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Abstract. We introduce the notion of non-interactive zero-knowledge
(NIZK) proofs with certified deletion. Our notion enables the recipient of
a quantum NIZK proof for a (quantumly hard) NP statement to delete
the proof and collapse it into a classical deletion certificate. Once this
certificate is successfully validated, we require the recipient of the proof
to lose their ability to find any accepting inputs to NIZK verification.
We formally define this notion and build several candidate constructions
from standard cryptographic assumptions. In particular, we propose a
primary construction from classical NIZK for NP and one-way functions,
albeit with two limitations: (i) deletion certificates are only privately
verifiable, and (ii) both prover and verifier are required to be quantum
algorithms. We resolve these hurdles in two extensions that assume the
quantum hardness of the learning with errors problem. The first one
achieves publicly verifiable certificates and the second one requires merely
classical communication between classical provers and quantum verifiers.
Our results have applications to the revocable signatures of knowledge
and revocable anonymous credentials, which we define and construct.
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1 Introduction

Recent advances in quantum computing have enabled cryptographic capabilities
that are impossible in a classical world, including secure key-agreement [BB14],
quantum money [Wie83], copy-protection [Aar09], certified deletion [BI20,BK23],
unclonable encryption [Got03,BL20]. A standard technique commonly used here
is to encode a piece of secret information into a quantum state and protect the
information from being copied by leveraging the no-cloning principle.

In this framework, Aaronson [Aar09] introduced quantum copy protection.
This primitive enables the encoding of an unlearnable function f into a quantum
state such that no adversary with access to a single copy can generate two states,
both of which can compute f . Ananth et al. [ALP21] introduced a similar but
weaker notion of secure software leasing. Here, we enable the encoding of software
into a state that can be leased, and the lessee can later return it provably. Once
this return is validated, the lessee no longer can execute the leased software.

Building on these foundations, several recent works has explored various cases
of revocable cryptographic functionalities. Ananth et al. [APV23] and Agrawal
et al. [AKN+23] proposed revocable public-key encryption protocols. Here, a
decryption key can be temporarily leased. Morimae et al. [MPY24] studied the
case of digital signatures with revocable signing keys and signatures; the former
enables leasing signing keys, while the latter allows leasing signatures.

We follow this line of research and introduce an analogous notion in the
case of non-interactive zero-knowledge (NIZK) [GMR85]. An NIZK enables a
prover holding the witness to a hard NP problem to convince a verifier of the
truth of the statement without leaking any additional information about the
witness. A fundamental barrier of NIZKs in the classical world is that once a
recipient obtains a proof, they can verify and reuse it evermore. Therefore, one
can simply observe that classical NIZK proofs are inherently undeniable even
if we rely on the random oracle or common reference string models [Pas03]. In
some scenarios, however, it might be desirable to revoke the recipient’s access to
proofs after verification, preventing any future reuse for unintended purposes.

In this work, we take a step forward to address this limitation in the quantum
world, and we introduce NIZK with certified deletion (NIZK-CD). Here, we allow
the recipient of a quantum NIZK proof for a (quantumly) hard NP statement
to verify the proof multiple times and, at any point in the future, collapse the
proof into some classical deletion certificate. Once this certificate is validated,
the security of the primitive guarantees that the recipient looses the access to the
proof and can no longer find an accepting input to NIZK verification algorithm.

Consider the following scenario as an illustrative application of NIZK-CD.
Suppose a government agency holds a classified document relevant to a court
case. Instead of revealing the document’s sensitive contents, the agency could
provide a NIZK proof attesting to the document’s authenticity, satisfying legal
requirements without compromising the privacy of the information. Moreover,
the certified deletion property of a NIZK-CD allows the court to immediately
delete the proof after verification. This ensures that no unauthorized parties can
access and misuse the provided information at some point in the future.
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1.1 Our Results

We formally define the notion of NIZK-CD as a novel cryptographic primitive.
We then propose a primary construction assuming the existence of post-quantum
classical NIZK for NP and post-quantum one-way functions. This construction,
however, has two limitations: (i) the deletion certificate is privately verifiable and
can only be validated by the initial prover, and (ii) while the deletion certificate
and its validation are classical, the NIZK proof itself includes quantum states.
Therefore, the prover and the verifier are inherently quantum algorithms.

We further address these limitations by proposing two extensions assuming
the hardness of learning-with-errors (LWE) [Reg09]. In our first extension, we
leverage compute-and-compare program obfuscation [WZ17] to achieve public
verifiability for deletion certificates. In the second extension, we show how the
prover can be entirely classical and remotely and securely prepare the required
quantum piece of information included in NIZK proofs in the verifier’s device.

As a natural application, we also construct revocable signature of knowledge
from NIZK-CD. This can address the long-standing problem of having revocable
anonymous credentials from standard assumptions, without the need to rely on
conventional blocklisting and time-expiring approaches [BCC+09,AN11,CKS10].

1.2 Related Works

We review prior work on certified deletion and copy-protection.

Certified deletion and revocable cryptography. Unruh [Unr14] introduced
quantum revocable encryption, where the recipient of a quantum ciphertext can
return the state and, hence, lose all information about the encrypted message.
Broadbent et al. [BL20] studied one-time pad encryption with certified deletion,
where quantum ciphertexts can be collapsed into classical deletion certificates.
Several recent works [HMNY21,Por23,BK23,BGK+24,BKM+23] extended the
idea to advanced functionalities, e.g., public-key encryption and attribute-based
encryption. Kitagawa et al. [KNY23], and Bartusek et al. [BKM+23] replaced
privately verifiable deletion certificates with publicly verifiable ones from one-way
functions and one-way state generators [MY22]. Certified deletion has also been
investigated for revoking cryptographic keys [KN22,AKN+23,APV23,CGJL23],
digital signatures [MPY24], secret sharing [BR24], and obfuscation [BGK+24].

Moreover, the revocation idea has been considered in the case of general
programs by Ananth et al. [ALP21]. However, their proposed scheme relies on
post-quantum indistinguishability obfuscation (iO), where concrete realizations
from standard cryptographic assumptions are not known yet. In this work, we
consider the case of NIZKs, which allows constructions from weaker assumptions.

Copy-protection and unclonable primitives. Aaronson [Aar09] introduced
quantum copy-protection, which enables encoding a functionality into a quantum
state that cannot be cloned, and proposed a scheme for any unlearnable Boolean
functions relative to a quantum oracle. Later, it was shown that any unlearnable
functionality could be copy-protected relative to some classical oracle [ALL+21].
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Coladangelo et al. [CMP22] constructed copy-protection for (multi-bit) point
functions and compute-and-compare functions in the QROM. Copy-protection
for decryption schemes and pseudorandom functions has been realized from iO,
compute-and-compare obfuscation for the class of unpredictable distributions,
and one-way functions [CLLZ21]. Liu et al. [LLQZ22] constructed bounded
collusion-resistant copy-protection for several functionalities, such as decryption,
signatures, and pseudorandom functions from iO and the LWE assumption.

Goyal et al. [GMR23], and Jawale et al. [JK23] studied copy-protected NIZKs,
also referred to as unclonable NIZKs, and showed that this notion is equivalent
to public-key quantum money [AC12], which is currently only known under the
iO assumption. In contrast, we consider here a weaker notion of NIZK-CD. This
relaxation allows us to rely on standard assumptions and, furthermore, achieve
publicly verifiable deletion or solely use classical communication channels.

1.3 Paper Organization

Section 2 provides a high-level overview of our results and techniques. Section 3
covers preliminaries and background on cryptographic primitives and lemmas.
We present formal definition of NIZK-CD in Section 4. In Section 5, we propose
NIZK-CD from one-way functions. Section 6 presents the extensions from LWE.
Section 7 defines revocable signature of knowledge and revocable anonymous
credentials and further presents their candidate constructions from NIZK-CD.

2 Technical Overview

In this section, we give a high-level overview of our techniques.

2.1 Definitions

We define NIZK-CD, a tuple of algorithms ⟨Setup,Prove,Verify,Delete,Certify⟩.
The first three algorithms, Setup, Prove, and Verify, are defined similarly to the
standard NIZK. In particular, Setup is used to generate the common reference
string (CRS) and potentially its corresponding trapdoor. Prove and Verify are
used to generate and verify a quantum NIZK proof π, respectively. The only
difference is that Prove additionally outputs a classical certification key ck. We
can later exploit this key to validate the deletion certificate. Delete is executed
on the proof π and collapses it into a classical deletion certificate cert. We can
validate deletion by running a classical algorithm Certify on input cert and ck. We
note that the certification key ck can be a public or private key. Moreover, the
proving algorithm Prove might be an interactive algorithm between the prover
and verifier, where it remotely prepares the NIZK proof π in the verifier’s device.

The primitive satisfies the basic security requirements of a standard NIZK,
i.e., completeness, computational soundness, and computational zero knowledge.
One can naturally strengthen single-theorem zero knowledge to a multi-theorem
variant [FLS90] and also soundness to simulation extractibility [Sah99,SCO+01].
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We can achieve the security goal of deletion by two definitions. The first,
followed by simplicity, relies on the concept of efficiently samplable (quantumly)
hard distributions over NP instance-witness pairs. Consider (X ,W) as such a
distribution where X and W correspond to instance and witness, respectively.
Let (x,w)← (X ,W) be a hard instance-witness pair, and π be a NIZK-CD proof
generated on inputs x and w. We require that no efficient quantum adversary
given the instance x and the proof π can return both a proof π∗ and a certificate
cert such that π∗ passes Verify and cert passes Certify algorithms successfully.

However, this definition does not capture the case of the adversary receiving
more than one proofs for potentially different instances, and it also does not
support any guarantees against malleability attacks. To address this limitation,
we strengthen the definition to ensure that from any adversary that returns both
an accepting proof and a valid certificate, one can extract the witness, even if the
adversary is given oracle access to prover and can query it to various instances.

2.2 Construction from OWF

We propose a generic compiler to transform any classical post-quantum NIZK for
NP to a NIZK-CD construction. Here, the only additional assumption we would
need is the existence of a classical post-quantum non-interactive bit-commitment
scheme. Such commitment scheme can be realized from post-quantum one-way
functions in the common reference string model [Nao91,DCIO98,HILL99].

In more details, let c← Com(m, r) be the commitment function for a message
m under randomness r. Given an NP relation R, we generate a NIZK-CD proof
for an instance-witness pair (x,w) ∈ R as follows. The prover samples random
strings r0 and r1 and generates commitments cb = Com(b, rb) for all b ∈ {0, 1}.
The prover produces a classical NIZK σ of (x,w) ∈ R

∨
∧bcb = Com(1− b, r).

Given σ, c0, and c1, one can validate whether the instance x is satisfied if they
have at least one rb, which can invalidate the commitment part of the statement.

