real datasets using our protocol. We employed the Iris and Breast Cancer

28

datasets from the UCI Machine Learning Repository [10]. For both datasets, we implemented a
2-layer neural network model with quadratic activation functions and utilized cross-entropy as the
loss function. The model’s architecture includes an input layer of dimension ℓ = 4 for Iris (or ℓ = 9
for Breast Cancer), a hidden layer with 4 nodes (u = 4), and an output layer with d = 3 for Iris (or
d = 2 for Breast Cancer). Other parameters for the protocol are chosen the same as our previous
benchmarks.

We converted the real numbers in both dataset and model parameters into integers by scaling
each value by S = 230.To enable evaluating fh and fo using our protocol, we scale model parameters
and define corresponding matrices

Mh =
(
S ·Wh, S

2 · βh

)
,Mo =

(
S ·Wo, S

5 · βo

)
.

Then, after performing a linear operation, the output is scaled as follows (rounding is performed
after scaling but ignored in the description below).

1. To evaluate the hidden layer fh, compute the scaled output as follows.

(Mh ⊗Mh) · ((S · a‖1)⊗ (S · a‖1)) =
(
(S2 ·Wh,i · a+ S2 · βh,i)

2
)
1≤i≤u

= S4 · fh(a).

2. To evaluate the output layer fo, compute the scaled output as follows.

(Mo⊗Mo)·
(
(S4 · fh(a)‖1)⊗ (S4 · fh(a)‖1)

)
=

(
(S5 ·Wo,j · fh(a) + S5 · βo,j)

2
)
1≤j≤d

= S10·fo(fh(a)).

We rescale the result by dividing it by S10 = 2300 to obtain the desired output fo(fh(a)) as real
numbers. This scaling factor allowed us to achieve inference results in our protocol that were nearly
identical to the results obtained in plain computation, with an error of less than 10−7.

The benchmark results, including the time taken for setup, key generation, decryption, and
encryption, are presented in Table 5.

Key Distributor Evaluator Client

Setup KeyGen Dec Enc

Iris 1.47s 1.05h 1.11h 0.93s
Breast 4.92s 3.61h 3.32h 1.13s

Table 5. Benchmarks for secure inference per one input for the 128-bit security level. Note that 1) we
precompute 3072-bit prime in advance so the time to select 3072-bit prime is not included during the
Setup. 2) Iris data and Breast data use parameters (ℓ, u, d) = (4, 4, 3) and (9, 4, 2), respectively.

References

1. S. Agrawal, B. Libert, M. Maitra, and R. Titiu. Adaptive simulation security for inner product
functional encryption. In IACR International Conference on Public-Key Cryptography, pages 34–64.
Springer, 2020.

2. J. A. Akinyele, C. Garman, I. Miers, M. W. Pagano, M. Rushanan, M. Green, and A. D. Rubin.
Charm: a framework for rapidly prototyping cryptosystems. Journal of Cryptographic Engineering,
3:111–128, 2013.

3. P. Ananth and A. Jain. Indistinguishability obfuscation from compact functional encryption. In Annual
Cryptology Conference, pages 308–326. Springer, 2015.

4. P. Ananth and A. Sahai. Projective arithmetic functional encryption and indistinguishability obfus-
cation from degree-5 multilinear maps. In Advances in Cryptology–EUROCRYPT 2017: 36th Annual
International Conference on the Theory and Applications of Cryptographic Techniques, Paris, France,
April 30–May 4, 2017, Proceedings, Part I, pages 152–181. Springer, 2017.

5. N. Attrapadung, K. Hamada, D. Ikarashi, R. Kikuchi, T. Matsuda, I. Mishina, H. Morita, and J. C.
Schuldt. Adam in private: Secure and fast training of deep neural networks with adaptive moment
estimation. Proceedings on Privacy Enhancing Technologies, 4:746–767, 2022.

6. M. Bahadori, K. Järvinen, T. Marc, and M. Stopar. Speed reading in the dark: Accelerating functional
encryption for quadratic functions with reprogrammable hardware. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems, pages 1–27, 2021.

29

7. S. Carpov, C. Fontaine, D. Ligier, and R. Sirdey. Illuminating the dark or how to recover what should
not be seen in fe-based classifiers. Proceedings on Privacy Enhancing Technologies, 2020(2):5–23, 2020.

