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Abstract

We prove that Basefold(Crypto 2024) is secure in the list decoding regime, within

the double Johnson bound and with error probability O(n)
|F| . At the heart of this proof

is a new, stronger statement for correlated agreement, which roughly states that if a
linear combination of vectors πL + rπR agrees with a codeword at every element in
S ⊂ [n], then so do πL, πR. Our result is purely combinatorial and therefore extends
to any finite field and any linear code. As such, it can be applied to any coding-based
multilinear Polynomial Commitment Scheme to reduce its communication complexity.

1 Introduction

In recent years, error-correcting codes have proven indispensable to the construction
of efficient SNARKs. A prover of a code-based SNARK commits to its witness by
encoding it with a linear error-correcting code, which uses (relatively) cheap operations
such as finite-field addition and multiplication. The verifier can test the proximity of
the prover’s codeword (to the error-correcting code) by engaging with the prover in
an equally cheap Interactive Oracle Proof of Proximity [22, 5]. Then, with nothing
more than a collision resistant hash function, we obtain a Polynomial Commitment
Scheme [18] (PCS), in which a prover commits to a polynomial P ∈ F[X] so that it
can later prove evaluation claims of the form P (α) = β. Finally, a PCS compiles a
Polynomial Interactive Oracle Proof (PIOP) into a SNARK. We refer to the following
works for more details on this transformation ( [6, 24, 11, 25]).

Despite their impressive prover efficiency, verifier costs remain a major bottleneck
in code-based SNARKs, due mainly to the query complexity of the underlying IOPP.
IOPPs1 have multiple rounds; in each round the prover sends an oracle to a vector
in response to verifier randomness and the verifier queries and tests elements from
these oracles. It would be too expensive for the verifier to query each element from

1It may be useful to think of an IOPP as a PCPP [8, 13] but with multiple rounds;
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the oracle. Instead the verifier obtains a probabilistic guarantee that a large fraction,
β ∈ [0, 1], of elements from each prover oracle passes its tests. We choose the number
of verifier queries to be l such that βl < 2−λ, where λ is a security parameter of our
choosing. In the Fast Reed-Solomon Interactive Oracle Proof of Proximity [3] (FRI),
β >

√
1−∆C , where ∆C is the minimum distance of the code. This setting is the

best proven result and is commonly referred to as the “list-decoding” regime, since by
the famous Johnson Bound, there is only a small list of codewords that agree with
any vector in more than

√
1−∆C fraction of locations. Alternatively, we refer to the

(inferior) case when β is greater than (1−∆C/2) as the “unique-decoding regime”, as
there is only one unique codeword that agrees with a vector in that many locations
(due to the distance properties of the error-correcting code).

Since the FRI IOPP is proven secure in the list-decoding regime, its verifier is
both asymptotically and concretely efficient. However, the FRI IOPP can only be
directly used2 as a univariate PCS, and SNARKs based on univariates have a higher
overhead than those based on multilinear PCS [21] (see [25, 11] for more details on
this comparison). Basefold[25], introduced a technique for using FRI directly as a
multilinear PCS by weaving the sum-check protocol [20] for multilinear polynomial
evaluation with (a generalization of) FRI. It avoids the overhead of univariate SNARKs
while maintaining polylogarithmic communication. Several works [12, 23, 2, 17] have
already adapted Basefold to different settings. However, Basefold is only proven secure
in the unique decoding regime and so it’s proofs are concretely larger than FRI’s. For
that matter, no (native)3 multilinear polynomial commitment scheme has been proven
secure in the list-decoding regime. In particular, Brakedown [15], Ligero [1], two other
state-of-the-art multilinear PCS, are only proven secure in the unique decoding regime,
and the same is true for two recent multilinear Polynomial Commitment Schemes,
WHIR [2] and Blaze [10]. The results in this paper will improve the verifier costs of
all of these protocols.

1.1 Our Contributions

Basefold IOPP In the List-Decoding Regime. In this work, we introduce
a proof for Basefold in the list-decoding regime, that is completely generic; it extends
to any linear code and any finite field. At the heart of our proof is a new and stronger
notion of correlated agreement( [9, 7, 4]), a statement that shows that the linear com-
bination of two vectors, πL+ rπR is unlikely to be close to a code unless πL, πR are. In
this work, we strengthen that statement and prove that for all (cL, cR) that is close to
(πL, πR), πL+rπR must be close to cL+rcR, where “close” is defined as differing in no

more than n(1−β) locations. More specifically, we set β >
√√

1−∆C and prove that
the number of r ∈ F for which this is not true is in O(n). In comparison, the result
from [17] only manages to prove this number is in O(n2), albeit with β >

√
1−∆C

(i.e. they can get away with checking fewer locations of πL+ rπR but for fewer choices
of r).

2There exists a generic transformation for univariate to multilinear PCS, but this incurs further overhead
(e.g. [19])

3Actually, recent concurrent work [17] also proves Basefold for RS codes secure in the list decoding
regime, and we discuss this in detail in Section 1.2
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We now give a very high level overview of the proof. We will prove that every
codeword close to πL + rπR can be “explained” by a pair of codewords (cL, cR) that is
close to (πL, πR). Let S be a subset of [n]. We observe first that if (πL[S], πR[S]) does
not overlap much with any codewords from the neighborhood of (πL, πR), then there
is at most one element, r ∈ F and codeword c ∈ C such that πL[S] + rπR[S] = c[S].
For now lets refer to this event as a mapping from (bad set) S to r. Suppose two large
“bad” sets S1, S2 map to two distinct values. Then S1 ∩ S2 also maps to two distinct
values (since S1∩S2 is a subset of both S1 and S2) and therefore S1∩S2 must be pretty
small. Otherwise, if it is large, then by our observation above, πL[S1 ∩ S2] has high
agreement with a codeword in the neighborhood and therefore so does πL[S1], πL[S2]
(resp. for πR). And so we arrive at the key insight of this work.

The number of field elements that allow a malicious prover to cheat is bounded by the
number of large subsets of [n] with small pairwise intersection.

We show that for the right set of parameters, this quantity is in O(
√
n). The full

soundness proof has many more details and complexities, and we defer a more detailed
overview and the proof itself to Section 3 and 3.1 respectively.