The prover generates the state |ψ⟩ := |0⟩|r0⟩ + (−1)u|1⟩|r1⟩ for a uniformly
sampled bit u and sends the NIZK-CD proof π := (|ψ⟩,σ, {cb}b∈{0,1}). Then,
let ck := (u, r0, r1) be the certification key, and U com

c0,c1 be a unitary operation
defined as

|b⟩|r⟩|0⟩
U com

c0,c1−−−−→ |b⟩|r⟩|Cmt− Cmp(b, r, cb)⟩,

where Cmt− Cmp is a commit-and-compare function that commits to b using
randomness r, returns 1 if the commitment equals to cb, and returns 0 otherwise.
The recipient can verify the proof by applying U com

c0,c1 to the state |ψ⟩ and measure
the commit-and-compare register. If the measured result is one, i.e., there exists
at least one rb such that cb = Com(b, rb); it suffices to infer ∃w : (x,w) ∈ R, if
σ also passes the verification algorithm of the classical NIZK. Moreover, for any
honestly generated proof, the commit-and-compare register is always measured
to 1, and the post-measurement state remains the same as |ψ⟩. Therefore, π can
be reused for arbitrary times. Deletion can be done by a Hadamard measurement,
yielding a string d where d · (r0 ⊕ r1) = u. As the state collapses, r0 and r1 are
lost. The certificate is cert := d, and the prover validates it using ck = (u, r0, r1).
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More precisely, deletion security follows the adaptive hardcore bit-property of
one-way functions, showed by a recent prior works [MPY24]. This property states
that given any one-way function f , no efficient adversary on input y0 = f(r0)
and y1 = f(r1) and a superposition |0⟩|r0⟩ + (−1)u|1⟩|r1⟩ can output both a
preimages r where f(r) ∈ {y0, y1} and an string d where d · (r0 ⊕ r1) = u with
an advantage more than 1/2. Since the commitment scheme satisfies hiding and
binding, one can view Com as a one-way function, and the adaptive hardcore bit
property holds for the commitment function. This implies that the recipient of a
NIZK-CD proof cannot output both an accepting deletion certificate cert and a
proof π∗; due to the definition of U com

c0,c1 , measuring the quantum state included
in π∗ in the computational basis should yield a valid commitment randomness
rb for cb = Com(b, rb), and this contradicts the adaptive hardcore bit property.
The adversary’s advantage can be reduced to negligible via parallel repetition.
In particular, given λ as the security parameter and n = ω(λ), for all i ∈ [n], the
prover samples uniform random bits ui and strings ri,0 and ri,1. The then prover
generates the classical NIZK proof σ for the following amplified statement.

(x,w) ∈ R
∧
i∈[n]

∨b∈{0,1} ci,b = Com(1− b, ri,b),

where for all i ∈ [n] and b ∈ {0, 1}, the commitments are indeed ci,b = Com(b, ri,b).
The quantum state is also amplified to |ψ⟩ =

⊗
i∈[n]|0⟩|ri,0⟩ + (−1)ui |1⟩|ri,1⟩.

For verification, the verifier applies the commitment function in superposition
as before. For deletion, Hadamard measurements yields a set of strings {di}i∈[n]
where for all i ∈ [n], we have di ·(ri,0⊕ri,1) = ui. Completeness, zero knowledge,
and simulation extractability of NIZK-CD are borrowed from the NIZK proof σ.

2.3 Constructions from LWE

The primary construction we outlined above suffers from two limitations. The
deletion certificate cert = {di}i∈[n] are only privately verifiable, and the prover
cannot reveal the certification key ck = {(ui, ri,0, ri,1)}i∈[n] publicly. Moreover,
both the prover and verifier algorithms are required to be quantum. We address
each problem by presenting an extended construction from LWE assumption.

Public verifiability. We can achieve publicly verifiable deletion certificates by
instantiating a certificate validation oracle via compute-and-compare obfuscation
which can be realized from LWE assumption [WZ17]. Given a function P , a
target value lock, and a message z, compute-and-compare program is defined as

CC[P , lock, z](x) =

{
z, P (x) = lock,

⊥, Otherwise.

A compute-and-compare obfuscator CC.Obf takes a program of this form and
outputs an obfuscated program P̃ . The security of the primitive ensures that
if given access to P , no computationally-bounded adversary can find the target
value lock, then P̃ and P are indistinguishable, i.e., P̃ hides all details of P .
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We observe that the certificate validation algorithm Certify in our primary
construction can be viewed as a compute-and-compare program. In particular,
consider a function I with hard-coded strings {ri,0, ri,1}i∈[n]. On input {di}i∈[n],
the function I computes wi = di · (ri,0 ⊕ ri,1) for all i ∈ [n] and outputs a string
w = w0w1 . . . wn. A certificate cert = {di}i∈[n] is valid if given as input to I,
the output equals a target value lock = u0u1 . . . un. Since each bit ui is sampled
uniformly, lock is unpredictable. Thus, we can securely obfuscate I, denoted by Ĩ,
and reveal Ĩ publicly without comprising security of commitment randomnesses
{ri,0, ri,1}i∈[n]. Anyone having access to Ĩ can validate the deletion certificate.
We note that a recent work has applied a similar technique of using obfuscation
to achieve publicly verifiable deletion in the context of secret sharing [KS24].

Classical Communication. One more observation is that the prover only needs
quantumness to create the state |ψ⟩ and send it to the recipient. Then, other
components of the proof generation and deletion processes solely rely on classical
computation and communication. Here, we present an extension of our primary
construction that allows a classical prover to securely and remotely prepare |ψ⟩
in the recipient’s device while the recipient does not learn any information about
the strings r0, r1. Then, the rest of the protocol remains as discussed before.

We first recall the notion of noisy trapdoor claw-free (NTCF) functions. Given
a fixed key k, a pair of functions fk,0, fk,1 : X → Y of a NTCF family satisfy the
following properties. fk,0 and fk,1 share the same range. It is computationally
hard to find a claw, i.e., a pair (r0, r1) where fk,0(r0) = fk,1(r1). There exists a
trapdoor td that allows to efficiently find two preimages r0 and r1 of any image
y, i.e., for all b ∈ {0, 1} we have fk,b(rb) = y. Moreover, the adaptive hardcore
bit property holds, i.e., given y and |r0⟩+ |r1⟩, where r0 and r1 are preimages of
y, no adversary can return both one of the preimages and a string d such that
d · (r0 ⊕ r1) = 0. The NTCF family can be constructed under LWE [BCM+18].

Assume that the key k for NTCF functions and its trapdoor td are sampled
by the prover. The recipient generates the following state |ϕ⟩.

|ϕ⟩ :=
∑
r∈X
|0⟩|r⟩ + |1⟩|r⟩

Let Ufk,0,fk,1
be a unitary operation defined as

|b⟩|r⟩|0⟩
Ufk,0,fk,1−−−−−−→ |b⟩|r⟩|fk,b(r)⟩.

The recipient applies Ufk,0,fk,1
to |ϕ⟩. Then, they measure the register of fk,b(r),

and it yields an image y and a post-measurement state |0⟩|r0⟩ + |1⟩|r1⟩, where
(r0, r1) form a claw for the image y. We use this as |ψ⟩ for our NIZK-CD, where u
is fixed to 0. The recipient sends y to the prover, who can recover the claw (r0, r1)
using td. Fixed u does not cause any vulnerabilities, and the security is ensured
from the adaptive hard-code bit property of NTCFs. However, we cannot then
apply obfuscation to achieve public verifiability since the target value is fixed.
We leave it as an open question whether we can have a NIZK-CD construction
with both publicly verifiable deletion certificates and classical communication.
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2.4 Revocable Anonymous Credentials

Signature of knowledge is a specific class of digital signatures, where messages
are signed with respect to an NP instance using the corresponding witness as
signing key. It requires that if an adversary, given a signature to a message m
with respect to an instance x, can output two signatures form with respect to the
same instance x, they must know the witness. A revocable signature of knowledge
enables the recipient of the signature to delete the signature after being verified.
This primitive can be constructed from simulation extractable NIZK-CD, where
it just suffices to attach the message m to the proved statement. One can apply
any revocable signature of knowledge to build revocable anonymous credentials,
where the signed messages represent access tokens. A prior work by Jawale et
al. [JK23] constructed revocable anonymous credentials from unclonable NIZKs.
Despite our scheme, their solution relies on non-standard assumptions such as
post-quantum iO, and further, it inherently requires quantum communication.

3 Preliminaries

We use λ to denote the security parameter. We use negl as a generic negligible
function. For a set S, we use x ← S to indicate that x is sampled uniformly
from S. We define [n] := {0, 1, . . . ,n−1}. The term PPT stands for probabilistic
polynomial time, and similarly QPT stands for quantum polynomial time.

Quantum conventions. A register X is a Hilbert space C2n. An n-qubit pure
state on register X is a unit vector |ψ⟩ ∈ C2n. A mixed state on register X,
described by a density matrix ρ ∈ C2n×2n, is a positive semi-definite Hermitian
operator with trace 1. Also, a quantum operation F is a completely positive
trace-preserving map from a register X to a register Y , i.e., on input a density
matrix ρ on register X, the operation F returns F (ρ) on register Y . A unitary
operation U : X → X is a quantum operation that satisfies U†U = UU† = IX ,
where IX is identity. A projector Π is a Hermitian operator such that Π2 = Π.
A projective measurement is a collection of projectors {Πi}i with

∑
iΠi = I.

Densities and distances. Let X be a finite domain. A density on X is a
function f : X → [0, 1] such that

∑
x∈X f(x) = 1. DX denotes the set of densities

on X . For any f ∈ DX , Supp(f) = {x ∈ X : f(x) > 0}. Given two densities f0
and f1 on X , the Hellinger distance is defined as follows.

H2(f0, f1) := 1−
∑
x∈X

√
f0(x)f1(x)

For two density matrices ρ and σ, their trace distance is defined as follows.

∥ρ− σ∥tr =
1

2
∥ρ− σ∥1 =

1

2
Tr

[√
(ρ− σ)2

]
,

where ∥ · ∥1 is the trace norm.
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Lemma 3.1. Let X be a finite set, f0, f1 ∈ DX , and |ψb⟩ :=
∑

x∈X
√
fb(x) |x⟩

for b ∈ {0, 1}. We have

∥|ψ0⟩⟨ψ0| − |ψ1⟩⟨ψ1|∥tr =
√
1− (1−H2(f0, f1))2.

Theorem 3.1. (Holevo-Helstrom) [Hel69,Hol73] Consider the experiment in
which one of two quantum states ρ and σ is sent to a distinguisher, each with
probability 1

2 . The advantage of any distinguisher that can correctly determine
which state was sent is at most 1

2 + 1
2∥ρ− σ∥tr.

3.1 The Learning-with-Errors Hardness Assumption

We recall the definition of the learning-with-errors (LWE) problem. For positive
real B and integer q, the truncated discrete Gaussian distribution over Zq with
parameter B is a distribution on {x ∈ Zq : ∥x∥ ≤ B} with a density as follows.

DZq ,B(x) :=
e

−π∥x∥2
B∑

x′∈Zq ,∥x′∥≤B e
−π∥x′∥2

B

.

For some higher dimension d, the truncated discrete Gaussian distribution over
Zd
q with parameter B is a distribution on {x ∈ Zd

q : ∥x∥ ≤ B
√
d} with the density

∀x = (x1,x2, . . . ,xd) ∈ Zd
q : DZd

q ,B
(x) = DZq ,B(x1),DZq ,B(x2), . . . ,DZq ,B(xd).

We then define LWE that underlies several hardness assumptions in this paper.

Definition 3.1. (LWE) Let n(λ),m(λ), q(λ) be polynomials in λ. Moreover,
let X = X (λ) be a distribution over Z. The LWEn,q,X problem is to distinguish
between the distributions (A,As + e) and (A,Au), where A ← Zn×m

q , s ← Zm
q ,

e← Xm, u← Zm
q , such that m is, at most, polynomial in n log q.

We assume no QPT algorithm can solve LWEn,q,X with some non-negligible
advantage in λ, even when given access to a quantum polynomial-size advice
state depending on the parameters n, m, q, and X of the problem. We refer to
this assumption as “the LWEn,q,X assumption.” It can be shown [Reg09,PRSD17]
that for any α > 0 such that σ = αq ≥ 2

√
n, LWEn,q,DZq,σ

is at least as hard as the
shortest independent vector problem to within a factor of Õ(n/α), where Õ hides
logarithmic factors, in the worst case dimension n in lattices. The best-known
algorithm to solve the problem runs in time 2Õ(n/logγ). We assume the hardness
against polynomial-time quantum adversaries where γ is super-polynomial in n.
We recall two additional properties of the LWE problem. The first shows that it
is possible to generate LWE samples (A,As + e) such that there is a trapdoor
that can recover s from the samples. We state this in the following Theorem.

