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Abstract. A list polynomial commitment scheme (LPC) is a polynomial commitment scheme with a
relaxed binding property. Namely, in an LPC setting, a commitment to a function f(X) can be opened
to a list of low-degree polynomials close to f(X) (w.r.t. the relative Hamming distance and over a
domain D). The scheme also allows opening one of the polynomials of the list at an arbitrary point x
and convincing a verifier that one of the polynomials in the list evaluates to the purported value.
Vortex is a list polynomial commitment, obtained through a modification of Ligero (CCS 2017), inspired
by the schemes of Brakedown (Crypto 2023), batch-FRI (FOCS 2020), and RedShift (CCS 2022).
Concerning one application of Vortex, for a witness of size N , the messages between the prover and
the verifier are of size O(N1/2). Vortex is a core component of the SNARK used by the prover of
Linea (Consensys). This paper provides a complete security analysis for Vortex. We use a general
compiler to build an Argument of Knowledge (AoK) by combining our list polynomial commitment
and a polynomial-IOP (PIOP).
The approach is similar to combining a PIOP with a polynomial commitment scheme and has a sound-
ness loss only linear in the list size. This overcomes a previous limitation in the standard compiler
from a generic PIOP and a list polynomial commitment scheme to an interactive argument of knowl-
edge, which suffers from a soundness loss of O(|L|r) (where |L| is the list size and r is the number of
interactions between the prover and the verifier in the PIOP).

Keywords: List Decoding Regime, Polynomial Commitment, List Polynomial Commitment, Reed-
Solomon Codes, SNARK, PIOP, Linea.

1 Introduction

Polynomial Commitments A polynomial commitment scheme (PCS) [24] is a cryptographic primitive in
which a prover commits to a polynomial P (X) and later proves the evaluation of P (X) at a given point x.

List Polynomial Commitments (LPC) An LPC is a polynomial commitment with a relaxed security
requirement: the commitment is not associated with a single polynomial but with a list of polynomials, where
the prover can open the commitment to any polynomial from the list. In other words, the commitment is
not binding to one polynomial but to a list of polynomials.

Succinct Non-Interactive Arguments of Knowledge (SNARKs) Given a binary relation R(x, w),
SNARKs allow proving knowledge of a witness w such that the relationR (usually drawn from a large family)
is satisfied for a public input x. In particular, the verifier needs less time to verify the proof, generated by the
SNARK, rather than to perform again all the computations. In the last few years, an ever-growing number
of SNARK constructions have emerged, including Groth16 [20], Plonk [4], Halo [13], Halo2 [17], Marlin [16],
Spartan [28], Virgo [35], Brakedown [19], Orion [33], Libra [32], Aurora [7], Fractal [15], Sonic [26], Nova
[23], and Lasso [29] to cite a fraction of the existing works.

zk-VMs and zk-EVMs In a state machine, a transition is the process of moving from an old state to a
new state by reading a series of inputs and performing sets of opcodes which are a limited and low-level set
of instructions. Ethereum is, in essence, a transaction-based state machine, where the state contains all ac-
count addresses and their mapped account states. The Ethereum Virtual Machine (EVM) is the mechanism



responsible for performing the transitions as a succession of opcodes. zk-VMs (zk-Virtual Machines) and,
more specifically, zk-EVM (Ethereum Virtual Machine) are complex cryptographic systems that allow one
party to generate proofs assessing the correct execution of a Virtual Machine using a SNARK scheme1. The
proofs can be as short as a few hundred bytes and be verified in a few milliseconds on any platform (Groth16
[20]). For these reasons, zk-VMs have important applications in blockchain scalability and interoperability
and have seen tremendous activty in research and development: Linea [5], Cairo [18], Polygon-zkEVM [30],
RISC0 [34], Scroll [1]. However, building a system capable of proving arbitrary executions of the Ethereum
Virtual Machine is no easy task. At a high level, the zk-EVM of Consensys [5] models execution traces of
the Ethereum Virtual Machine using hundreds of polynomials and thousands of arithmetic constraints of
various types. In this setting, the total witness size for proving the execution of a regular block consists of
hundreds of millions of field elements.

Interactive Oracle Proofs Interactive Oracle Proofs (IOP) are a family of abstract ideal protocols in
which the verifier is not required to read the prover’s messages in full. Instead, the verifier has oracle access
to the prover’s messages and may probabilistically query them at any positions [6]. IOP protocols can be
transformed into concrete secure argument systems using a Merkle tree. Later works have introduced several
variants of IOP such as polynomial-IOP (PIOP) or tensor-IOP, where the prover can perform polynomial
evaluation queries [4] or tensor queries [12]. Similarly, these protocols can be converted into concrete argument
systems (including SNARK) using functional commitments. This type of approach for building argument
systems has now become a standard [4].

Reed-Solomon Encoding and Decoding Regimes Generally speaking, the Reed-Solomon encoding
receives the evaluations of a function over k points, considers them as the coefficients (or evaluations) of a
polynomial P (X), and then outputs the evaluation of such a P (X) over a fixed set D (usually the set of
roots of unity over the finite field Fq). The output is called a codeword of size |D|.

Considering the relative Hamming distance as the measure, a decoding algorithm receives the vector w
over D and outputs codewords close to w. For the Reed-Solomon code, one considers the unique decoding
regime and list decoding regime. In the unique decoding regime, the radius of the ball around w (w.r.t. the
relative Hamming distance) is small and there is only one codeword that can be that close to w, while in the
list decoding regime the radius is bigger and there are many codewords that fall in the ball around w.

1.1 Our Contributions and Techniques

Here we summarize our contributions.

A Compilation Framework from PIOP to UniEval PIOP We introduce a compiler (adapted from
[11]) that allows transforming any secure PIOP into one where the verifier sends oracles queries on a single
opening point for all polynomials (while it may have sent queries directly to the prover before this step). As
the original goal of our work is to build a succinct proof system for the zk-EVM specified by Linea [5], this
compiler approach has numerous benefits. An important one is that it allows specifying and implementing
batching and optimization techniques that would be a lot more complex otherwise. The main feature of
this compilation is that it yields a single-point evaluation PIOP, allowing us to use it alongside a non-
homomorphic polynomial commitment (i.e., Vortex) to create an efficient argument system. Indeed since
Vortex is not a homomorphic commitment scheme, the well-known batching techniques based on random
linear combinations are not readily applicable, but with UniEval PIOP we only require the possibility of
batching over the same point. This batching feature is supported by Vortex.

Vortex, a Batchable Polynomial Commitment (BPC) A polynomial commitment allows a prover to
open the committed polynomial over a given point. A Batchable Polynomial Commitment (BPC) allows the
same type of opening for a batch of committed polynomials on the same point.
1 In the blockchain community, sometimes the term zk is employed to mean succinctness.
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In Section 5, we present Vortex, an adaptation of Ligero [3] into an BPC scheme inspired by the works
of Brakedown [19], batch-FRI [10], and RedShift [22].

As Brakedown, our BPC does not rely on FRI protocol and it has a proximity check and an evaluation
check where the proximity check is indeed the Ligero test. The main difference from Brakedown is the security
regime we are dealing with. Based on encoding schemes, one can imagine two security regimes: the unique
decoding regime that is the counterpart for the standard binding and the list decoding regime leading to a
relaxed binding property where the commitment can be opened to a fixed list.

Working in the list decoding regime requires a new design. Indeed, the evaluation protocol of Vortex is
different from the one in Brakedown, where we combine the proximity check and evaluation check as the
evaluation protocol. More precisely, in Brakedown, the proximity check can be run independently of the
evaluation point, while in Vortex the proximity check is run after seeing the evaluation point.

We show that a polynomial commitment scheme in the list decoding regime (Vortex LPC) is enough for
the compilation of PIOP to an argument of knowledge (AoK).