1.2 Related Work

In concurrent work [17], Haböck also proves that Basefold is secure in the list decoding
regime and with a superior bound of β >

√
1−∆C . However, Haböck’s result, like

the result in “Proximity Gaps for Reed-Solomon Codes” [4], does not have acceptably
high provable security for smaller fields (e.g. 2128) or large (code) rates. Additionally,
it only works with the Reed-Solomon code, whereas the result of our paper extends to
all linear codes. In other concurrent work entitled Deep-Fold [16], Guo et. al. adapts
Deep-FRI [7] to Basefold, and in that setting also proves the bound of β >

√
1−∆C ,

but again this only applies to Reed-Solomon codes. Finally, just this past week, “Lin-
ear Proximity Gap for Reed-Solomon Codes within the 1.5 Johnson Bound” [14] was
published. This work also focuses on RS codes and is specific to the univariate FRI
IOPP. However, their results, like the ones in this paper, are purely combinatorial and
can (as far as we know) also be applied to Basefold over generic linear codes. A promis-
ing next step is to incorporate that work with this one to achieve Basefold soundness
with β > (1−∆C)

1/3 rather than (1−∆C)
1/4, while maintaining security over smaller

fields.
In other concurrent work, WHIR[2] presents a new efficient multilinear PCS with

an extremely efficient verifier. However, their best reported results are only provably
secure if Basefold is secure in the list-decoding regime, and they ultimately left this as
a conjecture.

Additionally, there are several papers ([4, 7, 9]) that analyze the communication
complexity of FRI. In “Worst Case To Average Case Reduction For Distance to a
Linear Code”([9]), the authors improve upon the original FRI paper by showing that
the verifier only needs to query within the β = (1−∆C)

1/4 radius of the code. Next,
Deep-FRI ([7]) improves this by showing that the verifier only needs to query within
the β = (1 − ∆C)

1/3. Deep-FRI additionally introduces a modification of the FRI
protocol which further reduces the number of verifier queries, at the cost of some
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(slight) prover overhead. Finally, in “Proximity Gaps of Reed-Solomon Codes”([4]),
the authors use a list-decoding algorithm for Reed-Solomon codes to further decrease
the number of verifier queries, but (as mentioned earlier with regards to [17]), this
result is only meaningful with a field that is at least quadratic in the instance size and
with a suitably small rate, both of which impact prover time.

2 Preliminaries

2.1 Notation

Sets Let n ∈ Z. Denote by [n] the set [0, n − 1]. even(S) is the set of even integers
in S, and odd(S) is the set of odd integers in S. Let q ∈ N. Then S/q = {s/q : s ∈
S}, S + q = {s+ q : s ∈ S}, etc. 2S is the power set of S.

Strings and Functions Let x ∈ F, r ∈ N, then x||r is the string obtained by
concatenating x to itself r times. Let f : S → S be a function and n ∈ N. Then f◦n

denotes function composition of f with itself n times.

Error-Correcting Codes We will use C to denote a linear [n, k, d] code, which
is a subspace C of Fn with an encoding algorithm EncC : Fk → C (Definition 1). ∆C

is the minimum relative distance of the code C. Let n ∈ N and S ⊂ [n]. For a vector
x ∈ Fn, x[S] = {x[i] : i ∈ S}. Let v ∈ Fn, let C be a linear code, and let S ⊂ [n].
Then we say that v[S] ∈ C[S] if there exists a codeword c ∈ C such that v[S] = c[S].

2.2 Definitions

We present a standard definition of a linear error-correcting code.

Definition 1 (Linear Code). A linear error-correcting code with message length k and
codeword length n is an injective mapping from Fk to a linear subspace C ⊆ Fn. C
is associated with a generator matrix, G ∈ Fk×n such that the rows of G are a basis
of C and the encoding of a vector v ∈ Fk is v · G. The minimum Hamming distance
of a code is the minimum on the number of different entries between any two different
codewords c1, c2 ∈ C. If C has a minimum distance d ∈ [n], we say that C is an [n, k, d]
code and use ∆C to denote d/n—the relative minimum distance.

3 A Stronger Notion of Correlated Agreement

In this section, we state and prove our main result and compute concrete bounds
in subsection 3.2. Our main result is a stronger version of the correlated agreement
Theorem from “Proximity Gaps of Reed Solomon Codes” [4] (specifically Theorem 1.4
(Correlated Agreement Over Lines)).
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Lemma 1 (Strong Correlated Agreement A). Let C be a linear error-correcting code
with n ∈ N, and πL, πR ∈ Fn. Let α >

√
1−∆C and β >

√
α. If

Pr
r∈F

[∆(πL + rπR) ≤ 1− β] >
O(n)

|F|
,

then there exists S ⊂ [n] and cL, cR ∈ C satisfying

• Density: |S|/n ≥ β

• Agreement: πL[S] = cL[S], πR[S] = cR[S] and ∀r ∈ F, πL[S] + rπR[S] = cL[S] +
rcR[S]

Actually, we will find it more useful to prove the following stronger statement, from
which the previous statement easily follows.

Lemma 2 (Strong Correlated Agreement B). Let πL, πR ∈ Fn and π = (πL, πR). Let
α >
√
1−∆C and let β >

√
α. Let Aπ ⊂ F satisfy

Aπ =

∣∣∣∣∣∣
r ∈ F : ∃S ⊂ [n], c ∈ Csuch that

|S| > βn,
(πL[S] + rπR[S]) = c[S],
but {πR[S], πL[S]} ̸⊂ C[S]


∣∣∣∣∣∣ .

Then ∀πL, πR ∈ Fn with π = (πL, πR)

|Aπ| ∈ O(n) (1)

We defer the full proof of Lemma 2 to Section 3.1. In this section, we instead focus
on building intuition and we give an informal proof that Lemma 2 is true for the looser
bound of |Aπ| ∈ O(n2). As a first step, we split Aπ into two sets; Aπ,≥α and Aπ,<α.
One set, Aπ,≥α, we define as follows (modifications from the main set are in bold):

Aπ,≥α =

∣∣∣∣∣∣∣∣∣∣

r ∈ F : ∃S ⊂ [n], cL, cR, c ∈ C st

|S| > βn,
(πL[S] + rπR[S]) = c[S],
cL + rcR = c
|{i ∈ [n] : cL[i] = πL[i] ∧ cR[i] = πR[i]}| ≥ α
but {πR[S], πL[S]} ̸⊂ C[S]



∣∣∣∣∣∣∣∣∣∣
.

