
Zero-Knowledge Location Privacy
via Accurate Floating-Point SNARKs

Jens Ernstberger∗§, Chengru Zhang†§, Luca Ciprian∗, Philipp Jovanovic‡, and Sebastian Steinhorst∗
∗Technical University of Munich, Germany
†The University of Hong Kong, Hong Kong
‡University College London, United Kingdom

Abstract—We introduce Zero-Knowledge Location Privacy
(ZKLP), enabling users to prove to third parties that they are
within a specified geographical region while not disclosing their
exact location. ZKLP supports varying levels of granularity,
allowing for customization depending on the use case. To
realize ZKLP, we introduce the first set of Zero-Knowledge
Proof (ZKP) circuits that are fully compliant to the IEEE 754
standard for floating-point arithmetic.

Our results demonstrate that our floating point circuits
amortize efficiently, requiring only 64 constraints per opera-
tion for 215 single-precision floating-point multiplications. We
utilize our floating point implementation to realize the ZKLP
paradigm. In comparison to a baseline, we find that our
optimized implementation has 15.9× less constraints utilizing
single precision floating-point values, and 12.2× less con-
straints when utilizing double precision floating-point values.
We demonstrate the practicability of ZKLP by building a
protocol for privacy preserving peer-to-peer proximity testing —
Alice can test if she is close to Bob by receiving a single
message, without either party revealing any other information
about their location. In such a setting, Bob can create a proof of
(non-)proximity in 0.26 s, whereas Alice can verify her distance
to about 470 peers per second.

1. Introduction

Location-based services have become integral in the dig-
ital age. The widespread use of geolocation-enabled devices,
including smartphones and trackers like Tile and AirTag,
has fueled advancements in services reliant on spatial data.
However, these developments also raise significant privacy
concerns, as location data reveals sensitive information
about an individual’s habits and preferences.

As a motivating example, consider digital contact trac-
ing. Applications that collect geolocation records can, un-
intentionally or deliberately, expose sensitive user informa-
tion, leading to potential privacy breaches. Moreover, these
systems face the dual challenge of ensuring the privacy
of honest users while preventing malicious actors from
spoofing data to provide deliberately incorrect information.

In response to the first problem of protecting user lo-
cation privacy, various Location Privacy Preserving Mecha-

§. Both authors contributed equally to this research.

nisms (LPPM) protocols emerged [1], [2]. These solutions
either apply (i) obfuscation [3], [4] or (ii) cryptographic
methods [5], [6], [7], [8], where obfuscation reduces the
precision of location data, while cryptographic approaches
utilize secure computing and encryption to protect pri-
vacy. However, both solutions have shortcomings: differ-
ential privacy LPPM struggles with correlated user loca-
tions [9], and both cloaking [4] and Multi-Party Computa-
tion (MPC)-based cryptography [8] depend on third-party
data anonymization.

Similarly, ensuring the authenticity of location informa-
tion has gained importance in recent years, proliferating
numerous solutions to mitigate spoofing [10]. For example,
recent advancements in Global Navigation Satellite System
(GNSS) address legacy satellite system vulnerabilities lack-
ing signal authentication [11]. Additionally, efforts to inject
fabricated location reports into offline finding networks like
Apple’s “Find My” are countered by manufacturers [12].

Considering these challenges, the ideal mechanism
would allow clients to submit their own location proof to
protect personalized location information without relying on
third parties, it would preserve the utility of information
with custom granularity, and it would prevent clients from
deliberately providing wrong location information.

In this paper, we thus explore the following research
question: How can we obtain a short proof of location that
allows for customized privacy preservation, while retaining
accuracy and utility?

We give an affirmative answer to our research question
by introducing Zero-Knowledge Location Privacy. Our ap-
proach is driven by recent advancements in Zero-Knowledge
Proofs (ZKPs), which enable practical use in applications
previously deemed too costly. With ZKLP, users can prove
to any third party that they are within a specific geographical
region while obfuscating their exact location for utility and
privacy. To do so, we rely on Discrete Global Grid Systems
(DGGS) [13] with hexagons as geometric representation,
which hierarchically divide the earth into progressively
finer resolution grids. Any third party can only obtain an
obfuscated location, whose correctness can be verified in
milliseconds. To demonstrate the practicability of ZKLP,
we develop a protocol for privacy-preserving peer-to-peer
proximity testing and evaluate its practicality. While our
main protocols focus on providing privacy to user-provided

locations, we introduce three possible solutions to ensure
non-falsifiable location proofs in Appendix C.
Importance of Floating-Point Arithmetic for ZKLP. The
necessity of floating-point arithmetic arises from the na-
ture of data types and operations involved in geographic
applications. Geolocation data (such as coordinates) and
its associated computations (such as square roots

√
· and

trigonometric functions sin(·), cos(·)) are both in the do-
main of real numbers R. In computers, these numbers and
operations are typically represented using either fixed-point
or floating-point formats. Generally, fixed-point arithmetic
is more efficient and is thus commonly used in ZKP cir-
cuits [14], [15], while computer hardware and software
often use floating-point arithmetic, which provides greater
flexibility and supports a wider range of values.

For ZKLP, fixed-point arithmetic presents two key limi-
tations. First, we need to simultaneously handle large values
(e.g.,

√
7

res
, where the hexagonal resolution res can be up

to 15) and small values (e.g., the product of sin θ and cos θ)
(cf. §4), resulting in either increased data size or reduced ac-
curacy in fixed-point representation. In fact, compared with
double precision floating point (FP64) that requires 64 bits,
fixed-point costs nearly twice as many bits as FP64 while
achieving lower accuracy (cf. §5.2). Second, our ZKLP
circuits need to be compatible with existing geographic ap-
plications that are already implemented using IEEE 754 [16]
floating-point arithmetic, such as Uber H3 [17]. The use of
incompatible formats would compromise the completeness
of ZKLP, since tiny turbulence in computations may yield
significantly different results [18]. Looking ahead, in §5.2,
with randomly generated test cases, fixed-point representa-
tion fails some tests whereas floating-point passes all. Even
worse, this inconsistency can be exploited by adversaries
to generate valid proofs for maliciously crafted statements,
thereby breaking the soundness of ZKLP.
Challenges for Floating-Point. The major challenge
in addressing our research question is achieving efficient
floating-point arithmetic that is fully compliant with IEEE
754 in a Succinct Non-Interactive Argument of Knowledge
(SNARK) circuit, which is nontrivial. A SNARK commonly
operates over a finite field Fp, where p is usually a large
prime depending on the underlying elliptic curve (e.g.,
|p| = 254 for BN254). By contrast, floating-point numbers
require integer operations in Z2k that are circuit-unfriendly,
such as comparison and shifts.

Previous works have investigated the use of floating-
point values in MPC [19], [20], [21] and ZKP [22], [23],
[24]. However, they are either (i) not optimized for circuit
size, (ii) inefficient in terms of communication cost and veri-
fication time, (iii) incapable of handling complex operations,
or (iv) not fully compliant with the IEEE 754 standard [16]
(see §6 for a detailed comparison).

For instance, [21], [22] naively convert software floating-
point implementations to circuits, leading to a huge num-
ber of gates. Garg et. al [23] address this problem by
proving the upper bound of the relative error, instead of
transforming rounding operations on floating-point values
to in-circuit bitwise operations. In spite of this, their work

v1

v2

v3

v4

v5

v6

Pv Pu

∆min

Figure 1: (i) Icosahedral Polyhedron. A hexagon is high-
lighted in blue, and a pentagon is highlighted in red. (ii)
Hexagon h = [v1, ..., v6]. Pu and Pv denote the points of
verifier u and prover v respectively. ∆min is the privacy-
preserving distance of u to v. The red ticks depict our
methodology to evaluate ZKLP in Section 5.

only supports addition and multiplication while lacking a
concrete practical implementation. To realize ZKLP, we
require complex operations such as division, taking square
roots, and trigonometric functions. In addition, we also need
to guarantee that these operations produce correctly rounded
results. Hence, emulating floating-point numbers precisely,
whilst attaining efficiency in the operations involved, is
challenging and requires significant optimization.
Challenges for ZKLP. Transforming a location described
as latitude and longitude to an index in a hexagonal grid
system requires extensive use of trigonometric operations.
Common approaches to approximating trigonometric func-
tions by following the standard three-step recipe of range
reduction, polynomial approximation, and output compen-
sation, rely on high bitwidths to obtain precise results [25].
Further, naive polynomial approximation through, e.g., Tay-
lor Series, is prohibitively expensive in-circuit, as precise
results demand for many iterations, which is costly to rep-
resent in an arithmetic circuit that demands for linearization.

1.1. Contributions & Results

We provide a full implementation of IEEE 754 compliant
floating-point operations in SNARKs and apply them in our
implementation ZKLP. Our implementation of floating-point
arithemtic is agnostic to the underlying SNARK arithemti-
zation and applicable in orthogonal domains.

Our main technical contributions are (i) novel optimiza-
tions for computing floating-point SNARKs and (ii) opti-
mizations to eliminate trigonometric operations that make
the ZKLP paradigm practical. Throughout, we leverage
lookup arguments and nondeterministic programming, en-
abling cost-effective representation of computations that are
typically resource-intensive when executed in-circuit. To
efficiently operate on floating-point values, we convert their
integer components to an equivalent but circuit-efficient
form, build optimized sub-circuits for integer operations,
and minimize the number of costly range checks in key
steps, e.g., rounding. For compliance with IEEE 754, we
take additional care of edge cases, such as NaN, ±∞ and
subnormal numbers. To efficiently instantiate ZKLP over
primitive floating-point operations, we introduce shortcuts,

eliminating expensive math operations through trigonomet-
ric identities and nondeterministic programming.

Our experiments show that our circuits for primitive
floating-point operations are precise and performant. We test
our implementation with the Berkeley TestFloat library [26]
to ensure full compliance. The extensive use of lookups
leads to amortization — 21 single precision floating point
(FP32) multiplications require 209 constraints, whereas 215

FP32 multiplications require 64 constraints per operation.
When applied to the ZKLP paradigm, our resulting circuits
are highly efficient. In comparison to an unoptimized fixed-
point baseline, our implementation has 15.9× less con-
straints for FP32 values, and 12.2× less constraints for FP64
values. We apply ZKLP and show that it can realize privacy-
preserving peer-to-peer proximity testing, through which a
user can evaluate its proximity to 470 peers per second.
In summary, our contributions are as follows:

• ZKLP. We introduce ZKLP, a novel application of
ZKPs, along with a full implementation and evaluation.
ZKLP unlocks a novel class of ZKP-empowered ap-
plications, which enable personalized location privacy
through geo-indistinguishability. In particular, it allows
individuals to prove that they have visited a certain
location whilst ensuring privacy for the exact location.

• IEEE 754 Compliant Floating-Point SNARKs. We
are the first to introduce optimized SNARK circuits
for floating-point operations that are fully compliant
to IEEE 754 [16] (§3). Our optimization for primitive
floating-point operations are universally applicable, in-
dependent of specific arithmetizations, and fulfill the
precision requirements of IEEE 754. We thus deem this
contribution of independent interest.

• Optimizations for ZKLP. Transformations on ge-
ographic coordinates extensively demand for trigono-
metric functions. We introduce ZKP circuits that en-
tirely eliminate trigonometric functions for ZKLP (§4).

• Evaluation & Application. We provide a full im-
plementation and evaluation of all algorithms and
optimizations, show the compliance of our floating-
point circuits with IEEE 754, and showcase the ZKLP
paradigm for peer-to-peer proximity testing (§5).

Limitations of ZKLP. Despite our optimizations making
both floating-point and ZKLP circuits practical, there are
notable limitations to our current evaluation. Specifically,
our assessment does not factor in the additional overhead
required to bridge the cyber-physical gap for obtaining prov-
ably authentic location information — a malicious prover
could potentially falsify their location. To address this, we
give three possible solutions to prevent the forgery of proofs
attesting to incorrect locations in Appendix C, and argue
about their estimated additional cost.

