
IEEE TRANSACTIONS AND JOURNALS TEMPLATE 1

Secure Transformer-Based Neural Network
Inference for Protein Sequence Classification

Jingwei Chen, Linhan Yang, Chen Yang, Shuai Wang, Rui Li, Weijie Miao
Wenyuan Wu, Li Yang, Kang Wu and Lizhong Dai

Abstract— Protein sequence classification is fundamen-
tal in healthcare and precision medicine, such as predicting
protein structures and discovering novel functions. Lever-
aging large language models (LLMs) is greatly promising
to enhance our ability to tackle protein sequence classifica-
tion problems; however, the accompanying privacy issues
are becoming increasingly prominent. In this paper, we
present a privacy-preserving, non-interactive, efficient, and
accurate protocol called encrypted DASHformer to evaluate
a transformer-based neural network for protein sequence
classification named DASHformer, provided by the iDASH
2024-Track 1 competition. The presented protocol is based
on our solution for this competition, which won the first
place. It is arguably the first secure transformer inference
protocol capable of performing batch classification for mul-
tiple protein sequences in a single execution only using lev-
eled homomorphic encryption (i.e., without bootstrapping).
To achieve this, we propose a series of new techniques
and algorithmic improvements, including data-driven non-
polynomial function fitting, tensor packing, and double
baby-step-giant-step for computing the product of multiple
encrypted matrices. These techniques and improvements
enable the protocol to classify 163 encrypted protein se-
quences in about 165 seconds with 128-bit security, achiev-
ing an amortized time of about one second per sequence.

Index Terms— Homomorphic Encryption, LLMs, Privacy-
Preserving Computing, Protein Classification, Transformer.

I. INTRODUCTION

CLASSIFYING protein sequences refer to the process of
organizing and categorizing proteins based on their struc-

tural, functional, or evolutionary characteristics. Proteins are
made up of chains of amino acids, and the specific sequence
of these amino acids determines the structure and function
of the protein. Classification is fundamental in healthcare

Jingwei Chen, Chen Yang, Rui Li, Weijie Miao and Wenyuan Wu
(corresponding author) are with Chongqing Key Laboratory of Se-
cure Computing for Biology, Chongqing Institute of Green and Intelli-
gent Technology, CAS and Chongqing College, University of Chinese
Academy of Sciences (e-mail:{chenjingwei, wuwenyuan}@cigit.ac.cn).

Linhan Yang and Shuai Wang are with School of Information Science
and Engineering, Chongqing Jiaotong University. This work was done
when LHY and SW were visiting Chongqing Institute of Green and
Intelligent Technology, CAS.

Li Yang (corresponding author), Kang Wu and Lizhong Dai are with
Sansure Biotech, Inc. (e-mail: ylyhp@126.com).

This work was supported partly by National Key Research and De-
velopment Project of China (2020YFA0712303), Natural Science Foun-
dation of Chongqing (2022yszx-jcx0011cstb, cstb2023yszx-jcx0008,
cstb2023nscq-msx0441) and the Light of West China Program of CAS.

and precision medicine, such as predicting proteins’ complex
structures (The Nobel Prize in Chemistry 2024), predicting the
function of a newly discovered protein, etc. Roughly speaking,
protein sequence classification methods include those based
on sequence similarity or alignment (e.g, BLAST [1]), those
based on machine learning (e.g., k-mer [2]). We refer the
readers to a recent survey [3] and references therein.

Since Vaswani et al. proposed the transformer architecture
[4], large language models (LLMs) such as GPT [5], BERT
[6] and LLaMA [7] have developed rapidly and have already
demonstrated their power in numerous applications, including
protein sequence classification, e.g., ProteinBERT [8] and
UniDL4BioPep [9].

However, with the widespread use of LLMs, privacy con-
cerns have inevitably become increasingly prominent. In re-
sponse, some countries and corporations have restricted the use
of LLMs, including, e.g., Italy [10], Amazon, Apple, etc. [11].
Given the sensitivity of biological data, how to use LLMs to
classify protein sequences while protecting protein sequences’
privacy is a crucial issue.

Privacy-preserving machine learning (PPML) can be used
to address this problem. Currently, the technologies used in
PPML mainly include secure multi-party computation (MPC)
[12], differential privacy [13], homomorphic encryption (HE)
[14], and trusted execution environment [15]. Among these,
only MPC and HE offer cryptographically provable security.
MPC requires extensive interactions among participating par-
ties, making it less suitable for complex applications like
LLMs. In contrast, HE allows logical or arithmetic operations
on ciphertexts without communication and has been widely
used in PPML. Nevertheless, it is well known that the compu-
tational efficiency of homomorphic encryption is not so well,
especially for non-polynomial functions and for bootstrapping
(an operation on ciphertext that reduces the noise near a
fresh ciphertext). Therefore, whether it can practically han-
dle privacy-preserving LLMs’ inference on encrypted protein
sequences is an intriguing problem.

A. iDASH 2024-Track 1

To tackle this issue, iDASH 2024 [16] launched a track of
competition (hereafter referred to as iDASH 2024-Track 1),
in which participants are required to design and implement
a secure and efficient protocol based on HE to perform
encrypted inference of a transformer-based and pre-trained
LLM named DASHformer. The protocol works within the

2 IEEE TRANSACTIONS AND JOURNALS TEMPLATE

client-server mode, as in Fig. 1. The query data are multiple
protein sequences to be classified (100 sequences in iDASH
2024-Track 1), and the ciphertexts of the query data under
an HE scheme are the input from the client for the protocol.
Inputs from the server are the parameters of DASHformer. At
the end of this protocol, the server sends the encrypted results
to the client and the client decrypts to obtain query protein
sequences’ classification inferred from DASHformer.

LLM

Client
Server

𝑐𝑡. 𝑞𝑢𝑒𝑟𝑦

① 𝑐𝑡. 𝑞𝑢𝑒𝑟𝑦

③ 𝑐𝑡. 𝑐𝑙𝑠

DASHformer

Encrypt
Query Sequences

Homomorphic

Evaluation
𝑐𝑡. 𝑞𝑢𝑒𝑟𝑦 ② Send Query Ciphertexts

④ Send Classification Ciphertexts
𝑐𝑡. 𝑐𝑙𝑠

⑤ 𝑐𝑡. 𝑐𝑙𝑠
Decrypt

Classification

Encrypted DASHformer Inference for Protein Sequence Classification

Fig. 1: The framework of our Encrypted DASHformer proto-
col for protein sequence classification.

DASHformer is an encoder-only transformer for protein
sequence classification (see Fig. 2), consisting of layers of
embedding, multi-head attention, layer normalization, feed-
forward neural network (FF) and average pooling. See [17]
for the details on how DASHformer is trained.

Input

Embedding

Positional

Encoding

Multi-head

Attention

Add & Norm

Feed

Forward

Softmax

Pooling

Output

Add & Norm

⊕

Fig. 2: Workflow of secure DASHformer inference. Modules
within the gray box are required to be computed with HE.