8. J.-A. Choi and K. Lim. Identifying machine learning techniques for classification of target advertising.
ICT Express, 6(3):175–180, 2020.

9. J. De Spiegeleer, D. B. Madan, S. Reyners, and W. Schoutens. Machine learning for quantitative
finance: fast derivative pricing, hedging and fitting. Quantitative Finance, 18(10):1635–1643, 2018.

10. D. Dua and C. Graff. UCI machine learning repository, 2017.
11. E. Dufour-Sans, R. Gay, and D. Pointcheval. Reading in the dark: Classifying encrypted digits with

functional encryption. Cryptology ePrint Archive, 2018.
12. S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters. Candidate indistinguishability

obfuscation and functional encryption for all circuits. SIAM Journal on Computing, 45(3):882–929,
2016.

13. R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and J. Wernsing. Cryptonets: Apply-
ing neural networks to encrypted data with high throughput and accuracy. In International conference
on machine learning, pages 201–210. PMLR, 2016.

14. R. Goyal, V. Koppula, and B. Waters. Semi-adaptive security and bundling functionalities made
generic and easy. In Theory of Cryptography: 14th International Conference, TCC 2016-B, Beijing,
China, October 31-November 3, 2016, Proceedings, Part II, pages 361–388. Springer, 2016.

15. T. Graepel, K. Lauter, and M. Naehrig. Ml confidential: Machine learning on encrypted data. In Infor-
mation Security and Cryptology–ICISC 2012: 15th International Conference, Seoul, Korea, November
28-30, 2012, Revised Selected Papers 15, pages 1–21. Springer, 2013.

16. E. Hesamifard, H. Takabi, and M. Ghasemi. Cryptodl: Deep neural networks over encrypted data.
arXiv preprint arXiv:1711.05189, 2017.

17. E. Hesamifard, H. Takabi, M. Ghasemi, and R. N. Wright. Privacy-preserving machine learning as a
service. Proc. Priv. Enhancing Technol., 2018(3):123–142, 2018.

18. N. Koti, M. Pancholi, A. Patra, and A. Suresh. Swift: Super-fast and robust privacy-preserving machine
learning. In USENIX Security Symposium, pages 2651–2668, 2021.

19. N. Kumar, M. Rathee, N. Chandran, D. Gupta, A. Rastogi, and R. Sharma. Cryptflow: Secure
tensorflow inference. In 2020 IEEE Symposium on Security and Privacy (SP), pages 336–353. IEEE,
2020.

20. Q. Li, Z. Huang, W.-j. Lu, C. Hong, H. Qu, H. He, and W. Zhang. Homopai: A secure collabora-
tive machine learning platform based on homomorphic encryption. In 2020 IEEE 36th International
Conference on Data Engineering (ICDE), pages 1713–1717. IEEE, 2020.

21. D. Ligier, S. Carpov, C. Fontaine, and R. Sirdey. Information leakage analysis of inner-product func-
tional encryption based data classification. In 2017 15th Annual Conference on Privacy, Security and
Trust (PST), pages 303–3035. IEEE, 2017.

22. D. Ligier, S. Carpov, C. Fontaine, and R. Sirdey. Privacy preserving data classification using inner-
product functional encryption. In ICISSP, pages 423–430, 2017.

23. Y. Lindell. How to simulate it–a tutorial on the simulation proof technique. Tutorials on the Founda-
tions of Cryptography: Dedicated to Oded Goldreich, pages 277–346, 2017.

24. C. Liu, Z. L. Jiang, X. Zhao, Q. Chen, J. Fang, D. He, J. Zhang, and X. Wang. Efficient and privacy-
preserving logistic regression scheme based on leveled fully homomorphic encryption. In IEEE IN-
FOCOM 2022-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS),
pages 1–6. IEEE, 2022.

25. T. Marc, M. Stopar, J. Hartman, M. Bizjak, and J. Modic. Privacy-enhanced machine learning
with functional encryption. In European Symposium on Research in Computer Security, pages 3–21.
Springer, 2019.

26. A. Miklosik and N. Evans. Impact of big data and machine learning on digital transformation in
marketing: A literature review. IEEE Access, 8:101284–101292, 2020.