2. Preliminaries

2.1. Notation

We denote the bitwidth of x ∈ Z as |x|, and the absolute
value as abs(x). x∥y is the concatenation of x, y ∈ Z. x<<n

and x>>n shift x to the left and right by n bits, respectively,
where x << n = x · 2n, x >> n = ⌊ x

2n ⌋. For x, y ∈ Z with
y’s bitwidth known to be n, x.y is a shorthand for x∥y

2n ∈ R.
We define the position of a point on the Earth’s surface

in spacial coordinates by radial distance (r), latitude (θ),
and longitude (ϕ). Here, r approximates the Earth’s radius,
θ represents the latitude, ranging from −90◦ at the South
Pole to +90◦ at the North Pole with 0◦ at the Equator, and
ϕ represents the longitude, ranging from −180◦ to +180◦

with 0◦ at the Prime Meridian. We represent a vertex of a
hexagon in two-dimensional Cartesian coordinates as vi =
(xi, yi). We denote a hexagon as a vector (in lower-case
bold symbols) of 6 coordinates, i.e., h = [v1, v2, ..., v6]. Let
H = {h1,h2, ...,hn} be a set of regular hexagons in the
Euclidean plane, each hexagon hi having a center point ci
and equal side length a. For each hexagon hi, there is a
region Ri in the plane, defined by the vertices of hi, with
the property that every point within Ri is closer to ci than
to the center point of any other hexagon in H. The region
Ri is referred to as a hexagonal cell.

2.2. Background On Floating-Point Values

Fixed-point and floating-point are common methods for
representing real numbers in computers. In fixed-point rep-
resentation, we fix a scaling factor N and represent a number
x as an integer v of bitwidth M > N , whose lowest
N bits are treated as the fractional part with an implicit
decimal point in front, i.e., x =

∑M−1
i=0 vi · 2i−N = v

2N
.

Arithmetic operations on fixed-point numbers are equivalent
to directly operating on their underlying integers, and only
a small overhead is required to keep the scaling factor
unchanged. The main advantage of fixed-point is that it
can be more efficient in computation and storage, especially
on low-cost hardware that lacks native support for floating-
point arithmetic. However, it can only handle numbers with
similar orders of magnitude, and lacks the ability to encode
very large or very small values simultaneously and precisely.

Floating-point representation does not have a fixed scal-
ing factor. It uses only a portion of the available bits (man-
tissa) to store the number, and the remaining bits (exponent)
are reserved for dynamically tracking the scaling factor.
When operating on floating-point numbers, the exponent
and mantissa need to be correctly updated. While increasing
cost, floating-point representation is more general than fixed-
point representation, as it can represent very small and very
large numbers with greater precision.

IEEE 754 [16] is the de facto standard for floating-
point numbers and is widely adopted by modern hardware
and software. It defines the encoding formats of floating-
point numbers and a set of arithmetic operations on these
numbers. A floating-point number in IEEE 754 consists
of three components, the sign s, the exponent e, and the
mantissa (or significand) m. The binary encoding format
encodes these components as a binary string s∥e∥m, where
s, e,m have 1, E,M bit(s) respectively. In this paper, we
are interested in FP32, the single precision binary encoding

format with E = 8,M = 23, and FP64, the double precision
one with E = 11,M = 52. Here, we briefly review the
encoding itself and discuss arithmetic operations in §3.

The binary encoding format is capable of representing
5 types of values: signed zeros (±0), subnormal numbers,
normal numbers, infinities (±∞), and “not a number”
values (NaNs). We use abnormal to denote a number that is
±∞ or NaN. Below we list how the IEEE 754 specification
maps the encoded value s ∥ e ∥m to the real number α.

(i) e = 0,m = 0 (±0) — α = 0 if s = 0 and α = −0 if
s = 1.

(ii) e = 0,m ̸= 0 (subnormal) — α = (−1)s · 2−2E−1+2 ·
0.m.

(iii) e ∈ [1, 2E−2] (normal) — α = (−1)s·2e−2E−1+1·1.m.
In this case, e is the biased form of the actual exponent
with 2E−1 − 1 as the bias, and m, together with an
implicit leading 1, describes the actual mantissa.

(iv) e = 2E − 1,m = 0 (±∞) — α = ∞ if s = 0 and
α = −∞ if s = 1.

(v) e = 2E − 1,m ̸= 0 (NaN) — α isn’t a numeric value.
As such, the encoding allows storing a normal number

in the range [2−2E−1+2, 22
E−1

) with (M + 1)-bit precision
and a subnormal number that is even smaller, i.e., in the
range [2−2E−1+2−M , 2−2E−1+2), but with lower precision.

2.3. Discrete Global Grid Systems

A DGGS divides the Earth into a hierarchy of progres-
sively finer resolution grids. Alternatively, a solution for
dividing the Earth’s surface would be to apply a simple
latitude-longitude grid, where the Earth is divided into a grid
based on lines of latitude and longitude, creating a series
of rectangular cells that cover the entire globe. However,
such an encoding leads to lines of longitude that are in
closer proximity at the poles than they are at the equator.
While a latitude-longitude grid is a simple way to partition
the Earth’s surface, it lacks the uniformity, efficiency, and
scalability of a DGGS [13], particularly for complex spatial
analyses and global-scale applications.
Hexagonal Hierarchical Geospatial Indexing. A long
line of research suggests that defining a DGGS primarily
based on hexagonal tiles exhibits superior properties than
DGGS based on other geometric shapes for algorithmic effi-
ciency [13], [27]. This benefit is evident in practical tools —
Uber, for example, introduced the Hexagonal Hierarchical
Spatial Index (H3), a geospatial index that partitions the
globe into hexagons for more accurate analysis of movement
patterns [17]. The global grid system relies on a gnomonic
projection centered on icosahedron faces. In the Uber H3
indexing system, hexagons are utilized to create a grid on
each icosahedron face. The H3 indexing system supports
differing granularity, with 16 resolutions. At the highest
resolution, 122 hexagons span the sphere of the earth, with
10 hexagons per icosahedron face. As hexagons cannot tile a
icosahedron face, 12 pentagons are introduced at each of the
icosahedron vertices to tile the full spherical projection. For
enhanced intuition, Figure 1 depicts an Icosahedral Goldberg
Polyhedron of hexagons and pentagons with 92 faces.

2.4. SNARKs

A zero-knowledge Succinct Non-Interactive Argument
of Knowledge (zk-SNARK) [28] is a cryptographic protocol,
where a prover P convinces a verifier V that a certain NP-
statement is true, without disclosing any information besides
the veracity of the statement. Common SNARKs target the
problem of circuit-satisfiability, i.e., providing SNARKs for
arbitrary NP-statements, represented as arithmetic circuits
(R1CS [29], Plonkish [30], AIR [31]). Informally, a zk-
SNARK for circuit satisfiability satisfies the following:
Succinct: The verification cost and the size of the proof are
sublinear in the size of the circuit.
Non-Interactive: The prover P can provide a proof that can
be independently verified without further communication.

Beyond the above properties, the security properties of
a zk-SNARK can be informally described as follows:
Perfect Completeness: An honest P can always convince
V of the correctness of a true statement.
Knowledge Soundness: A dishonest P cannot convince V
of an invalid statement, except with negligible probability.
Furthermore, an extractor can successfully extract the wit-
ness to a valid statement except with negligible probability.
Zero-Knowledge: The proof reveals nothing to V besides
that P knows an assignment satisfying the circuit predicate.

We say an argument of knowledge retains knowledge
soundness against a computationally bounded prover.

2.5. SNARK Optimizations

We introduce generic SNARK optimizations, applied in
our protocols in Section 3 and 4, in the following.
Lookup Arguments. Most SNARKs can efficiently rep-
resent computations that can be expressed as an arithmetic
circuit. However, there are some non-arithmetic operations,
such as range checks, XOR or logical AND operations,
that are unfriendly to the circuit and cost more constraints.
Lookup arguments aim to reduce the prover complexity for
these non-arithmetic operations by simply checking that a
query is contained in a lookup table [32]. They were first
introduced by Bootle et. al [33], and optimized in several
successive works [34]. In this work, we consider read-only
lookup tables. To build a lookup table T , we precompute
all valid values of a function and treat them as a vector
of table entries t := (t1, t2, ..., tn) ∈ Fn. Later, the prover
is going to convince the verifier that a vector of queries
f := (f1, f2, ..., fm) ∈ Fm is in the lookup table, i.e., f ⊆ t.

Based on logarithmic derivatives, LogUp [35] shows that
it is sufficient to check the below identity for set inclusion:

m−1∑
i=0

1

X − fi
=

n−1∑
j=0

oj
X − tj

,

where oj is the number of tj’s occurrences in the query
vector f. By Schwartz-Zippel Lemma, we can check this
polynomial identity by evaluating it at a random point X =
c. While LogUp [35] provides a dedicated protocol for this
check, we instead adopt the approach in gnark [36], which

enforces the identity in arithmetic circuits. Also, note that
the identity can be extended to support lookup tables with
w > 1 columns, where each element in the queries and
entries is now a vector of length w (i.e., fi, ti ∈ Fw).
Nondeterministic Programming. An in-circuit computa-
tion proves that the input data satisfies a given compliance
predicate. The local input data can provide arbitrary hints
(or nondeterministic advice [37]), which are not trusted to
be correct, but whose verification is more efficient in-circuit
than the emulation of the plain computation. Hints leverage
the fact that certain calculations are hard to compute, but
easy to verify in an arithmetic circuit.

In consonance with related work [38], we formalize a
hint as the computation H(X) −→ Y done by the prover
outside the arithmetic circuit. An in-circuit nondetermin-
istic predicate P : X × Y −→ {0, 1} for H ensures that
∀x ∈ X, y ∈ Y the relations H(x) = y ⇐⇒ P (x, y) = 1
and H(x) ̸= y ⇐⇒ P (x, y) = 0 hold. Note, that
in practical applications, the variable returned by a hint
function is equivalent to a prover-supplied witness. We call
those variables hints instead of witnesses for separation of
concerns, highlighting that the computation is done outside
the circuit, and that their values are provided by the prover.

For example, consider extracting the most significant bit
of the mantissa of a floating point value. Let the computation
to find the MSB of a mantissa be HMSB(m) = MSBm and
the nondeterminism predicate be PMSB : Zp×Zp → {0, 1}.
In the circuit, it is verified that MSBm is indeed the MSB
of m by the predicate PMSB:

PMSB(m,MSBm) =

{
1 if m−MSBm · 2|m|−1 ∈ [0, 2m−1],

0 otherwise.

If MSBm = 0 but the actual MSBm is 1, then the
expression m − MSBm · 2|m|−1 will result in at least |m|
bits. If MSBm = 1 but the actual MSB is 0, the subtraction
will result in a negative value.

3. Primitive Floating-Point Operations

In the following, we introduce optimized floating-point
circuits defined over a prime field Fp of order p for primitive
operations (addition, subtraction, multiplication, division,
square root, and comparison). Here, we denote integer-typed
variables as Latin letters (a, b, . . .), and floating-point values
as Greek letters (α, β, . . .). To avoid verbosity, we omit
the in-circuit constructions for equality constraint (x = y),
equality check (result := CIsEq(x, y)), conditional selection
(condition ? true value : false value), and boolean op-
erations (∧, ∨, ¬, ⊕), etc. Further, we introduce circuits for
integer operations in Appendix A, including CRC for range
checks, CAbs for extracting signs and absolute values, CMax

and CMin for computing maximum and minimum values, and
<< and >> for left and right shifting.

3.1. Initializing Floating-Point Numbers

Now we discuss how to initialize a floating-point number
α inside the circuit, whose original representation is α =

CFpInit(ŝ, ê, m̂)

1: ŝ(1− ŝ) = 0; CRC(ê, E); CRC(m̂,M)
2: s := ŝ; e := ê;m := m̂
3: m is 0 := CIsEq(m, 0)
4: e is min := CIsEq(e, 0); e is max := CIsEq(e, 2E − 1)
5: Receive hint d = HNorm(m)
6: CRC((m<< d)− (m is 0 ? 0 : 2M),M)
7: e := −2E−1 + 1 + (e is min ? (m is 0 ?−M : 1− d) : e)
8: m := (e is max∧¬m is 0)?0 : (e is min?m<<d : m+2M)
9: a := e is max

Figure 2: Circuit for initializing floating-point numbers

(ŝ, ê, m̂), where ŝ ∈ {0, 1} is the sign bit, ê is an E-bit
exponent, and m̂ is an M -bit mantissa (or significand). Note
that although it is possible to represent α in circuit as-is, we
convert it to a compatible format α = (s, e,m, a) to save
as much constraints as possible, where s, e,m are circuit-
efficient form of ŝ, ê, m̂, and a ∈ {0, 1} is an additional bit
indicating whether the number is abnormal.
Shape Check. On unchecked input ŝ, ê, and m̂ (which
are usually secret witnesses), we first enforce that ŝ, ê and
m̂ are well-formed in-circuit by checking ŝ ∈ {0, 1}, ê ∈
[0, 2E − 1], m̂ ∈ [0, 2M − 1]. After that, we initialize s :=
ŝ, e := ê,m := m̂.
Convert to Circuit Efficient Forms. For a normal number
α = (−1)s ·2e−2E−1+1 ·1.m, the sign s is unchanged, while
we redefine e as the exponent’s unbiased form, i.e., e :=
e−2E−1+1, and m as the mantissa with an explicit leading
bit 1, i.e., m := m + 2M . In this way, we no longer need
to handle the bias of e and the implicit leading bit of m in
subsequent operations, thus improving efficiency and clarity.