From the instantiation point of view, for hashing the columns, our Vortex scheme relies on a hash
function based on the Ring-SIS assumption [25] where we also apply an MIMC hash over the output of
the SIS-hash. The first instance of Ring-SIS-based hash functions was introduced in [25]. It is a SNARK-
friendly hash function with a linear structure defined over the ring of polynomials of degree less than d, as
Ha(s) =

∑
ai(x)si(x) ∈ R for R = Zq(X)/Xd + 1. Another advantage of using such a hash function is the

possibility of using lookup arguments if the hash computation is not done on the verifier side. To encode the
rows, we use (systematic) Reed-Solomon encoding [27].

Compilation of a PIOP to an Argument of Knowledge (AoK) in the List Decoding Regime
As mentioned, we discuss the security of Vortex in the list decoding regime. That can only guarantee a
relaxed binding property and is not enough for a standard compilation of PIOP to AoK. We thus present a
framework to compile a PIOP to AOK via LPC. If such a compilation is done naively the soundness error
can go up to a factor |L|r where |L| is the list size in LPC and r is the number of rounds in PIOP. We
present a compilation technique that increases the soundness error only by a factor |L|.

1.2 Overview of Vortex

Vortex As for Brakedown [19] and [33], the Vortex construction is simple and constitutes a modification
of Ligero [3]. Assume that P and V are the prover and the verifier. First, we elaborate on the commitment
procedure. The prover commits to a matrix W of size m× k as follows:

– Row-Encoding: P starts by encoding the matrix rows to obtain a new matrix W ′ of size m× n.
– Column-Hashing: The prover then hashes each column of W ′ and sends them to the verifier as a

commitment

For the evaluation, the verifier wishes to know if there exists a matrix-codeword G (whose extension over
D is) close to W ′ such that G·l = y with l = (1, x, · · · , xk). For this, first, they follow the Ligero test as follows:

Proximity Check:
– for some vector B drawn at random by the verifier, the prover sends a vector u.
– the verifier encodes u to u′ using the Reed-Solomon code.
– it queries the openings of t random columns of W ′, where the prover sends the columns in response.
– For the opened columns, the verifier checks;

1. whether the alleged column openings are consistent with the corresponding hash values from the com-
mitment.

2. whether the scalar-products of B and the chosen columns are consistent with u′.
The test ensures that W ′ is close to a Matrix-codeword (i.e., a matrix whose rows are codewords). Namely,
that there exists a list L of Matrix-codewords close to W ′.
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Evaluation Check: Finally, by checking u · l = B · y, one of the matrices in L has to evaluate to y over l.
One difference from Brakedown is in the evaluation phase which allows us to support batching separate

polynomials in the same committed matrix. More importantly, we analyze the security in the list-decoding
regime and prove that Vortex is an LPC scheme. Working in this regime brings some subtlety to the com-
pilation of PIOP to AoK. We also present a compiler compatible with LPC (rather than PC).

Our compiler has several important properties:

– it uses an LPC rather than a (binding) polynomial commitment.
– the soundness error increases only by a factor L (comparing to the compilation via polynomial commitment

or the schemes in the unique decoding regime).

2 Related Works: Ligero-Based Polynomial Commitments

One can analyze the soundness of Vortex in two different regimes: “unique decoding regime” and “list
decoding regime”. Intuitively, in the unique decoding regime the commitment is guaranteed to be binding. In
the list decoding, the commitment satisfies a relaxed binding property where the commitment can be opened
to any polynomial close to the committed one. This technically means that the polynomial commitment is
not knowledge-sound with respect to the standard relation. In [22], such a polynomial commitment scheme
is called a list polynomial commitment (LPC).

In the list decoding regime (for Vortex), the efficiency improvement comes from the verifier opening fewer
columns compared to the unique decoding regime.

Following the strategy in DEEP-FRI [8] and RedShift [22], we discuss the knowledge-soundness of Vortex
in the list decoding regime.

Both Breakdown and Orion follow the unique decoding regime. Theoretically, to guarantee that binding
holds, one just needs to set the distance on the unique decoding radius (the parameter setting of the unique
decoding regime), but as already mentioned, this requires opening more matrix columns.

2.1 Interactive Oracle Proof (IOP) of Proximity

A Fast Reed-Solomon Interactive Oracle Proof (FRI) [9] is an IOP for testing the proximity to a codeword.
Namely, given a function f : D → F, the aim in FRI is to prove that f corresponds to a low-degree

polynomial with respect to the size of D. The oracle provided by the FRI prover is the function f , and the
verifier queries the values at points from D. Due to the small size of D (compared to the finite field F),
the key tool for distinguishing if f is a codeword is statistical sampling [21]. However, a statistical test can
only ensure proximity, which we measure by the relative Hamming distance δ(f, g). Thus, in FRI the prover
convinces the verifier that a given function f : D → F is close (and not necessarily equal) to a low-degree
polynomial, i.e. δ(f, P ) ≤ θ for some polynomial p(X) of specified maximum degree. In other words, f agrees
with p(X) on a set A ⊂ D of density |A|/|D| ≥ 1 − θ. In applications, the agreement set A is chosen to be
large enough to infer global properties on the low-degree polynomial.

2.2 Ligero Testing and the Correlated Agreement Theorem

The Ligero test [3] checks the proximity of a batch holding a known codeword. Consider the batch {fi}i∈[m].
In the Ligero test, the verifier sends a random λ ← F, and the prover provides oracle access to the linear
combination f :=

∑
λifi. The verifier then samples some columns and checks the consistency for the linear

combination. Finally. the test ensures that each fi is close to a codeword, “If f is close to a codeword”.
The soundness of the Ligero test is argued based on the Correlated Agreement Theorem, which informally

says that if the linear combination is at distance ≤ θ from a codeword, then each fi must follow a similar
proximity property.
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2.3 Brakedown versus batch-FRI.

The Proximity Check of the “batch” in Brakedown and Batch-FRI [10] is their common point which is indeed
the Ligero test [3]. The difference is how the “if” statement of Ligero is satisfied (remember that “if” f is
close to a codeword then each element of the batch is close to a codeword).

In batch-FRI, the verifier has oracle-access to each function fi and to the linear combination over D (i.e.,
f |D), while in Brakedown the verifier has oracle-access to the functions fi over the domain D, and “full”-
access to f |D where it actively participates in building f as a codeword (In Vortex, similarly to Brakedown
and Orion, this is done by giving full access to u when the verifier expands it to u′. The vector u′ is then
the equivalent of f described above). From this point, Brakedown and batch-FRI act differently: batch-FRI
applies FRI over the result of the linear combination f |D to check that f is close to a codeword, while in
Brakedown (and also in Vortex), the verifier knows the codeword f . The fact that the verifier knows the
codeword f makes Brakedown simpler and improves the proof-time, while it increases the proof size to k
(the size of u).

Relying on the Ligero test in all these schemes (Brakedown, Orion, batch-FRI) the soundness is based
on the Correlated Agreement Theorem. Brakedown and Orion follow the unique decoding regime, while
batch-FRI works in different regimes. For Vortex, we present the soundness analysis in the list-decoding
regime (which requires the opening of fewer random columns). The compilation of PIOP to AOK via Vortex
is simple and efficient, albeit at the cost of losing a small factor in the soundness error. We borrow the idea
of the DEEP query of Deep-ALI (this is what we call the Grail query in UniEval compilation) to improve
the soundness of the compilation in the list-decoding regime while keeping the simplicity of Brakedown.

3 Preliminaries

Here we define the syntax of our main primitives: polynomial commitments, list polynomial commitments,
IOPs and arguments of knowledge.

3.1 Interactive Protocols and Arguments of Knowledge (AoKs)

In this subsection, we roughly follow the definitions of [14]. An NP relation R ⊆ {0, 1}∗ is a set of binary-
string tuples (x, w) for which there exists a polynomial-time algorithm that on input (x, w), determines
whether (x, w) ∈ R (the polynomial runtime is w.r.t. |x|, |w|). The NP language LR associated to R is
defined as: LR := {x : ∃w s.t.R(x, w) = 1}. The string x is called the statement, and it is called valid when
x ∈ LR. The string w is the witness of x, allowing to efficiently check membership of x to the language.

Interactive Proofs of Knowledge Interactive proofs of knowledge are a particular case of two-party
protocols between a prover P and a verifier V. Both parties have access to an NP statement x, and the
prover is given access to a witness w for the statement. The protocol is complete if the interaction between
P (x, w) and verifier V (x) always results in the verifier accepting.

