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1 Introduction

The PCP theorem [AS98; ALMSS92] states that for any language in NP, there exists a polynomial-size proof
that can be checked probabilistically by reading only a constant number of bits from the proof; or, succinctly,

NP ⊆ PCP[log n, 1] ,

where PCP[r, q] is the class of all languages that admit a PCP verifier that uses O(r) random bits and reads
O(q) bits of the proof (note that logarithmic randomness complexity implies polynomial proof length).

While PCPs originated from the study of zero-knowledge proofs [GMR89], there seems to be an intrinsic
tension between the two notions: PCPs achieve locality by encoding NP witnesses in a manner that spreads
global information throughout the proof, whereas zero-knowledge proofs aim to hide all information except
for the validity of the statement. Moreover, PCPs are fundamentally non-interactive objects, whereas
interaction is often crucial for zero knowledge.

Indeed, one must take care in even defining zero knowledge PCPs (ZK-PCPs), as it is impossible to
achieve non-trivial zero knowledge against a malicious verifier that reads the entire proof. In their seminal
work on ZK-PCPs, Kilian, Petrank and Tardos [KPT97] identify two regimes of interest:

(a) Polynomial-size PCPs that are zero-knowledge against a verifier that makes at most a fixed polynomial
number of queries q∗ to the PCP. In this regime, they construct ZK-PCPs for NP with polylogarithmic
query complexity. We refer to q∗ as the “query bound”.

(b) Exponential-size PCPs that are zero-knowledge against any polynomial-time verifier. In this regime, they
construct ZK-PCPs for NEXP with polynomial query complexity.

However, these constructions fall short of a “zero-knowledge PCP theorem” in a fundamental way: the query
complexity is polylogarithmic, as opposed to O(1), which is a characteristic property of the PCP theorem.

A major obstacle to achieving O(1) query complexity via the [KPT97] approach is that the technique used
to obtain zero knowledge leads to an inherently adaptive honest verifier (i.e., which makes multiple rounds
of queries to the proof). Known query-reduction methods apply only to non-adaptive PCPs. Aside from its
theoretical interest, non-adaptivity is crucial for some applications [IWY16]. Finally, these constructions
only achieve statistical zero knowledge (SZK-PCP) and not perfect zero knowledge (PZK-PCP).

Building on techniques developed in [BCFGRS17; CFGS18; CCGOS23], a recent work [GOS24]
constructed exponential-size PZK-PCPs with polynomially many non-adaptive queries for #P. Our first
result shows that such PZK-PCPs exist for NEXP, with constant query complexity.

Theorem 1. There exist PCPs for NEXP of exponential length with a non-adaptive verifier that reads O(1)
bits of the proof, which are perfect zero-knowledge against any efficient adversary.

Our second result “scales down” the above to obtain polynomial-size non-adaptive PZK-PCPs for NP
with constant query complexity.1

Theorem 2 (“Zero-knowledge PCP theorem”). For any q∗ ≤ 2poly(n), there exist PCPs for NP of length
poly(q∗, n) with a non-adaptive verifier that reads O(1) bits of the proof, which are perfect zero-knowledge
against any adversary reading at most q∗ bits of the proof; i.e.,

NP ⊆ PZK-PCP[log n, 1] .
1For our definition of the class PZK-PCP, see Definition 2.12.
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1.1 Techniques

PZK-PCPs for nondeterministic computation. This paper builds on the prior work of [GOS24], which
proves a weaker version of Theorem 1 that only captures (decision) #P, by constructing non-adaptive
PZK-PCPs for the sumcheck problem.

Readers familiar with the PCP literature may wonder why this construction does not lead immediately to
a ZK-PCP for NEXP; indeed, the first construction of a PCP for NEXP is essentially a reduction to sumcheck
[BFLS91]. However, as we discuss below, even with a PZK-PCP for the sumcheck problem, the BFLS
construction is not zero knowledge.

We start by briefly reviewing the BFLS construction, which is a PCP for the NEXP-complete problem
Oracle-3SAT, defined as follows.

Definition 1 (Oracle 3-SAT). Let B : {0, 1}r+3s+3 → {0, 1} be a 3-CNF. We say that B is implic-
itly satisfiable if there exists A ∈ {0, 1}s → {0, 1} such that for all z ∈ {0, 1}r, b1, b2, b3 ∈ {0, 1}s,
B(z, b1, b2, b3, A(b1), A(b2), A(b3)) = 1. Let Oracle-3SAT be the language of implicitly satisfiable 3-CNFs.

The BFLS PCP consists of two parts. First, the multilinear extension of the witness A; i.e., a multilinear
polynomial Â over some finite field F such that Â(x) = A(x) for all x ∈ {0, 1}s. Second, a sumcheck PCP2

for the following claim3: ∑
z∈{0,1}r

b1,b2,b3∈{0,1}s

B̂(z, b1, b2, b3, Â(b1), Â(b2), Â(b3)) = 2r+3s , (1)

where B̂ is an arithmetisation of the circuit B.
A natural first step is to use the zero-knowledge sumcheck PCP of [GOS24] in place of the standard

sumcheck PCP, which hides hard-to-compute information about partial sums. However, this does not yet
yield a ZK-PCP, because the first part of the construction contains an encoding of the witness A, which
violates the zero-knowledge condition.

To hide A, we would like to use the sumcheck commitment scheme, introduced by [CFGS22] (see also
[CFS17]) for their construction of an interactive PCP (IPCP) for NEXP. A sumcheck commitment to the
polynomial Â(X⃗) is a random polynomial C(X⃗, Y⃗ ) of individual degree d′ ≥ 2 in each Y -variable such that∑

c∈{0,1}k
C(α, c) = Â(α)

for all α ∈ Fs. It was shown in [CFGS22] that this commitment perfectly hides Â against all adversaries that
make fewer than 2k queries to C.

The construction of [BFLS91] uses the sumcheck protocol to reduce checking (1) to three random queries
to Â. Building on this idea, the ZK-IPCP construction of [CFGS22] uses the interactive sumcheck protocol
to open the sumcheck commitment to Â at those points. Finally, to ensure that those three evaluations do
not leak information about the witness, Â is chosen to be a random multiquartic—rather than the unique
multilinear—extension of A.

However, the strategy above strongly relies on the interactivity of the ZK-IPCP. Indeed, observe that if
we were to “unroll” this interaction into a PCP, we would simply write down all of Â! We must therefore

2Strictly speaking, a PCP of proximity; we will ignore this distinction for this overview.
3To mitigate some technical issues with soundness, the actual construction uses a slightly different summand polynomial.

4



establish (1) without opening the sumcheck commitment. That is, we would like to directly check:

∑
z∈{0,1}r

b1,b2,b3∈{0,1}s

B̂

z, b1, b2, b3,
∑

c∈{0,1}k
C(b1, c),

∑
c∈{0,1}k

C(b2, c),
∑

c∈{0,1}k
C(b3, c)

 = 2r+3s ,

To do this, we first “pull out” the three inner summations. There are various ways this can be achieved; we
follow a linearisation approach. First observe that (assuming Â takes boolean values on {0, 1}s), the LHS of
(1) is equal to

∑
a1,a2,a3∈{0,1}

∑
z∈{0,1}r

b1,b2,b3∈{0,1}s

B̂(z, b1, b2, b3, a1, a2, a3) ·
3∏

i=1

(Â(bi)− (1− ai)) ,

since the product expression “zeroes out” any term of the sum for which some ai ̸= Â(bi). Next, observe
that for any b1, b2, b3, a1, a2, a3, provided that F has characteristic different from 2,

3∏
i=1

(Â(bi)− (1− ai)) =

3∏
i=1

∑
c∈{0,1}k

(
C(bi, c)−

1− ai
2k

)
=

∑
c1,c2,c3∈{0,1}k

3∏
i=1

(
C(bi, ci)−

1− ai
2k

)
.

Taken together, we see that checking (1) is equivalent to checking

∑
c1,c2,c3∈{0,1}k

∑
a1,a2,a3∈{0,1}

∑
z∈{0,1}r

b1,b2,b3∈{0,1}s

B̂(z, b1, b2, b3, a1, a2, a3)

3∏
i=1

(
C(bi, ci)−

1− ai
2k

)
= 2r+3s ,

which can be proven in zero knowledge using the [GOS24] ZK-PCPP for sumcheck. In particular, the PCPP
simulator requires only polynomially many evaluations of the summand to simulate polynomially many
queries to the proof. By setting k = ω(log n) we can simulate those evaluations by lazily simulating C as a
uniformly random polynomial (via an algorithm of [BCFGRS17]), and then evaluating the summand directly.
The query complexity of the verifier is poly(n).

Our result for NP is obtained in a similar way, scaling the parameters appropriately. In particular, for
a given adversary query bound q∗, we can set k = O(log q∗). The query complexity of the verifier is then
poly(log n, log q∗). We also point out that the honest prover in our construction for NP is efficient, given a
valid witness as input.
Proof composition and zero knowledge. In order to obtain constant query ZK-PCPs for NP, we would
like to apply the proof composition paradigm [BGHSV06] to our ZK-PCPs. This involves composing a
robust outer PCP with an inner PCP of proximity to obtain a PCP which inherits the randomness complexity
of the former and query complexity of the latter. To do this, we first need to strengthen our ZK-PCPs to
satisfy robust soundness (i.e., the local view of the verifier must be far from an accepting view, with high
probability). Then we show that proof composition preserves the zero knowledge of the outer PCP. To the
best of our knowledge, this is the first composition theorem for ZK-PCPs.

Our first step is to obtain robust ZK-PCPs for NP with polylogarithmic query complexity. While the
PZK-PCP of [GOS24] (upon which our PZK-PCP builds) is an algebraic construction, it does not have
constant robust soundness as written. We present a modification of the [GOS24] PCP for sumcheck, following
the “query bundling” approach of [BGHSV06], that has constant robust soundness.
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The key challenge is to show that this modification preserves zero knowledge. In fact, we will show that
a much more general class of “local” transformations preserve zero knowledge. This class includes not only
query bundling, but also the subsequent steps of alphabet reduction and proof composition. To capture this
class formally, we define a new notion, locally computable proofs.

Definition 2 (Locally computable algorithms (informal; see Definition 3.1)). Let A and A0 be randomized
algorithms. We say that A is ℓ-locally computable from A0 if there exists an efficient, deterministic oracle
algorithm f making at most ℓ queries to its oracle such that, for every input x, the following two distributions
are identically distributed:

A(x), (fπ0 | π0 ← A0(x)).

We show that if the PCP prover algorithm P is ℓ-locally computable from a zero-knowledge PCP prover
P0, then provided ℓ is asymptotically smaller than the query bound on the ZK-PCP, P inherits the zero
knowledge guarantee of P0. Intuitively, this is true because if a proof π is locally computable from a proof
π0, and π0 is zero knowledge, then we can apply f to the simulator for π0 to obtain a simulator for π. This
notion is surprisingly versatile, and allows us to prove zero knowledge in an array of distinct settings:

• Robustification of [GOS24]. We show that our modified [GOS24] construction is locally computable
from the original construction, and thus inherits zero knowledge.