To evaluate DASHformer on multiple encrypted protein
sequences, there exist several challenges. First, DASHformer
contains many non-polynomial functions, such as softmax in
the attention layer, ReLU in the FF layer, and layer normaliza-
tion (LayerNorm). How can we efficiently compute these HE-
unfriendly functions? Second, since multiple protein sequences
need to be classified, after passing through the embedding
layer, the client’s input is essentially a three-dimensional
tensor. How can we encode this tensor so that multiple

sequences can be computed in parallel rather than one by one?
Third, DASHformer involves numerous plaintext-ciphertext
matrix multiplications (PCMM) and ciphertext-ciphertext ma-
trix multiplications (CCMM). How can we efficiently compute
these PCMMs and CCMMs? Lastly, DASHformer has a long
computational chain, which results in high multiplicative depth
for encrypted computation. How can we optimize the required
multiplicative depth to minimize or completely avoid the use
of the expensive bootstrapping operation?

B. Our Solution

In this paper, we address the above all challenges and
present a solution for iDASH 2024-Track 1, which won the
first place in this competition.

More specifically, we propose a data-driven method for
approximating non-polynomial functions (e.g., exp(x), 1/x,
1/
√
x, ReLU) in Section III. The resulting approximate func-

tions maintain computational accuracy, and are compatible
with the data packing method we adopt.

Given that the input data forms a three-dimensional tensor
(each sequence is converted into a matrix after embedding
and there are multiple sequences to be classified), we propose
a tensor packing method named letter-by-letter in Section IV.
Being different from the conventional row/column packing for
a matrix, we pack a slice of the tensor into one ciphertext.
Each slice contains one embedded vector of a letter but for
all sequences. This new packing method allows us to evaluate
DASHformer for multiple protein sequences in parallel. The
main technical ingredients include:

• The new packing method enables us to employ an effi-
cient PCMM algorithm that does not require the costly
ciphertext rotation and that performs better than the one
based on a naı̈ve sequence-by-sequence packing method.

• It also directly leads to a novel technique called dou-
ble baby-step-giant-step (DBSGS), which makes CCMM
very efficient for three encrypted matrices. For DASH-
former, this technique reduces the number of ciphertext
rotations in computation of the attention layer by more
than 70%, and hence reduces the running time by more
than a half.

Built on these techniques, along with some further opti-
mizations in Section V, we obtain encrypted DASHformer, a
secure, efficient, accurate, and non-interactive DASHformer
inference protocol for encrypted protein sequences without
the need for bootstrapping. We implement the protocol using
the Cheon-Kim-Kim-Song (CKKS) scheme [18] in Lattigo
[19], which, under a security parameter of 128, completes
the classification of 100 (but up to 163) protein sequences of
length 50 within 165 seconds on a PC, achieving a micro-AUC
about 0.941 for the evaluation data of iDASH 2024-Track 1;
see Section VI for more details.

Although we focus on the DASHformer inference on en-
crypted protein sequences, we note that the presented tech-
niques and algorithmic improvements are also beneficial to
evaluate other LLMs on data encrypted by other SIMD-
supported HE schemes, e.g., BGV [20] and B/FV [21], [22].

CHEN et al.: SECURE TRANSFORMER-BASED NEURAL NETWORK INFERENCE 3

II. PRELIMINARIES

In this section, we introduce the detailed workflow of
DASHformer, provide a description of the used dataset [17],
and give a necessary introduction to the CKKS scheme [18].

A. Dataset

During the challenge phase of iDASH 2024-Track 1, the
given dataset contains 1, 000 protein sequences along with
their corresponding labels. We call it the challenge dataset.
Each protein sequence in the challenge dataset consists of
50 one-letter amino acid symbols and belongs to one of the
25 protein families. Each amino acid symbol comes from an
alphabet of size 25. For example,

LDLAGDPTFADLV TRTRTTLLDAQDH

EDAPFEEV V RRV APERDPGRTPV F, 24

is one of the given sequence classified into the protein fam-
ily with a label 24. The challenge dataset will be used to
approximate the non-polynomial functions in Section III. In
the evaluation phase, another test set of 100 class-balanced
protein sequences was used to evaluate the presented protocol
for secure inference on encrypted data in Section VI. In
addition, both the challenge dataset and the evaluation dataset,
together with the parameters for DASHformer were given by
the organizers, and now are available in [17].

B. DASHformer

DASHformer is an encoder-only pre-trained neural network
for protein sequence classification. After one-hot encoding,
each input protein sequence can be converted into a matrix
X ∈ {0, 1}m×l, which forms an input of DASHformer. Here
m is the length of tokens and l is the size of the alphabet.
Given such an X as input, DASHformer works as follows:

• Embedding and positional encoding: X = XWe + P ,
where We ∈ Rl×d and P ∈ Rm×d, where d is the hidden
size (or model dimension). Then set Y = X ∈ Rm×d.

• H-heads attention (0 ≤ h < H , all vectors are in row):
– Queries: Q(h) = XW

(h)
Q + 1T · b(h)Q ∈ Rm×d′

,
– Keys: K(h) = XW

(h)
K + 1T · b(h)K ∈ Rm×d′

,
– Values: V (h) = XW

(h)
V + 1T · b(h)V ∈ Rm×d′

,
– Attention: X(h) = softmax

(
Q(h)K(h)T

√
d′

)
V (h),

where W
(h)
Q , W

(h)
K , W

(h)
V ∈ Rd×d′

and b
(h)
Q , b

(h)
K ,

b
(h)
V ∈ Rd′

. Note that here d′ = d/H .
• Concatenation: X = (X(0), . . . ,X(H−1)) ∈ Rm×d.
• Linear layer: X = XWc + 1T · bc ∈ Rm×d.
• Layer normalization: Y = LayerNorm1(X + Y).
• FF layer: X = ReLU(Y W1 + 1Tb1)W2 + 1Tb2, where

W1 ∈ Rd×d′′
, W2 ∈ Rd′′×d, b1 ∈ Rd′′

, and b2 ∈ Rd.
• Layer normalization: X = LayerNorm2(X + Y).
• Average pooling: x = 1 · (XWd + 1Tbd) ∈ Rc, where

Wd ∈ Rd×c and bd ∈ Rc with c the number of classes.
• Output: y = softmax(x), indicating the score of input

protein sequence for each protein class.

From the above description, DASHformer is a simplified
version of BERT with only one transformer layer (For in-
stance, BERTbase [6] has 12 transformer layers). The other
hyperparameters of DASHformer are m = 50, l = 25,
d = 128, H = 4, d′ = 32, d′′ = 256 and c = 25.

C. CKKS
The Cheon-Kim-Kim-Song scheme (CKKS) [18] is one

of the most popular HE schemes. It supports approximate
arithmetic operations. In CKKS, the plaintext space is a
subset of R = Z[X]/⟨XN + 1⟩ while messages are complex
vectors in CN/2, where N is a power-of-two integer. The
ciphertext space of CKKS is R/qR with a large integer q,
called ciphertext modulus. The restriction of the canonical
embedding R[X]/⟨XN + 1⟩ → CN/2 on R maps m(X) ∈ R
into m ∈ CN/2 by evaluating m(X) at the primitive 2N -
roots of unity ξj = ξ5

j

for 0 ≤ j < N/2. The inverse of
the canonical embedding encodes a message m as a plaintext
m(X). Thus, CKKS naturally supports single-instruction-
multiple-data (SIMD) operations, i.e., performing an operation
on a ciphertext corresponds to performing the same operation
on N/2 slots of m in parallel.