27. P. Mohassel and P. Rindal. Aby3: A mixed protocol framework for machine learning. In Proceedings
of the 2018 ACM SIGSAC conference on computer and communications security, pages 35–52, 2018.

28. P. Mohassel and Y. Zhang. Secureml: A system for scalable privacy-preserving machine learning. In
2017 IEEE symposium on security and privacy (SP), pages 19–38. IEEE, 2017.

29. G. Musciagna. Functional encryption for higher degree polynomials assuming multilinear maps. Mas-
ter’s thesis, ETH Zürich, Switzerland, 2021.

30. P. Panzade and D. Takabi. Towards faster functional encryption for privacy-preserving machine learn-
ing. In 2021 Third IEEE International Conference on Trust, Privacy and Security in Intelligent
Systems and Applications (TPS-ISA), pages 21–30. IEEE, 2021.

31. A. Patra, T. Schneider, A. Suresh, and H. Yalame. Aby2. 0: Improved mixed-protocol secure two-party
computation. In USENIX Security Symposium, pages 2165–2182, 2021.

32. A. Patra and A. Suresh. Blaze: blazing fast privacy-preserving machine learning. arXiv preprint
arXiv:2005.09042, 2020.

30

33. A. Qayyum, J. Qadir, M. Bilal, and A. Al-Fuqaha. Secure and robust machine learning for healthcare:
A survey. IEEE Reviews in Biomedical Engineering, 14:156–180, 2020.

34. M. S. Riazi, C. Weinert, O. Tkachenko, E. M. Songhori, T. Schneider, and F. Koushanfar. Chameleon:
A hybrid secure computation framework for machine learning applications. In Proceedings of the 2018
on Asia conference on computer and communications security, pages 707–721, 2018.

35. B. D. Rouhani, M. S. Riazi, and F. Koushanfar. Deepsecure: Scalable provably-secure deep learning.
In Proceedings of the 55th annual design automation conference, pages 1–6, 2018.

36. F. Rundo, F. Trenta, A. L. Di Stallo, and S. Battiato. Machine learning for quantitative finance
applications: A survey. Applied Sciences, 9(24):5574, 2019.

37. T. Ryffel, E. Dufour-Sans, R. Gay, F. Bach, and D. Pointcheval. Partially encrypted machine learn-
ing using functional encryption. In NeurIPS 2019-Thirty-third Conference on Neural Information
Processing Systems, 2019.

38. A. Saxena and S. Chandra. Artificial intelligence and machine learning in healthcare. Springer, 2021.

39. S. Tan, B. Knott, Y. Tian, and D. J. Wu. Cryptgpu: Fast privacy-preserving machine learning on the
gpu. In 2021 IEEE Symposium on Security and Privacy (SP), pages 1021–1038. IEEE, 2021.

40. S. Wagh, D. Gupta, and N. Chandran. Securenn: 3-party secure computation for neural network
training. Proc. Priv. Enhancing Technol., 2019(3):26–49, 2019.

41. S. Wagh, S. Tople, F. Benhamouda, E. Kushilevitz, P. Mittal, and T. Rabin. Falcon: Honest-majority
maliciously secure framework for private deep learning. arXiv preprint arXiv:2004.02229, 2020.

42. H. Wee. Attribute-hiding predicate encryption in bilinear groups, revisited. In Theory of Cryptography:
15th International Conference, TCC 2017, Baltimore, MD, USA, November 12-15, 2017, Proceedings,
Part I, pages 206–233. Springer, 2017.

43. H. Wee. Functional encryption for quadratic functions from k-lin, revisited. In Theory of Cryptography
Conference, pages 210–228. Springer, 2020.

44. R. Xu, J. B. Joshi, and C. Li. Cryptonn: Training neural networks over encrypted data. In 2019 IEEE
39th International Conference on Distributed Computing Systems (ICDCS), pages 1199–1209. IEEE,
2019.

45. J. Zhao, R. Mortier, J. Crowcroft, and L. Wang. Privacy-preserving machine learning based data
analytics on edge devices. In Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and
Society, pages 341–346, 2018.

A Functional Encryption for Linear/Quadratic Polynomials due to
Musciagna

We overview FE schemes for linear/quadratic polynomials, proposed by Musciagna [29]. They
generalize the technique for building the FE for quadratic polynomials assuming k-LIN due to Wee
[43].