Consider an arbitrary (potentially malicious) prover P ∗ for which the verifier V (x) accepts with non-
negligible probability. Knowledge-soundness is satisfied if there exists an extraction algorithm E (called the
extractor) that given access to the arbitrary prover P ∗ will output a valid witness w with overwhelming
probability. The extractor can inspect the internal state of P ∗, run it for any number of steps and rewind it
to any previous state.

We denote the random variable which constitutes the output of a verifier on a run of an interactive
protocol on a statement x as ⟨P (x; rP ) ↔ V (x; (r1 . . . rn))⟩, where rP is the randomness of the prover and
r1 . . . rn are the public coins which constitute the verifier messages in verifier rounds 1 to n. When we do
not need to specify the exact random coins used, we resort to the shorthand notation ⟨P (x)↔ V (x)⟩.

In cases where the relation R is defined w.r.t. parameters relevant to other protocols, we consider a PPT
relation generator Rλ, namely R ← Rλ.

5



Definition 1 (Interactive Arguments of Knowledge). We consider interactive protocols in which both
the prover and the verifier are provided access to a common reference string, generated in an offline setup
phase (the reference string will be implicitly assumed to be given as input to all the following algorithms).
Such an interactive protocol (P, V ) between a prover P and a verifier V is an argument of knowledge for an
NP relation R if it satisfies the following two properties:

– Perfect Completeness: for all (x, w) ∈ R, it holds that:

Pr[⟨P (x, w)↔ V (x)⟩ = 1] = 1.

– Soundness: this property states that it is not feasible to convince the verifier of a wrong statement. More
formally, for any non-uniform PPT adversarial P ′ = (A, P ∗) we have,

Pr[⟨P ∗(x)↔ V (x)⟩ = 1 ∧ x /∈ LR : R ← Rλ, x← A(R)] ≈ 0
– Knowledge Soundness in the random oracle model: there exists an algorithm E that given oracle access to

the adversarial prover P ∗ (along with access to the statement, all adversarial queries to the random oracle,
the possibility to inspect the adversarial state, rewind and execute for a specified number of steps) satisfies
that: EP ∗(x) runs in probabilistic polynomial-time and moreover δ(|x|) = negl(λ), where δ is defined as:

δ(|x|) = Pr
[
⟨P (x)↔ V (x)⟩ = 1 ∧R(x; w) = 0 : R ← Rλ,

(x, w)← EP ∗(R)

]

Succinctness Our focus is on succinct interactive protocols. Informally, both the prover and the verifier
time, as well as the size of the messages sent between the two parties must be small compared with the
witness of the relation being proven.

.

3.2 (Batched) Polynomial Commitments

The definitions in this section follow the presentation from [11]. Similarly to [11], we considered batched
openings of multiple polynomials. One difference is that we only consider openings of all these polynomials
at the same evaluation point.

Definition 2. A (batched) polynomial commitment scheme (PCS) is a triplet (Setup, Commit, Open) that
satisfy:

– Setup(1λ, k) generates public parameters pp (a structured reference string) suitable to commit to polyno-
mials of degree < k.

– Commit(pp, P1(X) . . . Pn(X)) outputs a commitment C to n polynomials (P1(X) . . . Pn(X)) of degree < k
using pp.

– OpenEval is a (public-coin) protocol between two parties, a prover PPC and a verifier VPC that either
accepts or rejects. The prover is given n polynomials P1(X) . . . Pn(X) ∈ F<k[X]. Both parties receive the
following:
• security parameter λ, degree bound k and batch size n, such that k, n = poly(λ).
• The public parameters pp, where pp = Setup(1λ, k).
• An evaluation point x and alleged openings y = (y1 . . . yn).
• Alleged commitment C for polynomials P1(X) . . . Pn(X).

Definition 3 (Completeness of an Batched Polynomial Commitment Scheme). We say that a
batched polynomial commitment scheme has perfect completeness if for any security parameter λ, any integers
k, n = poly(λ), any polynomials P1(X) . . . Pn(X) ∈ F<k[X], arbitrary evaluation point x and alleged opening
y, if C = Commit(pp, P1(X) . . . Pn(X)) and Pi(x) = yi for all i ∈ [n] then an interaction of (PPC, VPC)
where PPC runs on the aforementioned parameters will result in the verifier accepting with probability one.
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Definition 4 (Knowledge Soundness in the Random Oracle Model). There must exist a PPT
extractor E such that for every PPT adversary A and arbitrary degree k = poly(λ), the probability that A
wins the following game is negligible, where the probability is taken over the coins of Setup, A and VPC.
Moreover, the extractor has access to the random oracle queries of A:

– A receives degree k and pp = Setup(1λ, k). A outputs C.
– E receives the commitments C, inspects the random oracle queries made by A in the previous step and

outputs P1(X) . . . Pn(X) ∈ F<k[X].
– A outputs an evaluation point x and claimed openings y.
– A interacts with the VPC verifier of the OpenEval algorithm. The inputs of A for this subprotocol are

C1 . . . Cn, x and y.
– A succeeds if VPC accepts but Pi(x) ̸= yi for some i ∈ [n].

3.3 IOP and Polynomial-IOP

An interactive oracle proof (IOP) for a relation R(x, w) is an interactive proof in which the verifier is not
required to read the prover’s messages in their entirety; rather, the verifier has oracle access to the prover’s
messages, and may probabilistically query them. In Polynomial IOP, the messages are polynomials and the
verifier has oracle access to the evaluation of polynomials on the queried points.

The following lemma is very useful in the PIOP context.
Lemma 1 (Schwartz-Zippel Lemma). Let P (X) be a non-zero polynomial of degree d over a field F. Let
S be a finite subset of F and let r be selected randomly from S. Then:

Pr[P (r) = 0] ≤ d/|S|

We also require the following claim, which complements the Schwarz-Zippel lemma as a technical tool in
one of our proofs.

Lemma 2. (PLONK [4], Claim 4.6) Fix F1, · · · , Fk ∈ F <n[X], and Z ∈ F <n[X]. Suppose that for some
i ∈ [k], Z ∤ Fi. Assuming Z decomposes to distinct linear factors over F, then except with probability k/|F|
over uniform α ∈ F, Z doesn’t divide G :=

∑k
i=1 αi−1Fi

3.4 Roots of Unity and Lagrange Polynomials

Let Fq be a finite field of prime order q. We call the roots of the polynomials Zk(X) = Xk − 1 the k-th
roots of unity. Together, they form a multiplicative subgroup Ωk of F∗

q , provided that k|(q− 1). We say that
Zk(X) = Xk − 1 is the vanishing polynomial of Ωk.

We assume that k is a power of 2, for each subgroup Ωk′ of Ωk (thus, k′|k), we have ω′ = ωk/k′ where ω
and ω′ are the generators of Ωk and Ωk′ (res.).

For any subgroup Ωk, the collection of polynomials given by (Lu,Ωk
(X))u∈Ωk

forms the Lagrange basis
for polynomials of degree k − 1 where,

∀u ∈ Ωk : Lu,Ωk
(X) = u(Xk − 1)

k(X − u)

3.5 Reed-Solomon Codes

Definition 5 (Linear Code [33]). A linear error-correcting code with message length k and codeword
length n with k < n is a linear subspace C ⊂ Fn, such that there exists an injective mapping from message to
codeword EC : Fk → C which is called the encoder of the code. Any linear combination of codewords is also a
codeword. The rate of the code is defined as ρ := k/n. The distance between two codewords u, v is the number
of coordinates on which they differ, denoted as the Hamming distance ∆(u, v). The relative (or fractional
Hamming distance) is defined as δ(u, v) = ∆(u, v)/n. The minimum distance is d := minu,v ∆(u, v).

7



Definition 6 (Reed-Solomon Code). Consider positive integers n, k, a finite field F, and a set D ⊆ F∗

with |D| = n (the set D will be referred to as the domain). The Reed-Solomon code over F with domain D
and the message space of size k is defined as:

RS[F, D, k] := {p(x)|x∈D : p(X) ∈ F[X], deg(p) ≤ k},

By p(x)|x∈D, we denote the set of evaluations of p over the set D and n = |D| is called the codeword
size. For v ∈ D and p ∈ RS[F, D, k], we will also use the notation p|v to refer to p(v).