We define the other set, Aπ,<α to be equal Aπ \ Aπ,≥α. Clearly, Aπ = Aπ,≥α ∪ Aπ,<α

and so
|Aπ| ≤ |Aπ,≥α|+ |Aπ,<α|. (2)

Thus our task reduces to bounding the size of each of these individual sets. First, to
bound the size of Aπ,≥α, we decompose it further into a union of even smaller sets.
Define,

Lπ,α = {(cL, cR) ∈ C × C : |{i ∈ [n] : cL[i] = πL[i] ∧ cR[i] = πR[i]}| ≥ α},

and for each (cL, cR) ∈ Lπ,α, define

Aπ,≥α,cL,cR
=

∣∣∣∣∣∣∣∣
r ∈ F : ∃S ⊂ [ni], c ∈ C st

|S| > βn,
(πL[S] + rπR[S]) = c[S],
cL + rcR = c
but {πR[S], πL[S]} ̸⊂ C[S]


∣∣∣∣∣∣∣∣ .
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Clearly,

Aπ,≥α =
⋃

(cL,cR)∈L

Aπ,≥α,(cL,cR). (3)

Putting together Equations 2 and 3, we have

|Aπ| ≤

 ∑
(cL,cR)∈Lπ,α

Aπ,≥α,(cL,cR)

+ |Aπ,<α| (4)

Thus, our task reduces to bounding the size of the following three quantities:

1. |Lπ,α|
2. |Aπ,≥α,(cL,cR)| for all (cL, cR) ∈ Lπ,α

3. |Aπ,<α|
To bound the size of Items (1) and (3), we will make use of the following impor-
tant Lemma (stated informally here but discussed in more detail in Section 3.1) and
Appendix A.

Lemma 3 (Informal). The number of large subsets of [n] with small pairwise inter-
section is in O(n).

Our strategy in all three of these proofs is to build a set S ⊂ 2[n] that has a one-to-
one correspondence with the set we are trying to bound. For Items (1) and (3), we will
prove that this set S is a set of large sets with small pairwise intersection. Then, we
use Lemma 3 to bound S which in turn, bounds the set in question. For Item (2) we
will instead show that S is a set of disjoint sets, which automatically implies |S| ≤ n.
We begin by bounding Item (1).

Lemma 4.
|Lπ,α| ∈ O(n)

Proof. For each (cL, cR) ∈ L, let ScL,cR = {i ∈ [n] : πL[i] = cL ∧ πR[i] = cR}. Then we
define,

S = {ScL,cR : (cL, cR) ∈ Lα,π}.

By definition of Lα,π, each set in S is larger than α. Next, we show that any two sets
in S must have pairwise intersection smaller than 1−∆C . Let (c

′
L, c

′
R) be an element

of Lπ,α distinct from (cL, cR). Then,

|ScL,cR ∩ Sc′L,c′R
|

= |{i ∈ [n] : i ∈ ScL,cR ∧ i ∈ Sc′L,c′R
}|

= |{i ∈ [n] : πL[i] = cL[i] ∧ πR[i] = cR[i] ∧ πL[i] = c′L[i] ∧ πR[i] = c′R[i]}|
≤ |{i ∈ [n] : πL[i] = cL[i] ∧ πL[i] = c′L[i]}|
≤ (1−∆C)

Therefore, by Lemma 3, |S| ∈ O(n). Next, it is clear by the definition of S that
|S| = |Lπ,α|, which completes the proof.
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Next, we use Lemma 3 to prove Item 3.

Lemma 5. |Aπ,<α| ∈ O(n)

Proof. We follow the structure of the previous proof. We build a set S ⊂ 2n as follows.
For each r ∈ Aπ,<α, let Sπ,r ⊂ [n] be the maximal set such that |Sπ,r| > β and
πL[Sπ,r] + rπR[Sπ,r] ∈ C[S]. Define

S = {Sπ,r : r ∈ Aπ,<α}

By Definition of Sπ,r, |Sπ,r| > β. Next, we show that any two sets in S must have
(small) pairwise intersection smaller than α. Suppose otherwise. Then there exists
r, r′ ∈ F such that r ̸= r′, c, c′ ∈ C, and S′ ⊂ [n] such that |S′| > α (i.e. S′ =
Sπ,r ∩ Sπ,r′) where

πL[S
′] + rπR[S

′] = c[S′] ∧ πL[S
′] + r′πR[S

′] = c′[S′]

By linearity of the code, we can subtract the left equation from the right equation to
obtain

πR[S
′](r − r′) = (c− c′)[S′].

Since r ̸= r′, this implies that
πR[S

′] = c∗R[S
′],

where c∗R = (c−c′)
r−r′ . Then, we can plug this back into the original equations to obtain,

πL[S
′] = c∗L[S

′],

where c∗L = c− rc∗R (and by linearity of the code, c∗L ∈ C). Therefore,

|{i ∈ [n] : πL[i] = c∗L[i] ∧ πR[i] = c∗R[i]}| > α.

But since c∗L + rc∗R = (c − rc∗R) + rc∗R = c, it follows that r ∈ Aπ,≥α,(c∗L,c∗R), which
contradicts our assumption that r ∈ Aπ,<α. Therefore, S is a set of large (> βn)
sets with smaller (≤ αn) pairwise intersection and therefore |S| ∈ O(n). Finally, we
complete the proof by observing that there is a one-to-one correspondance between S
and Aπ,≤α.

Finally, we bound the size of Aπ,≥α,(cL,cR) for each (cL, cR) ∈ L.

Lemma 6. For all (cL, cR) ∈ L,

|Aπ,≥α,(cL,cR)| ∈ O(n)

Proof. To prove this Lemma, we will make use of the following Claim.