Both constructions in this section achieve the semi-adaptive simulation based security (SA-
SIM), where it is more stronger security, under several assumptions in Section 2.3. The semi-
adaptive game introduced by [42], where the adversary is restricted to perform functional key
queries to the KeyGen oracle only after it sees the challenge ciphertext.

Notation. Suppose that 2-linear map e : G1×G2 → GT is given. For appropriate sizes of matrices
[Mi]i ∈ Gi, e([M1]1, [M2]2) is defined by [[M1]1 · [M2]2]T by exploiting e.

Let GGen(1λ) be a PPT algorithm which takes as input the security parameter λ, and returns
(G, g, p). Here, G is a group of composite order p ≫ 2λ and g is its generator, which has λ-bit
hardness of the discrete log problem. We also use a bracket notation [x] to denote gx. We note that
while the order p corresponds to a composite number ∆ = N · φ(N), an order of hybrid protocol
in the main body, we use the notation p to follow the same description of the scheme [29].

A.1 Functional Encryption for Linear Polynomials

In this section, we provide a brief overview of the simplified IPFE proposed by Musciagna in [29],
without security proofs. For more detailed information, we refer readers to the original paper [29].

We begin by describing Mus.IPFE, a FE scheme for inner products (IPFE) proposed by Mus-
ciagna [29], in Fig. 11. The security of Mus.IPFE is based on the hardness of the χ-MDDH as-
sumption (Definition 10).

31

• Mus.SetupIPFE(1
λ, n, e)):

1. Sample a← Z2
p, U← Zn×2

p .

2. Set mpk = {[a]1, [U · a]1} and msk = {a,U} and return mpk,msk.

• Mus.KeyGenIPFE(msk,mpk, [y]2 ∈ Gn
2):

1. Return sky =

[(
−UT · y

y

)]

2

∈ Gn+2
2 .

• Mus.EncIPFE(mpk, [x]1 ∈ Gn
1):

1. Sample r ← Zp.

2. Return ct =

[(
r · a

x+ r ·U · a

)]

1

∈ Gn+2
1 .

• Mus.DecIPFE(skf , ct,mpk):

1. Return
[
ctT · sky

]
T
.

Fig. 11. Mus.IPFE.

Correctness (of Fig. 11). From the decryption procedure, we observe that

[ctT · sky]T =

[(
r · a

x+ r ·U · a

)T

·
(
−UT · y

y

)]

T

= [(r · a)T (−U · y) + xTy + (r ·U · a)T · y]T
= [xT · y]T

We omit the security proof of Mus.IPFE. For more details, we refer the original paper [29,
Section 4].

Theorem 4 (Security of Mus.IPFE [29]). This scheme provides the semi-adaptive simulation
based security if the D1-MDDH assumption holds on G1.

A.2 FE for Quadratic Polynomials

We will now describe FE scheme for quadratic polynomials (QFE) in Fig. 12. The goal of QFE is

to compute a vector of the form (x⊗ y)T · f for some x ∈ Zn
p ,y ∈ Zn

p , and f ∈ Zn2

p .

Correctness (of Fig. 12). We first observe the term [(ctx ⊗ cty) · f]T :

[(ctx ⊗ cty) · f]T
= [(x⊗ y + x⊗ (V · s) + (U · r)⊗ y + (U · r)⊗ (V · s))T · f]T
= [(x⊗ y + (U · r)⊗ y + ctx ⊗ (V · s))T · f]T
= [(x⊗ y + (U⊗ In)(r⊗ y) + (In ⊗V)(ctx ⊗ s))T · f]T

= [(x⊗ y)T · f]T +

(

r⊗ y
ctx ⊗ s

)T

︸ ︷︷ ︸
hT

·
(
UT ⊗ In
In ⊗VT

)
· f

︸ ︷︷ ︸
M·f

T

.

On the other hand, by the correctness of Mus.DecIPFE, we obtain that

Mus.DecIPFE(mpkIPFE, ctIPFE, skIPFE) = [hT ·M · f]T .

Hence, the correctness must hold since we obtain [(x⊗ y)T · f]T .
As the above, we also omit the security proof of Mus.QFE. For more details, we refer an original

paper [29, Section 5].