Theorem 3.2. [MP12] Let n,m ≥ 1 and q ≥ 2 be such that q = Ω(n log q).
There is an efficient randomized algorithm Gen(1n, 1m, q) that returns a matrix
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A ∈ Zn×m
q and a trapdoor td such that the distribution of A is negligibly close to

uniform. There is an efficient deterministic algorithm Inv such that on input A,
td, and a sample As+ e where ∥e∥ ≤ q/(c

√
n log q) and c is a universal constant

outputs vectors s and e with a high overwhelming probability.

The second property is the existence of a “lossy mode” for LWE.

Theorem 3.3. [AKPW13] Let X = X (λ) be efficiently sampleable distribution
over Zq. Define a lossy sampler Ã ← LSY(1n, 1m, 1ℓ, q,x) by Ã = BC + F ,
where B ← Zm×ℓ

q , C ← Zℓ×m
q , F ← Zn×m

q . Under LWEℓ,q,X assumption, the
distribution of Ã is computationally indistinguishable from uniform Ã← Zm×n

q .

3.2 Noisy Trapdoor Claw-Free Hash Function Families

We recall the notion of noisy trapdoor claw-free (NTCF) hash function families
introduced by [BCM+18]. Given two finite sets X and Y, a trapdoor claw-free
family of functions satisfies the following properties. For each public key k, there
exists two functions {fk,b : X → Y}b∈{0,1} that both are injective and have the
same range and are invertible given a trapdoor td, i.e., on input td and an image
y ∈ Y it is feasible to efficiently output x0,x1 ∈ X such that f0(x0) = f1(x1) = y.
Furthermore, the pair of functions should be claw-free, i.e., it is computationally
hard for an attacker to find two preimages x0,x1 such that f0(x0) = f1(x1). The
functions should also satisfy an adaptive hardcore bit property, which states it is
computationally hard for an attacker to generate a non-trivial tuple (b, d,xb) such
that with a non-negligible probability more than 1

2 the equation d · (x0⊕x1) = 0
is satisfied, where x1−b is a unique element such that f1−b(x1−b) = fb(xb).

Unfortunately, we are not aware of any exact constructions of the trapdoor
claw-free functions. Instead, Brakerski et al. [BCM+18] proposed a construction
for noisy trapdoor claw-free functions, which relaxes the requirements in the
following way. First, the range of functions is not Y, but instead DY , the set
of probability densities over Y. The trapdoor injective pair property is then
defined according to the support of the output densities. The use of densities as
the output of the functions requires considering additional requirements. In this
paper, we need a quantum polynomial-time algorithm that efficiently prepares
a superposition over the range of the function, i.e., given a function key k and a
bit b ∈ {0, 1}, the algorithm can prepare the following quantum state.

1√
X

∑
x∈X ,y∈Y

√
fk,b(x)y|x⟩|y⟩

The construction proposed in [BCM+18] is unable to exactly produce the
above state; however, it is possible to create a superposition with coefficients
that fk,b(x) is approximated by another function f ′k,b(x) and the resulting state is
within negligible trace distance of the desired state. f ′k,b(x) supports membership
checks efficiently without the need for the trapdoor, and the inversion algorithm

11



should operate properly on the images in the support of f ′k,b(x). The adaptive
hardcore bit property needs to also be slightly modified. The set X might not be
a subset of binary strings. We first assume the existence of an injective, efficiently
invertible map J : X → {0, 1}w and consider the adaptive hardcore bit property
to hold for a subset of all nonzero string. Below, we present the definition.

Definition 3.2. (NTCF) [BCM+18] F := {fk,b : X → DY}k∈K,b∈{0,1} is a
NTCF hash function family if the following properties are satisfied.

Key generation: A PPT, NTCF.GenF , samples a key k ∈ K and a trapdoor td.

Trapdoor Injective Pair: For all k ∈ K, b ∈ {0, 1}, distinct x,x′ ∈ X ,
Supp(fk,b(x)) ∩ Supp(fk,b(x

′)) = ∅. An efficient deterministic algorithm InvF
exists such that for all k ∈ K, b ∈ {0, 1}, x ∈ X , and y ∈ Supp(fk,b(x)), it
holds that Inv(td, b, y) = x. Moreover, given a key k ∈ K, there exists a perfect
matching Rk ⊆ X ×X such that fk,0(x0) = fk,1(x1) if and only if (x0,x1) ∈ Rk.

Range Superposition: For all k ∈ K, b ∈ {0, 1}, f ′k,b : X → DY exists where:

• For any claw (x0,x1) ∈ Rk with image y ∈ Supp(f ′k,b(xb)) it holds that
InvF (td, b, y) = xb as well as InvF (td, b⊕ 1, y) = xb⊕1.

• There exists an efficient deterministic algorithm ChkF where on input k ∈ K,
b ∈ {0, 1}, x ∈ X , y ∈ Y, it outputs 1 if y ∈ Supp(f ′k,b(x)) and 0 otherwise.

• For all k ∈ K, b ∈ {0, 1}, we have Ex←X [H2(fk,b(x), f
′
k,b(x))] ≤ negl(λ). In

addition, there exists a QPT algorithm SampF such that on input k ∈ K and
b ∈ {0, 1} outputs the following quantum state.

|ψ′⟩ = 1√
|X |

∑
x∈X ,y∈Y

√
(f ′k,b(x))(y)|x⟩|y⟩.

Given |ψ⟩ = 1√
|X |

∑
x∈X ,y∈Y

√
(fk,b(x))(y)|x⟩|y⟩, Lemma 3.1 implies that

∥|ψ⟩⟨ψ| − |ψ′⟩⟨ψ′|∥tr ≤ negl(λ).

Adaptive Hardcore Bit: For all keys k ∈ K and a polynomial ℓ(λ):

• For all b ∈ {0, 1}, x ∈ X , there exists a subset of strings Gk,b,x ⊆ {0, 1}ℓ(λ)
such that Prd←{0,1}ℓ(λ) [d /∈ Gk,b,x] ≤ negl(λ). Moreover, there exists a PPT
algorithm to efficiently check membership in Gk,b,x given k, b,x and td.
• There exists an efficiently computable injection J : X → {0, 1}ℓ(λ) such that
J can also be efficiently inverted on its range, and the following holds. Let

Hk := {(b,xb, d, d · (J(x0)⊕ J(x1))|(x0,x1) ∈ Rk, d ∈ Gk,0,x ∩ Gk,1,x},
H̄k := {(b,xb, d,u⊕ 1)|(b,xb, d,u) ∈ Hk}.

For any QPT algorithm A it holds that∣∣∣∣ Pr
td,k←NTCF.Gen(1λ)

[A(k) ∈ Hk]− Pr
td,k←NTCF.Gen(1λ)

[A(k) ∈ H̄k]

∣∣∣∣ ≤ negl(λ).
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Theorem 3.4. [BCM+18] Assuming the polynomial-time quantum hardness of
LWE, there exists an NTCF hash function family.

One can consider an amplified adaptive hardcore bit property such that the
adversary cannot return a set {(bi,xi,bi , di,ui)}i∈[n] where n is polynomial in the
security parameter λ, and each tuple satisfies di · (xi,bi ⊕xi,1−bi) = ui, such that
(xi,bi ,xi,1−bi) is a claw. The property is formally defined as follows.

Definition 3.3. (Amplified Adaptive Hardcore Bit) An NTCF function
family F satisfies the amplified adaptive hardcore bit property if, for any QPT
algorithm A and a polynomial n = ℓ(λ), the following is at most negl(λ).

Pr

 ∀i ∈ [n] : (ki, tdi)← NTCF.Gen(1λ)
{(bi,xi,bi , di,ui)}i∈[n] ← A({ki}i∈[n])
∀β ∈ {0, 1} : xi,β = Inv(tdi,β, yi)

:
∀i ∈ [n] : di ∈ Gk,0,x ∩ Gk,1,x

∧
ui = di · (J(xi,0)⊕ J(xi,1))


Theorem 3.5. [RS19,KNY21] Any NTCF family of hash functions satisfies the
amplified adaptive hardcore bit property.

We also note that recently Morimae et al. [MPY24] introduced a similar
notion of adaptive hardcore bit property for general OWFs, beyond those based
on the LWE assumption, and showed the following result.

Theorem 3.6. [MPY24] Let ℓ(λ),κ(λ),n(λ) ∈ N be polynomials. Given any
quantum-secure OWF f : {0, 1}ℓ(λ) → {0, 1}κ(λ), for any QPT adversary A,

Pr

 ∀i ∈ [n] : xi,0,xi,1 ← {0, 1}ℓ(λ),ui ← {0, 1}
{(xi, di)}i∈[n] ← A(⊗i∈[n]

|xi,0⟩+(−1)ui |xi,1⟩√
2

, {f(xi,b)}i,b)

:
∧i∈[n]f(xi) ∈ {f(xi,0), f(xi,1)}

∧
∧i∈[n]di · (xi,0 ⊕ xi,1) = ui

 ≤ negl(λ).

3.3 Other Useful Cryptographic Primitives and Lemmas

We recall the notion of commitment schemes, which is a central building block
for our NIZK-CD constructions throughout this paper.

Definition 3.4. (Commitment) Let n(λ), ℓ(λ),κ(λ) be polynomials. Λ is a
post-quantum commitment scheme in the CRS model if it satisfies the following.

• crs, td← Setup(1λ) : on input λ, outputs crs and trapdoor td.
• c ← Com(crs,m, r): on input crs, a message m ∈ {0, 1}n(λ), commitment

randomness r ∈ {0, 1}ℓ(λ), outputs a commitment c ∈ {0, 1}κ(λ).
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Perfectly Binding: For every security parameter λ ∈ N, crs, td ← Setup(1λ),
and m,m′, r, r′ such that m ̸= m′, it holds that Com(crs,m, r) ̸= Com(crs,m′, r′).

Computational Hiding: For any QPT distinguisher D and sufficiently large
λ ∈ N, crs, td← Setup(1λ), m,m′ ∈ {0, 1}n(λ), the following is, at most, negl(λ).∣∣∣∣Pr [ r ← {0, 1}κ(λ)

c← Com(crs,m, r)
: D(crs, c) = 1

]
− Pr

[
r ← {0, 1}κ(λ)

c′ ← Com(crs,m′, r)
: D(crs, c′) = 1

]∣∣∣∣
Theorem 3.7. [DCIO98,HILL99] Assuming post-quantum one-way functions,
there exists a post-quantum, classical, non-interactive, perfectly binding, and
computationally hiding bit-commitment scheme in the CRS model.

Theorem 3.8. [PS19] Assuming polynomial hardness of learning-with-errors,
there exists a post-quantum, classical, non-interactive, perfectly binding, and
computationally hiding commitment scheme in the CRS model.

We also recall the notion of compute-and-compare obfuscation [CLLZ21],
which we use for our NIZK-CD construction with publicly verifiable certificates.

Definition 3.5. (Compute-and-Compare Program) Given some function
P : {0, 1}ℓin → {0, 1}ℓout along with a target value lock ∈ {0, 1}ℓout and a message
z ∈ {0, 1}ℓmsg , we define the compute-and-compare program as follows.

CC[P , lock, z](x) =

{
z, P (x) = lock,

⊥, Otherwise.

Definition 3.6. (Unpredictable Distributions) D = {Dλ}λ∈N is a family of
distributions where Dλ is a distribution over pairs of form (CC[P , lock, z], aux)
where aux is a quantum state. D is unpredictable if for all QPT algorithms A,

Pr
(CC[P ,lock,z],aux)←Dλ

[A(P , aux) = lock] ≤ negl(λ).