By F <n[X], we denote the set of polynomials of degree less than or equal to k, i.e.

F<k := {p(X) ∈ F[X] : deg(p) ≤ k},

Distance to a Reed-Solomon Code Consider arbitrary f ∈ F|D|. The distance of f from the set V =
RS[F, D, k] is defined as ∆(f, V ) := minv∈V ∆(f, v) (and similarly for relative distance).

3.5.1 Reed-Solomon Codes over Roots of Unity In this work, we choose the domain set D = Ωn as
the set of nth roots of unity. Consider a fixed generator ω of Ωk. Then D = {ωi}n−1

i=0 and we will associate
polynomial evaluations p(x)|D, called codeword space, with vectors (p(ω0), p(ω1) . . . p(ωn−1)), ordered by
the natural ordering induced by the exponents of generator ω.

3.5.2 Interpolation By Intc(X) we denote the interpolated polynomial corresponding to a Reed-Solomon
codeword c, and by Intc(x) the evaluation of the interpolated polynomial at point x. Using the notation
introduced in Definition 6, note that for a low-degree polynomial p(X), a codeword was defined as c =
p(x)x∈D. Conversely, p(X) = Intc(X).

3.5.3 Quotienting For a word f ∈ Fn, the quotient function Quotx,y : Fn → Fk is defined as:

Quotx,y(f1 . . . fn) :=
(

Quotx,y,1(f1) . . . Quotx,y,n(fn)
)

,

where Quotx,y,i : F→ F and:

Quotx,y,i(f) = fi − y

wi − x

Note that for any v ∈ F \D and any codeword c, if it holds that c|v = y (i.e. Intc(v) = y) then Quotv,y(c)
is well defined. Moreover, if for a codeword c we have that Quotv,y(c) is well defined, then it must be that
Intc(v) = y.

Lemma 3 (Quotienting Lemma). Consider arbitrary x ∈ F \D and the function Quotx,y : Fn → Fk as
defined directly above.

For any c ∈ Fn and arbitrary proximity parameter θ ∈ (0, 1), it holds that:

δ(c, RS[F, D, k]) ≤ θ, Intc(x) = y
if and only if

δ(Quotx,y(c), RS[F, D, k − 1]) ≤ θ.

3.5.4 Quotienting Matrices Consider y ∈ Fm. The quotienting function can be extended to any matrix
M ∈ Fm×n by considering every row mi of M to be a word in Fn. The quotient is applied on each row
separately to obtain quotient matrix Q, where the (i, j) entry Qi,j is defined as:

Qi,j = Quotx,yi,j(Mi,j) = Mi,j − yi

wj − x
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3.6 List Polynomial Commitments

The following theorem is widely used to justify the proximity of a batch of vectors to the codewords. It
informally says that if the linear combination f :=

∑
λifi has relative distance at most θ from a codeword,

then each fi follows a similar proximity property.

Theorem 1. (Correlated Agreement Theorem (CAT) full version of [10], Theorem 6.1 and 6.2) Let the Reed-
Solomon code RS[F, D, k] have the rate ρ. Given the proximity parameter θ and the words f0, . . . , fN−1 ∈ FD

for which:

Pr
λ∈F

[
δ(

∑
i

λifi, RS) ≤ θ

]
> ϵ

where θ, ϵ are from a chosen decoding regime Definition 7
Then there exist the polynomials pi(X) ∈ RS[F, D, k], and a (agreement) set A ⊂ D of density |A|/|D| ≥

1− θ on which f0, . . . , fN−1 jointly coincide with p0(X), . . . , pN−1(X) respectively. In particular,

∀λ ∈ F : δ(
∑

i

λifi, RS) ≤ θ

Definition 7. (Decoding Regime [10]) Theorem 1 holds in the following decoding regimes

– Unique Decoding Regime: for θ ∈ (0, 1−ρ
2 ), Theorem 1 holds for ϵ = (N − 1)|D|/|F|.

– List Decoding Regime: For θ ∈ ( 1−ρ
2 , 1−√ρ) and setting θ = 1−√ρ · (1 + 1/2m) with m ≥ 3, Theorem 1

holds for:

ϵ = (N − 1)(m + 1/2)7

3ρ3/2
|D|2

|F |
(1)

.
– Capacity Regime: for θ ∈ (1−√ρ, 1− ρ), the error ϵ is conjectured to satisfy,

ϵ ≤ 1
(τρ)c1

· (N · |D|)c2

|F|

for τ = 1− ρ− θ and c1, c2 constants.

As a small remark, the last case is currently a conjecture and will not be addressed in this paper.
We say that the Reed-Solomon code V := R[F, D, k] is (θ, L)-list-decodable if for every u ∈ Fn, there are

no more than L codewords of V that are within relative Hamming distance at most θ from u.

Theorem 2. (Johnson bound [8]) For every τ ∈ (0, 1−√ρ), the code V is (1−√ρ, 1/2τ
√

ρ)-list-decodable.

We are now ready to present the syntax and security of the list polynomial commitment. The definitions
here follow the ones from Redshift ([22]) but extended to a batched setting. Our presentation closely follows
the formalization of [11, 4]. We considered batched openings of multiple polynomials. One difference is that
we only consider openings of all these polynomials at the same evaluation point.

The list polynomial commitment has a relaxed binding property, each commitment corresponding to a
list of polynomials that is determined by a distance parameter. The commitment can be opened to any of
the polynomials belonging to the list. Moreover, the polynomials in the list will jointly agree on the same
agreement set, similarly to Theorem 1.

Definition 8 ((Batched) List Polynomial Commitment). A list polynomial commitment scheme is
a triplet (Setup, Commit, Open) that is defined w.r.t. a linear code, distance parameter θ and domain D. It
satisfies:

– Setup(1λ, k) generates public parameters pp (a structured reference string) suitable to commit to polyno-
mials of degree < k. Implicitly, the parameters for encoding are included in pp.
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– Commit(pp, f1(X) . . . fn(X)) outputs a commitment C to functions f1(X) . . . fn(X) ∈ F[X]
– OpenEval is an IOP between a prover PPC and a verifier VPC, where the prover is given n functions

f1(X) . . . fn(X) ∈ F[X] and attempts to convince the verifier of the following relation:

∃A ⊂ D s.t |A| ≥ (1− θ) · |D| and ∃(P1 . . . Pn) ∈ (F<k[X])n s.t.(
Pi(x) = yi ∧ fi(a) = Pi(a)|a∈A for all i ∈ [n]

)
∧

∧ C = Commit(pp, f1 . . . fn)

where both parties receive the following:
• security parameter λ, degree bound k and batch size n, such that k, n = poly(λ).
• The public parameters pp, where pp = Setup(1λ, k).
• An evaluation point x and alleged openings y = (y1 . . . yn).
• Alleged commitment C for functions f1(X) . . . fn(X).

In addition, the verifier receives oracle access to evaluations of fi over D.

Definition 9 (Completeness of a List Polynomial Commitment Scheme). We say that a polynomial
commitment scheme has (perfect) completeness if for any security parameter λ, any integers k, n = poly(λ),
any polynomials P1(X) . . . Pn(X) ∈ F<k[X], arbitrary evaluation point x and alleged opening y, if C =
Commit(pp, P1(X) . . . Pn(X)) and Pi(x) = yi for all i ∈ [n] then an interaction of (PPC, VPC) where PPC
runs on the aforementioned parameters will result in the verifier accepting with probability one.