We convert subnormal numbers to normal numbers by
normalizing their mantissas, allowing the exponents to ‘un-
derflow’. Specifically, for a subnormal number α = (−1)s ·
2−2E−1+2 · (0 ∥m) · 2−M , we left shift the mantissa (with
leading zero) 0 ∥ m, and at the same time decrement the
exponent −2E−1+2 by 1, until the MSB (i.e., M -th bit) of
mantissa becomes 1. Denoting the shift by d ∈ [1,M], we
have α = (−1)s · 2−2E−1+2−d · ((0 ∥m) << d) · 2−M and
redefine e := −2E−1 +2− d,m := (0 ∥m)<<d = m<<d.
Now, the prover computes the hint d := HNorm(m) and
provides d to the circuit. For soundness, the circuit needs
to check the predicate PNorm(m, d) by calling CRC((m <<
d) − (m is 0 ? 0 : 2M),M), which enforces m is zero
or m<< d ∈ [2M , 2M+1 − 1], implying that the MSB (i.e.,
M -th bit) of a non-zero m<< d is 1.

Normalizing unifies normal and subnormal numbers to
save constraints in subsequent operations. Although subnor-
mal numbers now take M + 1 bits to represent, padding
zeros do not contribute to precision, so they still have lower
precision than normal numbers.
Edge Cases. ±∞ is represented by e = 2E−1,m = 2M .
±0 is represented by e = −2E−1+1−M,m = 0. Although
NaNs have different mantissas as per the specification, we
always map them to fixed variables s = 0, e = 2E−1,m = 0
to simplify the handling of edge cases. We set 0 as NaN’s
mantissa due to the similar behaviors between NaNs and ±0

CFpRound(e,m,∆e, aux = 1)

Require: m ∈ [0, 2N − 1],∆e ∈ [0,K], 2N+K < p
1: Receive hints u′, b1, b2, v′ = HSplit(m<< (K −∆e))
2: CRC(u′,M); b1(1−b1) = 0; b2(1−b2) = 0; CRC(v′, N−M−2+K)
3: m<<K = (u′ ∥ b1 ∥ b2 ∥ v′)<<∆e
4: u := u′ ∥ b1; v := b2 ∥ v′
5: half := CIsEq(v, 2N−M−2+K) ∧ aux
6: m′ := (u+ (half ? b1 : b2))<<∆e
7: overflow := CIsEq(m′, 2M+1)
8: e′ := e+ overflow
9: m′ := overflow ? 2M : m′

10: return e′,m′

Figure 3: Circuit for rounding floating-point numbers

in multiplication and division.
We compute the final exponent and mantissa inside the

circuit using several conditional selections. The entire circuit
for initializing floating-point variables is shown in Figure 2.

3.2. Rounding

The IEEE 754 standard requires the resulting mantissa
of an operation to be rounded correctly and defines several
rules specifying how and in which direction the rounding is
done. Here, we discuss “rounding half to even” for binary
encoded floating-point numbers. This rule requires a decimal
number to be rounded to the nearest integer, except when
the fractional part is 0.5 (in base-10), the rounding should
produce an even value, e.g., 0.5→ 0, 1.5→ 2.

Formally, consider an intermediate mantissa m ∈
[0, 2N − 1] after some operation, and we are going to com-
pute a rounded value m′ ∈ [0, 2l− 1]. To this end, we write
m as m = u∥v, where u ∈ [0, 2l−1] and v ∈ [0, 2N−l−1].
The rounding direction is determined by the bits in v, which
are the round bit, the guard bit, and the sticky bit in most
implementations of IEEE 754. In our circuits, rounding is
done according to only the round bit and sticky bit, where
the round bit is vN−l−1 (the MSB of v), and the sticky bit
is v0 ∨ · · · ∨ vN−l−2 (the OR value of remaining bits of
v). The guard bit is useful for implementations that discard
the right-shifted bits but is unnecessary in our case because
these bits are preserved. Consequently, we have m′ := u
if round bit is 0, i.e., v ∈ [0, 2N−l−1). If round bit is 1
and sticky bit is 0, i.e., v = 2N−l−1, then m′ := u + 1
when u is odd, while m′ := u when u is even. Otherwise,
v ∈ (2N−l−1, 2N−l), and the result m′ := u+ 1.

Note that due to the possible increment in m′ := u+ 1,
m′ could become 2l, exceeding the upper bound 2l−1. We
say m′ overflows in this case, and we fix this by setting
e′ := e+ 1,m′ := 2l−1.

If we follow the standard exactly, l will be fixed to M+1.
However, in our case, l = M + 1 only when the result
is normal. For a subnormal number with an underflown
exponent e < −2E−1 + 2, we require l = M + 1 − ∆e,
where ∆e = −2E−1 + 2 − e (here it is guaranteed that
e ≥ −2E−1 + 1 −M , implying l ≥ 0). The reason is that,
for circuit efficiency, we pretend that subnormal numbers
are normal when representing and operating on them. This

works in most cases except for rounding, where subnormal
numbers should actually be rounded with lower precision
(i.e., M+1−∆e) than that of normal numbers (i.e., M+1).
Hence, we should only keep the first M + 1 − ∆e bits of
m for subnormal numbers. When the rounding is done, we
left shift m′ by ∆e to continue disguising them as normal.

Figure 3 illustrates the rounding gadget, where we re-
quire that ∆e has a constant upper bound K, and that
∆e = 0 for normal numbers. First, we need to ex-
pand m into u ∥ v in-circuit. Naively, we can ask the
prover to provide u, v as hints, and the circuit checks
u ∈ [0, 2l − 1], v ∈ [0, 2N−l − 1]. However, the upper
bounds of u, v depend on the variable l. As discussed in
Appendix A, a range check bounded by variables costs
more constraints than a constant range check. To maximize
efficiency, the prover instead computes the hint HSplit by
expanding m<< (K −∆e) into u′ ∥ b1 ∥ b2 ∥ v′, where u′ ∈
[0, 2M−∆e−1], b1, b2 ∈ {0, 1} and v′ ∈ [0, 2N−M−2+K−1].
Then u′, b1, b2, v

′ := HSplit(m<< (K −∆e)) are fed to the
circuit. Now, u := u′∥b1, v := b2∥v′. To verify the predicate
PSplit(m<< (K −∆e), u′, b1, b2, v

′), the circuit checks the
ranges of u′ and v′ by calling CRC, enforces b1 and b2 are
boolean, and asserts m << K = (u′ ∥ b1 ∥ b2 ∥ v′) << ∆e.
Moreover, as m is guaranteed to have length N , we can
loosely bound u′ and check u′ ∈ [0, 2M −1] instead. This is
safe, since if 2M−∆e ≤ u′ < 2M , the length of u′∥b1∥b2∥v′
will be longer than N + K − ∆e, and m’s length will be
longer than N , which is a contradiction. Now, both range
checks are bounded by constants.

After that, we compute half := CIsEq(v, 2N−M−2+K)∧
aux, where aux is the auxiliary information that helps
determine the sticky bit in division and the computation
of square root. For aux = 1, the sticky bit solely de-
pends on v. Then we have the rounded mantissa m′ :=
(u+(half ?b1 : b2))<<∆e. Finally, we check overflow :=
CIsEq(m′, 2M+1), and return the updated exponent and man-
tissa e′ := e+ overflow,m′ := overflow ? 2M : m′.

3.3. Addition And Subtraction

Adding two IEEE 754 floating-point numbers α =
(sα, eα,mα, aα) and β = (sβ , eβ ,mβ , aβ) is done in the
following 5 steps, and we depict the corresponding in-circuit
logic in Figure 4. At a high level, addition requires 5 steps,
described in the following: (i) aligning exponents, (ii) adding
mantissas, (iii) normalizing, (iv) rounding the intermediate
mantissa and (v) handling edge cases. Note, that subtraction
is equivalent to addition by adding α and −β.
Align exponents (lines 1-3). We first compare the exponents
of α and β. If eα ̸= eβ , we need to align the exponents
before performing the actual addition by shifting the man-
tissa of the number with smaller exponent to the right by
abs := abs(eα−eβ) bits, such that the common exponent is
e := max(eα, eβ). To avoid separately tracking the shifted
bits (which will be used later in rounding), before perform-
ing the right shift, we first shift both mantissas to the left by
L bits, where L is the upper bound of abs. That is, if eα >
eβ , we compute x := mα<<L, y := (mβ<<L)>>(eα−eβ),

α+ β

1: c, abs := CAbs(eβ − eα, E + 1)
2: e := c ? eβ : eα
3: abs := CMin(abs,M + 3)
4: x := (c ? sβmβ : sαmα)<< L
5: y := (c ? sαmα : sβmβ)<< (L− abs)
6: z := x+ y
7: ¬s,m := CAbs(z, 2M + 5)
8: e := e+ 1
9: a := aα ∨ aβ

10: m is 0 := CIsEq(m, 0)
11: Receive hint HNorm(v) = d
12: m := m<< d; e := e− d
13: CRC(m− (m is 0 ? 0 : 22M+4), 2M + 4)
14: e′,m′ := CFpRound(e,m, 0)
15: a′ := a ∨ CGEZ(e′ − 2E−1, E + 1)
16: s′ := CIsEq(sα, sβ) ? sα : s
17: e′ := a′ ? 2E−1 : (m is 0 ?−2E−1 + 1−M : e′)
18: m′

1 := (¬aβ ∨ CIsEq(sαmα, sβmβ)) ?mα : 0
19: m′

2 := aβ ?mβ : (a′ ? 2M : m′)
20: m′ := aα ?m′

1 : m′
2

21: return s′, e′,m′, a′

Figure 4: Circuit for floating-point addition

and otherwise, x := mβ <<L, y := (mα<<L)>> (eβ−eα).
The M+1 MSB’s of shifted mantissas contribute to the final
result, the remaining bits determine the rounding direction.

In circuit, we achieve this by computing c, abs :=
CAbs(eβ − eα, E + 1) to obtain e := c ? eβ : eα. We
observe that the final sum is only determined by x when y is
completely shifted out, i.e., when abs ≥M+3. Thus, abs >
M + 3 has the same effect as abs = M + 3. We improve
the circuit efficiency by setting abs := CMin(abs,M + 3),
so that it is no longer necessary to compute a large 2abs.
Now, L = M + 3, x := (c ?mβ : mα)<<L, y := (c ?mα :
mβ)<< (L− abs).
Add signed mantissas (lines 4-9). Then we add the signed
mantissas of adjusted α and β, and obtain the resulting
(signed) mantissa, i.e., s ·m := sα · x + sβ · y if eα > eβ ,
and s · m := sβ · x + sα · y otherwise. The sign s and
unsigned mantissa m are extracted from the result, where
m ≤ x + y < 2(2M+1 · 2L) = 22M+5, i.e., m has at
most N = 2M + 5 bits, where the leading bit is caused
by the possible carry. Thus, we also adjust the exponent
as e := e + 1. For efficiency, we redefine the in-circuit
variables x := (c ? sβmβ : sαmα) << L, y := (c ? sαmα :
sβmβ) << (L − abs) to avoid extra conditional selections.
Then we compute z := x + y, and compute s and m
thanks to the CAbs gadget: ¬s,m := CAbs(z,N). The result
is abnormal if either input is abnormal, i.e., a := aα ∨ aβ .
Normalize intermediate mantissa (lines 10-13). Normal-
ization for m is the same as in Section 3.1 for normalizing
subnormal numbers. m is shifted to the left by d bits, so that
its MSB (i.e., the N − 1-th bit) becomes 1, unless m = 0,
and e is decreased by d.
Round intermediate mantissa (line 14). The normalized
mantissa m<<d of length N is then rounded as in Section
3.2, with ∆e = K = 0, obtaining e′ and m′. Theoretically,
∆e should be −2E−1+2−e. However, we observe that for
addition, a smaller ∆e doesn’t affect the result. In fact, it is

safe to set ∆e = 0 to maximize circuit efficiency, and we
explain the reasoning below.