32

33

• Mus.SetupQFE(1
λ, e, n):

1. Sample U← Zn×2
p , V← Zn×2

p and compute

M =

(
UT ⊗ In
In ⊗VT

)
.

2. Sample
{mskIPFE,mpkIPFE} ← Mus.SetupIPFE(1

λ, 4n).

3. Set mpk,msk as follows:

mpk = {[U]a, [V]b,mpkIPFE}
msk = {U,V,M,mskIPFE}

4. Return {mpk,msk}.
• Mus.KeyGenQFE(msk,mpk, f ∈ Zn2

p):

1. Sample skIPFE ← KeyGenIPFE(mskIPFE, [M · f]2).
2. Return skf = {skIPFE, f}.

• Mus.EncQFE(mpk,x ∈ Zn
p ,y ∈ Zn

p):

1. Sample r← Z2
p, s← Z2

p and compute the following:

[ctx]1 = [x+U · r]1,
[cty]2 = [y +V · s]2,

[h]1 =

[(
r⊗ y
ctx ⊗ s

)]

1

,

ctIPFE ← Mus.EncIPFE(mskIPFE, [h]1)

2. Return ct = {[ctx]1, [cty]2, ctIPFE}.
• Mus.DecQFE(skf , ct,mpk):

1. Compute

t = Mus.DecIPFE(mpkIPFE, ctIPFE, skIPFE).

2. Return loggT ([(ctx ⊗ cty) · f]T /t).

Fig. 12. Mus.QFE.

Theorem 5 (Security of Mus.QFE). Mus.QFE is semi-adaptive simulation based secure if
the bilateral 2-LIN assumptions holds in (G1,G2) and the Mus.IPFE is semi-adaptive simulation
based secure.

B Deferred Security Proof

The purpose of this section is to present the security proof of Theorem 2. We will mainly focus on
the security proof of Mus.QFE, as the technique is identical to the proof for Mus.IPFE throughout
this section.

Strategy. To prove the theorem, we convert from the Mus.QFE scheme [29] into our composable
QFE scheme in Section 4 under semi-adaptive security game. That is, we will show that

AdvcQFE ≤ AdvMus.QFE

which finishes proof. This is because that [29] proved that the scheme achieves the semi-adaptive
security under the cryptographic hard assumptions.

We make use of an assumption that there exists a secure bilinear map oracle M capable of
computing

M(gx1 , g
y
2) = gxyT

for some groups G1,G2,GT with generators g1, g2, gT ∈ ZN2 . The only required thing for proof is
that the whole group Gi is an order p group. Thus we skip the group description. It is important
to note that efficiency, in terms of storage cost, is not a requirement for the bilinear maps under
consideration. Rather, the main concern is security, which makes lookup tables a viable option.
The bilinear map oracle will be used for decryption during the security game.

We then show that the composable QFE scheme is semi-adaptive secure when only Q-ciphertext
queries are given.

Lemma 4. cQFE achieves Q-ciphertext bounded semi-adaptive simulation based security under the
assumption that the bilateral 2-LIN assumptions holds in (G1,G2) and the above IPFE is semi-
adaptive simulation based secure.

Proof of Lemma 4. Our goal is to demonstrate that if an adversary AcQFE can break the semi-
adaptive simulation-based security of our scheme, then Mus.QFE can also be broken. To accomplish
this, we construct an adversary of Mus.QFE using AQFE that breaks the cQFE.

Now, we introduce an algorithm, called matrix-vector splitting algorithm (Alg. 2) to bridge
between ciphertexts of Mus.QFE and cQFE. The algorithm is a core technique of the reduction for
the proof.

For ease of presentations, we omit the underlying group, G, and the dimension of given vectors,
L∗∗, in the input of each algorithm.

Algorithm 2 Matrix-vector splitting

Input: Vectors {vi}i∈[1,Q] ⊂ GL

Output: [D] ∈ GL×L+Q and {di}i∈[1,Q] ⊂ Z
L+Q
N ·φ(N) such that [D]di = vi

1: Set A← DZL+Q×L+Q until A is invertible.
2: Sample B̃← ZL×L

N ·φ(N) and set

[D] = (v1‖ · · · ‖vQ‖[B̃])A
−1 ∈ GL×(L+Q)

3: Set di = A · ei for i ∈ [1, Q].
4: return [D] and {di}.