For x = (xi)0≤i<N/2 and y = (yi)0≤i<N/2, let ct.x and
ct.y be the ciphertext encrypted by CKKS under a same public
key. CKKS supports the following basic operations:

• Setup(1λ). Given a security parameter λ, output parms.
• KeyGen(parms). Output a secret key sk and the corre-

sponding public key pk. (For convenience, we also let pk
include keys for key-switching.)

• Encpk(x). Given a message x, output a ciphertext ct.x.
• Decsk(c). Given a ciphertext c that encrypts x, output a

message x′ ≈ x. (For simplicity, we omit sk and pk.)
• Add(ct.x, ct.y): Dec(Add(ct.x, ct.y)) = x+ y.
• Mul(ct.x, ct.y): Dec(Mul(ct.x, ct.y)) = x⊙y, where ⊙

is for component-wise multiplication.
• CMul(m, ct.x): Dec(CMul(m, ct.x)) = m ⊙ x, where

m is a message in Cℓ; for m ∈ C, CMul(m, ct.x) is a
special case of CMul(m, ct.x) with m = (m, . . . ,m).

• Mask[i,j](ct.x) convert a ciphertext ct.x =
Enc(x0, . . . , xN/2−1) into a ciphertext that encrypts
(0, xi, xi+1, . . . , xj ,0), equivalent to CMul(m, ct.x) for
m = (0 ∈ Zi−1,1 ∈ Zj−i+1,0).

• Rotatek(ct.x) convert ct.x = Enc(x0, . . . , xN/2−1) into
a new ciphertext Enc(xk, . . . , xN/2−1, x0, . . . , xk−1).
Rotate costs no multiplicative depths.

– Rotk(x): If the dimension of x is strictly less than
N/2, then rotating x with step size k, denoted by
Rotk(x), can be implemented with two Rotates, two
Masks, and an Add. It also costs one CMul depth.

CKKS is IND-CPA secure under the RLWE assumption [23].
It is well known that the multiplicative (taking both CMul

and Mul into account) depth of the task has a very significant
impact on the efficiency. Additionally, as shown in [24], [25],
the cost for a Rotate is several times larger than Mul. So,
how to minimize the required multiplicative depth and reduce
the required Rotates for a concrete application are usually the
central problems in practice.

4 IEEE TRANSACTIONS AND JOURNALS TEMPLATE

D. Adversary Model

As pointed out in Fig. 1, we consider the scenario involving
two parties, namely, a client and a server. The client generates
the public and private keys (pk, sk) for CKKS, while the server
undertakes the computational tasks. We consider the security
of our protocol under the semi-honest adversary model, also
known as the honest-but-curious model [26].

III. EVALUATE NON-POLYNOMIAL FUNCTIONS

In this section, we address the first challenge presented
in the introduction, i.e., the encrypted evaluation of non-
polynomial functions. The basic idea is to perform polynomial
fitting of these non-polynomial functions using the challenge
dataset, i.e., the 1, 000 given protein sequences. We refer
to the resulting neural network approximate DASHformer to
distinguish it from the original DASHformer.

A. ReLU

For x ∈ R, ReLU(x) = max(0, x). This is a piecewise
function that requires comparing x with 0, which is very
unfriendly to CKKS. We use a polynomial

∑6
i=0 aix

i to
approximate ReLU, where the coefficients ai’s are fitted by
the least square method with the given protein sequences.

B. Layer Normalization

Given a vector x = (xi)i,

LayerNorm(x) =

(
γ · xi − µ√

σ2
+ β

)
i

with µ and σ2 the mean and variance of x, and γ and β are
parameters. Instead of computing 1√

σ2
for a ciphertext of σ2,

we compute it with a simplified form

LN(x) = (γ · σ̃ · (xi − µ) + β)i ,

where σ̃ is the learned standard deviation from the given
protein sequences.

In DASHformer, LayerNorm applies to all the rows of the
matrix X ∈ Rm×d. If we use the matrix form, we have

LN(X) = diag(
1√
σ2
i

)(X − µT · 1)diag(γi) + 1T · β

=: Σ−1 ·X · Γ+ 1T · β,
(1)

where diag(a) is the diagonal matrix generated by the vector
a. Here µ = (µi)0≤i<m consists of the means of all rows of
X , d is the number of columns of X , Σ−1 = diag(1

d
√

σ2
i

)

and Γ = (dI − E) · diag(γi), where I is the identity matrix
and all entries of E are 1. The parameters (γi)i and β are
given as part of DASHformer, while Σ−1 can be fitted with
the given protein sequences.

The two instances of LayerNorm that appear in DASH-
former are processed using the same method described above.

C. Softmax
Softmax [27] of a vector x = (xi)i is defined as

softmax(x) =

(
exp(xi)∑
i exp(xi)

)
i

.

Instead of high-degree polynomial approximations of the ex-
ponential function in softmax, we use the square softmax
(sqmax) [28] in the form (xi+c)2∑

i(xi+c)2 . Furthermore, we use a
constant δ to replace the denominator to avoid divisions by a
ciphertext, i.e.,

sqmax(x) =

(
(xi + c)2

δ

)
i

. (2)

For the h-th head, we choose different (c(h), δ(h)) obtained
from least square with the given protein sequences.

Using the sqmax function in Eq. (2) avoids the encrypted
computation of the non-polynomial functions exp(x) and 1/x.
Additionally, note that sqmax is computed component-wise,
which makes it compatible with any matrix encoding method,
which is different from softmax. Based on this observation, we
can convert the computation of X(h) in the attention layer into
the computation of the product of three matrices. In the next
section, we will see that this makes a significant acceleration
for encrypted computation of DASHformer’s attention layer.

IV. ENCRYPTED MATRIX MULTIPLICATION

In this section, we focus on the computation of H-heads
attention. Therefore, for convenience, we begin with the matrix
X ∈ Rm×d after embedding and positional encoding.

A. Packing for Three-Dimensional Tensors
As mentioned in Section II, during the testing phase, we will

classify n = 100 unpublished protein sequences. Testing them
sequence-by-sequence would certainly be inefficient (see Fig.
3a). To improve efficiency, our goal is to test these n protein
sequences in parallel so that we only need to run DASHformer
once to complete the classification of all protein sequences. If
so, we will take a n×m× d three-dimensional tensor as the
input. Instead, we adopt a packing method named letter-by-
letter packing for three-dimensional tensors (see Fig. 3b).

𝑚

𝑑

(a) Sequence-by-sequence packing

𝑚

𝑛

(b) Letter-by-letter packing

Fig. 3: Different packing methods for 3D tensor

Under letter-by-letter packing, an n×m× d tensor will be
encrypted into d CKKS ciphertexts cti, where cti encrypts the
i-th m×n slice of the tensor. This slice contains the embedding
vectors of the i-th letter for all n protein sequences. From a
matrix perspective, cti actually encrypts the i-th column of all

CHEN et al.: SECURE TRANSFORMER-BASED NEURAL NETWORK INFERENCE 5

n input m×d matrices. Keeping this in mind, we present how
to perform plaintext-ciphertext matrix multiplication (PCMM)
and ciphertext-ciphertext matrix multiplication (CCMM) under
the letter-by-letter packing method in the next two subsections.