• Alphabet reduction. Recall that alphabet reduction allows us to transform a robust PCP over a large
alphabet into a boolean PCP, while maintaining robustness. It is performed by encoding each symbol of the
PCP with a good error correcting code. More formally, if π is a distribution over robust PCP proofs over the
alphabet {0, 1}a for some a ∈ N, and ECC : {0, 1}a → {0, 1}b is a systematic binary error-correcting code
of constant relative distance and rate, then we can obtain a robust boolean PCP by defining a new proof
τ(α) := ECC(π(α)) for every proof index α, and writing τ over the alphabet {0, 1}. Then τ is 1-locally
computable from π by the following function:

fπ(α, i) = ECC(π(α))i,

where i ∈ [b]. We note that prior work on alphabet reduction for ZKPCPs [HVW22] required a much more
complex construction because their ZKPCP achieves only a quadratic gap between the honest verifier’s
query complexity and the query bound.

• Proof composition. Recall that composition of an outer PCP system (Pout,Vout) for L with an inner
PCP of proximity (Pin,Vin) for circuit evaluation proceeds as follows. Let πout ← Pout. For every choice
r ∈ {0, 1}rout of Vout’s randomness, the composed prover computes Vout’s query set Q(r) and an “inner
proof” πr := Pin(Vout, πout|Q(r)), which attests to the fact that if Vout performed its verification of πout using
randomness r, then it would have accepted. Each inner proof is a function of at most ℓout many locations of
πout, where ℓout is the query complexity of Vout. The composed proof is given by (πout, (πr)r∈{0,1}rout ).

Hence the composed proof is ℓout-locally computable from πout, by the following function:

fπout(O, i) =

{
πout(i) if O = πout

Pin(Vout, πout|Q(r))i if O = πr, for some r ∈ {0, 1}rout
.

Note that the composed PCP is locally computable from the outer PCP, so only the outer PCP needs to be
zero knowledge to ensure the composed PCP is zero knowledge. Therefore we can employ the existing
(non-ZK) PCP of proximity for circuit evaluation of [BGHSV06] as the inner PCPP.
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1.2 Open problems

This work shows that for any polynomial q∗, any language in NP has a polynomial-sized proof that can be
probabilistically checked by probing only O(1) bits, but where any set of q∗ bits carries no information about
the witness. This can be viewed a zero-knowledge PCP theorem that matches parameters of the original
PCP theorem [AS98; ALMSS92]. Since then, stronger versions of the PCP theorem have been shown. It is
tempting to ask whether zero-knowledge PCPs can match the strongest constructions of standard PCPs.

In particular, one of the most immediate open questions is whether it is possible to obtain ZK-PCPs with
nearly-linear length. Optimising the proof length of PCPs received much attention for decades after the first
proof of the PCP theorem, where the current state of the art achieves quasilinear proof length [BS08; Din07].
We ask whether the same can be obtained for zero-knowledge PCPs.

Open Problem 1 (Short ZK-PCPs). Do there exist O(1)-query ZK-PCPs for NP with proof length Õ(n)?

We remark that our algebraic zero-knowledge techniques are based on Reed-Muller arithmetisation and
the sumcheck protocol, whereas (non-ZK) constructions of quasilinear length PCPs are based on Reed-
Solomon arithmetisation and combinatorial gap amplification, hence new ideas are necessary for such
strengthening of our theorem.

Even more ambitiously, one could ask whether it is possible to transform any construction of a (non-ZK)
PCP to a ZK-PCP while preserving its parameters.

Open Problem 2 (PCP to ZK-PCP transformation). Is there a black-box transformation that imbues a PCP
construction with zero knowledge?

We note that prior to [GOS24], all works on ZK-PCPs (see below) followed this approach, but those
transformations either introduce adaptivity or only achieve weak ZK guarantees, and none preserve query
complexity. Similiar transformations are known, e.g., for multi-prover interactive proofs [BGKW88] and
their quantum analogues [GSY19; MS24] whereas in other models, such as in zero-knowledge streaming
interactive proofs [CDGH23], we have a zero knowledge sumcheck protocol but no generic transformation is
known.

We remark that our techniques make whitebox use of the structure of the [BFLS91] PCP, and rely strongly
on the [GOS24] ZK-PCP for sumcheck; hence, obtaining a generic transformation would require new ideas.
The quantum PCP conjecture. Finally, we highlight a connection between zero-knowledge PCPs and one
of the most imporant open problems in quantum complexity theory: the quantum PCP (QPCP) conjecture.

Most classical constructions of PCPs rely on an encoding of the NP witness via a locally-testable and
(relaxed) locally-decodable code [BGHSV06; GRR20]. Even though there is growing evidence that good
quantum LTCs may exist [AE15; LLZ22; ABN23; DLV24], quantum codes cannot be locally decodable due
to the no-cloning theorem. This is one of the main barriers towards applying algebraic and coding-theoretic
techniques to QPCPs.

Quantum codes are fundamentally tied to zero knowledge. It is a well-known fact that the erasure of
a subset of qubits of a codeword is correctable if and only if the reduced density matrix on that subset is
independent of the encoded state. In other words, roughly speaking, a quantum code has good distance if and
only if it satisfies a quantum analogue of the PZK property for PCPs. Thus PZK-PCPs are perhaps the closest
classical analogue of QPCPs, and studying them may help to shed light on the QPCP conjecture.

1.3 Related work

The first zero-knowledge PCPs appeared in the work of Kilian, Petrank and Tardos [KPT97]. Later works
[IMS12; ISVW13; IW14; IMSX15] simplified this construction, and extended it to PCPs of proximity and
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the closely related notion of zero-knowledge locally testable codes (LTCs). These constructions rely on an
adaptive honest verifier, and hence it is unclear how to use proof composition to improve their parameters.
[IMS12; IMSX15] showed that PCPs which are zero knowledge against any efficient adversary and where
the proof oracle is described by a polynomial-sized circuit exist only for languages in SZK.

Another line of work, motivated by cryptographic applications, focuses on obtaining SZK-PCPs for NP
with a non-adaptive honest verifier from leakage resilience. These results come with caveats, achieving either
a weaker notion of zero knowledge known as witness indistinguishability [IWY16], or simulation against
adversaries making only quadratically many more queries than the honest verifier [HVW22]. See [Wei22] for
a survey of this line of work.

In related models that allow for interaction, zero-knowledge proofs are easier to construct. We know
that PZK-MIP = MIP (= NEXP) [BGKW88], where MIP is the class of languages with a multi-prover
interactive proofs. The quantum analogue of this result, PZK-MIP∗ = MIP∗ (= RE), is also known to
hold [CFGS22; GSY19; MS24]. The constructions in this work draw inspiration from a similar result
for interactive PCPs (IPCPs) [KR08], an interactive generalisation of PCPs (and special case of IOPs):
PZK-IPCP = IPCP = NEXP [BCFGRS17; CFS17].
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2 Preliminaries

Throughout F is a finite field. CIRCUIT VALUE denotes the P-complete language {(C, x) ∈ {0, 1}∗ :
C is an encoding of a boolean circuit such that C(x) = 1}. For an oracle π, we use Dom(π) to denote the
domain of π. For t ∈ N, and oracles π1, . . . , πt, we denote their concatenation by (π1, . . . , πt), and use the
notation (πi, q) to denote the index q ∈ Dom(πi). For a pair language L, for every string x ∈ {0, 1}n, we
denote the set L[x] := {y : (x, y) ∈ L}. For a relation R, we denote the language corresponding to R by
L(R) := {x : (x,w) ∈ R}.
Algorithms. We write Aπ(x) to denote the output of A when given input x (explicitly) and oracle access to
π. We use the abbreviation PPT to denote probabilistic polynomial-time. If an oracle algorithm makes at
most q∗(n) oracle queries we say that it is q∗-query-bounded. We generally omit the internal randomness of
an algorithm from probability statements; that is, we write Pr[A(x) = 0] to mean Prr←{0,1}n [A(x; r) = 0].

Polynomials. For d ∈ N, we write F≤d[X1, . . . , Xm] for the ring of polynomials in m variables over
F of total degree at most d. For d⃗ := (d1, . . . , dm) ∈ Nm, we will write F≤d⃗[X1, . . . , Xm] for the ring
of polynomials in m variables over F of individual degree di in the i-th variable. For a product set S =
S1 × · · · × Sm ⊆ Fm, a⃗ ∈ S, and d⃗ = (|S1| − 1, . . . , |Sm| − 1), we denote by LS,⃗a the unique element of
F≤d⃗[X1, . . . , Xm] such that for all b⃗ ∈ S,

LS,⃗a(⃗b) =

{
1 if b⃗ = a⃗, and
0 otherwise.

Vector reversal and truncation. For a vector α⃗ = (α1, . . . , αn) ∈ Fn, we denote by α⃗rev the reversed vector
(αn, αn−1, . . . , α1). For any i ∈ [n], we denote the truncation of α⃗ to its first i entries by α⃗i := (α1, . . . , αi).

2.1 Coding theory

Let Σ be an alphabet and let ℓ ∈ N. A code C is a subset C ⊆ Σℓ. Given two strings x, y ∈ Σn, we denote
the relative Hamming distance between x and y by ∆(x, y) := |{i ∈ [n] : xi ̸= yi}| /n. We say that a vector
x is ε-far from a set S ⊆ Σn if miny∈S ∆(x, y) ≥ ε.
Reed–Muller codes. The Reed–Muller (RM) code is the code consisting of evaluations of multivariate
low-degree polynomials over a finite field. Given a finite field F, and positive integers m and d we denote
by RM[F,m, d] the linear code consisting of evaluations of m-variate polynomials over F of total degree at
most d.

2.2 PCPs

Definition 2.1 (PCP). A probabilistically checkable proof (PCP) for a relationR consists of a prover P
and a PPT verifier V such that the following holds.

1. Completeness. For every (x,w) ∈ R,

Pr
π←P(x,w)

[Vπ(x) = 1] = 1.

2. Soundness. For every x /∈ L(R) and every oracle π∗,

Pr[Vπ∗
(x) = 1] ≤ 1

2
.
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We say that a PCP is efficient if P(x,w) can be computed efficiently for any (x,w) ∈ R.

We formally define PCPs for relations (rather than langauges) to allow us to discuss efficient PCP provers
in the NP setting.

Definition 2.2 (PCPP). For δ : N→ [0, 1], a probabilistically checkable proof of proximity (PCPP) for a
pair language L with proximity parameter δ consists of a prover P and a verifier V such that the following
holds for every pair of strings (x, y).

1. Completeness. If (x, y) ∈ L,
Pr

π←P(x,y)
[V(y,π)(x) = 1] = 1.

2. Soundness. If y is δ-far from the set L[x] := {y : (x, y) ∈ L}, then for every oracle π∗,

Pr[V(y,π∗)(x) = 1] ≤ 1

2
.