Alg. 2 is used to convert ciphertexts of Mus.QFE (resp. Mus.IPFE) into cQFE (resp. c-IPFE).
The detailed algorithms for transforming Mus.IPFE and Mus.QFE into cIPFE and cQFE are given
by Fig. 13 and Fig. 14, respectively.

∗∗This notation is independent to the L in the main body.

34

We would like to note that the set of output vectors {dxi
,dyi

,dIPFE,i}i obtained from Fig. 14
has the same distribution of EncQFE in Section 4 when xi = yi. Additionally, we note that the

terms K̃eyGenQFE(f , {[D0]1, [D1]2, [DIPFE]2}, KeyGenQFE(f)) can serve as functional keys for cQFE

because it has the same distribution of KeyGenQFE as well. As a result, it is able to obtain a set of
ciphertexts and a family of functions that serve as legitimate inputs.

Let Mus.QFES (resp. Mus.IPFES) be a simulator of Mus.QFE (resp. Mus.IPFE). Since these
schemes are semi adaptive simulation based secure scheme, such a simulator exists. In the same
vein, Alg. 2 converts the Mus.QFES into a simulator of cQFE. We denote it as cQFES .

The probability of distinguishing between cQFE and cQFES should be non-negligible if not
Mus.QFE and its simulator should be distinguished with non-negligible probability. This completes
the proof.

ẼncIPFE(Mus:ctxtIPFE(xi)) :
1. Sample [D]2,di ← Alg. 2(Mus:ctxtIPFE(xi)).
2. Return di for every i.

K̃eyGenIPFE(f , [D]2,Mus.KeyGenIPFE(f)) :
1. Denote Mus.KeyGenIPFE(f) by [skf]1.

2. Return e([skTf]1, [D]2) = [skTf ·D]T .

Fig. 13. Construction of ẼncIPFE and K̃eyGenIPFE given {Mus:ctxtIPFE(xi)} and f .

ẼncQFE({Mus:ctxtQFE(xi,yi)}i≤Q) :
1. Sample [D0]1, {dxi

}i≤Q ← Alg. 2({ctxi
}i≤Q).

2. Sample [D1]2, {dyi
}i≤Q ← Alg. 2({ctyi

}i≤Q).
3. Sample

[DIPFE]2, {dIPFE,i}i≤Q ← ẼncIPFE({ctIPFE,i}i≤Q).

4. Return ({dxi
,dyi

,dIPFE,i}i≤Q).

K̃eyGenQFE(f , {[D0]1, [D1]2, [DIPFE]2},KeyGenQFE(f)) :
1. Parse KeyGenQFE(f) by (skIPFE,f , [f]c).
2. Compute fk1 := [fT · (D0 ⊗D1)]T via bilinear map e and fT , [D0]1, and [D1]2.
3. Sample

fkIPFE ← K̃eyGenIPFE(skIPFE,f , [DIPFE]2).

4. Return fk1 and fkIPFE.

Fig. 14. Construction of ẼncQFE and K̃eyGenQFE given {Mus:ctxtQFE(xi,yi) = {ctxi , ctyi , ctIPFE,i}}i≤Q and
f .

B.1 Detailed Proof in Theorem 3

In this section, we provide a detailed proof of P2,i ∼ P2,i+1. For this purpose, we prove the following
lemma.

Lemma 5. For any 1 ≤ i < E, P2,i and P2,i+1 are computationally indistinguishable under the
assumption that cQFE is (2ℓ+ 1)-bounded semi-adaptively secure. The advantage of distinguishing

35

between D2,i and D2,i+1 is smaller than AdvcQFE. Furthermore, no one computationally obtains any
information about ©E

i=1f0,i(x0) from Ei+1(h0,i,0(©i
t=1f0,t(x0))).

Proof of Lemma 5. Suppose that there exists a PPT adversary Bi that can distinguish between P2,i

and P2,i+1. Then, we construct an adversary AcQFE to break the security game of composable-QFE.
Assume that C is a challenger of the security game of composable-QFE.