B. PCMM

Given ciphertexts of matrix X ∈ Rm×d encrypted column-
wise and a plaintext matrix W ∈ Rd×d′

, our goal is to obtain
the column-wise encrypted ciphertexts of the matrix product
V = XW . Let xT

i be the i-th column of X and vT
i the

i-th column of V . Then vj =
∑d−1

i=0 wi,jx
T
i for 0 ≤ j < d′.

Clearly, computing all vj using this method requires only one
CMul multiplicative depth and dd′2 CMuls, without Rotates.

TABLE I: The cost of n products of encrypted matrices of
dimension m× d and plaintext matrices of dimension d× d′

(#cts: the number of ciphertexts).

Packing method #cts #CMuls #depths

Sequence-by-sequence n n(d+ dd′2) 2 CMul
Letter-by-letter d dd′2 1 CMul

It should be noted that this method for PCMM is not
new; it appeared in, e.g., [29] for CCMM. When computing
n PCMMs for encrypted matrices of dimension m × d and
plaintext matrices of dimension d × d′ (as the query, key,
value matrices in the attention layer), if we use the sequence-
by-sequence packing method, we first need to extract (via
Mask) the ciphertexts corresponding to the d columns from
the ciphertext of the matrix X ∈ Rm×d of each sequence, and
then perform the above PCMM. Finally, we need to repeat this
process n times to complete the whole task. Table I presents
the overhead of the method combining the above PCMM with
the proposed letter-by-letter packing. It can be observed that,
compared to the sequence-by-sequence packing method, the
letter-by-letter packing method has obvious advantages.

C. CCMM

After applying the sqmax function as an approximation
of softmax in Section III-C, the computation of X(h) in
attention essentially becomes a three-matrices multiplication,
where each matrix is encrypted column-wise. We now propose
an optimization for this scenario. Let’s first recall Halevi-
Shoup’s method for linear transformation on ciphertexts.

1) Halevi-Shoup’s method: For a plaintext square matrix C
of dimension m, the i-th diagonal vector of C is defined as
Diagi(C) = (c0,i, . . . , cm−i−1,m−1, cm−i,0, . . . , cm−1,i−1),
denoted by di for simplicity. Now, for an encrypted m-
dimensional vector v, Halevi and Shoup in [30] utilize the
following formula

CvT =
∑

0≤i<m

di ⊙ Roti(v). (3)

Computing CvT with this formula requires m Rots. In [31],
they employ the baby-step-giant-step (BSGS) strategy, reduc-
ing m Rots to O(

√
m). The idea is based on the following

formula (assuming m = ℓ · k)

CvT =
∑

0≤i<ℓ

Rotik
(∑
0≤j<k

Rot−ik(dik+j)⊙ Rotj(v)
)
. (4)

The reason BSGS can significantly reduce the number of
required Rots is that the matrix C is in plaintext, allowing
us to precompute Rot−ik(dik+j) directly in plaintext.

2) Three-matrices multiplication: Suppose that we need to
compute (QKT)V with all Q, K, V ∈ Rm×d encrypted
column-wise. Let C = QKT ∈ Rm×m and let di be the
i-th diagonal vector of C. It is well-known that the resulting
ciphertexts of C are in diagonal form up to some rotations;
see, e.g., [32], [33].

Let Q = (qT
0 , . . . , q

T
d−1) and K = (kT

0 , . . . ,k
T
d−1), i.e., qT

i

and kT
i be the i-th column of Q and K, respectively. Then

di =
∑

0≤s<d

qs ⊙ Roti(ks), 0 ≤ i < m, (5)

from which we can compute CvT with Eq. (3) for each
column vT of V . The cost for this method is listed in Table
II. Note that we cannot use the BSGS technique in this way.

3) Double BSGS: To utilize BSGS to compute CvT with
each column vT of V , we assume that m = k · ℓ. Now
we describe how to efficiently compute Rot−ik(dik+j) in
encrypted form. In fact, rewriting Eq. (5) as

di·k+j =
∑

0≤s<d

qs ⊙ Rotik+j(ks), (i < ℓ, j < k)

leads to

Rot−ik(dik+j) =
∑

0≤s<d

Rot−ik(qs)⊙ Rotj(ks).

This indicates that we only need to rotate ks for the baby
steps with step size j < k and rotate qs for the giant steps
with step size −ik for i < ℓ. This costs only ℓ+ k rotations,
and the resulting rotated vectors can be reused to construct
Rot−ik(dik+j) for all 0 ≤ i < ℓ and 0 ≤ j < k. Once these
rotated vectors are prepared, we can use BSGS in Eq. (4) to
compute CvT with another ℓ+k Rots. We call this technique
double BSGS (DBSGS).

It needs totally O(d(k+ℓ)) = O(d
√
m) Rotates to compute

(QKT)V . The method without DBSGS requires O(md)
Rotates, and hence DBSGS saves the number of Rotates by
a factor

√
m at a cost of one more CMul depth; see Table II.

In DASHformer, m = 50 so that we can set ℓ = 7 and k = 8
which leads to save the number of Rotates more than 70%. For
the evaluation of encrypted DASHformer, this improvement
reduced the running time by more than a half; see Section VI.

TABLE II: The cost of encrypted (QKT)V w./w.o. DBSGS

DBSGS #Muls #CMuls #Rotates #depths

Without 2md 4md 4md 1 CMul+ 2 Mul
With 2kℓd 4(k + ℓ)d 4(k + ℓ)d 2 CMul+ 2 Mul

We have two additional remarks on DBSGS: (1) The
number of columns may not be limited to d since we compute

6 IEEE TRANSACTIONS AND JOURNALS TEMPLATE

for the columns of V one by one. (2) Combining an arbitrary
encoding-compatible algorithm for encrypted matrix multipli-
cation for two matrices, e.g., [34], DBSGS can be used to
compute the product of any number of matrices.

V. OPTIMIZING MULTIPLICATIVE DEPTH

In addition to the above techniques and algorithmic im-
provements, we focus on optimizing the multiplicative depth
required for evaluating DASHformer to further enhance com-
putational efficiency.

A. Multiplying by a Plaintext Diagonal Matrix
In DASHformer, we need to deal with the matrix mul-

tiplication in the form of ΛXV , where Λ = diag(λ) is
a plaintext diagonal matrix generated by the vector λ =
(λi)i. When multiplying a CKKS encrypted ciphertext matrix
by the plaintext diagonal matrix Λ, it consumes a CMul
multiplicative depth. Here, we present two methods for two
cases in DASHformer to remove the need for such a CMul
multiplicative depth.

1) Column encoded X: In this case, X is an n×m matrix
encrypted in columns, and V = (vi,j) is in plaintext form.
It happens in Eq. (1). Let U = ΛXV and xT

i be the i-th
column of X . Then the j-th column of U is uT

j =
∑

i<m(λ⊙
xi) · vi,j =

∑
i<m((vi,j · λ) ⊙ xi). This implies that one

can multiply the plaintexts vi,j and λ in advance, instead of
multiplying Λ after multiplying X and V .