Definition 2.3 (Non-adaptive PCP verifiers). A non-adaptive PCP verifier is an algorithm of the form
Vπ(x;µ) = D(x, π|Q(x;µ);µ), where D : {0, 1}n × Σq × {0, 1}r(n) → {0, 1} is the decision algorithm,
and Q : {0, 1}n × {0, 1}r(n) → Dom(π)q is the query algorithm.

Definition 2.4 (Accepting view of a PCP verifier). For non-adaptive q-query PCP verifiers of the form
Vπ(x;µ) = D(x, π|Q(x;µ);µ), where D : {0, 1}n×Σq×{0, 1}r(n) → {0, 1}, and Q : {0, 1}n×{0, 1}r(n) →
Dom(π)q, we define, for each choice of randomness µ ∈ {0, 1}r(n) the set of accepting views of V to be:

Acc(V(x;µ)) := {a ∈ Σq : D(x, a;µ) = 1}.

Definition 2.5 (Accepting view of a PCP of proximity verifier). For non-adaptive q-query PCP of proximity
verifiers of the form V(y,π)(x;µ) = D(x, (y, π)|Q(x;µ);µ), where D : {0, 1}n × Σq × {0, 1}r(n) → {0, 1},
and Q : {0, 1}n × {0, 1}r(n) → Dom((y, π))q, we define, for each choice of randomness µ ∈ {0, 1}r(n), the
set of accepting views of V to be:

Acc(V(x;µ)) := {a ∈ Σq : D(x, a;µ) = 1}.

In both of the above definitions when it is clear from context we will omit µ and write Acc(V(x)).

Definition 2.6 (Robust soundness). A non-adaptive PCP for a relation R has robustness ρ if for every
x /∈ L(R), it holds that, for every oracle π∗,

Pr
µ

[
∆(π∗|Q(x),Acc(V(x;µ))) ≤ ρ

]
≤ 1

2
.

A non-adpative PCP of proximity for a language L has robustness ρ if for every (x, y) such that y is δ-far
from L[x], it holds that, for every oracle π∗,

Pr
µ

[
∆((y, π∗)|Q(x),Acc(V(x;µ))) ≤ ρ

]
≤ 1

2
.
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Definition 2.7. For ρ : N → [0, 1], a PCP has expected robustness ρ if for every x /∈ L(R), we have for
every oracle π∗,

E
µ

[
∆(π∗|Q(x),Acc(V(x;µ)))

]
≥ ρ(|x|).

A PCP of proximity has expected robustness ρ if for every (x, y) such that y is δ-far from L[x], it holds that,
for every oracle π∗,

E
µ

[
∆((y, π∗)|Q(x),Acc(V(x;µ)))

]
≥ ρ(|x|).

The following proposition relating robustness and expected robustness appears as Proposition 2.10 in
[BGHSV06].

Proposition 2.8 ([BGHSV06]). If a PCPP has expected robustness ρ, then for every ε ≤ ρ, it has robust-
soundness error 1− ε with robustness parameter ρ− ε.

2.3 Zero-knowledge PCPs

Definition 2.9 (View). For a PCP (P,V) and a (possibly malicious) verifier V∗, ViewV∗,P(x,w) denotes the
view of V∗ with input x and oracle access to π ← P(x,w). That is, ViewV∗,P(x,w) comprises V∗’s random
coins and all answers to V∗’s queries to π.

Definition 2.10 (Perfect zero-knowledge PCP). We say that a PCP system (P,V) for a relationR is perfect
zero knowledge (a PZK-PCP) with query bound q∗ if for every (possibly malicious) adaptive q∗-query-
bounded verifier V∗ there exists a PPT algorithm SimV∗ (the simulator), such that for every (x,w) ∈ R,
SimV∗(x) is distributed identically to ViewV∗,P(x,w).

All of our constructions satisfy the stronger notion of black-box zero knowledge, defined next.

Definition 2.11 (Black-box perfect zero-knowledge PCP). We say that a PCP system (P,V) for a relationR
is black-box perfect zero knowledge with query bound q∗ if there exists a PPT algorithm Sim (the simulator),
such that for every (possibly malicious) adaptive q∗-query-bounded verifier V∗, and for every (x,w) ∈ R,
SimV

∗
(x) is distributed identically to ViewV∗,P(x,w).

We define the complexity class PZK-PCP and its robust version.

Definition 2.12 (PZK-PCP, rPZK-PCP). For functions r, q, q∗ : N → N, we define the complexity class
PZK-PCPq∗,Σ[r(n), q(n)] to be the set of all languages that admit perfect zero-knowledge PCPs written over
the alphabet Σ with randomness complexity O(r(n)), query complexity O(q(n)) and query bound q∗(n).
Further, we define the complexity class rPZK-PCPq∗,Σ[r(n), q(n)] to be the set of all languages that admit
perfect zero-knowledge PCPs (with the same parameters) with robustness Ω(1).

We define the complexity class

PZK-PCP[r, q] :=
⋂
q∗

PZK-PCPq∗,{0,1}[r + log q∗, q]

where the intersection ranges over all functions q∗(n) that are bounded by 2p(n) for some polynomial p.

That is, L ∈ PZK-PCP[r, q] if for any query bound q∗ (that is at most exponential in n), L has a perfect
zero-knowledge PCP of length poly(2r, q∗) over the boolean alphabet with query complexity O(q).

We also define zero-knowledge PCPs of proximity.
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Definition 2.13 (View of PCP of proximity). For a PCP of proximity (P,V) and a (possibly malicious)
verifier V∗, ViewV∗,P(x, y) denotes the view of V∗ with explicit input x and oracle access to both implicit
input y and π ← P(x). That is, ViewV∗,P(x,w) comprises V∗’s random coins and all answers to V∗’s
queries to (y, π).

Definition 2.14 (Black-box perfect zero-knowledge PCP of proximity). We say that a PCP of proximity
system (P,V) for a pair language L is black-box perfect zero knowledge with query bound q∗ if there exists
an algorithm Sim, such that for every (possibly malicious) adaptive q∗-query-bounded verifier V∗, and for
every (x, y) ∈ L, Sim(V∗,y)(x) is distributed identically to ViewV∗,P(x, y), and moreover, Sim runs in time
poly(|x|, q∗).

2.4 Low-degree testing

Definition 2.15 (Vector-valued Reed–Muller code). The vector-valued Reed–Muller code consists of tuples
of evaluations of multivariate low-degree polynomials over a finite field. Given a finite field F, and positive
integers m, d and k we denote by RMk[F,m, d] the linear code over the alphabet Fk consisting of k-tuples
of evaluations of m-variate polynomials over F of total degree at most d. More formally,

RMk[F,m, d] := {(p1(x⃗), . . . , pk(x⃗)) ∈ Fk : x⃗ ∈ Fm, ∀i ∈ [k], pi(X⃗) ∈ F≤d[X1, . . . , Xm]}.

The following theorem appears as Proposition 5.7 in [Par21].

Theorem 2.16 (Robust vector-valued low-degree test [Par21]). For δ > 0, provided |F| > 25k there
exists a test that given oracle access to a function F : Fm → Fk, makes |F| queries to F , runs in time
poly(|F|,m, d, k), and:

• if F ∈ RMk[F,m, d] then the test accepts with probability 1;

• if F is ε-far from RMk[F,m, d] then the expected distance of the tester’s view from any accepting view is
at least Ω(ε).

3 Zero-knowledge proof composition

In this section, we will prove that PCP proof composition (as in [BGHSV06]) preserves zero knowledge.
Towards this end, we introduce the notion of locally computable proofs, which are proofs in which each
symbol can be deterministically and efficiently computed from a local view of another proof. For example, in
proof composition, the each inner proof is locally computable from the outer (zero-knowledge) proof.

In Section 3.1, we formally define locally computable proofs and show that if a PCP is locally computable
from a PZK-PCP, then the locally computable PCP also exhibits perfect zero knowledge. In Section 3.2, we
show how to convert a PZK-PCP over an arbitrary alphabet into a boolean PZK-PCP. In Section 3.3, we show
that proof composition preserves perfect zero knowledge. Specifically, if the outer PCP of the composition is
perfect zero knowledge, then the composed PCP will also be perfect zero knowledge.

3.1 Locally computable proofs

We introduce the notion of ℓ-locally computable proofs. This is a new notion that we consider to be of
independent interest and will be useful towards showing that query bundling, alphabet reduction and proof
composition preserve zero knowledge.
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Definition 3.1. Let A and A0 be randomized algorithms, and let ℓ : N → N. We say that A is ℓ-locally
computable from A0 on C ⊆ {0, 1}∗ if there exists an efficient, deterministic oracle algorithm f making at
most ℓ queries to its oracle such that, for every x ∈ C, the following two distributions are identical:

A(x); (fπ0 | π0 ← A0(x)).

Lemma 3.2. Let (P0,V0) be a PZK-PCP for a relation R with query bound q∗, and let (P,V) be a PCP
for L such that P is ℓ-locally computable from P0 on L. Then (P,V) is perfect zero knowledge with query
bound q∗/ℓ.

While we state and prove Lemma 3.2 for the case of PCPs, the analysis straightforwardly extends to the
case of PCPs of proximity.

The intuition behind Lemma 3.2 is that if π0 ← P0 is zero knowledge, then since any local view of π0
is efficiently simulatable and π ← P is computable from a local view of π0, we can combine these two
functionalities to obtain a simulator for P . More formally, let V∗ be a (possibly adaptive) malicious verifier
of (P,V). Our goal is to construct a simulator for the view of V∗ and our strategy for doing so consists of
two parts. In Construction 3.3, we construct a hybrid simulator AV∗ for V∗, which is given oracle access to
the (zero-knowledge) proof π0 ← P0. This hybrid simulator uses the local computability of π ← P and its
oracle access to π0 to simulate V∗’s view of π. Construction 3.4 is our simulator for V∗. As AV∗ is itself a
malicious verifier of the proof π0, we can invoke the zero-knowledge property of π0 to simulate the view of
AV∗ . Our simulator for V∗ works by running AV∗ and answering its queries to π0 using the simulator for π0.

Construction 3.3. A hybrid simulator for any malicious verifier V∗ of the PCP (P,V), a PCP which is
ℓ-locally computable from (P0,V0) by a function f . Receives oracle access to π0 ← P0.
Aπ0
V∗(x, r):

1. Initialise an empty list T .
2. Run V∗ on random coins r. Every time V∗ makes a query α to π, compute β := fπ0(α), add (α, β)

to T and feed β to V∗ as the response from π.
3. Output (r, T ).

Construction 3.4. A perfect zero-knowledge simulator for a PCP system (P,V) which is ℓ-locally
computable from a PZK-PCP (P0,V0). Let SimV∗ denote the simulator for (P0,V0) for a malicious
verifier V∗.
SimV∗(x):
1. Run SimAV∗ (x) (that is, simulate the view of AV∗ (Construction 3.3)) to obtain a query-answer set

T0 for π0 and random coins r0.
2. Run AV∗(x, r) (Construction 3.3) using T0 to answer its queries to π0 to obtain (r, T ).
3. Output (r, T ).