Recall that the purpose of ∆e is to limit the precision of
subnormal numbers, but, as we will show later, the number
of meaningful bits in m<<d will never exceed the required
precision, and the remaining bits are guaranteed to be zero.
Consider a subnormal result with e ≤ −2E−1 + 1, and
assume, without loss of generality, eα < eβ . We denote
∆eα = −2E−1 + 2 − eα,∆eβ = −2E−1 + 2 − eβ . Since
e = max(eα, eβ)+ 1− d = eβ +1− d, we have eα < eβ ≤
−2E−1+d. According to the rounding rule, we need to keep
only M+1−(−2E−1+2−e) bits in the mantissa, while the
remaining N − (M +1)+ (−2E−1+2− e) = L+ d+∆eβ
bits determine the rounding direction. Now we prove that
the number of trailing zeros in m<<d is at least L+d+∆eβ
if e ≤ −2E−1+1. Note, that x = sβmβ<<L, y = sαmα<<
(L−min(eβ − eα, L)) = sαmα <<max(L− eβ + eα, 0).

(i) α subnormal, β subnormal — In this case, mα and
mβ were left-shifted by ∆eα and ∆eβ bits when initialized.
Also, eβ−eα ≤ −2E−1+1− (−2E−1+1−M) = M < L,
thus max(L−eβ+eα, 0) = L−eβ+eα. Now, x has at least
∆eβ +L trailing zeros, and y has at least ∆eα +max(L−
eβ + eα, 0) = ∆eα+L− eβ + eα = ∆eβ +L trailing zeros.
Hence, m<< d has at least ∆eβ + L+ d trailing zeros.

(ii) α subnormal, β normal — Here, mα was left-
shifted by ∆eα bits when initialized. Now, x has at least L
trailing zeros, and y has at least ∆eα+max(L−eβ+eα, 0) =
max(L+∆eβ ,∆eα) < L trailing zeros. So m<< d has at
least max(L+∆eβ ,∆eα)+d ≥ L+∆eβ+d trailing zeros.

(iii) α normal, β normal — In this case, eβ − eα ≤
−2E−1+d−(−2E−1+2) = d−2 < L, thus max(L−eβ+
eα, 0) = L−eβ+eα. Now, x has at least L trailing zeros, and
y has at least max(L−eβ+eα, 0) = L−eβ+eα < L trailing
zeros. Consequently, m<< d has at least L − eβ + eα + d
trailing zeros, and L− eβ + eα + d ≥ L+ d+∆eβ because
∆eβ + eβ − eα = ∆eα ≤ 0.
Edge Cases (lines 15-21). Finally, we need to handle the
following:

(i) If the mantissa m′ = 0 but e′ ̸= −2E−1 + 1 − M
(which is possible, e.g., when computing 1.0 − 1.0),
canonicalize the exponent as e′ := −2E−1 + 1−M .

(ii) If the exponent becomes too large, i.e., e′ ≥ 2E−1,
return ±∞ (depending on the sign s).

(iii) If α = β = ±0, return −0 for −0−0 and +0 otherwise.
(iv) If either α or β is NaN, return NaN.
(v) If either α or β is ±∞, return NaN for ∞−∞ and
−∞+∞, and otherwise, ±∞ (depending on s).

(vi) Otherwise, return (s, e′,m′, 0) as the result.
To minimize the number of constraints, we unify some cases
above based on the return value’s exponent and mantissa
in-circuit. First, the result is abnormal if either inputs is
abnormal (iv, v), or the exponent is too large (ii). Hence,
a′ := a∨CGEZ(e′−2E−1, E+1). Second, to support (iii), we
set s′ := CIsEq(sα, sβ) ? sα : s. Third, the result’s exponent
is 2E−1 if the result is abnormal (ii, iv, v), and is −2E−1+
1 − M if the result is zero (i). Thus, e′ := a′ ? 2E−1 :
(m is 0 ? −2E−1 + 1 −M : e′). Finally, for the result’s
mantissa m′, if both α and β are abnormal, m′ = 2M for

α · β
1: s := sα ⊕ sβ ; e := eα + eβ ;m := mα ·mβ ; a := aα ∨ aβ
2: Receive hint b = HMSB(m)
3: b(1− b) = 1; CRC(m− (b << (2M + 1)), 2M + 1)
4: m := b ?m : m<< 1; e := e+ b
5: ∆e := CMax(CMin(−2E−1 + 2− e,M + 2, E + 1), E + 1)
6: e′,m′ := CFpRound(e,m,∆e)
7: a′ := a ∨ CGEZ(e′ − 2E−1, E + 1)
8: m′ is 0 := CIsEq(m′, 0)
9: e′ := a′ ? 2E−1 : (m′ is 0 ?−2E−1 + 1−M : e′)

10: m′ := (a′ ∧ ¬m′ is 0) ? 2M : m′

11: return s, e′,m′, a′

Figure 5: Circuit for floating-point multiplication

∞+∞ and −∞−∞ (v), and m′ = 0 otherwise (iv, v). If
only one of α and β is abnormal, m′ equals the abnormal
one’s mantissa (iv, v). If both α and β are normal, the result
is 2M if the exponent becomes too large (ii). Lines 19-21
in Figure 4 summarize the logic above for handling m′.

3.4. Multiplication And Division

Multiplying two IEEE 754 floating-point numbers α =
(sα, eα,mα, aα) and β = (sβ , eβ ,mβ , aβ) is done in the
following 4 steps — (i) computing the product of α and β,
(ii) normalizing and (iii) rounding the intermediate mantissa
and (iv) handling edge cases. We depict the corresponding
in-circuit logic in Figure 5. The steps of division operation
are highly similar to those of multiplication, and we defer
their description to Appendix B due to the space limit.
Compute product (line 1). The product is negative only
when one of α and β is negative. Therefore, the sign of
the product is s := sα ⊕ sβ . The exponent and mantissa
of the product are respectively e := eα + eβ and m :=
mα ·mβ . Since mα,mβ are either 0 or lie in [2M , 2M+1−1],
a non-zero m should be bounded by m ∈ [22M , 22M+2). We
further compute a := aα ∨ aβ .
Normalize intermediate mantissa (lines 2-4). By lever-
aging the fact that m is either 0 or in [22M , 22M+2), the
leading 1 of a non-zero m is either the 2M -th bit or the
2M + 1-th bit. Hence, we can simplify the normalization
process by checking if the 2M + 1-th bit of m is 1. If
this is the case, m is already normal, and otherwise, we
compute m := m<< 1. Also, m2M+1 = 1 indicates that the
multiplication carries, and hence we increment e := e+1 if
so. The improved normalization is done in-circuit as follows:
the prover feeds b := HMSB(m) = m2M+1, the MSB of
m, as a hint to circuit, and the circuit checks the predicate
PMSB(m, b) in 2 steps: (i) enforce b is a boolean, and (ii)
assert m − (b << (2M + 1)) ∈ [0, 22M+1). Then m, e are
updated according to b, i.e., m := b?m : m<<1, e := e+b.
Round intermediate mantissa (lines 5-6). The normalized
mantissa m of length N = 2M +2 is rounded by following
the steps in Section 3.2, with ∆e = max(min(−2E−1+2−
e,K), 0),K = M + 2, obtaining e′ and m′.
Edge Cases (lines 7-11). Finally, we handle the following:

(i) If the exponent becomes too large, i.e., e′ ≥ 2E−1,
return ±∞ (depending on the sign s).

√
α

1: s := sα
2: Receive hint b = HLSB(eα)
3: e := (eα − b)/2
4: b(1− b) = 1; CAbs(e, E − 1)
5: Receive hint n = HSqrt(mα << (M + 4 + b))
6: r := (mα << (M + 4 + b))− n2

7: CRC(r,M + 4), CRC(2n− r,M + 4)
8: m := n
9: m is 0 := CIsEq(mα, 0)

10: a := aα ∨ (sα ∧ ¬m is 0)
11: e′,m′ := CFpRound(e,m, 0, CIsEq(r, 0))
12: e′ := a ? 2E−1 : (m is 0 ?−2E−1 + 1−M : e′)
13: m′ := s ? 0 : m′

14: return s, e′,m′, a

Figure 6: Circuit for floating-point square root

(ii) If the exponent becomes too small, i.e., e′ < −2E−1+
1−M , or equivalently, the rounded mantissa becomes
0, return ±0 (depending on the sign s).

(iii) If either α or β is NaN, return NaN.
(iv) If either α or β is ±∞, return NaN for ±0 · ±∞ and
±∞ · ±0, and otherwise, ±∞ (depending on s).

(v) Otherwise, return (s, e′,m′, 0) as the result.
To minimize the number of constraint, we unify some cases
above based on the return value’s exponent and mantissa
in-circuit. First, the result is abnormal if either input is
abnormal (iii, iv), or the exponent is too large (i). Hence,
a′ := a ∨ CGEZ(e′ − 2E−1, E + 1). Second, the result’s
exponent is 2E−1 if the result is abnormal (i, iii, iv),
and is −2E−1 + 1 − M if the result is zero (ii). Thus,
e′ := a′ ? 2E−1 : (m′ is 0 ?−2E−1 +1−M : e′). Finally,
the result’s mantissa is only different from the rounded
mantissa if the exponent is too large (i), or either inputs
is ±∞ and neither of them is ±0 (iv). Both conditions are
equivalent to the case where the result is abnormal but not
NaN, so we have m′ := (a′ ∧ ¬m′ is 0) ? 2M : m′.

3.5. Square Root Computation

The approximation of square roots is often based on the
iterative Newton method [39]. To compute β =

√
α, we

first estimate an initial value β0, and improve the accuracy
in each round by computing βi+1 = 1

2 (βi +
α
βi
). However,

directly translating this approach to in-circuit operations
introduces two challenges: (i) the number of iterations
depends on how fast

√
α converges, but handling loops

conditioned on a variable in-circuit is hard, and (ii) each
round of iteration requires one floating-point addition and
one floating-point division, which are costly. To address (i),
we need to run the loop for fixed number of rounds, taking
the worst case for convergence into account, e.g., achieving
the accuracy of FP64 needs 6 rounds of iteration in the worst
case. We can resolve (ii) by computing the square root of
the mantissa mα rather than the floating-point value α. β’s
exponent can be obtained by halving eα. Since mα is an
integer, addition and division in each round are cheap.

Nevertheless, this improved approach would easily cost
hundreds of constraints due to the range checks caused by

in-circuit integer division. To further reduce circuit size, we
leverage the nondeterminism of the constraint system: the
prover is asked to compute the square root of mα outside the
circuit, and the circuit, given the square root as a hint, only
needs to check its validity, thereby achieving the minimum
cost. More specifically, we compute the square root of
an IEEE 754 floating-point number α = (sα, eα,mα, aα)
inside the circuit in the following 4 steps, the process of
which is also shown in Figure 6.

Compute square root (lines 1-10). First, we halve the
exponent eα. When eα is even, we can simply compute
eα/2, and otherwise, we need to calculate (eα − 1)/2.
Combining both cases, the prover feeds b := HLSB(eα),
the exponent’s LSB, as a hint to circuit. The circuit checks
the predicate PLSB(eα, b) as follows: enforce b is boolean,
compute e := (eα − b)/2, and assert e ∈ [−2E−1 +
1, 2E−1 − 1] by calling CAbs(e, E − 1) (note that e might
be negative). This guarantees that b is indeed the LSB of
eα, as otherwise, e would be close to (p − 1)/2 and its
absolute value cannot fit into E − 1 bits. Knowing the
validity of b, e is in fact in [−2E−2 −M/2, 2E−2]. Next,
we compute the mantissa’s square root. To this end, the
prover feeds the hint n := HSqrt(mα << (M + 4 + b)) =√

mα << (M + 4 + b) to circuit, and the circuit checks
the predicate PSqrt(mα << (M + 4 + b), n) by enforcing
n2 ≤ (mα << (M + 4 + b)) < (n + 1)2 using two range
checks. This guarantees that n is (the integer part of) the
shifted mantissa’s square root. We shift mα to the left before
computing the square root for two reasons: (i) when eα is
odd, we decrease it by 1, and thus the mantissa should be
doubled when b = 1, or equivalently, mα << b, and (ii)
the shift M +4 scales mα to achieve the desired precision.
Otherwise, the result n would only have approx. M/2 bits of
precision. Successively, we obtain the intermediate mantissa
m := n. Recall that the standard requires the intermediate
result to have infinite precision, but m is not the exact square
root. Thus, we apply the technique introduced in Appendix
B: we further compute r := (mα<<(M+4+b))−n2, which
helps compute the sticky bit in rounding without storing the
precise square root. The result is abnormal if α is abnormal
or negative (−0 is not included, as

√
−0 = −0). Hence, we

set a := aα ∨ (sα ∧ ¬CIsEq(mα, 0)).