Definition 3.7. (Compute-and-Compare Obfuscation) A PPT algorithm
CC.Obf is an obfuscator for the class of unpredictable distributions if for any
family of distributions D = {Dλ} belonging to the class, the following holds.

Functionality Preserving: For every program P in the support of Dλ,

Pr[P̃ ← CC.Obf(P ) : ∀x,P (x) = P̃ (x)] ≥ 1− negl(λ).

Distributional Indistinguishability: For every program P in the support of
Dλ, there exists an efficient simulator Sim such that we have

(CC.Obf(P ), aux) ≈c (Sim(P .params), aux),

where (P , aux) ← Dλ, and P .params denotes the input size, output size, and
circuit size of P , which are not required to be obfuscated.
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Theorem 3.9. [WZ17] There exists a compute-and-compare obfuscation scheme
assuming polynomial quantum hardness of learning-with-errors.

We recall the notion of non-interactive zero-knowledge (NIZK) arguments in
the CRS model. We provide two definitions of NIZK as follows. The first one is a
single-theorem definition and ensures that no efficient adversary can output an
accepting proof for any unsatisfied instance. The second one is a multi-theorem
definition and ensures that from any efficient adversary that can output an
accepting proof, one can extract a valid witness to the relation.

Definition 3.8. (NIZK for NP) Let any NP relation R with a corresponding
language L. Π = ⟨Setup,Prove,Verify⟩ is a post-quantum NIZK for NP in the
CRS model if it satisfies the following syntax and the security properties.

• crs, td← Setup(1λ) : on input λ, outputs crs and a trapdoor td.
• π ← Prove(crs,x,w) : on input crs and a pair (x,w) ∈ R, outputs a proof π.
• {0, 1} ← Verify(crs,x,π) : on input crs, x, and π, outputs accept 1 or reject 0.

Completeness: For every security parameter λ ∈ N and (x,w) ∈ R,

Pr

[
crs, td← Setup(1λ)
π ← Prove(crs,x,w)

: Verify(crs,x,π)

]
≥ 1− negl(λ).

Adaptive Computational Soundness: For any QPT adversary algorithm A
and sufficiently large security parameter λ,

Pr

[
crs, td← Setup(1λ)
x,π ← A(crs) : Verify(crs,x,π) = 1 ∧ x /∈ L

]
≤ negl(λ).

Adaptive Computational Zero-Knowledge: There exists a QPT simulator
Sim = (Sim0,Sim1) where for every QPT adversary A, every QPT distinguisher
D, and sufficiently large λ ∈ N,∣∣∣∣∣Pr

 crs, td← Setup(1λ)
x,w, ξ ← A(crs)

π ← Prove(crs,x,w)
: D(crs,x,π, ξ) = 1

−
Pr

 crs, td← Sim0(1
λ)

x,w, ξ ← A(crs)
π ← Sim1(crs, td,x)

: D(crs,x,π, ξ) = 1

 ∣∣∣∣∣ ≤ negl(λ).

Theorem 3.10. [PS19] Assuming polynomial quantum hardness of LWE, there
exists a post-quantum non-interactive, adaptively computationally sound, and
adaptively computationally zero-knowledge argument for NP.

Definition 3.9. (Simulation-Extractable NIZK for NP) Let relation R
with language L be any NP relation. Π = ⟨Setup,Prove,Verify⟩ is a post-quantum
non-interactive simulation-extractable, and adaptive multi-theorem computational
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zero-knowledge protocol for NP in the CRS model if it is satisfies the completeness
as in Definition 3.8 and the following additional properties.

Adaptive Multi-Theorem Computational Zero-Knowledge: There exists
QPT simulator Sim = (Sim0,Sim1), such that for any QPT adversary algorithm
A and sufficiently large λ ∈ N,∣∣∣Pr [crs, td← Setup(1λ) : AProve(crs,·,·)(crs) = 1

]
−

Pr
[
crs, td← Sim0(1

λ) : ASim1(crs,td,·)(crs) = 1
] ∣∣∣ ≤ negl(λ).

Simulation Soundness: Let Sim = (Sim0,Sim1) be the simulator given by the
adaptive multi-theorem computational zero-knowledge. For every QPT algorithm
A and sufficiently large λ ∈ N,

Pr

[
crs, td← Sim0(1

λ)
x,π ← ASim1(crs,td,·)(crs)

: Verify(crs,x,π) = 1 ∧ x /∈ L ∧ x /∈ Q
]
≤ negl(λ),

where Q is the list of queries from A to Sim1.

Simulation Extractability: Let Sim = (Sim0,Sim1) be the simulator given by
the adaptive multi-theorem computational zero-knowledge property. There exists
a QPT extractor Ext such that for every QPT algorithm A and sufficiently large
λ ∈ N, the following probability is, at most, negligible.

Pr

 crs, td← Sim0(1
λ)

x,π ← ASim1(crs,td,·)(crs)
w ← Ext(crs, td,x,π)

: Verify(crs,x,π) = 1 ∧ (x,w) /∈ R ∧ x /∈ Q

 ,

where Q is the list of queries from A to Sim1.

Remark 3.1. [FLS90,Sah99,SCO+01,JK23] It is known that a multi-theorem
simulation-extractable NIZK, i.e., Definition 3.9, satisfies Definition 3.8 since
adaptive multi-theorem zero-knowledge implies adaptive zero-knowledge, and
simulation-soundness implies adaptive computational soundness. Moreover, one
can show that the simulation extractability implies simulation soundness.

Theorem 3.11. [SCO+01,JK23] Given a quantum-secure one-way function and
a post-quantum IND-CPA secure encryption scheme, any post-quantum NIZK
for NP can be turned into a post-quantum non-interactive simulation-extractable,
adaptively multi-theorem computationally zero-knowledge for NP.

Corollary 3.1. Assuming polynomial quantum hardness of learning-with-errors,
a post-quantum non-interactive, simulation-extractable, adaptively multi-theorem
computationally zero-knowledge argument for NP exists.

Proof. This follows from Theorems 3.10 and 3.11.

Finally, we provide the cryptographic definition of the signature of knowledge.
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Definition 3.10. (Signature of Knowledge) Let R be an NP relation with
language L and message space M. Σ = ⟨Setup,Sign,Verify⟩ is a post-quantum
SimExt-secure signature of knowledge if the below syntax and properties hold.

• crs, td← Setup(1λ) : on input λ, outputs a crs and trapdoor td.
• σ ← Sign(crs,x,w,m) : on input crs, pair (x,w) ∈ R, and message m ∈ M,

outputs a signature of knowledge σ to the message m.
• {0, 1} ← Verify(crs,x,m,σ) : on input crs, x, m, and σ, accepts or rejects.

Correctness: For every λ ∈ N, pair (x,w) ∈ R and message m ∈M,

Pr

[
crs, td← Setup(1λ)
σ ← Sign(crs,x,w,m)

: Verify(crs,x,m,σ) = 1

]
≥ 1− negl(λ).

Simulation: There exist a QPT simulator algorithm Sim = (Sim0,Sim1) such
that for every QPT algorithm A and sufficiently large λ ∈ N,∣∣∣Pr [crs← Setup(1λ) : ASign(crs,·,·,·)(crs) = 1

]
−

Pr
[
crs, td← Sim0(1

λ) : ASim1(crs,td,·,·)(crs) = 1
] ∣∣∣ ≤ negl(λ).

Extraction: Let Sim = (Sim0,Sim1) be the simulators given by the simulation
property. There exist a QPT extractor algorithm Ext such that for every QPT
algorithm A and sufficiently large λ ∈ N,

Pr

 crs, td← Sim0(1
λ)

x,m,σ ← ASim1(crs,td,·,·)(crs)
w ← Ext(crs, td,x,m,σ)

:
Verify(crs,x,m,σ) = 1
∧ (x,w) /∈ R ∧ (x,m) /∈ Q

 ≤ negl(λ).

where Q is the list of queries from A to Sim1.

Theorem 3.12. [CL06,JK23] Given post-quantum non-interactive simulation
extractable multi-theorem zero-knowledge for NP, a post-quantum SimExt-secure
signature of knowledge exists.

4 NIZK with Certified Deletion

In this section, we introduce the notion of a non-interactive zero-knowledge with
certified deletion (NIZK-CD) and define its security properties. In particular,
we provide two different definitions of NIZK-CD. The first one is motivated by
simplicity, establishes a single-theorem NIZK-CD, where we guarantee that no
computationally-bounded adversary receiving honestly generated proofs for hard
NP instances can output both an accepting proof and a valid deletion certificate.
In the second definition, we present a multi-theorem NIZK-CD with a guarantee
that from any adversary, even having the oracle access to NIZK-CD simulators,
returning both an accepting proof and a valid deletion certificate for a hard NP
instances, one can extract a satisfying witness corresponding to the instance.
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Definition 4.1. (Hard Distribution) Given an NP relation R, an efficiently
samplable distribution (X ,W) over R is hard if for every QPT algorithm A and
sufficiently large security parameter λ,

Pr[(x,w)← (X ,W) : (x,A(x)) ∈ R] ≤ negl(λ).

Definition 4.2. (NIZK with Certified Deletion) Let any NP relation R
with language L. Γ = ⟨Setup,Prove,Verify,Delete,Certify⟩ is a NIZK-CD if it
satisfies the following syntax and properties.

• crs, td← Setup(1λ): on input λ, outputs a classical crs and trapdoor td.
• π, ck← Prove(crs,x,w): on input crs and an instance-witness pair (x,w) ∈ R,

outputs a quantum proof π and a classical certification key ck.
• {0, 1} ← Verify(crs,x,π): on input crs, x, and π, outputs accept or reject.
• cert← Delete(π): on input π, outputs a classical deletion certificate cert.
• {0, 1} ← Certify(ck, cert): on input ck and cert, outputs accept or reject.

Completeness: For every λ ∈ N and every (x,w) ∈ R,

Pr

 crs, td← Setup(1λ)
π, ck← Prove(crs,x,w)

cert← Delete(π)
:

Verify(crs,x,π) = 1
∧

Certify(ck, cert) = 1

 ≥ 1− negl(λ).

Adaptive Computational Soundness: For every QPT algorithm A and a
sufficiently large security parameter λ,

Pr

[
crs, td← Setup(1λ)
x,π ← A(crs) : Verify(crs,x,π) = 1 ∧ x /∈ L

]
≤ negl(λ).

Adaptive Computational Zero-Knowledge: There exists a QPT algorithm
Sim = (Sim0,Sim1) such that for every QPT algorithm A, QPT distinguisher D,
sufficiently large λ, the following is, at most, negl(λ).∣∣∣∣∣Pr

[
crs, td← Setup(1λ)
x,w, ξ ← A(crs)

π, ck← Prove(crs,x,w)
: D(crs,x,π, ξ) = 1

]
−

Pr

[ crs, td← Sim0(1
λ)

x,w, ξ ← A(crs)
π, ck← Sim1(crs, td,x)

: D(crs,x,π, ξ) = 1

]∣∣∣∣∣ ≤ negl(λ).

Deletion Security: For every QPT algorithm A, sufficiently large λ, and hard
distribution (X ,W) over R,

Pr


crs, td← Setup(1λ)
(x,w)← (X ,W)

π, ck← Prove(crs,x,w)
π∗, cert← A(crs,x,π)

:
Verify(crs,x,π∗) = 1

∧
Certify(ck, cert) = 1

 ≤ negl(λ).
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We present the definition of multi-theorem simulation-extractable NIZK-CD.

Definition 4.3. (Simulation-Extractable NIZK with Certified Deletion)
Let R be an NP relation with language L. Γ = ⟨Setup,Prove,Verify,Delete,Certify⟩
is a non-interactive simulation-extractable, adaptive multi-theorem computational
zero-knowledge with certified deletion if satisfies completeness as in Definition 4.2
and the following zero-knowledge, extraction, and deletion properties.