Proof of Lemma 3.2. We show that Construction 3.4 is a perfect zero-knowledge simulator for (P,V). We
first analyse Construction 3.3, and show that its output is identically distributed to ViewV∗,P . Then we analyse
Construction 3.4, and show that provided AV∗ does not break the query bound on π0 ← P0, we can simulate
its view of π0. Combining these two facts yields the result.
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Let V∗ be an arbitrary (possibly adaptive) malicious verifier of (P,V), and let π and π0 be random
variables denoting the output of P and P0 respectively. Consider the hybrid simulator Aπ0

V∗ defined in Con-
struction 3.3. AsP is ℓ-locally computable by f , we have that π is identically distributed to (fπ0(α))α∈Dom(π).
Thus the output of Construction 3.3 is distributed identically to ViewV∗,P .

Now we analyse Construction 3.4. As (P0,V0) is a PZK-PCP, and AV∗ is a verifier of π0 ← P0, there
exists a simulator SimAV∗ for Aπ0

V∗ , whose output is identically distributed to ViewAV∗ ,P0(x,w) provided
thatAV∗ makes at most q∗ queries to π0. Note that for every query made by V∗, AV∗ makes at most ℓ queries
to π0. Thus, the output of SimAV∗ is identically distributed to ViewAV∗ ,P0(x,w) provided that V∗ makes at
most q∗/ℓ queries. Therefore, as AV∗(x) is receiving answers to its queries to π0 identically distributed to
the real proof, by the first part, its output is identically distributed to ViewV∗,P .

3.2 Alphabet reduction of PZK-PCPs

In this section, we use the notion of ℓ-locally computable proofs to show that standard alphabet reduction
techniques preserve zero knowledge. In particular, we will show this for the alphabet reduction construction
in [BGHSV06, Lemma 2.13]. For the sake of clarity, we include a self-contained presentation of their
construction below (Construction 3.6).

Lemma 3.5 (Zero-knowledge alphabet reduction). If a language L has a PZK-PCP over the alphabet {0, 1}a,
query complexity q, randomness complexity r, query bound q∗, decision complexity d and robust-soundness
error s with robustness parameter ρ, then L has a boolean PZK-PCP with query complexity O(a · q),
randomness complexity r, query bound q∗, decision complexity d+O(a · q) and robust-soundness error s
with robustness parameter Ω(ρ).

Following [BGHSV06], the construction relies on the existence of good error-correcting codes, which
have constant relative distance and rate. To obtain the desired decision complexity, a code which is also
computable by linear-sized circuits is used, such as [Spi96].

Construction 3.6. A boolean PZK-PCP for the language L, given a PZK-PCP (Pa,Va) over the
alphabet {0, 1}a for L, where the verifier Va has decision algorithm Da and query algorithm Qa. Let
ECC : {0, 1}a → {0, 1}b where b = O(a) be a systematic binary error-correcting code of constant
relative minimum distance, computable by an explicit circuit of size O(a).
Proof:
1. Run Pa(x) to obtain a proof πa.
2. Define the proof oracle τ , by τ(γ) := ECC(πa(γ)), for all γ ∈ Dom(πa).
3. Output (πa, τ ).

Verifier:
1. Compute the query set Q := Qa(x) ⊆ Dom(πa).
2. Run Da(x, πa|Q) and reject if it rejects.
3. For each γ ∈ Q, compute ECC(πa(γ)), query τ(γ) and reject if ECC(πa(γ)) ̸= τ(γ).
4. If all of the above checks pass, then accept.

Proof of Lemma 3.5. As Construction 3.6 is entirely unchanged from [BGHSV06], a proof of completeness,
soundness and all of the parameters (apart from the query bound) can be found in Lemma 2.13 of [BGHSV06].
Here we argue zero knowledge.
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We show zero knowledge by demonstrating that P , as defined in Construction 3.6, is 1-locally computable
from the PZK-PCP Pa, which has query bound q∗. Hence, by Lemma 3.2, the PCP P inherits its zero-
knowledge property from Pa. Towards this end, observe that P is 1-locally computable by the function
f : Dom(π)→ {0, 1}b, defined as

fπa(O, α, i) =

{
πa(α) if O = πa

ECC(πa(α))i if O = τ
.

Thus, by Lemma 3.2, Construction 3.6 is perfect zero knowledge, with query bound q∗.

3.3 Proof composition

We extend the proof composition theorem in [BGHSV06, Theorem 2.7] to account for zero knowledge.
Recall that proof composition is performed with a robust outer PCP and an inner PCP of proximity. We show
that if proof composition is carried out with a robust outer PCP that is zero knowledge, then the composed
PCP will be zero knowledge. Crucially, the inner PCP of proximity is not required to be zero knowledge.

Theorem 3.7 (Zero-knowledge proof composition). Suppose that for functions rout, rin, dout, din, qin, q
∗ : N→

N and εout, εin, ρout, δin : N→ [0, 1] the following hold:

• Language L has a robust boolean PZK-PCP (Pout,Vout) with randomness complexity rout, query com-
plexity qout, decision complexity dout, robust-soundness error 1 − εout, robustness parameter ρout and
zero-knowledge query bound q∗.

• CIRCUIT VALUE has a boolean PCPP (Pin,Vin) where Pin is deterministic and efficient, with randomness
complexity rin, query complexity qin, decision complexity din, proximity parameter δin, and soundness error
1− εin.

• δin(dout(n)) ≤ ρout(n) for every n.

Then L has a PZK-PCP, denoted (Pcomp,Vcomp) (cf. Construction 3.8) with:

• randomness complexity rout(n) + rin(dout(n));

• query complexity qin(dout(n));

• decision complexity din(dout(n));

• soundness error 1− εout(n) · εin(dout(n)); and

• query bound q∗/qout;

Construction 3.8 is entirely unchanged from [BGHSV06] (apart from the stipulation that the outer PCP
be zero knowledge), and is reproduced here for completeness.
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Construction 3.8 (Composed PCP). A composed PZK-PCP (Pcomp,Vcomp) for the language L, given a
robust boolean outer PZK-PCP (Pout,Vout) forL (with randomness complexity rout and query complexity
qout) and an inner boolean PCPP (Pin,Vin) for CIRCUIT VALUE (with query complexity qin). Let Dout
and Qout denote the decision and query algorithms for Vout respectively. Both parties receive common
input x ∈ {0, 1}n.
Proof:
1. Run Pout(x) to obtain a proof πout.
2. For each choice of randomness r ∈ {0, 1}rout , compute the query set Iout,r := Qout(x; r).
3. Compile Dout into a circuit Cout : {0, 1}n×{0, 1}ℓout×{0, 1}rout → {0, 1}, and for each r ∈ {0, 1}rout ,

define the restricted circuit Cout,r := Cout(x, ·, r).
4. For each r ∈ {0, 1}rout , run Pin(Cout,r, πout|Iout,r) to obtain a proof πr.
5. Output π := (πout, (πr)r∈{0,1}rout ).

Verifier:
1. Compile Dout into a circuit Cout : {0, 1}n × {0, 1}ℓout × {0, 1}rout → {0, 1}.
2. Sample r ← {0, 1}rout , and define the restricted circuit Cout,r := Cout(x, ·, r).
3. Run Vπout,πr

in (Cout,r), treating πout as the input oracle and πr as the proof oracle. Accept if and only if
Vin accepts.

In order to show that proof composition preserves zero-knowledge, we will show that Pcomp (defined in
Construction 3.8) is locally computable from Pout.

Claim 3.9. Let (Pcomp,Vcomp) be the composed PCP system defined in Construction 3.8, and let (Pout,Vout)
be the perfect zero-knowledge outer PCP of (Pcomp,Vcomp). Pcomp is qout-locally computable from Pout.

Proof. Clearly queries to the outer proof are 1-locally computable. To locally compute queries to πr for
any r ∈ {0, 1}rout, run Steps 2 to 4 of the prover in Construction 3.8 to obtain a proof πr, then output
πr(α). Correctness is clear. In the worst case, we make maxr∈{0,1}rout |Iout,r| = qout many queries to πout.
Finally, the efficiency and determinism follow from the efficiency and determinism of Pin and Vout (which is
deterministic for any fixed choice of randomness).

Proof of Theorem 3.7. The randomness complexity, query complexity and decision complexity follow
straightforwardly from the construction. A proof that Construction 3.8 satisfies completeness and the
prescribed soundness error can be found in [BGHSV05]. The construction is perfect zero-knowledge with
query bound q∗/qout by Lemma 3.2 and Claim 3.9.

We finish this section by instantiating the inner PCPP for CIRCUIT VALUE to prove a corollary of
Theorem 3.7, in which the parameters of the composed ZKPCP only depend on the parameters of the
outer ZKPCP. We shall need Theorem 3.3 in [BGHSV05], which we restate below, setting the parameter
t(n) = 2/ε, while noting that the honest prover strategy is efficient.

Theorem 3.10 ([BGHSV05]). For any ε > 0, CIRCUIT VALUE has a PCPP (P,V) where P is deterministic
and efficient, with randomness complexity log n+O(logε(n)), query complexity O(1/ε), proximity parameter
Θ(ε) and soundness error 1/2.

Corollary 3.11. rPZK-PCPq∗,{0,1}[r, q] ⊆ PZK-PCPq∗/q,{0,1}[r + log n, 1].
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Proof. Let L ∈ rPZK-PCPq∗,{0,1}[r, q]. That is, there is a PZK-PCP (P,V) for L with randomness com-
plexity r(n), query complexity q(n), query bound q∗(n) and constant robustness ρ. Theorem 3.10 guarantees
the existence of a PCPP for CIRCUIT VALUE with proximity parameter kε, for some universal constant k
and any ε > 0. Set ε := ρ/k. Then by Theorem 3.7 (note that our choice of ε ensures that the third bullet
of the hypothesis is met), L has a PZK-PCP with randomness complexity r(n) + log(n) +O(logε(n)) and
query complexity O(1/ε), as required.

4 Robust PCPPs for polynomial summation

In this section, we construct a PCP of proximity for the Sum pair language, defined below, which achieves
constant robust soundness.

Definition 4.1. We define the language Sum to be the set of all pairs ((F, 1m, 1d, H, γ), F ) where F is a
finite field, m, d ∈ N, H ⊆ F, γ ∈ F, and F ∈ RM[F,m, d] with

∑
b⃗∈Hm F (⃗b) = γ.

Note that d and m are specified in unary, so that the verifier and simulator for our PCPP can run in time
poly(log |F|,m, d, |H|). Below, for readability, we will write explicit inputs of Sum as (F,m, d,H, γ); this
should be understood as (F, 1m, 1d, H, γ).

Lemma 4.2. Let F be a finite field, and let m, d ∈ N, H ⊆ F and δ > 0 be such that δ > md
|F| and

d ≥ |H|+ 1. Then Construction 4.3 is a robust PCP of proximity for Sum, over the alphabet Fm−1, with
proximity parameter δ and robustness parameter ρ = Ω(δ). The verifier makes O(|F|)-many queries to F
and |F|-many queries to π. The proof length is |F|m−1.