2) Diagonal encoded X: In this case, X is a square matrix
of dimension n and V is encrypted in column. It happens
in the layer of H-heads attention. For simplicity, we consider
ΛXv with v a vector and X is given in the diagonal vectors
(di)i. Now it follows from (3) that

ΛXv =
∑
i<n

di ⊙ (λ⊙ Roti(v)) ,

from which one can combine the multiplication by λ with
Mask within Roti(v) when the dimension v is less than N/2,
and hence saving a multiplicative depth of CMul.

B. Further Optimizations
When evaluating DASHformer on encrypted protein se-

quences, if we strictly follow the workflow described in
Section I and perform encrypted computations layer by layer,
the required ciphertext multiplicative depth would not be less
than 16, even with all previous mentioned techniques and
algorithmic improvements. However, by combining certain
computational steps, we can reduce the required multiplicative
depth to 10. We will not display all the details here but will
provide an example to illustrate how our optimization works.

Let’s take the second layer normalization and the average
pooling as an example. Assume that the input of LayerNorm2

is X and the output of the average pooling is x. Then,

x =1 · (LN2(X)Wd + 1Tbd)

=1 ·Σ−1
2 ·X · Γ2Wd + 1 · 1T · β2Wd + 1 · 1Tbd.

Thanks to the optimization techniques presented in Section V-
A, we can complete this computation using only one CMul

multiplicative depth. If we compute it layer by layer, it would
require at least three CMul multiplicative depths. 1 Table III
shows that the total number of required multiplicative depths
(including CMul and Mul) by our protocol is only 10, which
allows us to evaluate DASHformer on multiple encrypted
protein sequences without using the costly bootstrapping.

TABLE III: Multiplicative depth for encrypted DASHformer

Task Before ReLU ReLU After ReLU Total

Multiplicative depth 6 3 1 10

We call the resulting protocol encrypted DASHformer,
whose security directly follows from the security of CKKS.

VI. EXPERIMENTAL RESULTS

We implement the encrypted DASHformer using the CKKS
scheme [18] in the Lattigo package (v5.0.2) [19] and per-
form plaintext matrix computations using the gonum package
(v0.15.1) [35]. Our implementation supports multi-threads for
parallel computing.

It is worth mentioning that we newly developed a Copy-
KeyGenerator function for Lattigo, which was not pre-
viously included. This function ensures that different threads
can access the same key generator object, providing thread
safety for multithreaded parallel computation and accelerating
the process of key generation. Our implementation with all
involved parameters are available at https://github.com/hange
nba/enc dashformer.

A. Setup
The parameters of CKKS are chosen as the following:
• logN = 14, where N is the polynomial degree of the

ring for RLWE,
• logQ = 38 + 33 · 10 = 368, where Q is the largest

ciphertext modulus,
• logP = 36 · 2 = 72, where P is the special prime for

key-switching,
• log∆ = 33, where ∆ is the scaling factor.
1) Security: According to a draft standard for HE [36], the

above setup can achieve 128-bit security.
2) Error-control: To ensure that the encrypted results (at the

lowest level) still can be decrypted correctly, we scale the
coefficients used during the average pooling step (see Section
I. Based on the above setup and the given 1, 000 protein
sequences, we multiply Wd and bd, respectively, by a constant
c = 1/2649. Correspondingly, to make the decrypted results
consistent with the plaintext results, we also multiplied the
decrypted results by 1/c.

3) Packing capability: According to the above parameter
settings, each ciphertext can pack 8, 192 real numbers. Since
we use the letter-by-letter tensor packing method introduced in
Section IV, each ciphertext only loads 50×100 real numbers,
resulting in a utilization rate of approximately 61%. If we fully

1We also note that the last two terms are all in plaintext form, and hence
can be computed without operations on encrypted data.

https://github.com/hangenba/enc_dashformer
https://github.com/hangenba/enc_dashformer

CHEN et al.: SECURE TRANSFORMER-BASED NEURAL NETWORK INFERENCE 7

utilize this packing capacity, a single encrypted DASHformer
evaluation can deal with up to 163 protein sequence classifica-
tions in parallel (or, e.g., 128 protein sequences of each with
64 amino acid symbols).

B. Performance
1) Computation: We test the performance of our implemen-

tation with four threads on a PC (Intel i7-14700KF 3.4 GHz
and 64 GB memory) with Ubuntu 24.04 (WSL). The maxi-
mum memory used during our execution is about 29 GB. The
timings are given in Table IV. From Table IV, it is evident
that the DBSGS technique reduces the running time by more
than half, enabling us to complete the classification of 163
encrypted protein sequences within 165 seconds. On average,
this amounts to about one second per sequence, which shows
the near-practicality of the protocol of encrypted DASHformer.
According to the report of [17, Table 2], our solution is at least
3.3x faster than other solutions of iDASH 2024-Track 1, e.g.,
[37].

TABLE IV: Timings in second (amortized with 163 sequences)

DBSGS Before ReLU ReLU After ReLU Total (with I/O) Amortized

Without 343 5 3 356 2.19
With 152 5 3 165 1.02

2) Communication: Recall that each input protein sequence
is converted into an m × l matrix after one-hot encoding.
There are n such matrices, so the input is an n × m × l
tensor, where l is the size of the alphabet. Under the letter-
by-letter encoding, this tensor is stored in l ciphertexts. Af-
ter the encrypted DASHformer evaluation is completed, the
classification results of these n protein sequences are stored
in c ciphertexts (cti)0≤i<c, where c is the number of protein
classes. At the end, each cti is decrypted to the scores of all n
protein sequences being assigned to the i-th class. Therefore,
for encrypted DASHformer, at the beginning of the execution,
the client needs to transmit l ciphertexts to the server; after
execution, the server needs to transmit c ciphertexts back to
the client. For DASHformer, l = c = 25. In our tests, the
sizes of the transmitted ciphertexts are approximately 68.77
MB and 6.26 MB, respectively. The latter one is evidently
small because that the modulus size of resulting ciphertexts is
only 38 while that was 368 for the input ciphertexts.

3) Accuracy: We execute our implementation of encrypted
DASHformer, together with the plaintext original DASH-
former and the plaintext approximated DASHformer intro-
duced in Section III, 10 times for randomly chosen 163 out
of the given protein sequences. The micro-AUCs are shown
in Fig. 4. We can observe from Fig. 4 that there is a differ-
ence between the approximate DASHformer and the original
DASHformer in terms of micro-AUC, but the difference is
about 0.0534 on average, not significant. Because CKKS itself
is an approximate homomorphic encryption scheme, the dis-
crepancy between the encrypted DASHformer and the original
DASHformer is about 0.0547 on average, a bit larger than
that of the approximate one. However, fortunately, in these
random tests, the micro-AUC of the encrypted DASHformer

is still acceptable, ranging from 0.932 to 0.952. On the test
data supplied by iDASH 2024-Track 1 for evaluation [17],
the micro-AUC of the original, approximate, and encrypted
DASHformer are 0.997, 0.942, and 0.941, respectively. Again,
according to [17, Table 2], the best solution for micro-AUC
[37] achieves 0.984, but is about 4.79x slower than our
solution.