Adaptive Multi-Theorem Computational Zero-Knowledge: There exists
QPT simulator algorithm Sim = (Sim0,Sim1) such that for every QPT algorithm
A and sufficiently large λ ∈ N,∣∣∣Pr [crs, td← Setup(1λ) : AProve(crs,·,·)(crs) = 1

]
−

Pr
[
crs, td← Sim0(1

λ) : ASim1(crs,td,·)(crs) = 1
] ∣∣∣ ≤ negl(λ),

where A only receives proofs from the oracles, and certifying keys are discarded.

Simulation Extractability: Let Sim = (Sim0,Sim1) be the simulator given
by the adaptive multi-theorem computational zero-knowledge property. A QPT
extractor Ext exists where for any QPT adversary A and sufficiently large λ ∈ N,

Pr

 (crs, td)← Sim0(1
λ)

(x,π)← ASim1(crs,td,·)(crs)
w ← Ext(crs, td,x,π)

:
Verify(crs,x,π) = 1
∧(x,w) /∈ R ∧ x /∈ Q

 ≤ negl(λ),

where Q is the list of queries from A to Sim1.

Simulation Extractability with Deletion: Let Sim = (Sim0,Sim1) be the
simulator given by adaptive multi-theorem computational zero-knowledge. There
exists a QPT extractor Ext-Del such that for every QPT algorithm A = (A0,A1)
and every sufficiently large λ ∈ N,

Pr


crs, td← Sim0(1

λ)

x, ξ ← ASim1(crs,td,·)
0 (crs)

π, ck← Sim1(crs, td,x)

π∗, cert← ASim1(crs,td,·)
1 (crs, ξ,x,π)

w ← Ext-Del(crs, td,x,π∗, cert)

:

Verify(crs,x,π∗) = 1
∧

[Certify(ck, cert) = 1 ∨ (x,w) /∈ R] ∧ x /∈ Q

 ≤ negl(λ),

where Q is the list of queries, and A only receives the proof from the oracle Sim1.

Remark 4.1. We remark that in NIZK-CD constructions with publicly verifiable
deletion certificates, where the certification key ck is made public, the adversary,
distinguisher, and extractor algorithms in the above definitions take ck as input.

19



Remark 4.2. In our constructions, Setup and Certify are classical while Prove,
Verify, and Delete are quantum algorithms. Moreover, the Prove algorithm might
be interactive between a classical prover and a quantum verifier, i.e., the prover
remotely prepares required quantum states in the verifier’s device.

We note that the connection between different notions of zero-knowledge,
soundness, and extraction for NIZK arguments that are described in Remark 3.1
also holds for NIZK-CD. The following states that the simulation extractability
with deletion implies both simulation extractibility and deletion security.

Theorem 4.1. Simulation extractability with deletion defined in Definition 4.3
implies simulation extractibility as defined in Definition 4.3 and deletion security
as defined in Definition 4.2.

Proof. First, consider an adversary B that breaks simulation extractibility with a
non-negligible advantage. One can build an adversary A = (A0,A1) that breaks
simulation extractibility with deletion with the same advantage. In particular,
A0 runs B to get an instance x and a corresponding proof π∗. The instance x
is submitted to the simulator Sim1, and π∗ is included in ξ. The algorithm A1

receives a proof π from Sim1, which can be deleted to generate a valid deletion
certificate cert. Afterwards, A1 can return produced cert as a valid certificate
and π∗ included in ξ as an accepting proof corresponding to the instance x.

Similarly, consider an adversary B that can break the deletion security with
a non-negligible advantage. One can build an adversary A = (A0,A1) where
A0 samples a hard instance x, submitted to Sim1. A1 receives a proof π for the
instance x from the oracle. Then, A1 runs B on input x and π to get a valid
deletion certificate and an accepting transcript where the success probability is
the same as the advantage of the adversary algorithm B.

5 NIZK with Certified Deletion from OWF

In this section, we propose our NIZK-CD construction from one-way functions.

Theorem 5.1. Assuming post-quantum one-way function and also post-quantum
non-interactive simulation-extractable, adaptively multi-theorem computationally
zero-knowledge for NP, there exists a non-interactive, simulation-extractable,
adaptive multi-theorem zero-knowledge with certified deletion.

Proof. Let Λ = ⟨Setup,Com⟩ be a post-quantum bit-commitment, which can be
realized from OWFs as described in Section 3.3. LetΠ = ⟨Setup,Prove,Verify⟩ be
a non-interactive, simulation-extractable, adaptive multi-theorem computational
zero-knowledge. Our NIZK-CD construction is as follows.

• crs, td ← Setup(1λ): Runs crsΛ, tdΛ ← Λ.Setup(1λ), crsΠ , tdΠ ← Π.Setup(1λ)
and outputs crs := (crsΛ, crsΠ) and td := (tdΛ, tdΠ).
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• π, ck ← Prove(crs,x,w): Let n = ν(λ) be a polynomial in λ. Prover samples
ri,b ← {0, 1}ℓ(λ), ∀i ∈ [n], b ∈ {0, 1}, computes ci,b = Λ.Com(crsΛ, b, ri,b).
Given x∗ := (x, {ci,b}i∈[n],b∈{0,1}) with witness w∗ := (w, {ri,b}i∈[n],b∈{0,1}),
invokes Π.Prove(crsΠ ,x∗,w∗) and generates a NIZK proof σ for R∗ defined as

(x,w) ∈ R
∧
i∈[n]

∨b∈{0,1} ci,b = Λ.Com(crsΛ, 1− b, ri,b). (1)

Given uniform bits ui ← {0, 1} for all i ∈ [n], the following state is prepared.

|ψ⟩ :=
⊗
i∈[n]

1√
2
(|0⟩|ri,0⟩+ (−1)ui |1⟩|ri,1⟩) (2)

It outputs π := {ci,b}i∈[n],b∈{0,1},σ, |ψ⟩ and ck = {ui, ri,b}i∈[n],b∈{0,1}.

• {0, 1} ← Verify(crs,x,π): The verifier parses π as {ci,b}i∈[n],b∈{0,1},σ, |ψ⟩ and
runs vσ ← Π.Verify(crsΠ ,x∗,σ), where x∗ := (x, {ci,b}i∈[n],b∈{0,1}). Let U com

c0,c1
be a unitary operation with respect to c0 and c1 as follows.

|b⟩|r⟩|0⟩
U com

c0,c1−−−−→ |b⟩|r⟩|Cmt− Cmp(b, r, cb)⟩, (3)

where the commit-and-compare function is defined as below.

Cmt− Cmp(b, r, cb) =

{
1, Λ.Com(crsΛ, b, r) = cb

0, Otherwise
(4)

The verifier adds ancilla qubits, and applies U =
⊗

i∈[n] U
com
ci,0,ci,1 to |ψ⟩,

U−→
⊗
i∈[n]

1√
2
(|0⟩|ri,0⟩|Cmt− Cmp(0, ri,0, ci,0)⟩

+ (−1)ui |1⟩|ri,1⟩|Cmt− Cmp(1, ri,1, ci,1)⟩). (5)

Then, the verifier for all i ∈ [n], measures the right-most registers to get bits
vi = Cmt− Cmp(0, ri,0, ci,0). The verification outcome is vout = vσ ∧

∧
i∈[n] vi,

where vout = 1 indicates accept and vout = 0 indicates reject.

• cert← Delete(π): The verifier parses π as {ci,b}i∈[n],b∈{0,1},σ, |ψ⟩ =
⊗

i∈[n]|ψi⟩
such that |ψi⟩ =

∑
b∈{0,1}

1√
2
(−1)b·ui |b⟩|ri,b⟩. For all i ∈ [n], it measures each

state |ψi⟩ in the Hadamard basis, yielding an outcome string di ∈ {0, 1}ℓ(λ)
such that it holds di · (ri,0 ⊕ ri,1) = ui. We define cert := {di}i∈[n].

• {0, 1} ← Certify(ck, cert): The prover parses ck as {ui, ri,b}i∈[n],b∈{0,1} and cert
as {di}i∈[n], validates whether for all i ∈ [n] it holds di · (ri,0 ⊕ ri,1) = ui.

Next, we prove perfect completeness, adaptive multi-theorem computational
zero-knowledge, and simulation extractability with deletion, which are borrowed
from completeness, multi-theorem zero-knowledge, simulation extractability of
Π, as well as the post-quantum security of the commitment scheme Λ.

21



Completeness: The completeness property is shown with respect to both proof
verification and certificate validation. Consider the former case. Following the
perfect completeness of Π, we ensure that the proof σ is accepting and vσ = 1
with a probability of 1. Then, it suffices to show that for all i ∈ [n], vi = 1. As
the commitment algorithm Λ.Com is deterministic, and the commitments are
honestly generated by the prover, i.e., ci = Λ.Com(crsΛ, bi, ri,b), we ensure that
for all i ∈ [n] and b ∈ {0, 1} we have Cmt− Cmp(bi, ri,b, ci,b) = 1. Therefore, the
bit vi is measured to one with a probability of 1. Second, consider completeness
with respect to deletion. We parse the sate |ψ⟩ as

⊗
i∈[n]|ψi⟩, such that we

have |ψi⟩ =
∑

b∈{0,1}
1√
2
(−1)b·ui |b⟩|ri,b⟩. The verifier measures each |ψi⟩ in the

Hadamard basis, which yields an outcome string di ∈ {0, 1}ℓ(λ), and it holds
that ui = di · (ri,0 ⊕ ri,1). Hence, the Certify algorithm always accepts cert.

Adaptive Multi-Theorem Computational Zero-Knowledge: Consider the
Π.Sim = (Π.Sim0,Π.Sim1) as the simulators ofΠ. We show Sim = (Sim0,Sim1)
for adaptive multi-theorem computational zero-knowledge of our construction.

• crs, td ← Sim0(1
λ) : Runs crsΛ, tdΛ ← Λ.Setup(1λ), crsΠ , tdΠ ← Π.Setup(1λ)

and outputs crs := (crsΛ, crsΠ) and td := (tdΛ, tdΠ).

• π, ck← Sim1(crs, td,x) : Samples randomnesses r′i,b ← {0, 1}ℓ(λ) and computes
c′i,b = Λ.Com(crsΛ, b, r

′
i,b) the ∀i ∈ [n], b ∈ {0, 1}. x∗ := (x, {c′i,b}i∈[n],b∈{0,1}).

The the algorithm query Π.Sim1 on input x∗ to get the simulated NIZK σ′.
Then, it samples bits u′i ← {0, 1} and prepares |ψ′⟩ as defined in Equation 2.
It outputs π := {c′i,b}i∈[n],b∈{0,1},σ′, |ψ′⟩ and ck = {u′i, r′i,b}i∈[n],b∈{0,1}.

Reduction: Suppose that there exists a QPT adversary algorithm A such that
for some polynomial p(λ),∣∣∣Pr [crs, td← Setup(1λ) : AProve(crs,·,·)(crs) = 1

]
−

Pr
[
crs, td← Sim0(1

λ) : ASim1(crs,td,·)(crs) = 1
] ∣∣∣ ≥ 1

p(λ)
.

We construct a QPT adversary B for the adaptive multi-theorem computational
zero-knowledge property of the underlying NIZK Π as follows.