Claim 1. For each i ∈ [n] where πL[i] ̸= cL[i], πR[i] ̸= cR[i], there is exactly one r ∈ F
satisfying

πL[i] + rπR[i] = cL[i] + rcR[i]. (5)
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Proof. Let P (X) = (πL[i]− cL[i]) +X(πR[i]− cR[i]). Then r is a zero of P (X) if and
only if it satisfies Equation 5. By the Schwart-Zippel Lemma, P (X) has only one zero
in F. This completes the proof of the Claim.

Proceeding with the proof of the Lemma, define S′
cL,cR ⊂ [n] as

S′
cL,cR = {i ∈ [n] : cL[i] ̸= πL[i] ∧ cR[i] ̸= πR[i]}.

For each r ∈ Aπ,≥α,(cL,cR), let Sr be the maximal subset of S′
cL,cR such that πL[Sr] +

rπR[Sr] = cL[Sr] + rcR[Sr]. Define S ⊂ 2[n] as,

S = {Sr : r ∈ Aπ,≥α,(cL,cR)}.

By Claim 1, every two sets in S are disjoint. Therefore

|
⋃
S∈S
S| =

∑
S∈S
|S| ≤ n.

For each r ∈ F, Sr ∈ S is non-empty, because otherwise πL, πR both agree with
codewords at > β locations and so r ̸∈ Aπ. Therefore,

|S| ≤ |
∑
S∈S

S| ≤ n.

Since there is a one to one relationship between Aπ,≥α,(cL,cR) and S, we have

|Aπ,≥,α,(cL,cR)| = |S| = n,

which completes the proof.

Remark 1. It has been proven in a blog post4 that the bound of β > 1−∆C/3 is tight
for general linear codes, which seems to contradict the results in this paper. However,
upon closer inspection, the codes they consider are ones with minimum distance ∆C ,
such that 1−∆C/3 is always less than

√
1−∆C . Thus, there is no contradiction after

all, as we do not expect the Correlated Agreement/Proximity Gaps statement to hold

for β <
√√

1−∆C , let alone β <
√
1−∆C .

3.1 Strong Correlated Agreement With Better Bounds

Based on the results in the prior section, the final size of Aπ is in O(n2). In this section,
we show that we can do better, achieving a bound of O(n). We also provide a more
formal and detailed treatment of our main result.

Lemma 7 (Strong Correlated Agreement C). Let πL, πR ∈ Fn with π = (πL, πR) and
ϵ ∈ [ 2√

n
]3. Define αϵ :=

√
1−∆C + ϵ[0], and βϵ >

√
αϵ + ϵ[1] + ϵ2. Define the set

Aπ(ϵ) as follows.

Aπ(ϵ) :=

∣∣∣∣∣∣∣∣
r ∈ F : ∃S ⊂ [n], c ∈ C st

|S| > βϵn,
(πL[S] + rπR[S]) = c[S],
but ∀(cL, cR) ∈ C×C,
|{i ∈ [n] : πL[i] = cL[i] ∧ πR[i] = cR[i]}| < βϵ − ϵ[2]


∣∣∣∣∣∣∣∣ .

4https://notes.0xparc.org/results/counterexample-proximity-gap/
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Then ∀πL, πR ∈ Fn with π = (πL, πR) and for all ϵ ∈ [ 2√
n
]3

|Aπ(ϵ)| ∈ O(n) (6)

Proof. We follow the structure of the previous, (informal) proof of Lemma 2. As before,
define Aπ,≥αϵ(ϵ) as follows.

Aπ,≥αϵ(ϵ) :=

∣∣∣∣∣∣∣∣∣∣∣∣


r ∈ F : ∃S ⊂ [n], c∗L, c

∗
R, c ∈ C st

|S| > βϵn,
(πL[S] + rπR[S]) = c[S],
c∗L + rc∗R = c
|{i ∈ [n] : c∗L[i] = πL[i] ∧ c∗R[i] = πR[i]}| ≥ αϵ

but ∀(cL, cR) ∈ C × C,
|{i ∈ [n] : πL[i] = cL[i] ∧ πR[i] = cR[i]}| < βϵ − ϵ[2]



∣∣∣∣∣∣∣∣∣∣∣∣
,

and define Aπ,<αϵ(ϵ) := Aπ(ϵ) \ Aπ,≥α(ϵ) (i.e. if r ∈ Aπ,<αϵ , then there is no nearby
c∗L, c

∗
R that “explains” c). By definition of set compliment,

|Aπ,ϵ| = |Aπ,≥αϵ(ϵ)|+ |Aπ,<αϵ(ϵ)|. (7)

Next, define

Lπ,αϵ := {(cL, cR) ∈ C × C : |{i ∈ [n] : cL[i] = πL[i] ∧ cR[i] = πR[i]}| ≥ αϵ},

and for each (c∗L, c
∗
R) ∈ Lπ,αϵ , define

Aπ,≥αϵ,c∗L,c∗R
(ϵ) :=

∣∣∣∣∣∣∣∣∣∣

r ∈ F : ∃S ⊂ [n], c ∈ C st

|S| > βϵn,
(πL[S] + rπR[S]) = c[S],
c∗L + rc∗R = c
but ∀(cL, cR) ∈ C × C,
|{i ∈ [n] : πL[i] = cL[i] ∧ πR[i] = cR[i]}| ≤ βϵ − ϵ[2]



∣∣∣∣∣∣∣∣∣∣
.

Then,

Aπ,≥α(ϵ) =
⋃

(c∗L,c∗R)∈L

Aπ,≥α,(c∗L,c∗R))(ϵ), (8)

and so, combining Equations 7 and 8, we have

|Aπ|(ϵ) ≤

 ∑
(cL,cR)∈Lπ,αϵ

|Aπ,≥αϵ,(cL,cR)(ϵ|)

+ |Aπ,<αϵ(ϵ)| (9)

Thus, our task reduces to bounding the size of the following three quantities:

1. |Lπ,αϵ |
2. |Aπ,≥αϵ,(cL,cR)(ϵ)| for all (cL, cR) ∈ Lπ,αϵ

3. |Aπ,<αϵ(ϵ)|
To bound the size of Items (1) and (3), we will make use of the following important
Lemma (which was stated informally in Lemma 3).
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Lemma 8. Let α, β ∈ [0, 1], n ∈ Z and define S ⊂ 2[n] as follows.