Definition 10 (Knowledge Soundness in the Random Oracle Model). There must exist a PPT
extractor E such that for every PPT adversary A and arbitrary degree k = poly(λ), the probability that A
wins the following game is negligible, where the probability is taken over the coins of Setup, A and VPC.
Moreover, the extractor has access to the random oracle queries of A:

– A receives degree k and pp = Setup(1λ, k). A outputs C.
– E receives the commitment C and inspects the random oracle queries made by A in the previous step and

recovers f1(X) . . . fn(X) ∈ [X].
– E applies the efficient list-decoding algorithm on all fi simultaneously to obtain list L, defined as:

L = {(P1(X), . . . , Pn(X)) ∈ (F<k[X])n s.t. ∃A ⊂ D, s.t. |A| ≥ |D| · (1− θ) and fi(a) = Pi(a)|a∈A}

– A outputs an evaluation point x and claimed openings y := (yi)i.
– A interacts with the VPC verifier of the OpenEval algorithm. The inputs of A for this subprotocol are C,

x and y.
– The extractor may check consistency and output a set S of witnesses, where S ⊆ L.
– A succeeds if VPC accepts and there exists no tuple (P1(X) . . . Pn(X)) ∈ L such that Pi(x) = yi for all

i ∈ [n].

4 UniEval Compiler: from PIOP to UniEval PIOP

Let P be a PIOP protocol, where for i ∈ [n], j ∈ Si, the verifier queries a polynomial Pi over a point xj .
The aim of the compiler, presented here, is to reduce the initial PIOP to a PIOP where the oracle-given

polynomials are all queried at a single random point. We will call such a PIOP scheme a UniEval PIOP,
and the single query is denoted “Grail query”. For any evaluation Pi(x) where x is not the Grail query, the
verifier gets Pi(x) directly from the prover.

In this model, replacing the oracle with a polynomial commitment scheme requires a proof of the evalu-
ation for all the polynomials at the same point i.e., over the Grail query. The positive point is that batching
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at the polynomial commitment level is now more straightforward as all the polynomials are queried on the
same evaluation point.

Indeed, due to this compiler, the batching over different points is done at the PIOP level. At the poly-
nomial commitment level, we only need batching over the same point.

To build our compiler, we first present a batching technique of multiple polynomials over multiple points.
We then use this protocol to compile any PIOP into a UniEval PIOP.

4.1 Multiple-Point to Single-Point Reduction

We assume a set of points T and a set of n polynomials {i ∈ [n] : Pi(X)}, each of degree di ≤ d. Each Pi(X)
is queried on a set of evaluation points Si ⊂ T . Define Ri(X) as the alleged evaluations of Pi(X) over the set
Si, namely, Ri(X) agrees with purported Pi(X) over Si (and Ri(X) is of degree |Si|). The aim is to present
a protocol for the relation;

R := {(Si, Ri(X); Pi(X))i ∀i Pi(X)|Si
= Ri(X)|Si

} (2)

Claim. The relation R holds if and only if:

∀i ∈ [n] : (Pi(X)−Ri(X))
∏

x∈T \Si

(X − x) is divided by
∏
x∈T

(X − x). (3)

Knowing this fact, in Fig. 1 we present our batching protocol for the relation Eq. (2). The protocol is
inspired by the batching approach presented in [11].

MPSP(S1, · · ·Sn, R1, · · · , Rn; P1, · · · , Pn)

1. the prover sends oracle access to Pi.
2. The verifier samples α←$F.
3. The prover computes and sends oracle-access to:

Q(X) =
∑
i∈[n]

αi Pi(X)−Ri(X)∏
x∈Si

(X − x)

4. The verifier samples z←$F and queries P1(z), · · ·Pn(z), Q(z).
5. Finally, the verifier checks that: relation in 3 is satisfied for X = z i.e.,

Q(z)
∏

x′∈T

(z − x′) =
∑
i∈[n]

(
αi(Pi(z)−Ri(z))

∏
x′′ /∈Si

(z − x′′)
)

Fig. 1. Multi-point to single-point reduction procedure.

4.2 Security analysis

Here we prove that the protocol Fig. 1 is knowledge-sound for the relation Eq. (2). We show that if the verifier
checks pass, the relation R holds with overwhelming probability. The following security proof is adjusted
from [11].

Denote ZH(X) :=
∏

H(X − x) for an arbitrary set H ⊂ F, and we define also:

P (X) :=
n∑

i=1
αi−1(Pi(X)−Ri(X))ZT \Si

11



By contradiction, assume that the relation R (from Eq. (3)) does not hold. Then there exists i ∈ [n] and
some x ∈ Si, such that Pi(x) ̸= Ri(x), which means that x is not a root of Pi(X)−Ri(X). This implies that
we have:

∃ i s.t. ZSi
∤ (Pi(X)−Ri(X)) (4)

From Eq. (3), this is equivalent with:

ZT (X) ∤ (Pi(X)−Ri(X)) · ZT \Si

Therefore, by Lemma 2, we know that with overwhelming probability:

ZT (X) ∤ P (X)

On the other hand, if the verification check passes, we have using the definiton of P (X) that,

Q(z) · ZT (z) = P (z).

Therefore, by the Schwartz-Zippel lemma w.r.t the variable X = z, we know that with overwhelming prob-
ability Q(X) · ZT (X) = P (X) everywhere, which contradicts ZT (X) ∤ P (X).

4.3 Compiler: PIOP to UniEval PIOP

We are now ready to compile a PIOP to its UniEval version.

– For any PIOP, define its associated protocol PIOP′ as follows; we let all the queries in PIOP be sent
directly to the prover, and let the prover respond to these queries (the prover replies with alleged values
for the evaluations, without providing a proof at this stage, as that would be handled later in the protocol).
Indeed PIOP′ is the same as PIOP where the prover also plays the role of the oracle by itself.

– By the end of an execution of PIOP′, we get the trace of the polynomial queries issued during PIOP′;
the set of polynomials Pi, the points Si, and the alleged evaluations of Pi(X) over Si which we denote by
Ri(X) (prover’s responses).

– Now, we consider our multi-point to the single-point protocol in Fig. 1, for the statement (Ri, Si) and the
witness Pi(X) from the trace. Call this protocol MPSP(Ri, Si; Pi(X))i.

The compiler first runs PIOP′, get the trace, and then runs MPSP(Ri, Si; Pi(X))i. The resulting PIOP is
what we call UniEval-PIOP, denoted by UniEval-PIOP.

Knowledge-Soundness. Let ϵUniEval, ϵPIOP′ and ϵMPSP be, respectively, the soundness-error of protocols
UniEval-PIOP, protocol PIOP′ and MPSP(Ri, Si; Pi(X))i. Then, we have, ϵUniEval ≤ ϵPIOP′ + ϵMPSP.

5 Vortex, A (Batchable) Polynomial Commitment

Vortex is a variant of the commitment scheme proposed in Orion [33], Brakedown [19], and Ligero [3]. Vortex
allows performing a batched argument of multiple committed polynomials evaluated over the same given
point x. The main difference is that we discuss the security not in a standard binding model (relevant to the
“unique decoding regime” in the coding literature) but rather in a more relaxed model (relevant to the “list
decoding regime”). This point helps us improve the scheme’s efficiency but brings some challenges for the
PIOP transformation into AoK via Vortex, which we will address later. Vortex is described in Section 5.1.

For a matrix of size m · n = N , the Vortex commitments and opening arguments have size O(
√

N).
Moreover, the opening arguments have verification time O(

√
N).
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5.1 Description of Vortex

In this subsection, we expand on the details of Vortex. We will first assume two integers m and k, denoting
the number of rows and columns. Vortex allows committing to m vectors wi ∈ Fk in a single commitment
and opening them simultaneously for scalar products with a common public vector.

Let H be a hash function parameterized to be able to hash vectors of size (at least) m (For the instan-
tiation we use MIMC [2] over SIS-hash[25]). We also use a systematic2 Reed-Solomon L with message size
k and codeword-size n > k. We denote its distance by d, its rate by ρ = k/n and we name its encoding
algorithm EncodeC . The Reed-Solomon encoding has O(n log n) encoding time and benefits from Maximal
Distance Separability.

Vortex is a polynomial commitment scheme that efficiently opens multiple committed polynomials at the
same point x. The protocol consists of four algorithms: Setup, Commit and OpenEval.

1. Setup is a transparent offline phase run by both the prover and verifier. During this phase, they perform
precomputations involving sampling the parameters for the hash and the encoding scheme used as the
public parameters.