While the robust PCP of [BGHSV06] uses (a variant of) sumcheck, to the best of our knowledge
Lemma 4.2 has not previously been shown explicitly. Our proof here is substantially simpler than that of
[BGHSV06], in part because the structure of our PCP permits a simpler “bundling” of symbols. We will
build on this construction when constructing robust PZK-PCPPs for Sum, in Section 5.
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Construction 4.3. A robust PCP of proximity RSC for Sum with proximity parameter δ > 0 over
the alphabet Fm−1. Both parties receive the explicit input (F,m, d,H, γ, δ), and oracle access to the
evaluation table of the implicit input F : Fm → F.
Proof:
1. For each i ∈ [m− 1], define the i-th sumcheck polynomial to be the i-variate polynomial gi(X⃗) ∈

F≤d[X1, . . . , Xi] given by

gi(x1, . . . , xi) :=
∑

b⃗∈Hm−i

F (x1, . . . , xi, b⃗).

2. Define π : Fm−1 → Fm−1 by

π(c1, . . . , cm−2, α) := (g1(α), g2(c1, α), . . . , gm−1(c1, . . . , cm−2, α)),

for every (c1, . . . , cm−2, α) ∈ Fm−1.
3. Output π.
Verifier:
1. Sample c⃗ := (c1, . . . , cm−1)← Fm−1 uniformly at random.
2. For all α ∈ F, query π(c1, . . . , cm−2, α) := (g1(α), g2(c1, α), . . . , gm−1(c1, . . . , cm−2, α)).
3. For all α ∈ F, query F (c1, . . . , cm−1, α).
4. For each i ∈ [m− 1], reject if gi(c1, . . . , ci−1, X) is not a polynomial of degree at most d.
5. Check that ∑

b∈H
g1(b) = γ.

6. For each i ∈ [m− 2], check that∑
b∈H

gi+1(c1, . . . , ci, b) = gi(c1, . . . , ci).

7. Check that ∑
b∈H

F (c⃗, b) = gm−1(c⃗).

8. Perform a robust low total degree test (Theorem 2.16) on F , with proximity parameter δRM =
min(δ, 1/5), and reject if the test fails.

9. If none of the above checks fail, then accept.

We now prove that Construction 4.3 is robust, but first outline our strategy for doing so. Conceptually
speaking, Construction 4.3 consists of two tests: the sumcheck tests in Steps 4 to 7 (which includes a check
that the proof itself has low-degree structure), and the low-degree test on the input oracle in Step 8. The
low-degree test is indeed robust (by Theorem 2.16), so the key technical component in proving the robustness
of Construction 4.3 is Lemma 4.4, which asserts that the sumcheck tests (Steps 4 to 7) reject robustly, under
the assumption the input oracle is close to a low-degree polynomial. Since the verifier makes roughly the
same number of queries when performing both of these tests, this implies the overall construction is robust.

Lemma 4.4 holds due to the assumed low-degree structure of F and our specific choice of bundling. If
the view of the sumcheck verifier is rejecting, then, since both the proof π and the input oracle F are close
to low degree, at least one of F, g1, . . . , gm−1 needs to be modified to equal a different polynomial. By the

18



Schwartz-Zippel lemma, this requires a substantial fraction of modifications. Our bundling strategy ensures
that these modifications form a substantial fraction of the view of the verifier. We now proceed with a formal
proof.

Lemma 4.4. Let F̃ : Fm → F be δΣ-far from Sum[F,m, d,H, γ], but δRM-close to RM[F,m, d] for some
md
|F| < δRM ≤ δΣ and d ≥ |H|+ 1. Then for all proofs π∗,

E
c⃗←Fm−1

[
∆

(
(π∗(c1, . . . , cm−2, α)α∈F, F̃ (c1, . . . , cm−1, α)α∈F), Acc(V)

)]
≥ 1

2
min (δRM, 1− 4δRM) .

Proof. Let F̂ ∈ F≤d[X1, . . . , Xm] be the some polynomial of total degree at most d which is δRM-close to
F̃ , as guaranteed by the hypothesis. Note that by the condition that F̃ is δΣ-far from Sum[F,m, d,H, γ]
and δRM ≤ δΣ, it must be that

∑
b⃗∈Hm F̂ (⃗b) ̸= γ. Before proceeding, we remind the reader of some

notation: for any c⃗ = (c1, . . . , cm−1) ∈ Fm−1, and any i ∈ [m− 1], we denote c⃗i := (c1, . . . , ci). Also, for
a polynomial f ∈ F≤d[X1, . . . , Xi], we denote the restriction of f to the axis-parallel line defined by c⃗i−1 by
f |c⃗i−1

(X) := f(c⃗i−1, X).
First, fix some c⃗ = (c1, . . . , cm−1) ∈ Fm−1, and suppose that for some i ∈ [m− 1], gi(c1, . . . , ci−1, X)

is δRM-far from every univariate polynomial of degree at most d. Then since the verifier inspects each
gi(c1, . . . , ci−1, X) at every point in F and rejects if gi(c1, . . . , ci−1, X) is not a polynomial of degree at
most d (Step 4), at least a δRM-fraction of symbols of π∗(c1, . . . , cm−2, α)α∈F would need to be modified in
order for the verifier to accept. Thus (π∗(c1, . . . , cm−2, α)α∈F, F̃ (c1, . . . , cm−1, α)α∈F) has distance at least
δRM/2 to any accepting view.

Hence we can proceed under the assumption that for all i ∈ [m− 1], gi(c1, . . . , ci−1, X) is δRM-close to
some univariate polynomial ĝi(X) ∈ F≤d[X]. Let E be the event that either∑

b∈H
ĝ1(b) ̸= γ,

or ∑
b∈H

ĝi+1(b) ̸= ĝi(ci)

for some i ∈ [m− 2], or ∑
b∈H

F̂ (c⃗, b) ̸= ĝm−1(cm−1).

Note that since
∑

b⃗∈Hm F̂ (⃗b) ̸= γ, by the soundness of sumcheck, Prc⃗[¬E] ≤ md/|F|.
Conditioned on E, in order for the verifier to accept, one of g1(X), g2|c⃗1(X), . . . , gm−1|c⃗m−2

(X), F̃ |c⃗(X)

must be modified to equal a degree d polynomial other than ĝ1(X), ĝ2|c⃗1(X), . . . , ĝm−1|c⃗m−2
(X), F̂ |c⃗(X)

respectively. This would require modifying gi|c⃗i−1
(X), for some i ∈ [m − 1], in at least a 1 − d/|F| −

∆(gi|c⃗i−1
, ĝi|c⃗i−1

) ≥ 1 − d/|F| − δRM fraction of points, or modifying F̃c⃗(X) in at least a 1 − d/|F| −
∆(F̃ |c⃗, F̂ |c⃗) fraction of points. Thus, the verifier’s view of the proof would require modification in at least a
1
2(1−

d
|F| −max(δRM,∆(F̃ |c⃗, F̂ |c⃗))) fraction of points.

Thus the expected distance of (π∗(c1, . . . , cm−2, α)α∈F, F̃ (c1, . . . , cm−1, α)α∈F) to an accepting view is
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at least

1

2
· E
c⃗←Fm−1

[
1− d

|F|
−max(δRM,∆(F̃ |c⃗, F̂ |c⃗))

]
− Pr

c⃗
[¬E] =

1

2

(
1− d

|F|
− δRM

)
− Pr

c⃗
[¬E]

≥ 1

2

(
1− d

|F|
− δRM

)
− md

|F|

≥ 1

2
(1− 4δRM),

where we have used that E[∆(F̃ |c⃗, F̂ |c⃗))] ≤ δRM and that md
|F| ≤ δRM by hypothesis.

Now we employ Lemma 4.4 to prove that Construction 4.3 is robust, following the approach we outlined
above.

Proof of Lemma 4.2. Completeness is straightforward; we prove robust soundness and efficiency.

Robust soundness. Suppose that F̃ is δ-far from Sum[F,m, d,H, γ]. First, if F is δRM-far from RM[F,m, d],
then by Theorem 2.16, the expected distance of the view of the low degree test (Step 8) from any accepting
view is Ω(δ) (since δRM ≤ δ). As the low-degree test makes O(|F|) queries to F , and (apart from the
low-degree test) the verifier in Construction 4.3 makes |F| queries to each of F and π, the queries made by
the low-degree test form a constant fraction of the queries made overall by the verifier. Hence the expected
distance of the view of the verifier from any accepting view is also Ω(δ).

Second, if F is δ-far from Sum[F,m, d,H, γ] but δRM-close to RM[F,m, d], then by Lemma 4.4, the
expected distance of the view of the verifier (when ignoring the low-degree test) to any accepting view is
at least 1

2 min(δRM, (1 − 4δRM)) ≥ min(δ/2, 1/10) = Ω(δ) (since δRM := min(δ, 1/5)). Once again, the
queries made by the verifier apart from the low-degree test form a constant fraction of the overall number of
queries made by the verifier, so the expected distance of the view of the verifier from any accepting view is
Ω(δ). In other words, Construction 4.3 has expected robustness Ω(δ).

By Proposition 2.8, for an appropriate choice of constant ε, Construction 4.3 has robustness Ω(δ).

Efficiency. The proof length is clear from construction. The query complexity follows from the fact that the
low-degree test (Step 8) makes O(|F|) queries to F , and the rest of Construction 4.3 makes |F| queries to
each of F and π.

5 Robust PZK-PCPPs for polynomial summation

In this section, we construct PZK-PCPs of proximity for Sum (Definition 4.1) with constant robust soundness.
The construction makes black-box use of the robust sumcheck PCPP we obtain in Lemma 4.2 and builds on
the PZK-PCP for #P constructed in [GOS24].

Lemma 5.1. Let δ > 0, F be a finite field, H ⊆ F, γ ∈ F, and m, d ∈ N be such that md
|F| < δ and d ≥ |H|+1.

Construction 5.2 is a robust (black-box) perfect zero-knowledge PCP of proximity for Sum[F,m, d,H, γ] over
the alphabet Fm+1 with proximity parameter δ and robustness parameter ρ = Ω(δ). The verifier complexity
is poly(|F|,m, d), the verifier makes O(|F|) queries to both F and π, and the proof length is O(|F|m).

We note that (as in [GOS24]) the zero-knowledge property for this PCPP holds against all polynomial-
time malicious verifiers regardless of their query complexity (in fact, under an appropriate definition, ZK
holds against all verifiers regardless of their complexity).
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Construction 5.2 closely follows [GOS24], with only a few modifications to achieve constant robustness.
We provide a brief high-level description of the [GOS24] construction, and then present our construction in
detail. We refer the reader to [GOS24] for further exposition.

The [GOS24] ZKPCP for Sum is a (standard) sumcheck PCPP for a “masked” version of the polynomial
F ; specifically, a sumcheck PCPP for the claim

∑
a⃗∈Hm

F (⃗a) +Q(⃗a)−Q(⃗arev)︸ ︷︷ ︸
antisymmetric

+
m∑
i=1

ZH(ai)Ti(⃗a)︸ ︷︷ ︸
nullstellensatz

= γ (2)

where

• Q is a uniformly random polynomial in F≤d⃗[X1, . . . , Xm];

• ZH :=
∏

a∈H(X − a) is the nonzero univariate polynomial of minimal degree that is zero on H; and

• Ti, for each i ∈ [m], is a uniformly random polynomial in F≤d⃗i [X1, . . . , Xm], where d⃗i taking value
d− |H| in the i-th coordinate and d in all other coordinates.