• If S ∈ S, then |S| > βn

• For any two sets S1, S2 ∈ S, |S1 ∩ S2| < αn.

Let ϵ ∈ (0, 1] such that α+ ϵ = β2. Then,

|S| ≤ β − α

ϵ
=

√
α+ ϵ− α

ϵ

Proof. We defer the proof to Appendix A as it follows the proof of the Johnson Bound5

closely.

Lemma 9.

|Lπ,αϵ | ≤
√
1−∆C + ϵ[0]− (1−∆C)

ϵ[0]

Proof. Following the logic of Lemma 4 (and only changing the parameters), we can
prove that the size of Lπ,αϵ is bounded by the number of sets of [n] of size > αϵ whose

pairwise intersection is smaller than 1−∆C . Recall that αϵ =
√

1−∆C + ϵ[0]. Thus,
plugging in Lemma 8, where β := αϵ and α := 1−∆C completes the proof.

Lemma 10.

|Aπ,<αϵ | ≤

√√
1−∆C + ϵ[0] + ϵ[1]−

√
1−∆C + ϵ[0]

ϵ[1]

Proof. Following the logic of Lemma 5 (and only changing the parameters), we can
prove that the size of |Aπ,≤α(ϵ)| is less than or equal to the number of subsets of [n]
that are larger than βϵ − ϵ[2], but with pairwise intersection smaller than αϵ. Thus,
applying Lemma 8, with β := βϵ − ϵ[2] and α := αϵ, completes the proof.

Remark 2. When we apply this Lemma to prove soundness of the multi-round Basefold
IOPP in Section ??, we will actually bound Aπ,≤αϵ to be the number of sets larger than
β−dϵ[2] (with pairwise intersection smaller than αϵ). That way, we rule out the event
that an oracle in one round goes from being very far from a codeword to within ϵ[2]
distance of one, as our analysis does not include that event.

Finally, we obtain a tighter bound for Aπ,≥αϵ,(cL,cR)(ϵ) (for each cL, cR ∈ Lπ,α1
).

We follow the proof of Lemma 6 closely, highlighting in bold the parts that differ.

Lemma 11. For all (cL, cR) ∈ Lπ,ϵ,

|Aπ,≥α,ϵ(cL,cR)(ϵ)| ≤
1

ϵ[2]
5https://www.cs.cmu.edu/~venkatg/teaching/au18-coding-theory/lec-scribes/list-decoding.

pdf
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Proof. Define S′
cL,cR ⊂ [n] as

S′
cL,cR = {i ∈ [n] : cL[i] ̸= πL[i] ∧ cR[i] ̸= πR[i]}.

For each r ∈ Aπ,≥α,(cL,cR), let Sr be the maximal subset of S′
cL,cR such that πL[Sr] +

rπR[Sr] = cL[Sr] + rcR[Sr]. Define S ⊂ 2[n] as,

S = {Sr : r ∈ Aπ,≥α,(cL,cR)}.

By Claim 1, every two sets in S are disjoint. Therefore

|
⋃
S∈S
S| =

∑
S∈S
|S| ≤ n.

For each r ∈ F, |Sr| > ϵ[2]n, because otherwise πL, πR both agree with codewords at
≥ βϵ − ϵ[2] locations and so r ̸∈ Aπ(ϵ). Therefore,

|S| · ϵ[2]n ≤
∑
S∈S
|S|,

and so, combining the previous two equations,

|S| ≤
∑

S∈S |S|
ϵ[2]n

≤ n

nϵ[2]
=

1

ϵ[2]

Since there is a one-to-one relationship between Aπ,≥α,(cL,cR)(ϵ) and S, we have

|Aπ,≥αϵ,(cL,cR)(ϵ)| = |S| ≤
1

ϵ[2]
,

which completes the proof.

Combining these three bounds with Equation 9, we have

|Aπ(ϵ)| ≤ (

√
1−∆C + ϵ[0]− (1−∆C)

ϵ[0]
)· 1

ϵ[2]
+

√√
1−∆C + ϵ[0] + ϵ[1]−

√
1−∆C + ϵ1

ϵ[1]
.

Finally, since ϵ[0], ϵ[1], ϵ[2] ∈ [ 2√
n
], each of the individual terms is smaller than

√
n
2 and

so
|Aπ(ϵ)| ≤ (

√
n/2) ·

√
n/2 +

√
n/2 = n/4 +

√
n/2,

which completes the proof.

3.2 Concrete Bounds and Comparison To Other Work

Concretely, Lemma 7 implies the verifier need only check πL, πR in

β > βϵ >

√√
1−∆C + ϵ[0] + ϵ[1] + ϵ[2]
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locations to ascertain that they are “close” to consistent codewords with their lin-
ear combintion, and its assessment will only be incorrect with probability at most
n/4+

√
n/2

|F| . On the other hand, the bound from [17] over Reed-Solomon codes (trans-

lated to our notation and for a batch of only 2 polynomials) achieves

|Aπ| ≤ 2
(m+ 1/2)√
1−∆C

·max

(
(m+ 1/2)6

3(1−∆C)
· n2, 2 · (B · n+ 1)

)
,

where m is a parameter larger than 3 and for verifier query complexity

β >
√

(1−∆C)(
1

2m
),

i.e. the verifier only needs to query πL, πR in β >
√
1−∆( 1

2m ) locations (which is

better than our bound), but will be incorrect with the probability of O(n2)
|F| (which is

worse than our bound). We show a comparison of concrete results in Figure 1. We
focus on the setting of an 128-bit field, as for larger fields (e.g. 192 bit), it always
makes to use the result from [17].

Result Distance Probability (|Aπ|/|F|) β

Weighted Corr Agreement 3/4 2−53 2−0.77

This result 3/4 2−108 2−0.49

Weighted Corr Agreement 7/8 2−51 2−1.2

This result 7/8 2−108 2−0.746

Weighted Corr Agreement 15/16 2−49 2−1.7

This result 15/16 2−108 2−0.99

Weighted Corr Agreement 31/32 2−48 2−2.27

This result 31/32 2−108 2−1.24

Figure 1: We consider instance sizes of 230 over finite field, F such that
log2(|F|) = 128. For our result, we set ϵ1 = ϵ2 = ϵ3 = 0.0005. For
Weighted Correlated Agreement, we set m = 3 to minimize |Aπ|/|F|.