1. C samples (mskQFE,i+1, ppQFE,i+1)← SetupQFE(λ, ℓ, 2ℓ+ 1) and sends ppQFE,i+1 to AcQFE.
2. AcQFE proceeds up to steps as follows:

(a) Sample

{mskSpkIPFE, pk
S
pkIPFE} ← SetupSpkIPFE(λ, 2ℓ+ 1, BX , BF),

{mskQFE,t, ppQFE,t} ← SetupQFE(λ, ℓ, 2ℓ+ 1)

for each t ∈ [1, E] \ {i+ 1}.
(b) Set pk as in P and send it to Bi.
(c) Sample a pair (H0,t,0,H

′
0,t,0) for t ∈ [0, E] \ {i}.

(d) Sample a matrix H0,t,0 satisfying H′
0,t,0 ·H0,t,0 = H′

0,t,0 ·H0,t,0 mod ∆ for 0 ≤ t < i.

(e) Sample a pair (Γl,0,Γ
−1
l,0) and a simulated ciphertext EncS1 as follows.

EncS1 ← EncSpkIPFE(mskSpkIPFE, pk
S
pkIPFE, {h0,0,0 ◦ γ−1

l,0 , h0,0,0(x)})
3. Bi queries a set of models {Fl} to the AcQFE.

4. AcQFE computes a functional key of G̃0,0,0 = G0,0,0 = h0,0,0 ◦ γ−1
l,0 as follows.

fkE1◦GS
0,0,0
← cKeyGenSpkIPFE,0(mskSpkIPFE, pk

S
pkIPFE,mskQFE,1, ppQFE,1, G0,0,0, L)

5. For every t < i, AcQFE computes functions keys fkEt+1◦GS
0,t,0

as follows:

fkEt+1◦GS
0,t,0
← cKeyGenQFE(mskQFE,t, ppQFE,t,mskQFE,t+1, ppQFE,t+1, G

S
0,t,0, L),

where GS
0,t,0 = h̄0,t,0 ◦ fl,t ◦ h′

0,t−1,0 .
6. For every t > i, i+ 1, AcQFE computes functions keys fkEt+1◦G0,t,0

as follows:

fkEt+1◦G0,t,0
← cKeyGenQFE(mskQFE,t, ppQFE,t,mskQFE,t+1, ppQFE,t+1, G0,t,0, L)

where G0,t,0 = h0,t,0 ◦ fl,t ◦ h′
0,t−1,0.

7. To compute fkEi+1◦GS
0,i,0

, fkEi+2◦G0,i+1,0
, AcQFE sends (H0,i,0, H̄0,i,0) to C.

8. C randomly chooses h0,i,0 ∈ {H0,i,0,H0,i,0} and returns ct← Ei+1(h0,i,0).
9. AcQFE computes

fkEi+1◦GS
0,i,0
← KeyGenQFE(mskQFE,i, ppQFE,i, ct ·Mf0,i · (H′

0,i−1,0 ⊗H′
0,i−1,0), L).

10. AcQFE requests a function query for G0,i+1,0 = h0,i+1,0 ◦ f0,i ◦ h′
0,i,0.

11. C computes a functional key fkEi+2◦G0,i+1,0
as follows

fkEi+2◦G0,i+1,0
← cKeyGenQFE(mskQFE,i+1, ppQFE,i+1,mskQFE,i+2, ppQFE,i+2, G0,i+1,0, L)

and sends it to AcQFE. Last, AcQFE transmits it to Bi.
12. Bi returns β ∈ {i, i+ 1} to AcQFE.
13. If β = i+ 1, AEnc2,i+1

outputs H0,i,0. Otherwise, returns H0,i,0.

By construction, fkEi+1◦GS
0,i,0

is identical to an output of

cKeyGenQFE(mskQFE,i, ppQFE,i,mskQFE,i+1, ppQFE,i+1, h0,i,0 ◦ f0,i ◦ h0,i−1,0, L).

Thus, this game directly implies that

Advi,i+1 ≤ AdvcQFE for any i,

where Advi,i+1 stands for denoting the advantage to distinguish two protocols P2,i and P2,i+1.
Analogs to the case of H0,0,0, we may assume that the adversary A knows H′

0,i,0 and H0,i,0 ·
©i

t=1fl,t(x) exactly. However the possible number of H0,i,0 is larger than 2λ. Hence, no one com-
putationally recovers the ©i

t=1fl,t(x0) for each i.

36

	 Fully Encrypted Machine Learning Protocol using Functional Encryption