The polynomials Q,T1, . . . , Tm are provided in the proof. It is not difficult to see that, for any functions
Q,T1, . . . , Tm, (2) is true if and only if

∑
a⃗∈Hm F (⃗a) = γ.

The mask polynomials make the PCPP zero knowledge. The purpose of the “antisymmetric” term
Q(X⃗)−Q(X⃗rev) is to hide the values of intermediate sums in the sumcheck proof, which are #P-hard to
compute, while summing to zero over Hm to maintain soundness. The “nullstellensatz” term computes,
by the combinatorial nullstellensatz [Alo99], a uniformly random polynomial N such that N (⃗h) = 0 for
all h⃗ ∈ H . By adding this term, we retain the antisymmetric structure of the mask on Hm (necessary for
soundness) while maximising the randomness outside of Hm (necessary for simulation).

We are now ready to present our construction.
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Construction 5.2. A robust PZK-PCP of proximity for Sum[F,m, d,H, γ] with proximity parameter
δ > 0 over the alphabet Fm+1. Both parties receive common input (F,m, d,H, γ, δ), and oracle access
to the evaluation table of F : Fm → F.
Proof:
1. Sample a polynomial Q← F≤d⃗[X1, . . . , Xm] uniformly at random, where d⃗ = (d, . . . , d).
2. For each i ∈ [m], sample Ti ← F≤d⃗i [X1, . . . , Xm] uniformly at random, where d⃗i = (d, . . . , d −
|H|, . . . , d) is the vector which takes the value d in every coordinate except for the i-th, which takes
the value d− |H|.

3. Define πP (x⃗) = (Q(x⃗), T1(x⃗), . . . , Tm(x⃗)) for all x⃗ ∈ Fm, written over the alphabet Fm+1.
4. Define R(X⃗) := Q(X⃗) − Qrev(X⃗) +

∑m
i=1 ZH(Xi)Ti(X⃗), where ZH :=

∏
a∈H(X − a), and

Qrev(X⃗) := Q(X⃗rev).
5. Compute πΣ := RSC[(F,m, d,H, γ, δ), F +R], where RSC[x, f ] denotes the robust sumcheck PCP

with explicit input x and implicit input f (Construction 4.3). Write this proof over the alphabet Fm+1

(rather than Fm−1) by padding each symbol with two zeros at the end.
6. Output π := (πΣ, πP ), written over the alphabet Fm+1.

Verifier:
1. Emulate the robust sumcheck verifier VΣ (Construction 4.3) on input F + R and proof πΣ. To

query the input F + R at some point α⃗ ∈ Fm, query F (α⃗), πP (α⃗) := (Q(α⃗), T1(α⃗), . . . , Tm(α⃗))
and πP (α⃗rev) := (Q(α⃗rev), T1(α⃗rev), . . . , Tm(α⃗rev)), then compute (F +R)(α⃗) := F (α⃗) +Q(α⃗)−
Q(α⃗rev) +

∑m
i=1 ZH(αi)Ti(α⃗). Reject if VΣ rejects.

2. Perform a robust low-degree test (Theorem 2.16) on F , with proximity parameter δRM := min(δ, 1/5),
and reject if the test fails.

3. Perform a robust vector-valued low-degree test on πP (Theorem 2.16), with proximity parameter
εP := 1

8δRM and degree parameter dP = md, and reject if the test fails.
4. Accept if and only if none of the above tests rejected.

To prove the robustness of our construction, we show a technical lemma (see Lemma 5.3) which asserts
that the PCPP is robust under the assumption that the input oracle is close to some Reed-Muller codeword
that does not sum to γ over Hm (and indeed is far from all Reed-Muller codewords that do). This will imply
that the whole construction is robust, since the low-degree test is robust.

We also need to argue that the zero-knowledge property holds. We accomplish this using the notion of
locally computable proofs developed in Section 3.1. Essentially, we show that the PCP in Construction 5.2
is locally computable from the perfect zero-knowledge PCPP for sumcheck defined in [GOS24], and so it
inherits zero knowledge from the GOS construction by Lemma 3.2.

Throughout the remainder of this section we will use the following notation. We denote the non-ZK
robust sumcheck PCP verifier (Construction 4.3) by VΣ. We denote the verifier that performs Step 1
of Construction 5.2 by V1. That is, V1 is given F : Fm → F as input, and runs VΣ on input oracle
F + R : Fm → F (computing queries to F + R via F and the proof πP ) and proof oracle πΣ. V1 then
outputs the output of VΣ. For any c⃗ ∈ Fm−1, we denote the view of VΣ, on randomness c⃗ ∈ Fm−1 and input
G : Fm → F, by νΣ(c⃗) := (πΣ(c⃗m−2, α)α∈F, G(c⃗, α)α∈F) and we denote the view of V1, on randomness
c⃗ ∈ Fm−1 and input F : Fm → F, by ν(c⃗) := (πΣ(c⃗m−2, α)α∈F, πP (c⃗, α)α∈F, πP (α, c⃗rev)α∈F, F (c⃗, α)α∈F).

Lemma 5.3. Let F̃ : Fm → F be δΣ-far from Sum[F,m, d,H, γ], but δRM-close to RM[F,m, d] for δΣ >
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δRM ≥ md
|F| , δRM < 1/5 and d ≥ |H|+ 1. Then for all proofs (π∗Σ, π

∗
P ),

E
c⃗←Fm−1

[
∆
(
(π∗Σ(c⃗m−2, α)α∈F, π

∗
P (c⃗, α)α∈F, π

∗
P (α, c⃗rev)α∈F, F̃ (c⃗, α)α∈F), Acc(V)

)]
= Ω(δRM).

Here we view (π∗Σ(c⃗m−2, α)α∈F, π
∗
P (c⃗, α)α∈F, π

∗
P (α, c⃗rev)α∈F, F̃ (c⃗, α)α∈F) ∈ (Fm+1)4F as a string over

the alphabet Fm+1, of length 4|F|, via some natural embedding of F into Fm+1. The metric ∆ refers to
Hamming distance over Fm.

Proof. First, suppose that π∗P is εP -far (where εP := 1
8δRM, see Step 3), with respect to the alphabet

Fm+1, from RMm+1[F,m,m · d]. In this case, then by the robustness of the vector-valued low-degree test
(Theorem 2.16), the view of the verifier in Step 3 has expected distance Ω(εP ) = Ω(δRM) to any accepting
view. Since this test forms a constant fraction of the overall view of the verifier, the expected distance of the
view of the verifier from any accepting view would be Ω(δRM).

Hence we can assume that π∗P is εP -close, with respect to the alphabet Fm+1, to some vector of m-variate
polynomials each of degree at most md, which we denote by (Q̂(X⃗), T̂1(X⃗), . . . , T̂m(X⃗)). We denote the
“corrected low-degree” proof by

πP̂ (x⃗) := (Q̂(x⃗), T̂1(x⃗), . . . , T̂m(x⃗))

and note that by definition of πP̂ we have ∆(πP̂ , πP ) ≤ εP , where this distance is with respect to Fm+1.
Lastly, we denote V1’s view of the “corrected” proof πP̂ by

ν̂(c⃗) := (πΣ(c⃗m−2, α)α∈F, F̂ (c⃗, α)α∈F, πP̂ (c⃗, α)α∈F, πP̂ (α, c⃗rev)α∈F) .

We show next that the verifier’s view of the corrected proof ν̂(c⃗) is far (in expectation) from any accepting
view. We accomplish this step by appealing to the robustness of the sumcheck PCPP (Construction 4.3), and
by arguing that V1 inherits this robustness. Then as the view of the actual proof ν(c⃗) is close (in expectation)
to the view of the corrected proof ν̂(c⃗), ν(c⃗) must be far (in expectation) from any accepting view.

By Lemma 4.4, if VΣ has oracle access to the evaluation table of a function G : Fm → F, which is δΣ-far
from Sum[F,m, d,H, γ], but δRM-close to RM[F,m, d], then for all proofs πΣ, we have

E
c⃗←Fm−1

[∆(νΣ(c⃗),Acc(VΣ))] ≥
1

2
min (δRM, 1− 4δRM) =

1

2
δRM , (3)

where the final equality holds since δRM ≤ 1/5. Now consider the verifier V1, which uses its access to F and
πP to run VΣ on input oracle F +R and proof πΣ. Each location of (F, πP ) is used to compute at most two
locations of F +R. This means that if VΣ’s view of F +R is an absolute distance of k away from accepting,
then V1’s view of (F, πP ) must be at least an absolute distance of k/2 away from accepting in the worst case.

Combining this observation with the fact that the full view ν̂(c⃗) of V1 is twice the length of the full view
νΣ(c⃗) of VΣ, we see that the expected relative distance degrades by at most a factor of 1/4. Thus, for all
proofs πΣ,

E
c⃗←Fm−1

[∆(ν̂(c⃗),Acc(V1))] ≥
1

8
δRM.

Next, we upper bound the expected distance of ν(c⃗) and ν̂(c⃗). Since ∆(πP̂ , πP ) ≤ εP , we have that

E
c⃗←Fm−1

[
∆(πP̂ (c⃗, α)α∈F, πP (c⃗, α)α∈F)

]
≤ εP =

1

8
δRM.
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Since πP̂ (c⃗, α)α∈F and πP (c, α)α∈F are substrings of ν̂(c⃗) and ν(c⃗) (respectively) of half the length, and the
other components of the two views are identical, it follows that

E
c⃗←Fm−1

[∆ (ν̂(c⃗), ν(c⃗))] ≤ 1

16
δRM.

Finally, we put everything together to obtain the result:

E
c⃗←Fm−1

[∆ (ν(c⃗),Acc(V1))] ≥ E
c⃗←Fm−1

[|∆(ν̂(c⃗),Acc(V1))−∆(ν(c⃗), ν̂(c⃗))|]

≥
∣∣∣∣ E
c⃗←Fm−1

[∆ (ν̂(c⃗),Acc(V1))]− E
c⃗←Fm−1

[∆ (ν(c⃗), ν̂(c⃗))]

∣∣∣∣
≥ 1

8
δRM −

1

16
δRM

=
1

16
δRM,

where the first inequality is a consequence of the reverse triangle inequality, and the second is due to linearity
of expectation and the fact that the E|X| ≥ |E[X]| for any random variable X .

We now prove Lemma 5.1. We prove robustness by splitting the argument into two cases: one in which
the input is far from even being low-degree (in which case the low-degree test guarantees robustness), and the
other in which the input is close to low-degree, but far from summing to the correct value (in which case
Lemma 5.3 guarantees robustness). As alluded to earlier, we prove zero knowledge using the fact that this
robust PCP is locally computable from the PZK-PCP constructed in [GOS24].

Proof of Lemma 5.1. Completeness is straightforward. Here we argue robust soundness and perfect zero-
knowledge.