4 Improved Soundness of the Basefold Protocol

In this section, we re-prove the soundness theorem of Basefold, and show that it is sound
even if the verifier only makes l := λ

log2(β)
queries for β > (1 −∆)1/4. Previously, we

only proved this for β > 1 − ∆/3. The Basefold IOP remains unchanged from [25]6.
We restate the IOPP in Figure ?? for completeness. We also restate the definition of
a foldable code7, which was introduced in Basefold [25]. A foldable code is a family
of codes, which we will denote (Cd, .., C0), which are characterized by a set of vectors

6The syntax of this description is slightly different than that in [25], but the protocol itself is equivalent
7For ease of exposition, we define the codes according to a different ordering than the original.
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{ti ∈ Fni : i ∈ [1, d]}. Each codeword ci ∈ Ci is composed of two codewords in Ci−1.
Additionally, the structure of a foldable codes enables local consistency checks between
codewords in adjacent codes. These consistency tests allow the Basefold (and FRI)
IOPPs to maintain logarithmic communication complexity.

Definition 2 (Foldable Code). Let c, d ∈ N and for each i ∈ [d], define ki = 2i, ni =
c · ki. A [nd, kd], foldable code is a family of codes (C0, .., Cd), where the base code,
C0, is equal to the repetition code, {m||c : m ∈ F} and each [ni, ki] code, Ci, and each
v ∈ Ci satisfies the following:

v := EncCi(m) = EncCi−1(mL) + ti ◦ EncCi−1(mR)

||EncCi−1(mL)− ti ◦ EncCi−1(mR)

where {ti ∈ Fni:i∈[1,d] is given in the description of the code, m ∈ Fki , m = mL||mR

and ◦ denotes the Hadamard product.

Foldable codes are attractive because a codeword in Ci can be transformed into a
smaller codeword in Ci−1 using only local operations. More specifically, we query the
same random point on each of the ni/2 lines defined by the pairs {(v[j],v[j + 1]) :
j ∈ even([ni]), and obtain a new codeword ∈ Ci−1. We describe this formally with the
following definition.

Definition 3 (Fold). Define interp : F2 × F2 → F[X] to be Lagrange Interpolation
of a degree-one univariate polynomial. Let (Cd, .., C0) be a family of foldable codes
characterized by {ti ∈ Fni : i ∈ [1, d]}, v ∈ Ci, and for each j ∈ even([ni]),

(pj , pj+1) = ((t[j],v[j]), (−t[j],v[j + 1])).

Then, the fold of v with respect to r ∈ F is the vector, fold(v, r)[j] satisfying (after
re-ordering),

fold(v, r)[j] = interp(pj , pj+1)(r).

At times, we will need to work with the univariate polynomials defined by interp(pj , pj+1)
directly. We call these polynomials the unfolding of v. To ease exposition, we denote
by vL,vR the codewords that for all j ∈ even([ni]) satisfy,

interp(pj , pj+1) = vL[j] +XvR[j]. (10)

We remark that fold can also be defined over arbitrary vectors that are not codewords,
and indeed the FRI and Basefold IOPPs rely on this fact. For a generic π ∈ Fni ,
define the pair of points (pj , pj+1) = ((t[j], π[j]), (t[j], π[j + 1])). Then, as before
fold(π, r) = interp(pj , pj+1). Finally, we will sometimes fold over entire sets S ⊂ [ni],
and this operation is well defined as long as S contains j + 1 whenever it contains j.
We introduce additional notation for this as follows.

fold(π, r)[S] = {interp((ti[j], π[j]), (−ti, π[j + 1]))(r) : j ∈ even(S)} (11)
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Protocol 1 .commit

Input oracle: πd ∈ Fnd

Output oracles: (πd−1, . . . , π0) ∈ Fnd−1 × · · · × Fn0

• For i from d− 1 downto 0:

1. The verifier samples and sends αi ←$ F to the prover

2. For each index j ∈ even[0, ni+1 − 1], the prover

(a) sets f(X) := interp(((Ti)[j], πi+1[j]), ((−Ti)[j], πi+1[j + 1]))

(b) sets πi[j] = f(αi)

3. The prover outputs oracle πi ∈ Fni .

Protocol 2 .query

Oracles: (πd, .., π0)
Repetition Parameter : λ ∈ N

• For j ∈ [0, λ− 1]

– The verifier samples an index µj ←$ even[1, nd − 1]

– For i from d− 1 downto 0, the verifier

1. queries oracle entries πi+1[µj ], πi+1[µj + 1]

2. computes p(X) := interpolate(((Ti)[µj ], πi+1[µj ]), ((−Ti)[µj ], πi+1[µj + 1]))

3. checks that p(αi) = πi[µj/2]

4. if i > 0 and µj/2 mod 2 = 0, update µj ← µj/2, otherwise update µj ←
µj/2− 1.

– If π0 is a valid codeword w.r.t. generator matrix C0, output accept, otherwise
output reject

Figure 2: The IOPP protocol for foldable codes.

Theorem 1 (Soundness of Basefold IOP). Let λ ∈ N be a security parameter, πd ∈
Fnd , l ∈ [0, 1], and ϵ ∈ [2/

√
nd]

3, with αϵ =
√

1−∆Cd
+ ϵ[0], βϵ >

√
αϵ + ϵ[1]+dϵ[2],

and βl
ϵ ≤ negl(λ). Then, with probability greater than

1− O(dnd)

|F|
,

over verifier randomness (rd, .., r1) in the commit phase, and letting {πi ∈ Fni : i ∈
[d]} be the corresponding oracles sent by the prover, either the verifier accepts with
probability less than

βλ
ϵ ,
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or ∃P ∈ F[X1, .., Xd] such that EncC0
(P (rd, .., r1)) = π0 and ∆(EncCd

(P ), πd) <
(1− (βϵ − dϵ[2]))nd.