1. Receives crs from Π.Setup and Λ.Setup or Π.Sim0 and sends it to A.

2. On query (x,w), samples ri,b ← {0, 1}ℓ(λ), gets ci,b = Λ.Com(crsΛ, b, ri,b) for
all i ∈ [n] and b ∈ {0, 1}. Then, given instance x∗ := (x, {ci,b}i∈[n],b∈{0,1})
and witness w∗ := (w, {ri,b}i∈[n],b∈{0,1}) receive the real or simulated proof
σ by query either Prove on input (x∗,w∗) or Π.Sim1 on input x∗. Moreover,
samples bits ui ← {0, 1} and prepares |ψ⟩ as defined in Equation 2. The
proof π = {ci,b}i∈[n],b∈{0,1},σ, |ψ⟩ is sent to the adversary algorithm A.

3. Output the outcome of A.
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As commitment randomnesses {ri,b}i∈[n],b∈{0,1} and exponents {ui}i∈[n],b∈{0,1}
are uniformly sampled, the real and simulated quantum states, i.e., |ψ⟩ and
|ψ′⟩, respectively, are statistically indistinguishable. Moreover, computational
hiding of the commitment scheme Λ ensures that two sets {ci,b}i∈[n],b∈{0,1} and
{c′i,b}i∈[n],b∈{0,1} are computationally indistinguishable. Thus, B has a similar
non-negligible polynomial advantage to A at breaking adaptive multi-theorem
computational zero-knowledge of Π, i.e., with probability of 1

p(λ) − negl(λ).

Simulation Extractability with Deletion: One can view the commitment
algorithm Λ.Com : {0, 1}ℓ(λ)+1 as one-way function. Assume that there exists an
adversary that, on input Λ.Com(crsΛ, b, r), can invert the function and extract
b and r with a non-negligible probability. Then, the adversary can break the
hiding property with the same advantage. Lemma 3.6 then implies for any A,

Pr

 ∀i ∈ [n] : ri,0, ri,1 ← {0, 1}ℓ(λ),ui ← {0, 1}
∀i ∈ [n] : ci,0 = Λ.Com(crsΛ, 0, ri,0) ∧ ci,1 = Λ.Com(crsΛ, 1, ri,1)

{(bi, ri, di)}i∈[n] ← A(⊗i∈[n]
|0,ri,0⟩+(−1)ui |1,ri,1⟩√

2
, {ci,b}i,b)

:

∧i∈[n]Λ.Com(crsΛ, bi, ri) ∈ {ci,0, ci,1}
∧

∧i∈[n]di · (ri,0 ⊕ ri,1) = ui

 ≤ negl(λ). (6)

Let Π.Sim = (Π.Sim0,Π.Sim1) be the simulators of Π and Sim = (Sim0,Sim1)
be the simulators of our construction given by the corresponding multi-theorem
zero-knowledge property. Let Π.Ext be the extractor given by the simulation
extractibility of Π. We show the algorithm Ext-Del, which satisfies simulation
extractibility with deletion for our NIZK-CD construction as follows.

1. On input crs, td, x, π, and cert, parses the proof π as {ci,b}i∈[n],b∈{0,1},σ, |ψ⟩.
2. Queries Π.Ext on input x∗ and σ and receives the witness w∗.
3. Outputs w∗ as w.

Reduction: Consider the case that simulation extractibility with deletion does
not hold, i.e., there exists a QPT adversary algorithm A = (A0,A1) such that
given the extractor Ext-Del, and some polynomial p(λ),

Pr


crs, td← Sim0(1

λ)

x, ξ ← ASim1(crs,td,·)
0 (crs)

π, ck← Sim1(crs, td,x)

π∗, cert← ASim1(crs,td,·)
1 (crs, ξ,x,π)

w ← Ext-Del(crs, td,x,π∗, cert)

:

Verify(crs,x,π∗) = 1
∧

[Certify(ck, cert) = 1 ∨ (x,w) /∈ R] ∧ x /∈ Q

 ≥ 1

p(λ)
,
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where Q is the list of queries from A to Sim1, and A only receives the proof
from the oracle Sim1. Since Sim1 forwards queries to Π.Sim1, we know that x∗ is
not queried to Π.Sim1. We parse the proof π∗ as {ci,b}i∈[n],b∈{0,1},σ, |ψ⟩. Since
Verify(crs,x,π∗) = 1, we conclude vσ = Π.Verify(crsΠ ,x∗,σ) = 1. The witness
w∗ returned by Π.Ext is a valid witness to R∗ as defined in Equation 1, except for
a negligible probability. Then w∗ must include at least one of either w such that
(x,w) ∈ R or {ri}i∈[n] s.t. ci,0 = Λ.Com(crsΛ, 1, ri) or ci,1 = Λ.Com(crsΛ, 0, ri).
Since the simulator Sim1 generates ci,b as a commitment to message b and the
commitment scheme is perfectly binding, the latter case cannot happen. Thus,
w∗ must include a satisfying witness w. Then, as (x,w) ∈ R, the adversary
needs to output a valid deletion certificate cert = {di}i∈[n] to pass the above
experiment where as Certify(ck, cert) = 1, i.e., for all i ∈ [n], di · (ri,0⊕ ri,1) = ui.

On the other hand, since Verify(crs,x,π∗) = 1, we can conclude that the
measurement outcomes are accepted, i.e., vi = 1 for all i ∈ [n]. According
to the definition of the unitary operation U in Equation 3, a measurement
of |ψ⟩ in the standard basis yields {ri}i∈[n] s.t. ci,0 = Λ.Com(crsΛ, 0, ri) or
ci,1 = Λ.Com(crsΛ, 1, ri), which contradicts the adaptive hardcore bit property.

More precisely, we can build an adversary algorithm B to break the adaptive
hardcore bit property of the commitment, such that on input {ci,b}i∈[n],b∈{0,1},
|ψ⟩ = ⊗i∈[n]

|ri,0⟩+(−1)ui |ri,1⟩√
2

, for an instance x, queries x∗ = (x, {ci,b}i∈[n],b∈{0,1})
to Π.Sim1 and get a simulated proof σ, generates π := (x∗,σ, {ci,b}i∈[n],b∈{0,1}),
and queries (x,π) to A1 to receive an accepting proof π∗ and a valid deletion
certificate cert. Then, B can parse π∗ as {c′i,b}i∈[n],b∈{0,1},σ′, |ψ′⟩ and cert as
{di}i∈[n]. A measurement of |ψ′⟩ in the standard basis yields {ri}i∈[n] such that
either ci,0 = Λ.Com(crsΛ, 0, ri) or ci,1 = Λ.Com(crsΛ, 1, ri). Also, di ·(ri,0⊕ri,1) =
ui. Therefore, B can return {(bi, ri, di)}i∈[n] to pass the experiment. In summary,
having A one can attack to either the simulation extractability of Π or to the
adaptive hardcore bit property of Λ with advantage of ≥ 1

p(λ) − negl(λ).

6 NIZKs with Certified Deletion from LWE

In this section, we show that our NIZK-CD constructions from LWE.

6.1 NIZK-CD with Public Verifiability

Here, we present NIZK-CD with publicly verifiable deletion certificates.

Theorem 6.1. Assuming polynomial quantum hardness of LWE and given any
post-quantum non-interactive simulation-extractable, adaptively multi-theorem
computationally zero-knowledge for NP, a non-interactive simulation-extractable,
adaptive multi-theorem computational zero-knowledge with certified deletion do
exists where deletion certificates are publicly verifiable.
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Proof. We know that assuming the quantum hardness of LWE, there exists a
compute-and-compare obfuscation scheme [WZ17], which we denote by CC.Obf.
Let Λ = ⟨Setup,Com⟩ be a post-quantum commitment with non-interactivity,
perfect binding, and computational hiding properties, which can be realized
from LWE [PS19]. Moreover, let Π = ⟨Setup,Prove,Verify⟩ is a non-interactive
simulation-extractable, adaptive multi-theorem computational zero-knowledge.
An NIZK-CD scheme with publicly verifiable deletion certificates is as follows.

• crs, td ← Setup(1λ): Runs crsΛ, tdΛ ← Λ.Setup(1λ), crsΠ , tdΠ ← Π.Setup(1λ)
and outputs crs := (crsΛ, crsΠ) and td := (tdΛ, tdΠ).

• π, ck← Prove(crs,x,w): Let n = ν(λ) be a polynomial in λ. Proof generation
proceeds similar to Section 5. The prover generates ci,b = Λ.Com(crsΛ, b, ri,b)
for all i ∈ [n] and b ∈ {0, 1}. Given x∗ := (x, {ci,b}i∈[n],b∈{0,1}) and witness
w∗ := (w, {ri,b}i∈[n],b∈{0,1}), it runs Π.Prove(crsΠ ,x∗,w∗) and generates a
NIZK σ for R∗, as defined in Equation 1. Let π := ({ci,b}i∈[n],b∈{0,1},σ, |ψ⟩),
where |ψ⟩ is defined as Equation 2. The only difference is the certification key.
Consider I as a function with hard-coded values {ri,b}i∈[n],b∈{0,1}; on input
{di}i∈[n] it evaluates wi = di · (ri,0⊕ri,1) and outputs w = w0w1 . . . wn. Given
a target value lock := u0u1 . . . un, the prover computes Ĩ := CC.Obf[I, lock, 1]
and outputs the certification key ck := Ĩ. This key ck can be made public.

• {0, 1} ← Verify(crs,x,π): The verifier first runs vσ ← Π.Verify(crsΠ ,x∗,σ).
Then, the state defined in Equation 5 is prepared, the verifier for all i ∈ [n],
measures vi = Cmt− Cmp(0, ri,0, ci,0), and the outcome is v = vσ ∧

∧
i∈[n] vi.

• cert ← Delete(π): The proof π is parsed as {ci,b}i∈[n],b∈{0,1},σ, |ψ⟩ and the
state |ψ⟩ as

⊗
i∈[n]|ψi⟩ such that |ψi⟩ =

∑
b∈{0,1}

1
2 |b⟩|ri,b⟩. The verifier then

measures each |ψi⟩ in the Hadamard basis to get strings di ∈ {0, 1}ℓ(λ) such
that each string satisfies di · (ri,0 ⊕ ri,1) = 0. We define cert := {di}i∈[n].

• {0, 1} ← Certify(ck, cert): On input cert = {di}i∈[n] run the program ck = Ĩ,
output 1 if it returns 1, and output 0 otherwise if it returns ⊥.

Reductions for perfect completeness, adaptive multi-theorem computational
zero-knowledge, and simulation extractability with deletion work are discussed
in short since they are similar to reductions in Section 5.

Completeness: Completeness with respect to proof verification is borrowed
from the completeness of Π which ensures that vσ = 1 with a probability of
1. The commitment Λ.Com(., .) is deterministic, i.e., ci = Λ.Com(crsΛ, bi, ri,b).
Thus, we ensure that ∀i ∈ [n], b ∈ {0, 1} we have Cmt− Cmp(bi, ri,b, ci,b) = 1,
and for all i ∈ [n], vi is measured to 1. Then, we consider deletion completeness.
We parse the sate |ψ⟩ as

⊗
i∈[n]|ψi⟩, such that we have |ψi⟩ =

∑
b∈{0,1}

1
2 |b⟩|ri,b⟩.

The verifier measures each |ψi⟩ in the Hadamard basis to get di ∈ {0, 1}ℓ(λ),
where di ·(ri,0⊕ri,1) = 0. The functionally preserving property of CC.Obf ensures
that the obfuscated function Ĩ acts similar to I except for a negligible probability,
i.e., on input {di}i∈[n] outputs 1 with an overwhelming probability of 1−negl(λ).
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Adaptive Multi-Theorem Computational Zero-Knowledge: Algorithm
Π.Sim = (Π.Sim0,Π.Sim1) is the simulators of Π. Moreover, let CC.Obf.Sim be
the simulator of the obfuscator CC.Obf. Sim = (Sim0,Sim1) is as follows:

• crs, td ← Sim0(1
λ) : Runs crsΛ, tdΛ ← Λ.Setup(1λ), crsΠ , tdΠ ← Π.Setup(1λ)

and outputs crs := (crsΛ, crsΠ) and td := (tdΠ , tdΛ).