Robust soundness. Suppose that F̃ is δ-far from Sum[F,m, d,H, γ]. First, if F̃ is δRM-far from RM[F,m, d],
then by the robustness of the low-degree test (Theorem 2.16), the expected distance of the verifier’s view of
F̃ to any accepting view is Ω(δRM) = Ω(δ). As the low-degree test makes O(|F|) many queries to F̃ , and
the verifier makes O(|F|) many queries to both πΣ and πP , this forms a constant fraction of the view of the
verifier. Therefore the expected distance of the view of the verifier from any accepting view is also Ω(δ).

Second, if F̃ is δ-far from Sum[F,m, d,H, γ], but δRM-close to RM[F,m, d], then by Lemma 5.3, the
view of the verifier (when ignoring the low-degree test) to any accepting view is Ω(δRM) = Ω(δ). Once
again, this forms a constant fraction of the number of queries made by the verifier overall, so the expected
distance of the view of the verifier from any accepting view is Ω(δ). In other words, Construction 5.2 has
expected robustness Ω(δ).

Thus by Proposition 2.8, for an appropriate choice of constant, Construction 5.2 has robustness Ω(δ).

Zero knowledge. We show that Construction 5.2 is perfect zero knowledge by showing that it is (m+ 1)-
locally computable from the perfect zero-knowledge PCP described in Construction 8.9 of [GOS24]. The
proof generated by Construction 5.2 is (m+ 1)-locally computable by the following function:

f
(π′

Σ,π
′
Q,π′

T1
,...,π′

Tm
)
(O, α⃗) =

{
(π′Q(α⃗), π

′
T1
(α⃗), . . . , π′Tm

(α⃗)) if O = πP

(π′Σ(αm−1), π
′
Σ(α1, αm−1), . . . , π

′
Σ(α⃗i−1, αm−1), . . . , π

′
Σ(α⃗)) if O = πΣ

,

where (π′Σ, π
′
Q, π

′
T1
, . . . , π′Tm

) is a proof sampled by the prover of Construction 8.9 of [GOS24]. Thus, by
Lemma 3.2 (in this work), and Lemma 8.11 from [GOS24], Construction 5.2 is perfect zero knowledge.
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Efficiency. The proof length and verifier complexity are clear from construction. For every query that VΣ
makes to its input, the verifier in Construction 5.2 makes three queries to F and πP . For every query VΣ
makes to its proof, the verifier in Construction 5.2 makes one query to πΣ. By Lemma 5.1, VΣ makes O(|F|)
queries to its input and |F| queries to π, and the desired query complexity follows.

6 Robust PZK-PCPs for NP and NEXP

In this section we show how to build robust PZK-PCPs for NP and NEXP using a robust PZK-PCPP for
sumcheck as a building block.

Definition 6.1 (Oracle 3-SAT). Let B : {0, 1}r+3s+3 → {0, 1} be a 3-CNF. We say that B is implic-
itly satisfiable if there exists A ∈ {0, 1}s → {0, 1} such that for all z ∈ {0, 1}r, b1, b2, b3 ∈ {0, 1}s,
B(z, b1, b2, b3, A(b1), A(b2), A(b3)) = 1. Let Oracle-3SAT be the language of implicitly satisfiable 3-CNFs.

Theorem 6.2 (Cook-Levin). For any T (n)-time nondeterministic Turing machine M , T = Ω(n), there is a
polynomial-time reduction RM such that for any input x ∈ {0, 1}n,

RM (x, T ) ∈ Oracle-3SAT⇔ ∃w,M(x,w) = 1 .

Moreover, RM (x, T ) is a formula in O(log T (n)) variables of size poly(n, log T (n)).

Theorem 6.3. The following inclusions hold:

(i) for any q∗ ≤ 2poly(n), NP ⊆ rPZK-PCPq∗,Σ(n)[log n+ log q∗,poly(log n+ log q∗)], where |Σ(n)| =
poly(n, q∗), and

(ii) for any q∗ ≤ 2poly(n), NEXP ⊆ rPZK-PCPq∗,Σ(n)[poly(n) + log q∗, poly(n)], where |Σ(n)| =
poly(2n, q∗).

Proof. Fix a language L ∈ NTIME(T ), where for (i), T = poly(n), and for (ii), T = 2poly(n). Let F be a
field of characteristic 2 of size to be fixed, H a subfield of F of size Θ(log T ). We will fix an arithmetisation
B̂ of 1−B over F; i.e., for all c ∈ {0, 1}r+3s+3, B̂(c) = 1−B(c). The PCP constructions which prove (i)
and (ii) differ only in the choice of B̂. For (i), note that since r + 3s+ 3 = O(log n), the evaluation table of
B is computable in polynomial time. Hence we choose B̂ to be the unique multilinear extension of B̂; this
can be evaluated in polynomial time, and the total degree dB of B̂ is O(log n). For (ii), we will take B̂ to
be the function computed by the arithmetic formula corresponding to the boolean formula B; this has total
degree dB = O(|B|) = poly(n). In both cases we choose F so that dB ≪ |F| = poly(log T ).

Let m1 := r/ log |H|, m2 := s/ log |H|. Let γ1 : Hm1 → {0, 1}r, γ2 := Hm2 → {0, 1}s be the
lexicographic orderings of the elements of Hm1 , Hm2 respectively. By [GKR15, Claim 4.2], for i ∈ [2]
the unique minimal-degree extension γ̂i of γi has individual degree |H| − 1 and can be evaluated in time
poly(|H|,mi, log |F|).

For a polynomial Â : Fm2 → F, we define gÂ : Fm1+3m2+3 → F:

gÂ(z, b1, b2, b3, a1, a2, a3) := B̂(γ1(z), γ2(b1), γ2(b2), γ2(b3), a1, a2, a3) ·
3∏

i=1

(Â(bi) + ai − 1) .
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Next, for a polynomial Ĉ : Fm2+k → F, we define4 hĈ : Fm1+3m2+3+3k → F:

hĈ(z, b1, b2, b3, a1, a2, a3, c1, c2, c3) := B̂(γ1(z), γ2(b1), γ2(b2),γ2(b3), a1, a2, a3)

·
3∏

i=1

(
Ĉ(bi, ci) + LHk,0k(ci) · (ai − 1)

)
.

Observe that hĈ is a polynomial of total degree d = O((dB + k) · |H|+deg(C)) in O(k+ log T/ log log T )

variables, and that if Â(X) :=
∑

c∈Hk Ĉ(X, c),∑
c1,c2,c3∈Hk

hĈ(z, b1, b2, b3, a1, a2, a3, c1, c2, c3) ≡ gÂ(z, b1, b2, b3, a1, a2, a3). (4)

We are now ready to specify the construction. First, we choose the parameter k. In the construction,
deg(C) will be O((log T + k)|H|). Denote by Sim′ the simulator guaranteed by Lemma 5.1. Let q̃ be a
polynomial such that, for all ((F,m, d,H, γ), F ) ∈ Sum, and for all PCPP verifiers V∗ that make q∗ queries
to the input F and the proof, Sim′ makes p(q∗,m, d, |H|, log |F|) queries to F . Define q̃ := q̃(q∗,m1 +
3m2 + 3 + k, d, |H|, log |F|) = poly(q∗, log T, k). Choose k = O(log q∗ + log log T ) large enough such
that k > log q̃/ log |H|.

4Here, since H is a subfield of F, we cannot divide ai − 1 by |H|k as suggested in Section 1.1. Instead we use a Lagrange
polynomial so that the term ai − 1 appears only once in the sum over Hk.
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Construction 6.4. A PZK-PCP for Oracle-3SAT.
Proof:

1. Let A : {0, 1}s → {0, 1} be a satisfying assignment for B. Choose a uniformly random polynomial
Ĉ : Fm2+k of individual degree 2(|H| − 1) such that for all b ∈ Hm2 ,

∑
c∈Hk Ĉ(b, c) = A(γ2(b)).

Compute the full evaluation table πC of Ĉ.

2. For each τ⃗ ∈ Fm1+3m2+3, let πτ⃗ be a PZK-PCPP (Lemma 5.1) for the claim∑
z∈Hm1

b1,b2,b3∈Hm2

∑
a1,a2,a3∈{0,1}

∑
c1,c2,c3∈Hk

L
Hm1+3m2×{0,1}3,(z,⃗b,⃗a)(τ⃗) · hĈ(τ⃗ , c1, c2, c3) = 0 . (5)

3. Output (πC , (πτ⃗ )τ⃗∈Fm1+3m2+3).

Verifier:

1. Perform a low total degree test (Theorem 2.16) on ΠC with ε = 1/100 and δ = 1/2. If the test
rejects, then reject.

2. Choose τ⃗ = (ζ, ν1, ν2, ν3, ξ) ∈ Fm1 × (Fm2)3 × F3 uniformly at random.

3. Run the verifier for the sumcheck PZK-PCPP on πτ⃗ , yielding a claim

LHm1+3m2×{0,1}3,β(τ⃗) · hĈ(τ⃗ , η1, η2, η3) = γ (6)

for some β ∈ Fm1+3m2+3, η1, η2, η3 ∈ F3k, γ ∈ F. Query Ĉ at (νi, ηi) for i ∈ {1, 2, 3} in order to
compute hC⃗(τ⃗ , η1, η2, η3). Accept if (6) is true, else reject.

We “balance” the verifier’s queries by repeating Steps 1 and 3 sufficiently many times so that each test
accounts for at least 1/3 of the verifier’s view.

Proof length, alphabet size and query complexity. The proof length is dominated by the sumcheck
proofs πτ⃗ ; each such proof is of size |F|O(m1+m2+k+3) = poly(T (n), q∗), and there are |F|O(m1+m2+3) =
poly(T (n)) of them. The proof alphabet is Fm1+m2+k+4, so the alphabet is of size |F|O(m1+m2+k+3) =
poly(T (n), q∗). The query complexity is poly(log T (n), log q∗).

Completeness and robust soundness. Completeness and soundness rely on the following key observation.

Claim 6.5. The following are equivalent:

(i) B ∈ Oracle-3SAT;
(ii) there exists a polynomial Â : Fm → F such that for all z ∈ Hm1 , b1, b2, b3 ∈ Hm2 , a1, a2, a3 ∈ {0, 1},

gÂ(z, b1, b2, b3, a1, a2, a3) = 0;
(iii) there exists a polynomial Ĉ : Fm2+k → F such that for all z ∈ Hm1 , b1, b2, b3 ∈ Hm2 , a1, a2, a3 ∈
{0, 1},

∑
c1,c2,c3∈Hk hĈ(z, b1, b2, b3, a1, a2, a3, c1, c2, c3) = 0.