2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

Origin
Approximate
Encrypted

Fig. 4: Micro-AUC for randomly chosen protein sequences

VII. RELATED WORK

Due to the increasing attention on privacy protection issues
in machine learning, numerous studies on PPML have emerged
recently, especially in privacy-preserving neural network in-
ference, such as CryptoNets [38], Gazelle [39], Delphi [40],
Cheetah [41], privacy-preserving CNN [42], etc. Specifically,
we here only focus on privacy-preserving transformer in-
ference (PPTI), particularly those PPTI protocols based on
HE. To date, several works have been devoted to achieving
efficient PPTI, including THE-X [43], Iron [44], BOLT [32],
NEXUS [33], Powerformer [45], and HE-friendly LLM ar-
chitectures, e.g., [46]–[48]. The challenges in PPTI lie in the
secure computation with high-dimensional matrices and the
secure computation of more complex nonlinear functions, e.g.,
softmax, LayerNorm, GELU, etc.

A. HE-Based Matrix Computation
In the aforementioned PPTI protocols, most of them use

HE to perform matrix operations, primarily because some HE
schemes (such as BGV, BFV, and CKKS) support SIMD oper-
ations. Therefore, how to efficiently perform homomorphically
encrypted matrix computations has become a very popular
research topic, roughly divided into PCMM and CCMM.

1) PCMM: There are not so many works specifically dis-
cussing the PCMM problem. Bae et al. [49] surprisingly re-
duces PCMM to one or two plaintext matrix-multiplication(s),
but they pack data into the coefficients of plaintext polyno-
mials rather than evaluation points. To be compatible with
subsequent computations, one may have to switch between
these two packing methods. This switching involves perform-
ing a linear transformation (essentially a discrete Fourier
transformation) on ciphertexts with dimension N (in our
setting, N = 214). The method presented in [50], if applied to
PPTI, would involve numerous Rotates. For example, in a task
of classifying n protein sequences in DASHformer, the input
corresponds to an n ×m × d tensor. If the m × d encrypted

8 IEEE TRANSACTIONS AND JOURNALS TEMPLATE

matrix on each slice needs to be multiplied with another
d × d′ plaintext matrix, the method in [50] would require a
total number of O(n

√
d) Rotates. Thanks to the letter-by-

letter packing method, our proposed PCMM in Section IV-
B requires no Rotates and performs better than that based
on the sequence-by-sequence packing method for transformer
inference with multiple sequences as input.

2) CCMM: Jiang et al. [34] designed a CCMM algorithm
by generalizing the matrix diagonalization encoding method
used by Halevi and Shoup [30], [31], which is now commonly
adopted in PPTI protocols. Subsequently, many other CCMM
algorithms have been proposed; see, e.g., [51] and references
therein. However, in PPTI, CCMM mainly appears in the
computation of multi-head attention, which involves multiple
consecutive multiplications of encrypted matrices. Directly
applying existing CCMM techniques is not the optimal choice.
We proposed the DBSGS technique for the consecutive multi-
plication of three encrypted matrices, which can significantly
reduce the computational overhead. Compared to methods
that do not use this technique, in the evaluation of encrypted
DASHformer, we save about 70% of Rots and more than 50%
of total running time.

We note that even in the state-of-the-art solutions for HE-
based PPTI like BOLT [32] and NEXUS [33], the column
packing method was adopted, however, the DBSGS technique
was not used. (One possible reason is that the packing method
is incompatible with the computation of the activation func-
tions, like softmax.) Hence, DBSGS may be used to further
speedup existing PPTI protocols.

B. Secure Computation of Activation Functions
Recently, Cho et al. [52] discussed how to evaluate the

softmax function on HE-encrypted data. In existing PPTI
protocols, most of them utilize MPC to compute nonlinear ac-
tivation functions, which leads to extensive interactions among
participants. Zimerman et al. [46] were the first to propose
replacing transformer models with HE-friendly structures to
achieve non-interactive inference. NEXUS [33] and Power-
former [45] propose specific modification methods. Rho et al.
[48] even incorporate fine-tune into the PPTI framework. The
basic idea of these methods is to use HE-friendly approximate
functions to replace various nonlinear activation functions
appeared in transformers. Along with this line, we present
our method for DASHformer in Section III. In particular,
we propose to learn the parameters for these approximate
functions from the given data, fit the optimal values of these
parameters, and apply them to the evaluation of encrypted
DASHformer. This process seems similar to fine-tune with
the given data, achieves the goal of privacy-preserving, and
ensures the accuracy of inference.

VIII. CONCLUSION

We propose encrypted DASHformer, a non-interactive, effi-
cient and accurate PPTI protocol for protein sequence classi-
fication based on CKKS without bootstrapping. It is arguably
the first protocol that is capable of dealing with multiple input
sequences in parallel within one execution of the protocol. For

that, we designed a series of new techniques and algorithmic
improvements to compute the non-polynomial functions, pack
data, and multiply matrices, which may be useful for more
HE-based applications. The experimental results show its near-
practicality.

ACKNOWLEDGMENT

We would like to thank the organizers of iDASH 2024-Track
1 for their efforts in organizing this competition and preparing
the DASHformer model and the data of protein sequences.

CONFLICT OF INTEREST

Lizhong Dai is the chairman of Sansure Biotech, Inc. This
affiliation had no influence on the design, data analysis, or the
results and interpretation of this research. The authors declare
no other potential conflicts of interest.

REFERENCES

[1] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman,
“Basic local alignment search tool,” Journal of Molecular Biology, vol.
215, no. 3, pp. 403–410, 1990.

[2] D. Ofer, N. Brandes, and M. Linial, “The language of proteins: NLP,
machine learning & protein sequences,” Computational and Structural
Biotechnology Journal, vol. 19, pp. 1750–1758, 2021.

[3] T. Idhaya, A. Suruliandi, and S. P. Raja, “A comprehensive review on
machine learning techniques for protein family prediction,” The Protein
Journal, vol. 43, no. 2, pp. 171–186, 2024.

[4] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proceedings
of the 31st Conference on Neural Information Processing Systems
(NIPS 2017, Long Beach, USA), ser. Advances in Neural Information
Processing Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, Eds. Curran Associates,
Inc., 2017, vol. 30.

[5] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving
language understanding by generative pre-training,” 2018, https://open
ai.com/research/language-unsupervised.

[6] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of deep bidirectional transformers for language understanding,” in Pro-
ceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technolo-
gies (Minneapolis, USA, June 2 –7, 2019), J. Burstein, C. Doran, and
T. Solorio, Eds. ACL, 2019, pp. 4171–4186.

[7] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux,
T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar, A. Rodriguez,
A. Joulin, E. Grave, and G. Lample, “LLaMA: Open and efficient
foundation language models,” 2023, https://arxiv.org/abs/2302.13971.

[8] N. Brandes, D. Ofer, Y. Peleg, N. Rappoport, and M. Linial, “Pro-
teinBERT: a universal deep-learning model of protein sequence and
function,” Bioinformatics, vol. 38, no. 8, pp. 2102–2110, 2022.

[9] Z. Du, X. Ding, Y. Xu, and Y. Li, “UniDL4BioPep: a universal deep
learning architecture for binary classification in peptide bioactivity,”
Briefings in Bioinformatics, vol. 24, no. 3, p. bbad135, 2023.

[10] S. McCallum, “ChatGPT banned in Italy over privacy concerns,” 2023,
https://www.bbc.com/news/technology-65139406.