Normalize intermediate mantissa. Now, a non-zero m’s
upper bound is

√
(2M+1 − 1)<< (M + 5) < 2M+3, and

its lower bound is
√

2M << (M + 4) = 2M+2. Hence, the
MSB of m is always 1 and normalization is unnecessary.

Round intermediate mantissa (line 11). The mantissa m
of length N = M + 3 is then rounded as in Section 3.2,
with ∆e = K = 0, obtaining e′ and m′. ∆e is fixed to 0
because the intermediate exponent e of a non-zero result is
always greater than −2E−2 −M/2 > −2E−1 + 2, hence
we don’t need to handle the subnormal case. In addition,
the equality between r and 0 is used to determine the sticky
bit, thus we set the in-circuit parameter aux := CIsEq(r, 0).

We omit Edge Cases (lines 12-14) due to space limits.

α < β

1: e ge := CGEZ(eα− eβ , E+1);m ge := CGEZ(mα−mβ ,M +1)
2: s lt := (CIsEq(mα, 0) ∧ CIsEq(mβ , 0)) ? 0 : eα
3: e lt := sα ? e ge : ¬e ge
4: m lt := CIsEq(mα,mβ) ? 0 : (sα ?m ge : ¬m ge)
5: b := CIsEq(sα, sβ) ? (CIsEq(eα, eβ) ?m lt : e lt) : s lt
6: b′ := ((aα ∧ CIsEq(mα, 0)) ∨ (aβ ∧ CIsEq(mβ , 0))) ? 0 : b
7: return b′

Figure 7: Circuit for floating-point comparison

3.6. Comparison

Finally, we discuss the comparison between two IEEE
754 floating-point values α = (sα, eα,mα, aα) and β =
(sβ , eβ ,mβ , aβ) in-circuit. For equality, we support two
types of checks: the strict comparison and the fuzzy compar-
ison. The former enforces that α and β are strictly equal by
checking if all their components are equal, while the latter
asserts that the difference α− β is less than a threshold.

Now we introduce the inequality check by using the
less than operation as an example. Other comparators like
≤, >,≥ can be constructed analogously.

First, we check if α or β is NaN, in which case we return
0. Second, we compare the signs sα and sβ . If sα ̸= sβ ,
then the result is 0 if α = −0 and β = +0 (−0 = +0), is 1
if sα is true but α ̸= −0 (a negative value is always smaller
than a positive one), and 0 otherwise. Now, sα = sβ . For
the exponent, if eα ̸= eβ , then the result equals eα < eβ for
positive α, β and eα > eβ for negative ones. Otherwise,
α and β have the same sign and exponent. We return
mα < mβ for positive α, β and mα > mβ for negative ones.
Utilizing CIsEq and CGEZ, we translate the above process to
in-circuit constraints in Figure 7.

4. Zero Knowledge Location Privacy

In this section, we discuss the technical challenges when
evaluating whether a location (θ, ϕ) is in a hexagonal tile h.
We provide a simplified description of the H3 protocol [17]
that transforms spherical coordinates to hexagonal indices
in Figure 8. In the following, we first describe how the
baseline algorithm in the H3 hexagonal spatial indexing
system transforms (θ, ϕ) into (i, j, k) coordinates, which
uniquely identify a hexagonal tile h in the hexagonal grid.
Successively, we discuss how to emulate the transformation
in SNARK circuits using all the floating-point circuits in § 3,
highlight the difficulties in circuit construction, and intro-
duce optimizations that make the ZKLP paradigm practical.
Transforming Spherical Coordinates to Coordinates in a
Discrete Hexagon Planar Grid Systems. To utilize hexag-
onal hierarchical geospatial indexing, spherical coordinates
(i.e., (θ, ϕ)) need to be converted to relative coordinates of
the hexagon in the grid system of the geospatial index (i.e.,
the (i, j, k) coordinates). The H3 coordinate system deter-
ministically maps (i, j, k) coordinates to H3 indices, and
the (i, j, k) coordinates, in combination with the resolution
res, are sufficient to determine a unique hexagon based on

ΠBase(θ, ϕ, res)
1: (θrad, ϕrad)←− ToRadians(θ, ϕ) ▷ Transform to Radians
2: (xu, yu, zu)←− ToCartesian3D(θrad, ϕrad) ▷ Transform to Cartesian
3: d2 = (xF − xu)2 + (yF − yu)2 + (zF − zu)2 ▷ Closest Face
4: r ←− CalculateRadialDist(d2, res) ▷ Calculate the radial distance
5: σ ←− CalculateAngle(θF , ϕF , θ, ϕ) ▷ Calculate angle to closest Face
6: (x, y)←− ToCartesian2D(r, σ) ▷ Calculate 2D Cartestian
7: (I, J,K) = TransformToIJK(x, y) ▷ Transform to “I,J,K”
8: return (I, J,K)

Figure 8: Baseline Protocol for deriving (i, j, k) from (θ, ϕ).

the latitude and longitude. In the following, we therefore
solely describe the transformation of latitude and longitude
to (i, j, k) coordinates in the hexagonal planar grid system
of H3. The transformation relies on two logical steps:

(1) Transforming spherical coordinates to Cartesian co-
ordinates: The first step transforms a point from spheri-
cal coordinates to Cartesian coordinates in the 2D plane
of an icosahedral face, specifically for the hexagonal grid
system used in the H3 geospatial indexing system. Given
geographic coordinates (θ, ϕ), the distance from a given
point on the sphere to the center of the closest face of
the icosahedron is computed by evaluating the squared
Euclidean distance d2 = (x2−x1)

2+(y2−y1)2+(z2−z1)2.
To do so, (θ, ϕ) are converted to 3D Cartesian coordinates:

z = sin(θ) x = cos(ϕ) · a
a = cos(θ) y = sin(ϕ) · a (1)

To determine the closest icosahedral face to (θ, ϕ), the
distance to each face is calculated individually. Given the
squared Euclidean distance between two points on a sphere,
the algorithm now aims to find the angular distance r
between the two points when projected onto a unit sphere.
The angular distance between two points on a sphere can be
calculated using the spherical law of cosines and relates the
sine of half the angular distance to the squared Euclidean
distance between the points: sin2

(
r
2

)
= d2

4 , which can be
transformed as cos(r) = 1−2 sin2

(
r
2

)
= 1−2· d

2

4 = 1− d2

2 .
This yields the angular distance as r = arccos(1− d2

2).
The algorithm performs a gnomonic projection of this

angle by taking its tangent tan(r). The tangent function is
used here to convert the angular distance r into a linear
distance for the 2D plane. After the gnomonic scaling, r
can be thought of as analogous to the radial distance in 2D
polar coordinates. The radial distance is scaled according
to the scaling factor from hexagonal grid unit length at
resolution 0 to gnomonic unit length cG given the desired
H3 resolution res, such that r = r

cG
·
√
7

res
. Once the

radial distance r is calculated, the counterclockwise an-
gle σ between a reference direction on a given face of
an icosahedron (for Uber H3 the i-axis of the Class II
orientation [40]) and the direction from the center of that
face to a point on the globe is determined. The radial
distance r and the angle θ together describe the polar
coordinates of the (θ, ϕ) relative to the icosahedron face.
The angle σ is calculated as the difference in azimuth (a type

CZKLP(θrad, ϕrad ; res, I, J,K)
1: Receive HZKLP(i) = [αi, βi, γi, δi], i ∈ {θrad, ϕrad}
2: γ2

i + d2i = 1 ; δi · ai = γi ; 2γi · di = βi, i ∈ {θrad, ϕrad}
3: r =

√
1− b2θrad

; z = bθrad

4: x =
√

1− b2ϕrad
· r ; y = bϕrad · r

5: for i ∈ {0, . . . , 19} do
6: d2i = (xFi

− x)2 + (yFi
− y)2 + (zFi

− z)2

7: d2 = (d2i
?
< d2) ? d2i : d2

8: r ←− Crad(d2, res)
9: sini = βi ; cosi = δ2i − γ2

i for i ∈ {θrad, ϕrad}
10: (x, y)←− CHex2D(r, res, sinθrad , cosθrad , sinϕrad , cosϕrad , Fi)
11: (i, j, k)←− CIJK(x, y)
12: CIsEq(i, I) ; CIsEq(j, J) ; CIsEq(k,K)

Figure 9: Optimized Circuit for computing ZKLP.

of angular measurement in a spherical coordinate system)
between a reference axis on the icosahedron face and the
azimuth from the center of that face to the given point.
The azimuth values are normalized to be between 0 and
2 · π, such that σ = norm (ζFi − norm (ζ(Fcenter, (θ, ϕ)))).
The azimuth ζ(p1, p2) from point p1 to point p2, where
θ1, ϕ1 are the latitude and longitude of p1, and θ2, ϕ2

are the latitude and longitude of p2, is calculated as
ζ(p1, p2) = arctan(ab), with a = cos(θ2) sin(∆), b =
cos(θ1) sin(θ2)− sin(θ1) cos(θ2) cos(∆) and ∆ = ϕ2 − ϕ1.

In the H3 system, Class II and Class III orientations [13]
alternate with each resolution. To adjust for the alternate ori-
entation of hexagons at different resolutions, a constant ro-
tation angle arcsin(

√
3
28) is subtracted from σ if the chosen

resolution is odd. The remaining transformation transforms
the coordinates (r, σ) to Cartesian coordinates (x, y) in the
two-dimensional plane by computing x = r · cos(σ) and
y = r · sin(σ). The resulting coordinates (x, y) are the two-
dimensional coordinates of the chosen hexagon relative to
the face center of the closest icosahedron.

(2) Transforming (x, y) coordinates to (i, j, k) co-
ordinates: The second step in obtaining coordinates
in the discrete hexagonal planar grid system translates
two-dimensional Cartesian coordinates (x, y) to three-
dimensional coordinates (i, j, k), uniquely identifying a
hexagon at a given resolution. It is natural for the grid
system to have three coordinate axis, spaced 120 degrees
apart from each other, due to the structure of the underlying
hexagons. The three-axis system allows for unique address-
ing without ambiguities [27].

The algorithm initially proceeds with quantization, set-
ting k to 0 and operating on absolute values of (x, y). If the
value of (x, y) is not equivalent to the center of the hexagon,
the continuous variables are rounded to the nearest hexagon
center. To adjust for negative Cartesian coordinates, the
Cartesian coordinates are folded across the axes to map them
onto the hexagonal grid accordingly in (i, j, k) coordinates.
Finally, the computed (i, j, k) coordinates are normalized to
ensure that coordinates are as small as possible and non-
negative. Normalizing the result is essential in ensuring that
each hexagon in the grid has a unique address.

Crad(d2, res)

1: r =

√
−(d2−4)·d2

(2−d2)
; r = r

cG

2: γ := 1.0 ; cρ :=
√
7

3: for i ∈ {1, . . . , R} do
4: γ := (res[i]) ? γ · cρ : γ
5: cρ := c2ρ

6: return (r · γ)

Figure 10: Optimized Sub-Circuit for computing the radial
distance r. R represents the number of bits of res.

Representing the Transformation as Constraints.
SNARKs work by encoding the computation in an arithmetic
circuit over a finite field. In contrast, the transformation
of geographic coordinates works over real numbers, rep-
resented in traditional programs as floating-point values.
We address this issue by utilizing the circuits for primitive
floating-point operations described in Section 3.

We still face the problem that our primitive operations
in Section 3 do not aim to provide precise math functions
(sin, cos, tan, ...) as the IEEE standard does not specify the
precision of math libraries. Even more so, a naive imple-
mentation would require approximation of math functions
by the standard three-step recipe, as utilized in standard
libraries — range reduction, polynomial approximation,
and output compensation. Emulating polynomial approxima-
tions, by computing in-circuit Taylor Series, or applying the
Remez algorithm [41], would lead to expensive increase in
constraints due to high degree polynomials. Further, precise
approximation is non-trivial, and standard techniques are in-
efficient without significant in-circuit optimization. Efficient
algorithms for emulating accurate trigonometric functions
are known for Two-Party-Computation [25]. However, we
are not aware of any optimizations that lead to accurate
and efficient in-circuit trigonometric approximations for
SNARKs. We describe optimizations that fully eliminate
trigonometric functions in our circuits as follows.
Avoiding Trigonometric Operations. Recall that trans-
forming spherical coordinates to Cartesian coordinates de-
mands (i) calculating the radial distance r of Pu to the
closest icosahedral face (Step 4 in Figure 8), (ii) calculating
the angle σ of Pu to the closest icosahedral face (Step 5 in
Figure 8) and (iii) converting (r, σ) to Cartesian coordinates
(x, y) in the 2D plane by computing x = r · cos(σ) and
y = r · sin(σ) (Step 6 in Figure 8). We observe that we can
avoid trigonometric operations altogether in the above steps
by leveraging trigonometric identities.