Proof. The equivalence of (iii) and (ii) is a direct consequence of Eq. 4. It remains to prove that (i) and (ii)
are equivalent.
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Note first that for any z ∈ {0, 1}r, b1, b2, b3 ∈ {0, 1}s, a1, a2, a3 ∈ {0, 1}, gÂ(z, b1, b2, b3, a1, a2, a3) =
0 if and only if either B(z, b1, b2, b3, a1, a2, a3) = 1 (since B̂ extends 1−B) or, for some i ∈ [3], Â(bi) =
1− ai.
(i) ⇒ (ii). Suppose that B ∈ Oracle-3SAT, and let Â be the multilinear extension of a satisfying assignment
A, and fix z, b1, b2, b3, a1, a2, a3. If B(z, b1, b2, b3, a1, a2, a3) = 1 then we are done, so suppose not. Then
since A is a satisfying assignment, there exists i ∈ [3] such that Â(bi) = A(bi) ̸= ai, so Â(bi) = 1− ai since
A(bi) ∈ {0, 1}.
(ii) ⇒ (i). Fix some polynomial Â such that gÂ is zero on {0, 1}r+3s+3. Let A be the assignment given by,
for each b ∈ {0, 1}s,

A(b) =

{
Â(b) if Â(b) ∈ {0, 1}, or
0 otherwise.

Fix z ∈ {0, 1}r, b1, b2, b3 ∈ {0, 1}s; we show that B(z, b1, b2, b3, A(b1), A(b2), A(b3)) = 1. Indeed, let
a1, a2, a3 ∈ {0, 1} be such that B(z, b1, b2, b3, a1, a2, a3) = 0; if no such assignment exists then we
are already done. Since B(z, b1, b2, b3, a1, a2, a3) = 0, it must be that there exists i ∈ [3] such that
Â(bi) = 1− ai; and since 1− ai ∈ {0, 1}, A(bi) = Â(bi). Hence A(bi) ̸= ai. Thus if A(bi) = ai for all i,
then B(z, b1, b2, b3, a1, a2, a3) = 1, from which the implication follows.

For completeness, it suffices to observe that the claim (5) is true for Ĉ as in Claim 6.5. We proceed to
show robust soundness. Suppose that B /∈ Oracle-3SAT.

Let ε := 1/100. First, suppose that πC is ε-far from RM[F,m2 + k, (m2 + k)d]. Then the verifier’s view
in the low-degree test is on average Ω(ε)-far from accepting by Theorem 2.16.

Otherwise, let Ĉ ∈ RM[F,m2 + k] be the unique closest codeword to πC ; then d(Ĉ, πC) ≤ ε. It follows
that d(hĈ , hπC ) ≤ 3ε, since a uniformly random evaluation of hĈ depends on three uniformly random
evaluations of Ĉ.

Since B /∈ Oracle-3SAT, by Claim 6.5 there exists z ∈ Hm1 , b1, b2, b3 ∈ Hm2 , a1, a2, a3 ∈ {0, 1} such
that

∑
c1,c2,c3∈Hk hĈ(z, b1, b2, b3, a1, a2, a3, c1, c2, c3) ̸= 0. It follows that∑

z∈Hm1

b1,b2,b3∈Hm2

∑
a1,a2,a3∈{0,1}

L
Hm1+3m2×{0,1}3,(z,⃗b,⃗a)(X⃗) ·

∑
c1,c2,c3∈Hk

hĈ(X⃗, c1, c2, c3)

is a nonzero polynomial in m1+m2+3 variables X⃗ of individual degree O(dB · |H|). Thus, with probability
1−O((m1+m2+3)dB · |H|/|F|) over the choice of τ⃗ , the claim in Eq. 6 is false. By the expected robustness
guarantee of the PZK-PCPP (Lemma 5.1), the verifier’s view of the sumcheck PCP in this case is Ω(ε)-far on
average from an accepting view. By a union bound, the overall expected robustness is Ω(ε).
Zero knowledge. Our simulator makes use of an algorithm due to Ben-Sasson et al. [BCFGRS17] for
efficiently lazily sampling random multivariate polynomials.

Lemma 6.6 ([BCFGRS17], Corollary 4.10). There exists a probabilistic algorithm PolySim such that, for
every finite field F, m, d ∈ N, set S = {(α1, β1), . . . , (αℓ, βℓ)} ⊆ Fm × F, and (α, β) ∈ Fm × F,

Pr
[
PolySim(F,m, d, S, α) = β

]
= Pr

Q←F≤d[X1,...,Xm]

Q(α) = β

∣∣∣∣∣∣∣
Q(α1) = β1

...
Q(αℓ) = βℓ

 .

Moreover PolySim runs in time poly(log |F|,m, d, ℓ).
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We describe the construction of the simulator below, and then prove that its output is distributed identically
to ViewV∗,P .

Construction 6.7. A simulator Sim for Construction 6.4.
On query α⃗ to oracle O:

1. If O = πC , sample β ← PolySim(F,m+ k, d, S, q⃗), where S is the set of prior queries to πC and
their answers, and respond with β.

2. If O = πτ⃗ for some τ⃗ ∈ Fm1+3m2+3:

(a) If this is the first query to πτ⃗ , start a new instance Sim′τ⃗ of the sumcheck PZK-PCPP simulator
(Lemma 5.1).

(b) Answer the query using Sim′τ⃗ . This sub-simulator may make queries to the summand polynomial
(5). Each such query can be efficiently answered by making 3 queries to πC , which are answered
as in Step 1.

We prove perfect zero knowledge via a hybrid argument. Consider a hybrid oracle simulator S̃im which
behaves as Sim except that it answers queries to πC by querying an external oracle.

We consider the following sequence of hybrid algorithms:

• H0: SimV
∗
(x).

• H1: S̃im
V∗,Z

(x), where Z : Fm2+k is a uniformly random polynomial of individual degree |H| − 1.

• H2: S̃im
V∗,Z

(x), where Z : Fm2+k is sampled as Ĉ in Step 1 of the prover algorithm.
• H3: ViewV∗,P(x).

• H0 ≡ H1. This follows directly from the correctness of PolySim (Lemma 6.6).

• H1 ≡ H2. This claim relies crucially on the following lemma, originally shown in [CFS17; CFGS22].

Lemma 6.8 ([CFS17, Corollary 5.3]). Let F be a finite field, H ⊆ F, d, d′ ∈ N with d′ ≥ 2(|H| − 1). Let
Q ⊆ Fm+k with |Q| < |H|k. Let Z be chosen uniformly at random in F[X1, . . . , Xm, Y1, . . . , Yk] such
that degXi

(Z) ≤ d for 1 ≤ i ≤ m and degYi
(Z) ≤ d′ for all 1 ≤ i ≤ k.

The ensembles (
∑

y⃗∈Hk Z(α⃗, y⃗))α⃗∈Fm and (Z(q⃗))q⃗∈Q are independent.

Since V∗ makes at most q∗ queries to the proof, S̃im makes at most p(q∗) queries to its oracle. Then since
p(q∗) < |H|k by assumption, by Lemma 6.8, the answers to those queries are statistically independent
from (

∑
y⃗∈Hk Z(α⃗, y⃗))α⃗∈Fm . Thus for all v,

Pr[H2 → v] = Pr
Z

[
S̃im

V∗,Z
(x)→ v

∣∣ ∀b ∈ Hm2 ,
∑
c∈Hk

Ĉ(b, c) = A(γ2(b))
]

= Pr
Z

[
S̃im

V∗,Z
(x)→ v

]
.

• H2 ≡ H3. This follows from the perfect zero knowledge guarantee of the sumcheck PZK-PCPP.
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7 PZK-PCP for NP and NEXP with constant query complexity

In this section, we combine our zero-knowledge proof composition theorem and our randomness-efficient,
robust PZK-PCPs for NP and NEXP to obtain constant-query PZK-PCPs for NP and NEXP.

Theorem 7.1. The following inclusions hold:

(i) NP ⊆ PZK-PCP[log n, 1], and

(ii) NEXP ⊆ PZK-PCP[poly(n), 1].

Moreover, when q∗ is polynomial, NP has efficient PZK-PCPs with constant query complexity and query
bound q∗.

Proof. Part (i). We prove this via a chain of inclusions as follows.
We start by performing alphabet reduction on the robust PZK-PCP for NP we constructed in Theorem 6.3.

Let q∗ ≤ 2poly(n) be an arbitrary query bound; for simplicity, we will assume without loss of generality that
q∗ ≥ n. By part (i) of Theorem 6.3, for any q̃ ≤ 2poly(n),

NP ⊆ rPZK-PCPq̃,Σ(n)[log n+ log q̃,poly(log n+ log q̃)],

where |Σ(n)| = poly(n, q̃). This can be viewed as a PCP over the alphabet {0, 1}a, where a := log |Σ(n)| =
O(log n+ log q̃). Therefore, we can apply alphabet reduction (Lemma 3.5) to obtain

rPZK-PCPq̃,Σ(n)[log n+log q̃,poly(log n+log q̃)] ⊆ rPZK-PCPq̃,{0,1}[log n+log q̃,poly(log n+log q̃)].

Next, we perform proof composition to obtain constant query complexity. Let Q(n) = poly(log n+log q̃)
be the query complexity of the boolean rPZK-PCP and set q̃(n) equal to a polynomial in q∗ and n large
enough to ensure that q̃(n)/Q(n) ≥ q∗(n) for all n ∈ N; q̃ = O((q∗)1+ε) suffices for any ε > 0. Then by
Corollary 3.11, rPZK-PCPq̃,{0,1}[r, q] ⊆ PZK-PCPq̃/q,{0,1}[r + log n, 1]. Thus, we have that

rPZK-PCPq̃,{0,1}[log n+ log q̃,poly(log n+ log q̃)] ⊆ PZK-PCPq∗,{0,1}[log n+ log q∗, 1].

By chaining the above inclusions together we have that NP ⊆ PZK-PCPq∗,{0,1}[log n+ log q∗, 1]. Since q∗

was arbitrary, NP ⊆ PZK-PCP[log n, 1].
Part (ii). Let q∗ ≤ 2poly(n) be an arbitrary query bound. By part (ii) of Theorem 6.3, for any q̃ ≤ 2poly(n),

NEXP ⊆ rPZK-PCPq̃,Σ(n)[poly(n) + log q∗, poly(n)],

where |Σ(n)| = poly(2n, q̃). As before, this can be viewed as a PCP over the alphabet {0, 1}a, where
a := log |Σ(n)| = O(n+ log q̃). Therefore, we can apply alphabet reduction (Lemma 3.5) to obtain

rPZK-PCPq̃,Σ(n)[poly(n) + log q∗, poly(n)] ⊆ rPZK-PCPq̃,{0,1}[poly(n),poly(n, log q̃)].

As before, we perform proof composition to obtain constant query complexity. Let Q(n) = poly(n) be
the query complexity of the boolean rPZK-PCP and set q̃ := q∗(n) ·Q(n) for all n ∈ N, so q̃ = poly(q∗, n).
Then by Corollary 3.11, rPZK-PCPq̂,{0,1}[r, q] ⊆ PZK-PCPq̂/Q,{0,1}[r + log n, 1], so

rPZK-PCPq̃,{0,1}[poly(n), poly(n, log q̃)] ⊆ PZK-PCPq∗,{0,1}[poly(n) + log q∗, 1].

Since q∗ was arbitrary, NP ⊆ PZK-PCP[poly, 1].
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