2. The Commit algorithm: Let W , be the matrix whose ith row is wi ∈ Fk. Thus, W has m rows and k
columns. The prover encodes each row of W (noted by wi) using the encoding function and obtains W ′

(which has n columns).3 The prover then computes the hash of the columns. The value H = h1, · · · , hn

forms the commitment.
3. The batch-opening phase or OpenEval is an interactive protocol where the prover runs the ProveOpening

algorithm and the verifier runs the VerifyOpening. At the beginning of this phase, the prover holds W, W ′

and the verifier holds the final commitment as input. Both hold the statement x, y, with the restriction
that x ∈ F \D.
The prover’s goal is to convince the verifier that ∀i < m, Intwi(x) = yi if W is a batch of codewords wi.
The verifier then sends the random scalar β, and the prover responds with u claimed to be u := B⊤W , if
W is polynomial, where B = (1, β, β2, . . . , βm−1). Then, the verifier samples t columns q1, · · · qt (qi ≤ n)
uniformly at random, and the prover responds with (s1 · · · st) chosen columns of W ′. The verifier computes
u′ as the Reed-Solomon encoding of u and performs the following checks for all opened columns:

– Proximity Check: the scalar-product B⊤si
?= u′

qi

– the hash of si is correct and consistent with hqi
.

– Evaluation Check: the relation Intu(x) ?= B⊤ ·y where Intu(X) is the polynomial with the coefficients
given in the vector u (see Section 3.5.2).

The first check (the random combination over random columns), is used for checking the proximity of a
batch in [3]. Fig. 2 sums up the above.

Constant Size Commitment. As a simple optimization over the commitment size, we apply a SNARK-
friendly hash function (e.g., MiMC hash or Poseidon) over each hi and then compute a Merkle tree over the
results.

This is particularly useful for compiling PIOP to AoK via Vortex since the Vortex commitment phase
will not be offline anymore and will be part of the proof. It is important to note, however, that the hash
function used in the construction of the Merkle tree needs to be modeled as a random oracle for the scheme
to retain extractability.

2 This means the original block should be a sub-vector of the corresponding codeword. By “checksum”, we refer to
the part of a codeword, that is added beside the original block.

3 Observe that, since the encoding procedure encodeL is systematic, we have that all columns W are also columns
of W ′.
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Setup(n, m,L, λ)→ pp

1. Setup an instance of hash, Hash, corresponding to the security level λ
2. Choose t (the number of columns that should be opened later) to reach the security level λ
3. Runs pre-computations relative to EncodeC (e.g., finding D ⊂ Fq and relevant parameters for the security level

λ)
4. Collect all the computed parameters in pp and return it.

Commit(pp, W )→ (h1 · · ·hn)

1. Encode each row of W and obtain W ′

2. Hash each column of W ′ to obtain (h1 · · ·hn)
3. Return (h1 · · ·hn)

Open(pp, C, P (X))→ 1/0

1. run C′ = Commit(pp, W )
2. If C′ = C output 1 else output 0.

OpenEval with statement (l = (1, x . . . xn−1), y), where x ∈ F \D

ProveOpening(pp, W ′, l, y) VerifyOpening(pp, H, l, y)

← β
B = (1, β, β2 . . . βm−1)
u = B⊤W

u→
q←$ [n]t

← q
(s1, · · · , st)→

u′ ← EncodeC(u)
for 0 < i ≤ t:

W ′ = EncodeC(W )
Denote the columns of W ′ as (s1 · · · sn′ )

⟨si,B⟩
?= u′

qi

Hash(si)
?= hqi

Intu(x) ?= B · y.

Fig. 2. The Vortex polynomial commitment.

Vortex List Polynomial Commitment for Long Polynomials

Here we show how to deal with the long polynomials.
The prover P can send a polynomial P whose degree is larger than the number of columns in W . The

polynomial can be folded in several chunks P (X) = P0(X) + XnP1(X) + · · · . Each one of the chunks Pi(X)
is then inserted into W as an entire row.

To commit and open the polynomials P (X) via Vortex, set W as above. The verifier can then recombine
the Pi(X) evaluations to obtain the P (X) evaluation. This provides us with a way to switch between the
definitions of batched polynomial commitments Definition 2 to a version that only commits to one polynomial.

6 Soundness of Vortex in the List-Decoding Regime

If the prover is honest and P (X) is indeed a polynomial, then the proof of correctness is straightforward.
Thus, we discuss soundness. We discuss the soundness of Vortex (as an LPC) based on the Correlated
Agreement Theorem and in the list decoding regime.
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We denote the rows of matrix W ′ by w′
i. Vortex aims to prove that there exist codewords gi corresponding

to low-degree polynomials Intgi(X) for every index i = 1, . . . , m, such that δ(gi|D, w′
i) ≤ θ (over the domain

D) and all the gi jointly agree with wi on agreement sets A of size |A| ≥ (1− θ) · |D|. Moreover, we ask that
for a given evaluation point x, we have yi = Intgi

(x).

Theorem 3. Consider the Vortex protocol, as described in Fig. 2. The protocol satisfies knowledge soundness
in the random oracle model, in the sense of Definition 10.

Proof. First, we consider a hybrid game in which the responses of the random oracle never contain a collision.
The random oracle is programmed so that on every new random oracle query it will sample a uniform output
that has not been chosen before. The view of the adversary in this game is statistically close to the one in
the original game, and we denote this statistical gap by ϵcollision.

With this simplification, for the purposes of this proof sketch, we now consider that the prover knows a
matrix W ′ that is committed inside the hash (if it knew more preimages, that would imply that the mallicious
prover can find collisions in the hash function).

By the definition of RLP C , the relation returns 0 if W ′ is far from any codeword, or no close codeword
evaluates to the claimed y at point x.

Define the two following cases:

– Case A: Matrix W ′ is far from any matrix of codewords.
– Case B: Matrix W ′ is close to at least one matrix of codewords, but no such codeword matrix evaluates

to y at point x.

The structure of the matrix is not directly apparent to the verifier. We will bound the probability of
success for a malicious prover that has committed to matrix W ′ in each of the two cases, and then explain
how the two probabilities relate to the overall knowledge soundness of the protocol.

6.1 Bounding on Case A

Define w as the linear combination over the rows of W ′ i.e., w :=
∑

βiW ′
i . We denote by rA the random

coins of the adversarial prover, and rV the coins of the verifier. To bound soundness in Case A, define by
EKS the event that A wins in the knowledge-soundness game of Definition 10. Then, we have:

Pr
rP ,rV

(EKS) ≤ Pr
rP ,rV

(EKS | (δ(w, RS) > θ))

+ Pr
rP ,rV

(δ(w, RS) ≤ θ)

From the Correlated Agreement Theorem, we know that the second term happens with probability ϵ,
where θ and ϵ are from Correlated Agreement Theorem.

Regarding the first term, there are two cases that the test may pass;

– The (honest) value w would be different from the codeword u, and then the prover tries to change the
value of the opened column by finding a collision on the RO responses. However, recall that we work in
a hybrid game in which the random oracle is programmed in such a way as to never produce collisions.

– The prover is just lucky and the chosen columns are the one that matches the codeword. This happens
with probability (1− θ)t.

Therefore,

Pr
rP ,rV

(EKS) ≤ Pr
rP ,rV

(EKS | (δ(w, RS) > θ)) + Pr
rP ,rV

(δ(w, RS) ≤ θ) ≤

≤ (1− θ)t + ϵ
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6.2 Bounding on Case B

Here we bound the soundness error conditioned on Case B. Here, matrix W ′ is close to at least one matrix
of codewords, but no such codeword matrix evaluates to y at point x.

We define the list L as the set of matrix G′ where i-th row of G′ is at most θ-far from the i-th row of
W ′. Thus,

L := {G′ : ∃A ⊂ D, |A| ≥ (1− θ)|D| s.t. w′
i|A = g′

i|A}

For a matrix M = (mi)i of size m ·n, we use functions Quotx,y,j (see Section 3.5.4) to define the quotient
matrix Q w.r.t the point x ∈ F and the vector y = (yi)i of length m as:

Qi,j = Quotx,yi,j(Mi,j) = Mi,j − yi

wj − x

Remark: When arguing that the quotients are well defined, we use that x ∈ F \D.