High Level Overview of Proof In the remainder of the paper, we assume all
linear codes are Reed-Muller codes, that are evaluations of multilinear polynomials.
Recall from Lemma 7, that if πL[S] + rπR[S] = c[S] for some c ∈ C, then πL[S], πR[S]
differ from cL[S], cR[S] in very few locations, where cL + rcR = c. We will show in
Lemma 12, that in this case, c is the encoding of polynomial P , cL is the encoding of
polynomial PL and cR is the encoding of polynomial PR where PL + rPR = P . Next,
in Lemma 13, we prove soundness for just one round of the IOPP, and finally, we show
how to extend this to the full, multi-round IOPP.

Proof.

Lemma 12. Let n, k ∈ N and let C be an [n, k] linear error-correcting code. Let
β, τ1, τ2 ∈ [0, 1] such that β − (τ1 + τ2) > 1 −∆C . Let πL, πR ∈ Fn and d = log2(n).
Suppose that S ⊂ [n] where |S| > βn and there exists PL, PR ∈ F[X1, .., Xd] such that

|{i ∈ S : πL[i] = EncC(PL)[i] ∧ πR[i] = EncC(PR)[i]}| > (β − τ1)n.

Suppose further that there exists c ∈ C such that

|{i ∈ S : πL[S] + rπR[S] = c[S]}| > (β − τ2)n. (12)

Then
c = EncC(PL + rPR). (13)

Proof. Let cL := EncC(PL), cR = EncC(PR), π
∗ := πL+rπR, P

∗(X1, .., Xd) = PL+rPR

and c∗ = EncC(P
∗). Then,

|{i ∈ S : π∗[i] = c∗[i]}|
= |{i ∈ S : πL[i] + rπR[i] = cL[i] + rcR[i]}| (By Definition of π∗ and linearity of C)

≥ |{i ∈ S : πL[i] = cL[i] ∧ πR[i] = cR[i]}|
≥ (β − τ1)n

.

Let c ∈ C be the codeword satisfying Equation 12. Then by a simple counting argu-
ment,

|{i ∈ S : c∗[i] = c[i]}| > (β − (τ1 + τ2))n.

By assumption of the Lemma, β−(τ1+τ2) > 1−∆C . Therefore, by minimum distance
properties of C, c∗ = c, which completes the proof.

Next, we combine the previous Lemma (Lemma 12) with our correlated agreement
Lemma (Lemma 7) to prove soundness over one single round of the IOPP.
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Lemma 13 (One Round Soundness). Let d ∈ N and let Cd, Cd−1 be a pair of codes
from an [nd, kd] foldable code family (Definition 2). Let π ∈ Fnd , ϵ ∈ [2/

√
nd]

3 and let
βϵ be defined as in Lemma 7. Suppose that βϵ − 2dϵ[2] > 1−∆Cd

, and that ∃S ⊂ [nd]
and c ∈ Cd−1 such that

|{i ∈ S : fold(π, r)[i] = c[i]}| > (βϵ − (d− 1)ϵ[2])nd−1. (14)

Then with probability greater than 1 − O(n)
|F| (over verifier randomness r) there exists

PL, PR ∈ F[X1, .., Xd−1] such that c = EncCd−1
(PL + rPR) and

|{i ∈ S : π[i] = EncCi
(PL +XPR)[i]}| > (βϵ − dϵ[2])nd. (15)

Proof. By Equation 14 and by Definition of fold(Definition 2), it follows that

|{i ∈ S : πL[i] + rπR[i] = cL[i] + rcR[i]}| > (βϵ − (d− 1)ϵ[2])nd−1,

where (πL, πR), (cL, cR) are the unfolding(Definition 10) of π, c respectively. Define
Aπ(ϵ) as in Lemma 7. Then if r ̸∈ Aπ(ϵ), it follows from Lemma 7 that,

|{i ∈ S : πL[i] = cL[i] ∧ πR[i] = cR[i]}| > (βϵ − dϵ[2])nd−1. (16)

Let PL, PR ∈ F[X1, .., Xd] satisfy cL = EncCd−1
(PL), cR = EncCd−1

(PR). Then, apply-
ing Lemma 12,

c = EncCd−1
(PL + rPR).

By definition of foldable code (Definition 2), it follows from Equation 16 that.

|{i ∈ S : π[i] = c[i]}| > 2(βϵ − dϵ[2])ni−1,

which implies that

|{i ∈ S : π[i] = EncCd
(PL +XPR)[i]}| > (β − dϵ[2])ni.

By Lemma 7, |Aπ(ϵ)| ∈ O(n), and therefore the probability that r ̸∈ Aπ is greater

than 1− O(nd)
|F| , which completes the proof.

Next, we show that if the verifier accepts with probability greater than βl, then
this implies the existence of d large sets, one in each oracle, that are consistent with
each other with respect to the fold operation.

Lemma 14 (Verifier Queries). Let β ∈ [0, 1], l ∈ N. If the verifier accepts the query
phase with probability greater than βl then there exists d large sets {fi(S) ⊂ [ni] : i ∈
[d], |fi(S)| > βni} such that for all i ∈ [d],

fold(πi+1, r[i+ 1])[fi+1(S)] = πi[even(fi+1(S))/2] (17)

where fold is defined in Equation 11.
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Proof. Define the function Q : even([nd]) → {0, 1} as Q(µ) = 1 if the unique verifier
query beginning with µ ← even(nd) passes the verifier tests and Q(µ) = 0 otherwise.
Let S = Q−1(1), i.e S is the set of elements in even([nd]) that pass the verifier tests.

Then, each verifier sample is a Bernoulli trial with success probability |S|
|even([nd])| . After

l queries, the probability of acceptance is ( |S|
|even([nd])| )

l. Therefore, if the verifier accepts

with probability greater than βl, then ( |S|
even([nd])

) must be larger than β, and so |S| >
β|even([nd])| = βnd−1. Next, we define fi(S).

Definition 4 (fi(S)). Let d ∈ N and S ⊂ even([nd]). Then,

fd(S) = S ∪ (S + 1).