To avoid evaluating trigonometric operations for com-
puting the radial distance r, we substitute r = arccos(1 −
d2

2) into tan(r). By the Pythagorean identity, we express
tan(r) = tan(arccos(1− d2

2)).

r = tan(r) =

√
(−(d2 − 4) · d2)

(2− d2)
(2)

To minimize the number of constraints, we scale to the

CHex2D(r, res, sinθrad , cosθrad , sinϕrad , cosϕrad , Fi)

1: a := sinϕrad · cosϕFi,rad
; b := cosϕrad · sinϕFi,rad

2: c := cosθFi,rad
· sinθrad ; d := sinθFi,rad

· cosθrad

3: e := cosϕrad · cosϕFi,rad
; f := sinϕrad · sinϕFi,rad

4: x := c− d · (e+ g) ; y := cosθrad ·(a− b) ; z :=
√

x2 + y2

5: sinζFi
:= (res[0]) ? (sinζFi

− arcsin(
√

3
28

)) : sinζFi

6: cosζFi
:= (res[0]) ? (cosζFi

− arcsin(
√

3
28

)) : cosζFi

7: sinσ := (sinζFi
·x
z
)− (cosζFi

· y
z
)

8: cosσ := (cosζFi
·x
z
)− (sinζFi

· y
z
)

9: return (r · sinσ , r · cosσ)

Figure 11: Optimized Sub-Circuit for computing two-
dimensional cartesian coordinates. Variables related to the
face center Fi are constant floating-point numbers.

desired H3 resolution by applying the square and multiply
algorithm for bitwise exponentiation instead of naive expo-
nentiation (cf. Figure 10).

Similarly, we simplify computing (x, y) with the angle
σ. Recall that σ = norm (ζFi

− norm (ζ(Fcenter, (θ, ϕ))))
where ζ(p1, p2) = arctan(ab). By substituting the above
values in the equations for calculating (x, y) and leveraging
trigonometric identities, we obtain:

x = r ·
(
cos(θFi

)
b√

a2 + b2
+ sin(θFi

)
a√

a2 + b2

)
y = r ·

(
sin(ζFi

)
b√

a2 + b2
− cos(ζFi

)
a√

a2 + b2

)
Note, that the trigonometric identities used in the sim-

plification are mathematically sound regardless of normal-
ization. As the center point of each icosahedron is fixed
and known, the remaining sin and cos terms can be pre-
computed. This representation is significantly less costly, as
we already derived an optimized gadget for computing the
square root of a floating-point variable in Section 3.5.
Eliminating Trigonometric Operations with Hints. It
remains the elimination of trigonometric operations by
avoiding the initial calculation of the Cartesian coordinates
(x, y, z) from the user-supplied spherical coordinates (θ, ϕ)
(cf. Equation 1). We observe that we can mindfully construct
hints, such that the in-circuit computation reduces to (i)
evaluating the hint predicate and (ii) calculating (x, y, z)
without using trigonometric functions. As such, the hint
HZKLP(θ) = [αθ, βθ, γθ, δθ] is computed as γθ = sin

(
θ
2

)
,

δθ = cos
(
θ
2

)
, βθ = 2 · γθ · δθ and αθ = tan

(
θ
2

)
.

Soundness holds as PZKLP evaluates that (i) γ2
θ + δ2θ

equals 1, and thereby fulfills the fundamental trigonometric
identity, (ii) δθ · αθ equals γθ, which checks if the same
angle is used, and (iii) 2 · γθ · δθ equals βθ, confirming that
βθ is correctly related to γθ and δθ. Afterwards, the x,y,z
coordinates can simply be derived as z = βθ, r =

√
1− β2

θ ,
x =

√
1− β2

ϕ · r and y = bϕ · r. As a result, trigonometric
operations are eliminated from CZKLP. Note that sin(i) = βi

and cos(i) = δ2i − γ2
i holds for i ∈ {θ, ϕ}.

Transforming (x, y) to (i, j, k) coordinates. The transfor-

mation is conducted by first transforming (x, y) to (i, j, k)
coordinates and successively normalizing (i, j, k) coordi-
nates to adjust for negative coordinates. We provide a
detailed description of the sub-circuits for obtaining and
normalizing (i, j, k) coordinates in Figure 18 and 19 in
the appendix. They directly benefit from our floating-point
implementation, due to many floating-point comparisons.

5. Empirical Evaluation

Our empirical evaluation addresses three questions: (i)
What is the performance and accuracy of our floating-point
implementation?, (ii) How effective are our optimizations
for the ZKLP paradigm?, and (iii) How tolerable is the cost
of ZKLP in real-world use?
Implementation. We implement the floating-point primi-
tive operations (cf. §3) as a reusable library in gnark [36].
We provide a full implementation of the optimized cir-
cuits for ZKLP (cf. §4) for FP32 and FP64 values. In
addition, we implement the baseline protocol, without the
optimizations as described in §4, over fixed-point arithmetic.
Due to the agnostic nature of gnark, our implementation
supports Groth16 and Plonk as the SNARK. We instantiate
the lookup argument as LogUp [35], which is used in gnark
for range checks. Our implementation and measurement data
are open-sourced [42] for reproducibility.
Test Suite. To ensure compliance with IEEE 754 [16],
we create a set of test values with the Berkeley TestFloat
library [26], which generates test cases to ensure that an
implementation conforms to the IEEE Standard for Floating-
Point Arithmetic. Specifically, 46464 test cases for each
binary operation (e.g., Add), and 600 test cases for the unary
operation Sqrt are created. Our implementation passes all
these test cases, including inputs with abnormal values.

To evaluate the ZKLP circuit, we generate a series of
geospatial points within hexagonal cells at various resolution
levels, using Uber H3 implemented in C [17]. For each
resolution res ∈ [0, 15], we test 16 distances from the
center to the point. The i-th distance is (1 − 2−i)d, where
d is the center-to-boundary distance. We further randomly
sample 100 points at each distance. Thus, we have a sparser
distribution of points closer to the center and denser as it
approaches the boundary (cf. Figure 1). In addition, because
the test cases generated by Uber H3 contain floating-point
values, when evaluating the fixed-point baseline, we convert
the floating-point values to fixed-point by multiplying by a
scalar and rounding to the nearest integer.
Experimental Setup. When evaluating the runtime and
memory consumption of a circuit, we execute all tests on
an m6i.xlarge AWS instance with 4 vCPUs and 16 GB
of RAM. The number of constraints is independent of the
execution architecture. For running time we report all values
as the mean of 20 executions with multi-threading enabled.

5.1. Microbenchmarks and Comparison

We evaluate the cost of floating-point circuits (Section
3) and compare our implementation with existing works.

TABLE 1: Number of R1CS constraints for in-
circuit floating-point primitive operations, with
|TRC| = 28, |TPow2| = 1 + E +M

FP32 Operation Init Add/Sub Mul Div Sqrt Cmp
Native Constraints 13 42 31 38 23 26

Lookup
Constraints

(i) 17 43 33 38 22 7

(ii, iii) 291

FP64 Operation Init Add/Sub Mul Div Sqrt Cmp
Native Constraints 13 42 31 38 23 26

Lookup
Constraints

(i) 32 71 57 60 38 11

(ii, iii) 323

Number of Constraints. Table 1 presents the number
of R1CS constraints for in-circuit floating-point primitive
operations. As discussed in Appendix A, we utilize two
lookup tables TRC and TPow2, where the former is for
range check, and the latter is for the computation of 2d.
In Table 1, the size of TRC is fixed at 28, and the size
of TPow2 is 32 for FP32 and 64 for FP64. The constraints
for each operation consist of two parts: native constraints
(supported by the constraint system) and lookup constraints
(for lookup tables). The inclusion of lookup constraints is
necessary due to gnark’s implementation of LogUp [35].
Recall that gnark checks LogUp’s identity for set inclusion∑|f |

i=1
1

X−fi
=

∑|t|
j=1

oj
X−tj

in arithmetic circuit, resulting in
a single SNARK proof for both the original relation and the
validity of set inclusion. To eliminate lookup constraints, one
can instantiate the lookup argument as standalone protocol
and connect it to SNARK in a commit-and-prove fashion,
at the cost of larger proofs.

Specifically, the in-circuit verification of LogUp’s iden-
tity involves three steps: (i) compute the LHS

∑|f |
i=1

1
X−fi

,
(ii) compute the RHS

∑|t|
j=1

oj
X−tj

, and (iii) check the equal-
ity between the LHS and the RHS. As highlighted in Table 1,
the costs of (ii) and (iii) are operation-agnostic; they only
depend on the sizes of lookup tables TRC and TPow2. Hence,
costs remain unchanged as the number of queries increases
and they can be amortized across multiple operations.

Figure 12 shows the amortized cost of primitive oper-
ations, using multiplication as an example. With a larger
TRC , the cost of step (ii) increases, while step (i) requires
fewer constraints. This is particularly advantageous when
proving the execution of many operations, as the one-time
cost of steps (ii) and (iii) becomes negligible.
Comparison With Other Works. Naively converting FP32
operations compliant to IEEE 754 requires 2456 and 8854
boolean gates for addition and multiplication [22]. FP64 ad-
dition and multiplication require 15637 and 44899 boolean
gates respectively [21]. Garg et. al [23] provide the state-
of-the-art succinct ZKP for floating-point operations, which
requires 108 non-zero entries in the R1CS instance for FP32
addition and 25 for FP32 multiplication in a circuit over
BN254. Due to the inconsistent metrics and our requirement
of amortization, we are unable to present a fair comparison.

21 22 23 24 25 26 27 28 29210211212213214215
50

100

200

500

FP Multiplications

#
C

on
st

ra
in

ts
pe

r
M

ul
tip

lic
at

io
n FP32 FP64 |TRC|

28

212

216

Figure 12: Number of Constraints per Multiplication vs.
Number of Multiplications, for Groth16. |TRC| is the size
of the lookup table for the range check (cf. Section 3).

5.2. Zero-Knowledge Location Proofs

We assess the efficiency of end-to-end ZKLP circuits
(cf. Section 4) and highlight their relevance in privacy-
preserving peer-to-peer proximity testing as a case study.
Our analysis includes a baseline (ΠBase, cf. Figure 8), im-
plemented via unoptimized fixed-point circuits that support
two fixed-point data types P20 and P40. The scaling factors
for P20 and P40 are 106 ≈ 220 and 1012 ≈ 240, i.e., their last
20 and 40 bits are fractional parts. To represent large inter-
mediate results, we do not limit the number of bits used for
the integer parts of P20 and P40, as long as they are smaller
than the order of Fp. Specifically, for

√
7

res
with res = 15,

the integer parts must use at least 23 bits, and subsequent
operations even require P20 and P40 to have 42 bits and 81
bits in their integer parts. In total, the maximum bit lengths
for P20 and P40 are 62 bits and 121 bits, respectively. In the
fixed-point circuits, we approximate trigonometric functions
within the circuit: sin(x) is approximated via a Taylor Series
expansion, and arctan(x) is approximated using the Remez
algorithm [41]. The mathematical function approximation
follows the standard three-step method: range reduction,
polynomial approximation, and output compensation [43]. In
contrast, we present results for our optimized floating-point
circuits, implementing the CZKLP circuit (cf. Figure 9).
Quantitative Baseline Comparison. Table 2 depicts the
quantitative comparison of the fixed-point baseline and
CZKLP implemented over our floating-point circuits. Our
results show, that our optimizations applied for CZKLP are
indeed very effective. With Groth16, our single precision
floating-point circuit has 15.9× less constraints than the
fixed-point baseline, whereas with double precision floating-
point, our circuit has 12.2× less constraints than the base-
line. Note that the number of constraints in CZKLP remains
constant, regardless of the chosen resolution. The proof
generation time for both CZKLP over FP32 and FP64 is below
1 s for Groth16. With Plonk, the time to generate a proof is
higher, which is expected given Plonk’s prover complexity
O(n log n) given an arithmetic circuit of n gates.