[11] A. Mok, “Amazon, Apple, and 12 other major companies that have
restricted employees from using ChatGPT,” 2023, https://www.business
insider.com/chatgpt-companies-issued-bans-restrictions-openai-ai-ama
zon-apple-2023-7.

[12] A. C. Yao, “Protocols for secure computations,” in Proceedings of the
23rd Annual Symposium on Foundations of Computer Science (Nov. 3–5,
1982, Chicago, USA), N. Pippenger, Ed. Los Alamitos: IEEE Computer
Society, 1982, pp. 160–164.

[13] C. Dwork, “Differential privacy,” in Automata, Languages and Pro-
gramming, 33rd International Colloquium, ICALP 2006, Venice, Italy,
July 10-14, 2006, Proceedings, Part II, ser. Lecture Notes in Computer
Science, M. Bugliesi, B. Preneel, V. Sassone, and I. Wegener, Eds.
Heidelberg: Springer, 2006, vol. 4052, pp. 1–12.

https://openai.com/research/language-unsupervised
https://openai.com/research/language-unsupervised
https://arxiv.org/abs/2302.13971
https://www.bbc.com/news/technology-65139406
https://www.businessinsider.com/chatgpt-companies-issued-bans-restrictions-openai-ai-amazon-apple-2023-7
https://www.businessinsider.com/chatgpt-companies-issued-bans-restrictions-openai-ai-amazon-apple-2023-7
https://www.businessinsider.com/chatgpt-companies-issued-bans-restrictions-openai-ai-amazon-apple-2023-7

CHEN et al.: SECURE TRANSFORMER-BASED NEURAL NETWORK INFERENCE 9

[14] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in
Proceedings of the forty-first annual ACM symposium on Theory of
computing (May 31 - June 2, 2009, Bethesda, USA), M. Mitzenmacher,
Ed. New York: ACM, 2009, pp. 169–178.

[15] M. Sabt, M. Achemlal, and A. Bouabdallah, “Trusted execution en-
vironment: What it is, and what it is not,” in 2015 IEEE Trust-
Com/BigDataSE/ISPA, Helsinki, Finland, August 20-22, 2015, Volume
1. IEEE, 2015, pp. 57–64.

[16] iDASH, “iDASH Secure Genome Analysis Competition,” http://www.
humangenomeprivacy.org, Accessed on Nov. 2024.

[17] A. Harmanci, L. Chen, M. Kim, and X. Jiang, “Descriptor: Bench-
marking secure neural network evaluation methods for protein sequence
classification (iDASH24),” IEEE Data Descriptions, 2024, https://doi.
org/10.1109/IEEEDATA.2024.3482283.

[18] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption
for arithmetic of approximate numbers,” in Proceedings of ASIACRYPT
2017 – 23rd International Conference on the Theory and Applications of
Cryptology and Information Security (December 3-7, 2017, Hong Kong,
China), Part I, ser. Lecture Notes in Computer Science, T. Takagi and
T. Peyrin, Eds. Heidelberg: Springer, 2017, vol. 10624, pp. 409–437.

[19] EPFL-LDS and Tune-Insight, “Lattigo v5.0.2,” Online: https://github.c
om/tuneinsight/lattigo, Nov. 2023.

[20] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(Leveled) fully homo-
morphic encryption without bootstrapping,” in Proc 3rd ITCS (January
8–10, 2012, Cambridge, MA, USA), S. Goldwasser, Ed. New York:
ACM, 2012, pp. 309–325.

[21] Z. Brakerski, “Fully homomorphic encryption without modulus switch-
ing from classical GapSVP,” in Advances in Cryptology – Proc CRYPTO
2012 (August 19–23, 2012, Santa Barbara, CA, USA), ser. Lecture Notes
in Computer Science, R. Safavi-Naini and R. Canetti, Eds. Heidelberg:
Springer, 2012, vol. 7417, pp. 868–886.

[22] J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic
encryption,” Cryptology ePrint Archive https://eprint.iacr.org/2012/144,
2012.

[23] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices and
learning with errors over rings,” Journal of ACM, vol. 60, no. 6, pp.
43:1–35, 2013.

[24] F. Boemer, R. Cammarota, D. Demmler, T. Schneider, and H. Yalame,
“MP2ML: A mixed-protocol machine learning framework for private
inference,” in Proceedings of the 15th International Conference on
Availability, Reliability and Security (Virtual Event, Ireland, August 25
- 28, 2020), M. Volkamer and C. Wressnegger, Eds. New York: ACM,
2020, pp. 14:1–10.

[25] L. Jiang and L. Ju, “FHEBench: Benchmarking fully homomorphic
encryption schemes,” 2022, https://doi.org/10.48550/arXiv.2203.00728.

[26] O. Goldreich, Foundations of Cryptography – Volume II Basic Applica-
tions. Cambridge: Cambridge University Press, 2004.

[27] J. S. Bridle, “Probabilistic interpretation of feedforward classification
network outputs, with relationships to statistical pattern recognition,” in
Neurocomputing, ser. NATO ASI Series, F. F. Soulié and J. Hérault, Eds.
Heidelberg: Springer, 1990, vol. 68, pp. 227–236.

[28] A. Wuraola, N. Patel, and S. K. Nguang, “Efficient activation functions
for embedded inference engines,” Neurocomputing, vol. 442, pp. 73–88,
2021.

[29] W.-j. Lu, S. Kawasaki, and J. Sakuma, “Using fully homomorphic
encryption for statistical analysis of categorical, ordinal and numerical
data,” in NDSS 2017: 24th Annual Network and Distributed System
Security Symposium (San Diego, USA, February 26–March 1, 2017).
The Internet Society, 2017.

[30] S. Halevi and V. Shoup, “Algorithms in HElib,” in Advances in Cryp-
tology – CRYPTO 2014 (Santa Barbara, USA, August 17-21, 2014), ser.
Lecture Notes in Computer Science, J. A. Garay and R. Gennaro, Eds.
Heidelberg: Springer, 2014, vol. 8616, pp. 554–571.

[31] ——, “Bootstrapping for HElib,” in Advances in Cryptology – Proc
EUROCRYPT 2015 (April 26–30, 2015, Sofia, Bulgaria), Part I, ser.
Lecture Notes in Computer Science, E. Oswald and M. Fischlin, Eds.
Heidelberg: Springer, 2015, vol. 9056, pp. 641–670.

[32] Q. Pang, J. Zhu, H. Möllering, W. Zheng, and T. Schneider, “BOLT:
Privacy-preserving, accurate and efficient inference for transformers,”
in 2024 IEEE Symposium on Security and Privacy (May 19–May 23
2024, San Francisco, USA). Los Alamitos, CA, USA: IEEE Computer
Society, 2024, pp. 133–133.

[33] J. Zhang, X. Yang, L. He, K. Chen, W. jie Lu, Y. Wang, X. Hou,
J. Liu, K. Ren, and X. Yang, “Secure transformer inference made non-
interactive,” in NDSS ’25, 2025, https://eprint.iacr.org/2024/136.

[34] X. Jiang, M. Kim, K. Lauter, and Y. Song, “Secure outsourced matrix
computation and application to neural networks,” in Proceedings of

the 2018 ACM SIGSAC Conference on Computer and Communications
Security (October 15–19, 2018, Toronto, Canada), D. Lie, M. Mannan,
M. Backes, and X. Wang, Eds. New York: ACM, 2018, pp. 1209–1222.