• π, ck← Sim1(crs, td,x) : Let r′i,b ← {0, 1}ℓ(λ) and c′i,b = Λ.Com(crsΛ, b, r
′
i,b) for

all i ∈ [n], b ∈ {0, 1}. Let x∗ := (x, {c′i,b}i∈[n],b∈{0,1}). The algorithm queries
Π.Sim1 on input x∗ to get the simulated NIZK σ′. It samples u′i ← {0, 1} and
prepares |ψ′⟩ as defined in Equation 2. It outputs π := {c′i,b}i∈[n],b∈{0,1},σ′, |ψ′⟩
and ck := CC.Obf.Sim(I.params), where I.params are the public parameters,
e.g., circuit size, of function the I as defined before in the protocol description.

Reduction: Let A be a QPT adversary breaking multi-theorem computational
zero-knowledge of NIZK-CD with an advantage of 1

p(λ) for polynomial p(λ).
We then construct a QPT adversary B that breaks the adaptive multi-theorem
computational zero-knowledge of the underlying NIZK argument Π as follows.
1. Receives crs from Π.Setup and Λ.Setup or Π.Sim0 and sends it to A.

2. On the query (x,w), samples ri,b, computes ci,b = Λ.Com(crsΛ, b, ri,b) for
all i ∈ [n] and b ∈ {0, 1}. Then, given instance x∗ := (x, {ci,b}i∈[n],b∈{0,1})
and witness w∗ := (w, {ri,b}i∈[n],b∈{0,1}) receive the real or simulated proof
σ by query either Prove on input (x∗,w∗) orΠ.Sim1 on input x∗. Moreover,
samples bits ui ← {0, 1} and prepares |ψ⟩ as defined in Equation 2. The
certification key is computed as Ĩ := CC.Obf[I, lock, 1] and ck = Ĩ, where
I is the function defined is the protocol description, i.e., with hard-coded
values {ri,b}i∈[n],b∈{0,1}, which on input {di}i∈[n] gets wi = di · (ri,0⊕ ri,1)
and outputs w = w0w1 . . . wn and we define lock := u0u1 . . . un. The proof
π := ({ci,b}i∈[n],b∈{0,1},σ, |ψ⟩) and the certification key ck are sent to A.

3. Output the outcome of A.
We sample {ri,b}i∈[n],b∈{0,1} and {ui}i∈[n],b∈{0,1} uniformly random, thus, |ψ⟩
and |ψ′⟩ are statistically indistinguishable. Hiding property of commitments
ensure that the set of commitments {ci,b}i∈[n],b∈{0,1} and {c′i,b}i∈[n],b∈{0,1} are
computationally indistinguishable. Furthermore, ui is uniformly sampled, and
the distribution over CC[I, lock, 1] is unpredictable. Therefore, distributional
indistinguishability of CC.Obf ensures functions Ĩ and I are computationally
indistinguishable. In summary, adversary B has an advantage of 1

p(λ)−negl(λ).

Simulation Extractability with Deletion: The extractor Ext-Del is built
similarly to the extractor described in Section 5, which additionally takes the
certification key ck as input. In particular, Ext-Del works as follows.

1. On input crs, td, x, π, ck, and cert, parses π as {ci,b}i∈[n],b∈{0,1},σ, |ψ⟩.
2. Queries Π.Ext on input x∗ and σ and receives the witness w∗.
3. Outputs w∗ as w.
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Let A = (A0,A1) be a QPT adversary breaking simulation extractability with
deletion with an advantage of 1

p(λ) for some polynomial p(λ). We build a QPT

adversary B breaking adaptive hard-core bit property defined in Equation 6.
On input {ci,b}i∈[n],b∈{0,1}, |ψ⟩ = ⊗i∈[n]

|ri,0⟩+(−1)ui |ri,1⟩√
2

, and instance x, the
adversary B queries x∗ = (x, {ci,b}i∈[n],b∈{0,1}) to Π.Sim1 and get a simulated
proof σ. B queries I.params to CC.Obf.Sim to get a simulated obfuscated program
Ĩ and sets ck := Ĩ. Let π := (x∗,σ, {ci,b}i∈[n],b∈{0,1}). B queries (x,π, ck) to A1 to
receive an accepting proof π∗ and a valid deletion certificate cert. π∗ is parsed as
{c∗i,b}i∈[n],b∈{0,1},σ∗, |ψ∗⟩ and cert as {di}i∈[n]. As π∗ is an accepting proof and
commitments are perfectly binding, then the measurement of |ψ′⟩ in the standard
basis yields {ri}i∈[n] s.t. ci,0 = Λ.Com(crsΛ, 0, ri) or ci,1 = Λ.Com(crsΛ, 1, ri).
Since cert is accepting and CC.Obf is functionality preserving, we can conclude
that di · (ri,0 ⊕ ri,1) = ui with a probability of 1 − negl(λ). On the other side,
the simulated obfuscated program includes no information about {ri}i∈[n] since
CC.Obf satisfies distributional indistinguishability. Thus, B breaks the adaptive
hard-core bit property with an advantage of 1

p(λ) − negl(λ).

6.2 NIZK-CD with Classical Communication

Here, we present NIZK-CD with solely classical communication.

Theorem 6.2. Assuming polynomial quantum hardness of LWE and given any
post-quantum non-interactive simulation-extractable, adaptively multi-theorem
computationally zero-knowledge for NP, a non-interactive simulation-extractable,
adaptive multi-theorem computational zero-knowledge with certified deletion do
exists where the communication and prover algorithms are entirely classical.

Proof. Assuming the hardness of LWE, a perfectly binding and computationally
hiding commitment scheme [LS19] do exists, denoted by Λ = ⟨Setup,Com⟩. Let
F := {fk,b : X → DY}k∈K,b∈{0,1} be that NTCF family from LWE [BCM+18].
Let Π = ⟨Setup,Prove,Verify⟩ be the non-interactive simulation-extractable,
adaptive multi-theorem computational zero-knowledge. Our construction with
classical communication is described as follows.

• crs, td ← Setup(1λ): Runs crsΛ, tdΛ ← Λ.Setup(1λ), crsΠ , tdΠ ← Π.Setup(1λ)
and outputs crs := (crsΛ, crsΠ) and td := (tdΛ, tdΠ).

• ck,π ← Prove(crs,x,w): Given polynomial n, it proceeds in two phases.

State Preparation: This is executed interactively between prover and verifier.
1. The prover runs NTCF.GenF , generates keys {ki}i∈[n], trapdoors {tdki}i∈[n],

and sends the keys to the verifier. The verifier prepares the following state.

|ϕ⟩ :=
⊗
i∈[n]

1√
|X |

∑
x∈X
|0⟩|x⟩+ |1⟩|x⟩ (7)
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From Definition 3.2, |ϕ′⟩ can be turned into the following superposition.

|ϕ′⟩ :=
⊗
i∈[n]

1√
2|X |

∑
x∈X ,y∈Y

√
(f ′ki,0

(x))(y)|0⟩|x⟩|y⟩

+
1√
2|X |

∑
x∈X ,y∈Y

√
(f ′ki,1

(x))(y)|1⟩|x⟩|y⟩ (8)

The verifier measures images, i.e., |y⟩, in the standard basis, yielding,⊗
i∈[n]

1√
2
(|0⟩|xi,0⟩+ |1⟩|xi,1⟩) (9)

Here, for all i ∈ [n], the tuple (xi,0,xi,1) ∈ X 2 is a claw with respect to
the measured image yi ∈ Y. Finally, the verifier sends the images {yi}i∈[n]
to the prover and applies the injection J : X → {0, 1}ℓ(λ), as defined in
Definition 3.2, in the above superposition and prepares the state |ψ⟩ as

|ψ⟩ :=
⊗
i∈[n]

1

2
(|0⟩|ri,0⟩+ |1⟩|ri,1⟩)

∀i ∈ [n], b ∈ {0, 1} : ri,b = J(xi,b). (10)

2. For all i ∈ [n], b ∈ {0, 1}, prover runs Inv(tdk, b, yi) and J(xi,b) to get ri,b.

Proof Generation: The remaining parts are similar to Section 5. The prover
generates commitments ci,b = Λ.Com(crsΛ, b, ri,b) for all i ∈ [n] and b ∈ {0, 1}.
Given x∗ := (x, {ci,b}i∈[n],b∈{0,1}), witness w∗ := (w, {ri,b}i∈[n],b∈{0,1}), the
prover runs Π.Prove(crs,x∗,w∗) and generates a NIZK σ for R∗, as defined in
Equation 1. π = {ci,b}i∈[n],b∈{0,1},σ, |ψ⟩ and ck = {ri,b}i∈[n],b∈{0,1}.

• {0, 1} ← Verify(crs,x,π): The verifier runs vσ ← Π.Verify(crs,x∗,σ). Let U com
c0,c1

and U be as before, i.e., Equation 3. Using U the state in Equation 5 is
prepared. Then, the verifier for all i ∈ [n], measures the commit-and-compare
registers vi = Cmt− Cmp(0, ri,0, ci,0). The outcome is v = vσ ∧

∧
i∈[n] vi.

• cert← Delete(π): The proof π is parsed as {ci,b}i∈[n],b∈{0,1},σ, |ψ⟩ and also the
state |ψ⟩ as

⊗
i∈[n]|ψi⟩ such that |ψi⟩ =

∑
b∈{0,1}

1
2 |b⟩|ri,b⟩. The verifier then

for all i ∈ [n] measures the state |ψi⟩ in the Hadamard basis to get strings
di ∈ {0, 1}ℓ(λ) such that di · (ri,0 ⊕ ri,1) = 0. We define cert := {di}i∈[n].

• {0, 1} ← Certify(ck, cert): The key ck is parsed as {ri,b}i∈[n],b∈{0,1} and cert as
{di}i∈[n], validates whether for all i ∈ [n] it holds di · (ri,0 ⊕ ri,1) = 0.

Reductions work basically similar to Section 5.

Completeness: Completeness of Π ensures that vσ = 1 with a probability of
1. The invert Inv(., ., .) and the map J(.) are deterministic, the randomnesses
computed by the prover using trapdoor tdk and the map J(.) are the same as
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randomnesses encoded in the state |ψ⟩. Moreover, as the commitment algorithm
Λ.Com(., ., .) is deterministic, and the commitments are honestly generated by
the prover, i.e., ci = Λ.Com(crsΛ, bi, ri,b), we ensure that for all i ∈ [n] and
b ∈ {0, 1} we have Cmt− Cmp(bi, ri,b, ci,b) = 1. For all i ∈ [n], vi is measured
to 1. Consider completeness with respect to deletion. We parse the sate |ψ⟩ as⊗

i∈[n]|ψi⟩, such that we have |ψi⟩ =
∑

b∈{0,1}
1
2 |b⟩|ri,b⟩. The verifier measures

each |ψi⟩ in the Hadamard basis to get di ∈ {0, 1}ℓ(λ) s.t. di · (ri,0 ⊕ ri,1) = 0.

Adaptive Multi-Theorem Computational Zero-Knowledge: Algorithm
Π.Sim = (Π.Sim0,Π.Sim1) is the simulators of Π. Sim = (Sim0,Sim1) is as:

• crs, td← Sim0(1
λ) : Outputs crsΠ , tdΠ ← Π.Sim1(1

λ).