While we evaluate CZKLP on a server, mid-range mobile
devices can achieve similar performance. On an Android
phone with a Snapdragon 7+ Gen 2 CPU, the prover takes

TABLE 2: Evaluation of CZKLP over BN254 for the floating-
point implementation opposed to the baseline protocol ΠBase
(cf. Figure 8), implemented with fixed-point arithmetic P20.
For Groth16, the SRS size is the size of the prover key.

Circuit Type Proof
System

Constraints
(x103)

Prover
Time

Memory
(MB)

SRS
(MB)

Baseline P20 Groth16 309.6 1.75 s 517.3 52.4

CZKLP
FP32 Groth16 19.5 0.26 s 248.7 4.6
FP64 Groth16 25.5 0.32 s 246.7 6.2

Baseline P20 Plonk 570.9 38.42 s 1654.1 33.6

CZKLP
FP32 Plonk 55.5 2.19 s 249.1 2.1
FP64 Plonk 81.3 4.41 s 247.1 4.2

0.256 s for FP32 and 0.333 s for FP64 with Groth16 as the
SNARK, demonstrating the practicality of ZKLP.
Qualitative Baseline Comparison. We report the success
rate of tests for fixed-point and floating-point implementa-
tions for emulating the transformation of (θ, ϕ) to (i, j, k)
coordinates in a ZKP for resolutions 0 to 15 (Figure 13).
We find that in the baseline protocol with P20, errors start
to occur frequently at a resolution of res = 3, with most
tests failing for res ≥ 11. In contrast, errors in the modified
protocol become frequent only for res ≥ 7, and significant
failures are observed only when res = 15. After adjusting
the fixed-point implementation to P40, the errors are greatly
reduced, though there are still some edge cases where P40
falls short. On the other hand, all tests pass with FP64, as
its data format and rounding mode align with the Uber H3
implementation. Overall, we find that both the precision and
the rounding mode have a significant impact on the accu-
racy of the computations, e.g., those involving the constant
scaling factor of the resolution (

√
7

res
).

P2P Proximity Testing. We utilize the ZKLP paradigm to
realize P2P proximity testing. Let H = {h1,h2, ...,hn} be
a set of hexagons generated by the H3 system, where each
hexagon h is defined by its boundary vertices. Each vertex vi
of hexagon h is given in geographical coordinates (latitude
θi and longitude ϕi). Given a user’s position Pu = (θu, ϕu),
the proximity to a hexagonal cell hv is evaluating the
Haversine formula to calculate the great-circle distance be-
tween Pu and each vertex of hv. The Haversine distance
δ can be calculated as c = 2 · atan2

(√
a,
√
1− a

)
, where

a = sin2
(
θ2−θ1

2

)
+ cos(θ1) · cos(θ2) · sin2

(
ϕ2−ϕ1

2

)
. Here,

θ1, ϕ1 and θ2, ϕ2 are the latitude and longitude in radians
of points Pu and a vertex of hv, respectively, and r is the
radial length of the earth. The minimum distance ∆min from
point Pu to the boundary of hexagon hv is calculated as the
smallest distance ∆min = min(δ0, δ1, ..., δi) (cf. Figure 1).
Calculating the proximity of Pu to the hexagonal boundary
is done in plain and hence efficient when compared to prov-
ing the ZKLP circuit. We implement proximity testing in
Go, relying on the H3 library in C to determine the boundary
points of the hexagon. We find that the computation requires
≈ 581.87 µs to execute, which is comparable to verifying a
Groth16 proof (≈ 1.54ms). Hence, a verifier can evaluate
its proximity to ≈ 470 peers per second.

6. Related Works

Floating-Point Secure Computing. To the best of our
knowledge, there is no prior work supporting fully IEEE
754 compliant floating point computations for succinct
proof systems. There are several prior works that investi-
gate floating-point computations for secure MPC [19], [20].
Later, [21], [44] build IEEE 754 compliant MPC circuits
by compiling from software implementations of IEEE 754
using tools such as CBMC-GC. However, the resulting
circuits have at least thousands of gates per operation,
making them inefficient in practice. In [25], Rathee et. al
construct standard compliant functionalities for 2PC with
dedicated optimizations. While providing better efficiency,
they can only achieve partial compliance with IEEE 754,
but subnormal values and NaNs are not considered. An-
other line of research focuses on proving floating-point
computations using ZKPs. Weng et. al [22] use the IEEE
754 compliant single-precision boolean circuits from EMP-
toolkit [45] with non-succinct proofs. Closest to our work is
the work of Garg et. al [23], which studies succinct ZKPs
for floating-point arithmetic. However, their approach only
supports addition and multiplication, whilst not providing a
concrete implementation and only theoretical performance
estimates. Also, the verifier time in [23] is linear. While
they provide a method to achieve sub-linear verification, the
best complexity they could achieve is O(

√
n), where n is

the circuit size. In comparison, due to Groth16, the verifier
time of our construction is constant in n. Further, the relative
error model in [23] is not suitable for many applications. For
instance, it is observed in [18] that for machine learning,
even the minor rounding errors due to non-determinism in
GPUs can result in very different predictions. Consequently,
an adversary may leverage this fact to generate valid proofs
for arithmetic circuits that do not produce the expected
results as in IEEE 754 compliant computer hardware.
Location Privacy. There is a long line of work on LPPM
via geo-indistinguishability [3], [8], [46], [47]. Narayanan et.
al [7] introduce location privacy via private proximity test-
ing. Vsedvenka et. al [8] introduce interactive protocols
for proximity testing over a spherical surface. In a similar
setting, their protocols require > 1 s and > 10 kB com-
munication. In contrast, our protocol is non-interactive and
requires ≈ 0.26 s execution time (disregarding latency) and
communicating a ≈ 200 Byte proof with Groth16. Babel et.
al [48] show how to evaluate whether a location is in a
polygon. However, their approach assumes coordinates in
(x, y) form in Euclidean plane. In comparison, our circuit
for transforming (x, y) to a hexagonal index (CIJK) yields
≈ 11.7× less constraints. To the best of our knowledge,
ZKLP provides the first paradigm for non-interactive, pub-
licly verifiable and privacy preserving proofs of geolocation.

7. Discussion & Future Work

This paper introduces ZKLP (§ 4) via accurate floating-
point SNARKs (§ 3), identifying a novel class of applica-
tions of general-purpose succinct ZK proofs. The main chal-

lenge was the accurate emulation of floating-point values
without increasing constraints or compromising soundness.

In our experiments, we show that our implementation
of floating-point arithmetic is efficient and accurate. We
show that our instantiation of lookup tables amortizes the
number of constraints per primitive operation. We show that
the ZKLP paradigm is efficient, allowing users to generate
an accurate proof in 0.26 s. We instantiate ZKLP with P2P
proximity testing and show that a verifier can verify proxim-
ity to up to 470 peers per second. Note, that the verification
time and proof size is inherited by Groth16 [49], [50].

ZKLP can be directly applied to scenarios where the
location data is already authenticated. For example, in the
workflow of C2PA [51], the location where a photo is taken
is signed by a C2PA-compatible camera, and thus we can
seamlessly integrate ZKLP with C2PA to provide photo
authenticity while obfuscating the accurate location, thereby
preserving the privacy of the photo’s author. Further, we
identify three potential solutions on how to obtain authentic
location, which we detail in Appendix C.

We expect our results to adapt naturally to other settings.
For instance, in machine learning, where parameters are
often floating-point numbers [52], our methods can enable
efficient, precise training [24] and inference proofs [14].
Finally, we believe that authenticated ZKLP could be a use-
ful building block in applications for Proof-of-Personhood
to obtain verifiable location-based Sybil-resistance [53] and
leave its exploration for future work.

Acknowledgments

We acknowledge the financial support by the Federal
Ministry of Education and Research of Germany in the
programme of “Souverän. Digital. Vernetzt.”. Joint project
6G-life, project identification number: 16KISK002. This
work was done while Chengru Zhang was visiting UCL.

References

[1] S. Boukoros, M. Humbert, S. Katzenbeisser, and C. Troncoso, “On
(the lack of) location privacy in crowdsourcing applications,” in 28th
USENIX Security Symposium, 2019, pp. 1859–1876.

[2] H. Jiang, J. Li, P. Zhao, F. Zeng, Z. Xiao, and A. Iyengar, “Location
privacy-preserving mechanisms in location-based services: A com-
prehensive survey,” ACM Computing Surveys (CSUR), vol. 54, no. 1,
pp. 1–36, 2021.

[3] M. E. Andrés, N. E. Bordenabe, K. Chatzikokolakis, and
C. Palamidessi, “Geo-indistinguishability: differential privacy for
location-based systems,” in Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security, 2013, pp. 901–
914.

[4] B. Lee, J. Oh, H. Yu, and J. Kim, “Protecting location privacy
using location semantics,” in Proceedings of the 17th ACM SIGKDD
international conference on Knowledge discovery and data mining,
2011, pp. 1289–1297.

[5] A. Khoshgozaran and C. Shahabi, “Blind evaluation of nearest
neighbor queries using space transformation to preserve location pri-
vacy,” in International symposium on spatial and temporal databases.
Springer, 2007, pp. 239–257.

[6] R. A. Popa, H. Balakrishnan, and A. J. Blumberg, “Vpriv: Protecting
privacy in location-based vehicular services,” 2009.

[7] A. Narayanan, N. Thiagarajan, M. Lakhani, M. Hamburg, D. Boneh
et al., “Location privacy via private proximity testing.” in NDSS,
vol. 11, 2011.

[8] J. Šeděnka and P. Gasti, “Privacy-preserving distance computation
and proximity testing on earth, done right,” in Proceedings of the
9th ACM symposium on Information, computer and communications
security, 2014, pp. 99–110.

[9] A.-M. Olteanu, K. Huguenin, R. Shokri, M. Humbert, and J.-P.
Hubaux, “Quantifying interdependent privacy risks with location
data,” IEEE Transactions on Mobile Computing, vol. 16, no. 3, pp.
829–842, 2016.

[10] P. Zhang, S. G. Nagarajan, and I. Nevat, “Secure location of things
(slot): Mitigating localization spoofing attacks in the internet of
things,” IEEE Internet of Things Journal, vol. 4, no. 6, pp. 2199–
2206, 2017.

[11] M. Yuan, X. Tang, and G. Ou, “Authenticating gnss civilian signals:
A survey,” Satellite Navigation, vol. 4, no. 1, pp. 1–18, 2023.

[12] A. Heinrich, M. Stute, T. Kornhuber, and M. Hollick, “Who can find
my devices? security and privacy of apple’s crowd-sourced bluetooth
location tracking system,” arXiv preprint arXiv:2103.02282, 2021.

[13] K. Sahr, D. White, and A. J. Kimerling, “Geodesic discrete global grid
systems,” Cartography and Geographic Information Science, vol. 30,
no. 2, pp. 121–134, 2003.

[14] D. Kang, T. Hashimoto, I. Stoica, and Y. Sun, “Scaling up trust-
less dnn inference with zero-knowledge proofs,” arXiv preprint
arXiv:2210.08674, 2022.

[15] ——, “Zk-img: Attested images via zero-knowledge proofs to fight
disinformation,” arXiv preprint arXiv:2211.04775, 2022.

[16] “IEEE standard for floating-point arithmetic,” IEEE Std 754-2019
(Revision of IEEE 754-2008), pp. 1–84, 2019.

[17] Uber, “Uber hexagonal hierarchical spatial index,” https://www.uber.
com/en-DE/blog/h3/, 2023.

[18] M. Srivastava, S. Arora, and D. Boneh, “Optimistic verifiable training
by controlling hardware nondeterminism,” 2024.

[19] M. Aliasgari, M. Blanton, Y. Zhang, and A. Steele, “Secure com-
putation on floating point numbers,” in 20th Annual Network and
Distributed System Security Symposium, NDSS 2013, San Diego,
California, USA, February 24-27, 2013. The Internet Society, 2013.

[20] L. Kamm and J. Willemson, “Secure floating point arithmetic and pri-
vate satellite collision analysis,” International Journal of Information
Security, vol. 14, no. 6, pp. 531–548, 2015.

[21] D. W. Archer, S. Atapoor, and N. P. Smart, “The cost of ieee
arithmetic in secure computation,” in Progress in Cryptology – LAT-
INCRYPT 2021, 2021, pp. 431–452.

[22] C. Weng, K. Yang, X. Xie, J. Katz, and X. Wang, “Mystique:
Efficient conversions for {Zero-Knowledge} proofs with applications
to machine learning,” in 30th USENIX Security Symposium (USENIX
Security 21), 2021, pp. 501–518.