[35] The gonum team, “gonum v0.15.1,” Online: https://https://github.com/g
onum/gonum, August 2024.

[36] M. Albrecht, M. Chase, H. Chen, J. Ding, S. Goldwasser, S. Gorbunov,
S. Halevi, J. Hoffstein, K. Laine, K. Lauter, S. Lokam, D. Micciancio,
D. Moody, T. Morrison, A. Sahai, and V. Vaikuntanathan, “Homo-
morphic encryption security standard,” HomomorphicEncryption.org,
Toronto, Canada, Tech. Rep., November 2018, https://eprint.iacr.or
g/2019/939.pdf.

[37] J.-P. Bossuat, “A solution for iDASH 2024 - HE track,” 2024, https:
//github.com/gausslabs/idash-2024-solution.

[38] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and
J. Wernsing, “CryptoNets: Applying neural networks to encrypted data
with high throughput and accuracy,” in The 33rd ICML, ser. PMLR,
M. F. Balcan and K. Q. Weinberger, Eds. New York: PMLR, 2016,
vol. 48, pp. 201–210.

[39] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, “GAZELLE:
A low latency framework for secure neural network inference,” in
Proceedings of The 27th USENIX Security Symposium (August 15-
17, 2018, Baltimore, MD), W. Enck and A. P. Felt, Eds. USENIX
Association, 2018, pp. 1651–166.

[40] P. Mishra, R. Lehmkuhl, A. Srinivasan, W. Zheng, and R. A. Popa,
“Delphi: A cryptographic inference service for neural networks,” in
Proceedings of the 29th USENIX Security Symposium, USENIX Security
2020 (August 12-14, 2020, Virtually), S. Capkun and F. Roesner, Eds.
USENIX Association, 2020, pp. 2505–2522.

[41] Z. Huang, W. Lu, C. Hong, and J. Ding, “Cheetah: Lean and fast
secure two-party deep neural network inference,” in USENIX Security
’22 (August 10–12, 2022, Boston, USA). Boston: USENIX Association,
2022, pp. 809–826.

[42] D. Kim and C. Guyot, “Optimized privacy-preserving CNN inference
with fully homomorphic encryption,” IEEE Transactions on Information
Forensics and Security, vol. 18, pp. 2175–2187, 2023.

[43] T. Chen, H. Bao, S. Huang, L. Dong, B. Jiao, D. Jiang, H. Zhou,
J. Li, and F. Wei, “THE-X: Privacy-preserving transformer inference
with homomorphic encryption,” in Findings of the Association for
Computational Linguistics: ACL 2022 (Dublin, Ireland, May 22-27,
2022), S. Muresan, P. Nakov, and A. Villavicencio, Eds. Stroudsburg:
ACL, 2022, pp. 3510–3520.

[44] M. Hao, H. Li, H. Chen, P. Xing, G. Xu, and T. Zhang, “Iron: Private
inference on transformers,” in 36th Conference on Neural Information
Processing Systems (NeurIPS 2022, November 28–December 9, 2022),
A. H. Oh, A. Agarwal, D. Belgrave, and K. Cho, Eds. Curran
Associates, Inc., 2022, pp. 15 718–15 731.

[45] D. Park, E. Lee, and J.-W. Lee, “Powerformer: Efficient privacy-
preserving transformer with batch rectifier-power max function and op-
timized homomorphic attention,” Cryptology ePrint Archive, 2024/1429,
2024, https://eprint.iacr.org/2024/1429.

[46] I. Zimerman, M. Baruch, N. Drucker, G. Ezov, O. Soceanu, and
L. Wolf, “Converting transformers to polynomial form for secure
inference over homomorphic encryption,” 2023. [Online]. Available:
https://arxiv.org/abs/2311.08610

[47] X. Liu and Z. Liu, “LLMs can understand encrypted prompt: Towards
privacy-computing friendly transformers,” 2023. [Online]. Available:
https://arxiv.org/abs/2305.18396

[48] D. Rho, T. Kim, M. Park, J. W. Kim, H. Chae, J. H. Cheon, and
E. K. Ryu, “Encryption-friendly LLM architecture,” 2024. [Online].
Available: https://arxiv.org/abs/2410.02486

[49] Y. Bae, J. H. Cheon, G. Hanrot, J. H. Park, and D. Stehlé, “Plaintext-
ciphertext matrix multiplication and FHE bootstrapping: Fast and fused,”
in Advances in Cryptology – CRYPTO 2024, ser. Lecture Notes in
Computer Science, L. Reyzin and D. Stebila, Eds. Cham: Springer,
2024, vol. 14922, pp. 387–421.

[50] Y. Liu, L. Yang, J. Chen, W. Wu, and Y. Feng, “Matrix computation
over homomorphic plaintext-ciphertext and its application,” Journal on
Communications, vol. 45, no. 2, pp. 150–161, 2024, in Chinese.

[51] J. Chen, L. Yang, W. Wu, Y. Liu, and Y. Feng, “Homomorphic matrix
operations under bicyclic encoding,” IEEE Transactions on Information
Forensics & Security, 2024, https://doi.org/10.1109/TIFS.2024.3490862.

[52] W. Cho, G. Hanrot, T. Kim, and D. S. Minje Park, “Fast and accurate
homomorphic softmax evaluation,” in CCS ’24 (Salt Lake City, USA).
New York: ACM, 2024.

http://www.humangenomeprivacy.org
http://www.humangenomeprivacy.org
https://doi.org/10.1109/IEEEDATA.2024.3482283
https://doi.org/10.1109/IEEEDATA.2024.3482283
https://github.com/tuneinsight/lattigo
https://github.com/tuneinsight/lattigo
https://eprint.iacr.org/2012/144
https://doi.org/10.48550/arXiv.2203.00728
https://eprint.iacr.org/2024/136
https://https://github.com/gonum/gonum
https://https://github.com/gonum/gonum
https://eprint.iacr.org/2019/939.pdf
https://eprint.iacr.org/2019/939.pdf
https://github.com/gausslabs/idash-2024-solution
https://github.com/gausslabs/idash-2024-solution
https://eprint.iacr.org/2024/1429
https://arxiv.org/abs/2311.08610
https://arxiv.org/abs/2305.18396
https://arxiv.org/abs/2410.02486
https://doi.org/10.1109/TIFS.2024.3490862

	Introduction
	iDASH 2024-Track 1
	Our Solution

	Preliminaries
	Dataset
	DASHformer
	CKKS
	Adversary Model

	Evaluate Non-polynomial Functions
	ReLU
	Layer Normalization
	Softmax

	Encrypted Matrix Multiplication
	Packing for Three-Dimensional Tensors
	PCMM
	CCMM
	Halevi-Shoup's method
	Three-matrices multiplication
	Double BSGS

	Optimizing Multiplicative Depth
	Multiplying by a Plaintext Diagonal Matrix
	Column encoded X
	Diagonal encoded X

	Further Optimizations

	Experimental Results
	Setup
	Security
	Error-control
	Packing capability

	Performance
	Computation
	Communication
	Accuracy

	Related Work
	HE-Based Matrix Computation
	PCMM
	CCMM

	Secure Computation of Activation Functions

	Conclusion