Theorem 4. If the proximity test passes with probability more than ϵ∗ := (1 − θ)t + ϵ, and the evaluation
check on u′ passes, then there is a codeword G ∈ L such that gi(x) = yi. Define by EKS the event that A wins
the knowledge soundness game of Definition 10, and by rP , rV the random coins of the prover and verifier.
Consequently, in case B, we have

Pr
rP ,rV

(EKS) = 0
.

Proof. Recall that β is the coin used to compute the linear combination and q is the vector sent by the
verifier in order to specify which columns to open. The probability bound of the hypothesis is equivalent to:

Pr
β∈F

[ Pr
q∈[n]t

[u′
qj

= (B ·W ′)qj for all j ∈ [t]] ≥ (1− θ)t] ≥ ϵ (5)

Now, we note that the verifier accepts only if the evaluation check is successful, therefore we have that
Intu′(x) = By, which means that we can define the following quotient vector qu = Quotx,B·y(u′) (the quotient
is well defined due to the evaluation check and the fact that x ∈ F \D). Equivalently, qu is such that:

Intqu(X) := Intu′(X)− By

X − x

The vector qu thus corresponds to the quotienting of the vector u′ (and recall that u′ was obtained on
the verifier side as the encoding of the vector u sent by the prover during the protocol). Therefore, since
u′ ∈ RS[F, D, k]:

qu := Quotx,B·y(u′) ∈ RS[F, D, k − 1]
.

Using Eq. (5), recall that in this sub-case, we know that the proximity check over W ′ passes with
probability more than ϵ∗ (the proximity check ensured that the columns of W ′ queried by the verifier
correspond to u′). Therefore, we have that δ(u′,B ·W ′) ≤ θ for an ϵ · |F| portion of β. More precisely,

Pr
β∈F

[B ·W ′ = u′ over some set A, |A| > (1− θ)t · |D|] ≥ ϵ

From the two above equations, we conclude that for an ϵ · |F| portion of β,

∃qu ∈ RS[F, D, k − 1] s.t. Quotx,B·Y (B ·W ′) = qu, over A where |A| ≥ (1− θ)|D|
The key observation now concerns the role played by B in the computation of the quotient, by noting

that Quotx,B·Y (B ·W ′) = B · Quotx,Y (W ′) to rewrite the probability as:

Pr
β∈F

(
∃qu ∈ RS[F, D, k − 1] s.t. B · Quotx,y(W ′) = qu over A, where |A| ≥ (1− θ)|D|

)
≥ ϵ
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Since B · Quotx,y(W ′) is the random linear combination over the rows of quotient matrix Quotx,y(W ′),
the condition of the correlated agreement theorem (CAT, Theorem 1) over Quotx,y(W ′) is satisfied. Namely,
the random linear combination over the rows of the quotient matrix is close to a codeword. Therefore by
CAT, we have that each row qi of Quotx,y(W ′) satisfies that δ(qi, RS[F, D, k − 1]) < θ, and consequently by
Lemma 3 each row of W ′ is close to a codeword gi ∈ RS[F, D, k − 1] such that Intgi

(x) = yi.

Taking into account all the terms, for the soundness-error of Vortex we have that for m′ ≥ 3.

ϵsoundness ≤ ϵcollision + (1− θ)t + ϵ (6)

θ = 1−√ρ−
√

ρ

2m′

ϵ ≤ (m− 1)(m′ + 1/2)7

3ρ3/2
|D|2

|F|

where m, k are the number of rows and columns of W (choice of m also depends on the security level of the
hash function, and the choice of k depends on the message space of Reed-Solomon code).

Knowledge extraction of Vortex We first recap the following lemma showing an efficient decoding
algorithm for the Reed-Solomon code.

Theorem 5. (Guruswami-Sudan) For the Reed-Solomon code RS[F, D, k] with rate ρ and proximity param-
eter θ < 1 − √ρ, the Guruswami-Sudan algorithm can recover from w ∈ Fn all the codewords c such that
δ(w, c) ≤ θ from w in time O(n3).

Let P be a prover that suceeds in the interaction with the Vortex verifier with non-negligible probability.
The extractor uses this prover to extract the witness W ′, in the following manner: it runs the prover in the
ROM model. By this, the extractor will get access to W ′. To extract the matrices G, we use the approach
of [31, Lemma 1] that uses the Guruswami-Sudan list decoding repeatedly over the rows of W ′ and for
every row, it intersects the result with the agreement sets that have already been computed, such that the
intersection is of size ≥ (1− θ) · |D|. By this, it extracts all the codeword matrices close to W ′. Then we can
find the one consistent with u, x, y (e.g., by brute force, since the list size is polynomial).

7 Soundness of AoK from PIOP and LPC

In [14], the authors show that combining a knowledge-sound polynomial commitment with knowledge-sound
PIOP results in a knowledge-sound argument system. This cannot be applied directly to our setting. Particu-
larly, since we are working with polynomial commitments in the list decoding regime (LPC), the knowledge-
soundness of Vortex is not defined w.r.t a standard relation for a PC scheme.

In [22], they show that Batch-FRI in the list-decoding regime (as an LPC) can be combined with PLONK-
PIOP resulting in an argument system.

There is some evidence that shows that such a transformation can still be possible for special PIOP and
with the cost of losing a factor |L| of the soundness of PIOP [22, 8].

Here we generalize these results and show that any PIOP can be combined with an LPC to give a secure
AoK.

Slightly more formal, let (PO, VO) be a PIOP for the relation R that is transformed to a AoK (P, V ) via
a list polynomial commitment (Pc, Vc). Then it is conjectured that the soundness-error of AoK follows from,

|L| · ϵPIOP + ϵLPC ≈ O(|L| · k/|F|+ ϵLPC)

where k is the degree of polynomials involved in the PIOP and L is the maximum size of the list associated
with the LPC. If the size of the field is big compared to |L|, working in the list decoding regime could provide
useful tradeoffs.

In Section 7.2, we present a proof and bounds for the compilation to AoK from PIOP and list polynomial
commitments.
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7.1 Aggregatable LPC

An aggregatable LPC scheme is a LPC equipped with a batch opening algorithm. The batch opening algo-
rithm can prove the correct evaluation of polynomials (at the same point) committed separately. Note the
difference between batching the polynomials under the same commitment (Vortex as a batch polynomial
commitment) and batching under different commitments which we call aggregation here.

Apart from the batching property, what makes aggregatable-LPC interesting is the fact that it imposes
the same agreement set (out of |L| sets) for all the polynomials committed separately (e.g., committed in
different rounds of PIOP). This will allow us to avoid a soundness loss of |L|r, where r is the number of
rounds in the PIOP. Instead, the soundness loss will be |L|.

Aggregation of Vortex. Regarding Vortex, its Aggregation is similar to the original Vortex scheme.
Let Wi denote the matrices committed separately. Generally speaking, the witness matrix W is built by
putting the matrices Wi one over the other and then applying the Vortex over W . The differences and the
details are described in the following.

– set the parameters for Vortex.
– commit to each matrix Wi separately by Vortex commitment and denote it as ci.
– to open all the polynomials at point x, Set l = (1, x, x2, . . . , xn) and let W be the stacking of the matrices

Wi over each other.
• the verifier sends the randomness β where it receives u as the response from the prover.
• the verifier sends the random list of columns q.
• the prover opens the chosen columns of W , it also sends u = B̄ ·W where B̄ = (B, βmB, β2mB, . . .) and
B is as in the Vortex.
• the verifier extends u to its Reed-Solomon encoding and obtains u′. It then proceeds similarly to the

original Vortex protocol and performs the checks as follows:
∗ for the chosen columns, it breaks them into sub-columns of Wi and checks the hash consistency

separately with each ci.
∗ checks u · l =

∑
i βimB · y⃗i where y⃗i represent the evaluation values associated with Wi (this check is

equivalent to Intu(x) =
∑

i βimB · y⃗i).
∗

∑
B̄ · s(i)

?= u′
qi

for the chosen columns {s(i)}i∈q of W .