• π, ck ← Sim1(crs, td,x) : Runs NTCF.GenF , generates {k′i}i∈[n], {tdk′
i
}i∈[n],

and sends the key k′ to the adversary. For all i ∈ [n], on input the image
y′i ∈ Y, computes x′i,0 ← Inv(tdk′ , 0, y′i) and x′i,1 ← Inv(tdk′ , 1, y′i), and the
randomnesses r′i,0 = J(x′i,0) and r′i,1 = J(x′i,1). Then, the simulator computes
commitments c′i,b = Λ.Com(crsΛ, b, r

′
i,b) the for all i ∈ [n] and b ∈ {0, 1}. We

define x∗ := (x, {c′i,b}i∈[n],b∈{0,1}). The algorithm query Π.Sim1 on input x∗
to get the simulated NIZK σ′. Finally, Sim1 prepares |ψ⟩, as in Equation 10.

Reduction: It proceeds similarly to the zero-knowledge reduction in Section 5.
The additional note is that the key k′ are uniformly sampled by NTCF.GenF ,
hence, it is indistinguishable from the real key k.

Simulation Extractability with Deletion: We can build an extractor Ext-Del
that satisfies simulation extractibility with deletion and present the reduction the
same as Section 5. The adaptive hardcore bit property of NTCF hash functions,
as defined in Definition 3.2 prevents deviating from the proving algorithm.

7 Applications

We discuss revocable signatures of knowledge and anonymous credentials.

7.1 Revocable Signature of Knowledge

We present the definition and a construction of revocable signature of knowledge.

Definition 7.1. (Revocable Signature of Knowledge) Let NP relation R
with language L and message spaceM. ΣR = ⟨Setup,Sign,Verify,Delete,Certify⟩
is a revocable signature of knowledge if it satisfies the following.

• crs, td← Setup(1λ) : on input λ, outputs crs and trapdoor td.
• σ, ck ← Sign(crs,x,w,m) : on input crs, (x,w) ∈ R, m ∈ M, outputs a

signature ok knowledge σ and a certification key ck.
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• {0, 1} ← Verify(crs,x,m,σ) : on input crs, x, m, σ, accepts or rejects.
• cert← Delete(σ): on input σ, outputs a deletion certificate cert.
• {0, 1} ← Certify(ck, cert): on input ck and cert, outputs accept or reject.

Correctness: For every λ ∈ N, pair (x,w) ∈ R and message m ∈M,

Pr

 crs← Setup(1λ)
σ, ck← Sign(crs,x,w,m)

cert← Delete(σ)
:
Verify(crs,x,m,σ) = 1

∧
Certify(ck, cert) = 1

 ≥ 1− negl(λ).

Simulation: There exist a QPT simulator algorithm Sim = (Sim0,Sim1) such
that for every QPT algorithm A and sufficiently large λ ∈ N,∣∣∣Pr [crs← Setup(1λ) : ASign(crs,·,·,·)(crs) = 1

]
−

Pr
[
crs, td← Sim0(1

λ) : ASim1(crs,td,·,·)(crs) = 1
] ∣∣∣ ≤ negl(λ).

Extraction with Deletion: Let Sim = (Sim0,Sim1) be the simulators of simu-
lation. A QPT extractor algorithm Ext-Del exists such that for every QPT algo-
rithm A = (A0,A1) and sufficiently large λ ∈ N,

Pr


crs, td← Sim0(1

λ)

x,m← ASim1(crs,td,·,·)
0 (crs)

σ, ck← Sim1(crs, td,x,m)

σ∗, cert← ASim1(crs,td,·,·)
1 (crs,σ)

w ← Ext(crs, td,x,m,σ∗, cert)

:

Verify(crs,x,m,σ∗) = 1
∧

[Certify(ck, cert) = 1 ∨ (x,w) /∈ R] ∧ (x,m) /∈ Q

 ≤ negl(λ),

where Q is the list of queries from A to Sim1.

Theorem 7.1. Assuming any non-interactive simulation-extractable, adaptive
multi-theorem computational zero-knowledge with certified deletion, there exists
a revocable signature of knowledge.

Proof. Let Γ = ⟨Setup,Prove,Verify,Delete,Certify⟩ be NIZK-CD with adaptive
multi-theorem computational zero-knowledge and simulation extractability.

• crs, td← Setup(1λ): The algorithms outputs crs, td← Γ .Setup(1λ).

• σ, ck← Sign(crs,x,w,m): Let x∗ = (x,m) be instance, w∗ = w witness for

L∗ = {(x,m) : ∃w s.t. (x,w) ∈ R}.

Then, we have σ, ck← Γ .Prove(crs,x∗,w∗) with respect to L∗.
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• {0, 1} ← Verify(crs,x,m,σ): Given x∗ = (x,m), outputs v = Γ .Verify(crs,x∗,σ).

• cert← Delete(σ): The algorithms outputs cert = Γ .Delete(σ).

• {0, 1} ← Certify(ck, cert): The algorithms outputs v = Γ .Certify(ck, cert).

Next, we prove correctness, simulation, and extraction with deletion.

Correctness: Since the scheme Γ satisfies perfect completeness, for any honestly
generated σ and cert, both satisfy Verify and Certify, respectively.

Simulation: Let Γ .Sim = (Γ .Sim0,Γ .Sim1) be the simulators of Γ . We build
Sim = (Sim0,Sim1) for our construction as follows.

• crs, td← Sim0(1
λ) : Outputs crsΓ , tdΓ ← Γ .Sim1(1

λ).

• σ, ck← Sim1(crs, td,x,m) : Outputs σ, ck← Γ .Sim1(crs, td,x
∗ := (x,m)).

Reduction: Suppose a QPT adversary A exists such that for polynomial p(λ),
it breaks simulation property of ΣR with an advantage more than 1

p(λ) . We
construct a QPT adversary B for the zero-knowledge property of Γ as follows.

1. Receives the real or simulated crsΓ and sends it to the adversary A.

2. One each query (x,m,w), defines x∗ := (x,m) and witness w∗ := w, receives
the signature σ by query either Sign or Γ .Sim1, and sends σ to A.

3. Output the result of A.

B has the same advantage 1
p(λ) at breaking the zero-knowledge property of Γ .

Extraction with deletion: Let Γ .Sim = (Γ .Sim0,Γ .Sim1) be the simulators
of Γ and Sim = (Sim0,Sim1) be the simulators of our construction. Let Γ .Ext be
the extractor of Γ . We show an extractor Ext for extractibility with deletion.

1. On input crs, td, x, m, σ, and cert, runs Π.Ext(crs, td, (x,m),σ, cert), and
receive the witness w∗.

2. Outputs w∗ as w.

Reduction: Let A = (A0,A1) a QPT algorithm such that given the extractor Ext,
and some polynomial p(λ), it breaks extraction with deletion property of ΣR

with an advantage more than 1
p(λ) . Then, one can build an adversary algorithm

B = (B0,B1) to break simulation extractibility with deletion of Γ , where B0
outputs x∗ = (x,m) returned by A0 and B1 outputs σ∗, cert returned by A1.

Corollary 7.1. Assuming post-quantum one-way function and post-quantum
non-interactive simulation-extractable, adaptively multi-theorem computationally
zero-knowledge, revocable signature of knowledge exists.

Proof. This follows from Theorem 5.1 and Theorem 7.1.
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Corollary 7.2. Given polynomial quantum hardness of the LWE problem and
post-quantum non-interactive simulation-extractable, adaptively multi-theorem
computationally zero-knowledge for NP, there exists a revocable signatures of
knowledge with publicly verifiable deletion.

Proof. This follows from Theorem 6.1 and Theorem 7.1.

Corollary 7.3. Given polynomial quantum hardness of the LWE problem and
post-quantum non-interactive simulation-extractable, adaptively multi-theorem
computationally zero-knowledge for NP, there exists a revocable signatures of
knowledge with classical communication and signer.

Proof. This follows from Theorem 6.2 and Theorem 7.1.

7.2 Revocable Anonymous Credentials

We define and construct revocable anonymous credentials.

Definition 7.2. (Revocable Anonymous Credentials) [JK23] The scheme
∆R = ⟨Setup,Sign,Verify,Delete,Certify⟩ is a revocable anonymous credentials
with respect to a set of accesses {Sλ}λ∈N if it satisfies the following.

• nym, sk← IssuerSetup(1λ) : outputs a pseudonym nym with a secret key sk.
• cred, ck← Issue(nym, sk, access) : on input nym, sk, and requested access access,

outputs an anonymous credentials cred and a certification key ck.
• {0, 1} ← VerifyCred(nym, access, cred) : on input nym, access, and cred, outputs
1 as accept or 0 as reject for validating the anonymous credentials.
• cert← Delete(cred): on input cred, outputs a deletion certificate cert.
• {0, 1} ← Certify(ck, cert): on input ck and cert, accepts or rejects.

Correctness: For every λ ∈ N, pair (x,w) ∈ R and m ∈M,

Pr


crs← Setup(1λ)

σ, ck← Sign(crs,x,w,m)
cert← Delete(σ)

:
Verify(crs,x,m,σ) = 1

∧
Certify(ck, cert) = 1

 ≥ 1− negl(λ)

Revocation: For every QPT algorithm A, sufficiently large λ, and access access,
the following probability is, at most, negl(λ).

Pr

 nym, sk← IssuerSetup(1λ)
cred, ck← Issue(nym, sk, access)

cred∗, cert← A(nym, cred)
:
VerifyCred(nym, access, cred∗) = 1

∧Certify(ck, cert) = 1


Theorem 7.2. Assuming any revocable signature of knowledge, there exists a
revocable anonymous credentials.
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Proof. Let (X ,W) be some hard NP distribution. Let ΣR be revocable signature
of knowledge. Our construction of anonymous credentials is presented as follows.

• nym, sk ← IssuerSetup(1λ): Generates crs ← ΣR.Setup(1
λ), samples a pair

(x,w)← (X ,W), and outputs nym = (crs,x) and sk = w.

• cred, ck← Issue(nym, sk, access): Outputs cred, ck← ΣR.Sign(crs,x, access,w).

• {0, 1} ← VerifyCred(nym, access, cred): Outputs v = Γ .Verify(crs,x, access,σ).

• cert← Delete(cred): The algorithms outputs cert = Γ .Delete(σ).

• {0, 1} ← Certify(ck, cert): The algorithms outputs v = Γ .Certify(ck, cert).

Next, we prove correctness and revocation for the proposed construction.

Correctness: Since the scheme ΣR satisfies correctness, for honestly generated
credentials cred and certificate cert, both satisfy Verify and Certify, respectively.

Revocation: Suppose that there exists a QPT adversary algorithm A such that
for some polynomial p(λ), it breaks revocation property of ∆. We construct a
QPT adversary B to break extraction with deletion of ΣR as described below.

1. Receives simulated crsΣR
from ΣR.Sim0, samples a pair (x,w) ← (X ,W),

samples an access access, queries ΣR.Sim1 on input (x, access) to get σ, and
sends nym = (crs,x), cred = σ to A.

3. Outputs the credential cred∗ as signature and cert as deletion certificate.

B has the same advantage 1
p(λ) at breaking extraction with deletion of ΣR.

Corollary 7.4. Assuming post-quantum one-way function and post-quantum
non-interactive simulation-extractable, adaptively multi-theorem computational
zero-knowledge, revocable anonymous credentials exists.

Proof. This follows from Corollary 7.1 and Theorem 7.2.

Corollary 7.5. Given polynomial quantum hardness of the LWE problem and
post-quantum non-interactive simulation-extractable, adaptively multi-theorem
computationally zero-knowledge for NP, revocable anonymous credentials with
publicly verifiable deletion exists.

Proof. This follows from Corollary 7.2 and Theorem 7.2.

Corollary 7.6. Given polynomial quantum hardness of the LWE problem and
post-quantum non-interactive simulation-extractable, adaptively multi-theorem
computationally zero-knowledge for NP, revocable anonymous credentials with
classical communication and issuer exists.

Proof. This follows from Corollary 7.3 and Theorem 7.2.
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