For i ∈ [d− 1], fi(S) satisfies the following:

even(fi(S)) = {even({j/2, j/2− 1}) : j ∈ even(fi+1(S)}

odd(fi(S)) = even(fi(S)) + 1.

To complete the Lemma, we need to prove that for each i ∈ [0, d],

fold(πi, r[i])[fi(S)] = πi−1[even(fi(S))/2].

For each µ ∈ S, let ((µd, µd+1), .., (µ1, µ1+1)) be the unique set of queries associated
with µ. Then, by definition of fold (Definition 11), for each i ∈ [1, d]

fold(πi, ri)[fi(S)] = {πi,L[µi] + ri]πi,R[µi + 1]} (18)

Furthermore,
πi,L[µi] + r[i]πi,R[µi + 1] = πi−1[µi/2]. (19)

Combining Equations 18 and 19 gives

fold(πi, ri)[fi(S)] = πi−1[even(fi(S)/2)],

which completes the proof of Lemma 14.

Finally, we are ready to prove the main statement of the Theorem. Suppose by
contradiction that the verifier accepts with probability > βl but there does not exist
P ∈ F[X1, .., Xd] such that EncC0

(P (rd, .., r1)) = π0 and ∆(EncCd
(P ), πd) < (1− (βϵ−

dϵ[2])). But by Lemma 14, there does exist a set S ⊂ even(nd) such that for each
i ∈ [0, d],

fold(πi, r[i])[fi(S)] = πi−1[even(fi(S))/2].

Therefore, since π0 ∈ C0 there must exist a round where Equation 14 holds but Equa-

tion 15 does not. By Lemma 13, this only happens with probability O(n)
|F| . Taking the

union bound over d rounds completes the proof.
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Appendix

A Proofs Contd

Proof of Lemma 8. Let S ⊂ 2[n] be the set of large subsets where for each S ∈ S,
|S| > βn and for each S1, S2 ∈ S, S1 ∩ S2 < αn. Recall that our goal is bound the
size of S. We do this by constructing a bipartite graph, G, where right vertices are
labeled by elements in [n] and left vertices are labeled by subsets of [n]. We place an
edge between a vertex v ∈ L and a vertex w ∈ R if the element associated with w is
contained inside the set associated with v. This implies that that any vertex in L has
more than βn neighbors but shares less than αn neighbors with any other vertex in L.
In other words, letting N(v) denotes the neighbor set of v ∈ L:

• ∀v ∈ L, |N(v)| > βn

• ∀v1, v2 ∈ L, |N(v1) ∩N(v2)| < αn

We prove in the following Lemma, that in a bipartite graph with these two properties,

|L| ≤ poly(n)

Lemma 15. Let G = ((L,R), E) be a bipartite graph. For each vertex v, let d(v) be
the degree of v. Let α, β ∈ [0, 1), β >

√
α. For v ∈ L, let Nv = {w ∈ R : (v, w) ∈ E}

be the neighborhood of v. Then if for all v ∈ L,

|N(v)| > βn

and if for each two v1, v2 ∈ L,

|Nv1 ∩Nv2 | ≤ α · n

Then,
|L| ∈ O(n)
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Proof. This proof is a generalization of the proof of the Johnson bound 8. For v1, v2 ∈ L
and w ∈ R, define an “angle” as a triple (v1, w, v2), such that there is an edge between
v1 and w, and between w and v2. Let d(w) be the degree of node w. Then the number
of angles in the graph is equal to ∑

v∈R

(
d(v)

2

)

Next, we make the following claim, which puts
∑

v∈R

(
d(v)
2

)
in terms of

∑
v∈R d(v).

Claim 2. ∑
v∈R

(
d(v)

2

)
> |R|

(
(
∑

v∈R d(v))/|R|
2

)
.

Since each vertex in L has more than βn neighbors, it follows that the sum of the
degrees of all vertices in R is greater than |L| · β|R|, i.e.

∑
v∈R d(v) ≥ |L| · β|R|. Thus,

by Claim 2, ∑
v∈R

(
d(v)

2

)
≥ n

(
β|L|
2

)
On the other hand, any two vertices in L can share at most α|R| = αn vertices in R.
Thus the number of angles between any two vertices is at most αn, and so the total
number of angles in G is at most (

|L|
2

)
αn

Combining the two inequalities, we have(
β|L|
2

)
≤

(
|L|
2

)
α.

Solving for L we have,

β|L|(β|L| − 1)

2
≤ α|L|(|L| − 1)

2
(20)

β|L|(β|L| − 1) ≤ α|L|(|L| − 1) (21)

β(β|L| − 1) ≤ α(|L| − 1) (22)

β2|L| − β ≤ α|L| − α (23)

|L|(β2 − α) ≤ β − α (24)

(25)

Therefore,

|L| ≤ β − α

β2 − α

8https://www.cs.cmu.edu/~venkatg/teaching/au18-coding-theory/lec-scribes/list-decoding.

pdf
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Let ϵ = β2 − α. Then we can rewrite the above equation as

|L| ≤
√
α+ ϵ− α

ϵ
.

The right hand size of this equation is at its highest value when ϵ is at its lowest value.
Because ϵ represents fraction of elements of a codeword of length n, its smallest value
is 1/n. In that case,

|L| ≤ n(
√

α+ 1/n− α),

and so L ∈ O(n).

Proof of Claim 1. By definition of factorial,

|R|
(
(
∑

d(v)/|R|)
2

)
=|R| (

∑
d(v)/R)((

∑
d(v)/R)− 1)

2
(26)

=
(
∑

d(v))((
∑

d(v)/R)− 1)

2
(27)

=
(
∑

dv)
2/R− (

∑
dv)

2
(28)

=
1

2
(
∑

dv)
2/R− (

∑
dv) (29)

(30)

On the other hand∑(
d(v)

2

)
=

1

2

∑
(d(v)2 − d(v)) =

1

2
(
∑

d(v)2 −
∑

d(v))

Since R > 1, it follows that∑
d(v)2

|R|
<

∑
d(v)2 < (

∑
d(v)

)2
,

and therefore ∑
v∈R

(
d(v)

2

)
> |R|

(
(
∑

v∈R d(v))/|R|
2

)
.
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