Note that the aggregatable version of Vortex is equivalent to an application of Vortex over the big
matrix W (described above). Therefore, the transformation preserves its knowledge soundness where in the
soundness formula Eq. (6) the number of rows m in the last term and in ϵ is the number of rows of W , i.e.,
the big matrix (note that ϵcollision does not change).

We emphasize that for optimizing the proof size during the compilation of PIOP to AoK, each Vortex
commitment ci is of constant size via MiMC hashing and the Merkle-Tree structure as explained in the
description of Vortex.

7.2 AoK from UniEval PIOP and Aggregatable-LPC

As mentioned in the description of Vortex, a commitment can be opened to a list of size |L|. In order to
replace the oracle of UniEval PIOP with aggregatable-LPC, one replaces the oracle with the ith element of
the lists. We show that aggregatable-LPC can simulate the oracle of UniEval-PIOP.

Regarding the security of such a compiler, we prove that if UniEval-PIOP and aggregatable-LPC are
knowledge-sound, then the resulting AoK is knowledge-sound. Before going to the security proof, let us
clarify how we combine an LPC with an UniEval-PIOP to have a more efficient AoK.

AoK Construction

Here we assume that PIOP has several polynomials for the same round i which we embed in matrix Wi. For
a batch of matrices Wi from different rounds, we have to commit to each matrix separately at the associated
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round but can defer the batch opening (aggregation step) once at the end. Without loss of generality, we
assume the matrices Wi are all of the same size. We also assume that UniEval-PIOP has been processed
through the compiler in Fig. 1, and now its verifier sends only a single query (at point z as in Section 4.1).
The query is for all the polynomials at the same point, and this allows us to benefit from batching properties
of Vortex over the same point (for both cases; polynomials committed at the same round, or in different
rounds).

7.3 Soundness of AoK

Theorem 6. Let aLPC be an aggregated LPC and Prot be an UniEval PIOP for a relation R. Consider the
interactive argument of knowledge protocol Prot′ for the same relation R, obtained in the following way:

– every time a polynomial is sent to an oracle in Prot, the operation is replaced by sending an aLPC
commitment in Prot′.

– Prot contains rounds in which the prover sends alleged evaluations of polynomials without an accompa-
nying proof (as in Section 4). The same rounds are carried out identically in Prot′.

– The final round of Prot represents an opening of all polynomials at the same point z. In Prot′, this is
replaced by an opening of all the polynomials committed using the aLPC protocol at point z.

– All other rounds of Prot are reproduced identically in Prot′.
– The verifier VProt′ acts in the same way as VProt but it also runs VaLPC in order to check the claimed

openings at the end of the protocol.

We require that the aLPC commitment is knowledge-sound in the random oracle model and Prot is a
knowledge-sound UniEval PIOP for R. Moreover, both aLPC and Prot have straight-line extractors and the
list of polynomial candidates can be extracted using only the commitments and the random oracle queries.
Then, it holds that Prot′ is a knowledge-sound interactive argument of knowledge for R in the random oracle
model.

Proof. We first exhibit an extractor EAOK for the relation R. EAOK uses the aLPC extractor EaLPC and the
UniEval PIOP extractor EPIOP. EAOK interacts with an adversary P ∗ against the knowledge-soundness of
Prot′ and proceeds as follows:

– EAOK will interact with adversary P ∗ and make several changes in order to construct on-the-fly an
adversary PPIOP against the UniEval PIOP protocol. The constructed adversary PPIOP will make use of
access to random oracle queries and run the extractor EaLPC as a subroutine.

– EAOK will run the extractor EPIOP on an interaction with adversary PPIOP which is built on-the-fly
from the interaction with P ∗. EPIOP will output a witness if the interaction resulted in an accepting
transcript, and EAOK outputs the same witness as its result.

We show how to start from adversary P ∗ against the knowledge soundness of the argument of knowledge
Prot′, and construct an adversary PPIOP against the UniEval PIOP Prot. the Adversary PPIOP proceeds as
follows:

– It receives a statement stmAOK from P ∗, and sets it as its own statement stmPIOP by forwarding it to
its challenger (i.e. stmAOK = stmPIOP).

– It then honestly generates the parameters for aLPC and sends them to P ∗.
– The first time P ∗ commits to a polynomial, PPIOP uses the aLPC extractor to obtain the list of polyno-

mials that correspond to the commitment. It aborts if the extraction fails.
Since P ∗ will be able to later open to any of the polynomials in the list, PPIOP guesses an index i∗ that
corresponds to the ith polynomial in the list.

– Guessed index i∗ is kept hidden from P ∗. PPIOP forwards the ith polynomial to the PIOP oracle.
– All subsequent rounds in which P ∗ commitms to more polynomials require that PPIOP extracts using

the aLPC extractor and forwards the polynomial at index i∗.
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– Verifier queries are sent to P ∗. If the responses are not consistent with guess i∗, PPIOP aborts. Otherwise,
it forwards the responses back to the verifier.

– Finally, as in Section 4, an oracle query on point z is received from the verifier. If z ∈ D, then since the
security of our aLPC is not guaranteed in this case, it aborts.
Otherwise, PPIOP forwards z /∈ D to P ∗, which replies with an aggregated aLPC proof that certifies
openings for all polynomials on z. PPIOP aborts if there are inconsistencies with the guessed index i∗.
Otherwise, it forwards the responses to the verifier.

The prover P ∗ has the freedom to open to any polynomial belonging to the decoding list. However, once
P ∗ chooses an index, it has to open any further aggregated commitments to the same index (the index
corresponds to choosing an agreement set in Theorem 1). If it did not open further indices consistently, this
would be detectable by the fact that a verifying aLPC opening can only be performed with respect to the
same index.

There is partial leakage on index i∗ from the point of view of P ∗. By the fact that an abort has not yet
been initiated by PPIOP, P ∗ infers only that index i∗ is consistent with its own choices of how to respond
with claimed evaluations to polynomials (without an aLPC proof, which is sent only at the end). However,
these choices are also enforced to be consistent with the aLPC opening in the last round.

We define the following events:

– EvPIOP
KS,PPIOP

is the event that PPIOP wins its knowledge soundness game. This means that ⟨PPIOP ↔
VPIOP⟩ = 1 for an invalid stmPIOP. Verifier VPIOP plays the role of the external challenger.

– EvAOK
KS,P ∗ is the event that ⟨P ∗ ↔ VProt′⟩ = 1 in the context of P ∗ winning the knowledge-soundness game

in Definition 1.
– EvaLPC

KS,P ∗ is the event that P ∗ breaks the security of the aLPC commitment, as defined in Definition 10.
– Evindex

PPIOP
is the event that PPIOP guesses the index i∗ correctly.

From the manner in which we defined PPIOP, and Prot′, we have:

Pr(EvPIOP
KS,PPIOP

) = Pr(EvAOK
KS,P ∗ ∧ EvaLPC

KS,P ∗ ∧ Evindex
PPIOP

∧ z /∈ D)

Since the choice of the index is independent of the success probabilities, we then have:

Pr(EvPIOP
KS,PPIOP

) = 1/|L| · Pr
(

EvAOK
KS,P ∗ ∧ (EvaLPC

KS,P ∗ ∨ z ∈ D)
)

≥ 1/|L| ·
(

Pr(EvAOK
KS,P ∗)− Pr(EvaLPC

KS,P ∗ ∨ z ∈ D)
)

≥ 1/|L| ·
(

(Pr(EvAOK
KS,P ∗)− Pr(EvaLPC

KS,P ∗)− Pr(z ∈ D)
)

Therefore, we equivalently have:

Pr(EvAOK
KS,P ∗) ≤ |L| · Pr(EvPIOP

KS,PPIOP
) + Pr(EvaLPC

KS,P ∗) + Pr(z ∈ D)

Since all the probabilities on the right are negligible, Pr(EvAOK
KS,P ∗) is negligible.

Future Work

We plan to add an analysis of the transformation to non-interactive argument of knowledge, concrete pa-
rameter choices for the entire scheme and benchmarks in future versions of this document.
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