[23] S. Garg, A. Jain, Z. Jin, and Y. Zhang, “Succinct zero knowledge
for floating point computations,” in Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security,
2022, p. 1203–1216.

[24] S. Garg, A. Goel, S. Jha, S. Mahloujifar, M. Mahmoody, G.-
V. Policharla, and M. Wang, “Experimenting with zero-knowledge
proofs of training,” in Proceedings of the 2023 ACM SIGSAC Con-
ference on Computer and Communications Security, 2023, pp. 1880–
1894.

[25] D. Rathee, A. Bhattacharya, R. Sharma, D. Gupta, N. Chandran, and
A. Rastogi, “Secfloat: Accurate floating-point meets secure 2-party
computation,” in 2022 IEEE Symposium on Security and Privacy
(SP). IEEE, 2022, pp. 576–595.

[26] J. Hauser, “Berkeley testfloat release 3e,” https://github.com/ucb-bar/
berkeley-testfloat-3, 2018.

[27] K. Sahr, “Central place indexing: Hierarchical linear indexing systems
for mixed-aperture hexagonal discrete global grid systems,” Carto-
graphica: The International Journal for Geographic Information and
Geovisualization, vol. 54, no. 1, pp. 16–29, 2019.

[28] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer, “From extractable
collision resistance to succinct non-interactive arguments of knowl-
edge, and back again,” in Proceedings of the 3rd Innovations in
Theoretical Computer Science Conference, 2012, p. 326–349.

[29] R. Gennaro, C. Gentry, B. Parno, and M. Raykova, “Quadratic
span programs and succinct nizks without pcps,” in Advances in
Cryptology–EUROCRYPT 2013: 32nd Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques,
Athens, Greece, May 26-30, 2013. Proceedings 32. Springer, 2013,
pp. 626–645.

[30] A. Gabizon, Z. J. Williamson, and O. Ciobotaru, “Plonk: Permutations
over lagrange-bases for oecumenical noninteractive arguments of
knowledge,” Cryptology ePrint Archive, 2019.

[31] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev, “Scalable,
transparent, and post-quantum secure computational integrity,” Cryp-
tology ePrint Archive, 2018.

[32] A. L. Xiong, B. Chen, Z. Zhang, B. Bünz, B. Fisch, F. Krell, and
P. Camacho, “{VeriZexe}: Decentralized private computation with
universal setup,” in 32nd USENIX Security Symposium (USENIX
Security 23), 2023, pp. 4445–4462.

[33] J. Bootle, A. Cerulli, J. Groth, S. Jakobsen, and M. Maller, “Arya:
Nearly linear-time zero-knowledge proofs for correct program execu-
tion,” in International Conference on the Theory and Application of
Cryptology and Information Security. Springer, 2018, pp. 595–626.

[34] T. Solberg, “A brief history of lookup arguments,” https://github.com/
ingonyama-zk/papers/blob/main/lookups.pdf, 2023.

[35] U. Haböck, “Multivariate lookups based on logarithmic derivatives,”
Cryptology ePrint Archive, 2022.

[36] G. Botrel, T. Piellard, Y. E. Housni, I. Kubjas, and A. Tabaie,
“Consensys/gnark: v0.9.0,” Feb. 2023. [Online]. Available: https:
//doi.org/10.5281/zenodo.5819104

[37] A. Naveh and E. Tromer, “Photoproof: Cryptographic image authen-
tication for any set of permissible transformations,” in 2016 IEEE
Symposium on Security and Privacy. IEEE, 2016, pp. 255–271.

[38] S. Angel, A. J. Blumberg, E. Ioannidis, and J. Woods, “Efficient
representation of numerical optimization problems for SNARKs,” in
31st USENIX Security Symposium, 2022, pp. 4273–4290.

[39] E. Süli and D. F. Mayers, An introduction to numerical analysis.
Cambridge university press, 2003.

[40] E. S. Popko and C. J. Kitrick, “Divided spheres,” in Divided Spheres.
AK Peters/CRC Press, 2021, pp. 1–12.

[41] E. Y. Remez, “Sur la détermination des polynômes d’approximation
de degré donnée,” Comm. Soc. Math. Kharkov, vol. 10, no. 196, pp.
41–63, 1934.

[42] “Floating point and zklp open-source implementation,” https://
anonymous.4open.science/r/zk-Location-8B30/, 2024.

[43] W. J. Cody, Software Manual for the Elementary Functions (Prentice-
Hall series in computational mathematics). Prentice-Hall, Inc., 1980.

[44] P. Pullonen and S. Siim, “Combining secret sharing and garbled
circuits for efficient private ieee 754 floating-point computations,” in
Financial Cryptography and Data Security: FC 2015 International
Workshops, BITCOIN, WAHC, and Wearable. Springer, 2015, pp.
172–183.

[45] X. Wang, A. J. Malozemoff, and J. Katz, “EMP-toolkit: Efficient Mul-
tiParty computation toolkit,” https://github.com/emp-toolkit, 2016.

https://www.uber.com/en-DE/blog/h3/
https://www.uber.com/en-DE/blog/h3/
https://github.com/ucb-bar/berkeley-testfloat-3
https://github.com/ucb-bar/berkeley-testfloat-3
https://github.com/ingonyama-zk/papers/blob/main/lookups.pdf
https://github.com/ingonyama-zk/papers/blob/main/lookups.pdf
https://doi.org/10.5281/zenodo.5819104
https://doi.org/10.5281/zenodo.5819104
https://anonymous.4open.science/r/zk-Location-8B30/
https://anonymous.4open.science/r/zk-Location-8B30/
https://github.com/emp-toolkit

[46] R. Shokri, G. Theodorakopoulos, J.-Y. Le Boudec, and J.-P. Hubaux,
“Quantifying location privacy,” in 2011 IEEE symposium on security
and privacy. IEEE, 2011, pp. 247–262.

[47] R. Shokri, G. Theodorakopoulos, C. Troncoso, J.-P. Hubaux, and J.-
Y. Le Boudec, “Protecting location privacy: optimal strategy against
localization attacks,” in Proceedings of the 2012 ACM conference on
Computer and communications security, 2012, pp. 617–627.

[48] M. Babel and J. Sedlmeir, “Bringing data minimization to digital
wallets at scale with general-purpose zero-knowledge proofs,” arXiv
preprint arXiv:2301.00823, 2023.

[49] J. Groth, “On the size of pairing-based non-interactive arguments,”
in Annual international conference on the theory and applications of
cryptographic techniques. Springer, 2016, pp. 305–326.

[50] J. Ernstberger, S. Chaliasos, G. Kadianakis, S. Steinhorst, P. Jo-
vanovic, A. Gervais, B. Livshits, and M. Orrù, “zk-bench: A toolset
for comparative evaluation and performance benchmarking of snarks,”
Cryptology ePrint Archive, 2023.

[51] “The coalition for content provenance and authenticity (c2pa),” https:
//c2pa.org/.

[52] T. Yeh, M. Sterner, Z. Lai, B. Chuang, and A. Ihler, “Be like
water: Adaptive floating point for machine learning,” in International
Conference on Machine Learning. PMLR, 2022, pp. 25 490–25 500.

[53] M. Borge, E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly,
and B. Ford, “Proof-of-personhood: Redemocratizing permissionless
cryptocurrencies,” in 2017 IEEE European Symposium on Security
and Privacy Workshops (EuroS&PW). IEEE, 2017, pp. 23–26.

[54] G. Beck, H. Eldridge, M. Green, N. Heninger, and A. Jain, “Abuse-
resistant location tracking: Balancing privacy and safety in the offline
finding ecosystem,” Cryptology ePrint Archive, 2023.

[55] M. Orrù, G. Kadianakis, M. Maller, and G. Zaverucha, “Beyond
the circuit: How to minimize foreign arithmetic in zkp circuits,”
Cryptology ePrint Archive, 2024.

[56] A. Galan, I. Fernandez-Hernandez, L. Cucchi, and G. Seco-Granados,
“Osnmalib: An open python library for galileo osnma,” in 10th
Workshop on Satellite Navigation Technology. IEEE, 2022, pp. 1–12.

[57] X. Xie, K. Yang, X. Wang, and Y. Yu, “Lightweight authentication
of web data via garble-then-prove,” Cryptology ePrint Archive, 2023.

[58] F. Zhang, D. Maram, H. Malvai, S. Goldfeder, and A. Juels, “Deco:
Liberating web data using decentralized oracles for tls,” in Pro-
ceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security, 2020, pp. 1919–1938.

[59] J. Lauinger, J. Ernstberger, A. Finkenzeller, and S. Steinhorst, “Janus:
Fast privacy-preserving data provenance for tls 1.3,” Cryptology
ePrint Archive, 2023.

[60] J. Ernstberger, J. Lauinger, Y. Wu, A. Gervais, and S. Steinhorst,
“Origo: Proving provenance of sensitive data with constant commu-
nication,” Cryptology ePrint Archive, 2024.

Appendix A.
Circuits for Integer Operations

Arithmetic circuits only natively support operations in
the prime field Fp, but it is non-trivial to perform in-circuit
integer operations in an efficient and sound way. Below we
introduce circuits that checks the range, extracts sign and
absolute value, computes maximum and minimum values,
and performs left and right shifts for integers.
Range Check. Bit decomposition is a standard technique
for ensuring a variable v ∈ Fp is an L-bit string, i.e., v ∈
[0, 2L−1]. The prover first provides the decomposition as a
hint to the circuit by computing HDec(v) = {v0, . . . , vL−1}.

The predicate PDec for verifying the bit decomposition of
v into {v0, . . . , vL−1} asserts that all variables are boolean
by checking vi(1 − vi) = 0 for all i ∈ [0, L − 1], and
that v is indeed composed of {v0, . . . , vL−1} by asserting∑L−1

i=0 2ivi = v. PDec returns 1 if these checks pass and
0 otherwise. Note, that L should satisfy 2L < p to ensure∑

2ivi does not overflow. For a and b known to be L-bit
strings, this method can be extended to ensure v ∈ [a, b] by
decomposing v − a and b− v separately into L bits.

However, bit decomposition requires L+ 1 constraints,
which is not optimal. We can improve the circuit efficiency
by leveraging lookup argument. We build a lookup table TRC
with entries {0, . . . , 2T −1}. On inputs v, L, the circuit CRC
now requires the prover to compute the hint HDec′(v) by
decomposing v into T -bit strings v′0, . . . , v

′
L/T−1. Then the

circuit checks the predicate PDec′(v, {v′0, . . . , v′L/T−1}) by
appending the set {v′0, . . . , v′L/T−1} to the vector of queries

tRC and enforcing v =
∑L/T−1

i=0 2iT v′i.
The CRC circuits based on both approaches for checking

v ∈ [0, 2L − 1] are described in Figure 14.
Sign and Absolute Value. Obtaining the sign and the L-
bit absolute value of a variable v presents a more complex
challenge. Intuitively, a number is positive if it is greater
than 0, and is negative otherwise. However, as the field
Fp is not ordered, we cannot compare between its ele-
ments. To address this, we manually define elements in the
set {1, 2, . . . , (p − 1)/2} as positive, and those in the set
{(p + 1)/2, . . . , p − 2, p − 1} as negative. Now, as long as
2L < (p − 1)/2, we can extract the sign and the absolute
value of v as depicted in CAbs in Figure 15. The prover
determines if v is positive by checking which set it belongs
to, and provides HGEZ = s as a hint to the circuit. The
gadget enforces that s is boolean, and computes v’s absolute
value abs, which is v if s is 1, and is −v otherwise. Finally,
the gadget enforces that abs has at most L bits and returns
abs and s. Soundness holds because if an adversary feeds
the incorrect s to the circuit, then abs’s value belongs to the
negative set and is hence greater than (p− 1)/2, but CRC is
later used to guarantee that abs < 2L < (p− 1)/2.
Maximum and Minimum. Given CAbs, it is straightforward
to build circuits that find the maximum and minimum values
between x and y whose difference has L bits (cf. Figure 15),
which is done by calling CAbs on x − y and select x or y
based on the sign of the difference. CMax and CMin forward
x− y and L to CAbs, where CAbs returns the sign bit s only.
Shifting. Figure 16 summarizes the circuits for shifting left
<< and right >>. First, we compute powers of 2 in-circuit.
For a constant exponent D, 2D is also a constant and does
not involve any constraints. For 2d with a variable exponent
d ∈ [0,K] where 2K < p, one approach is to leverage
the square-and-multiply algorithm. That is, we decompose
d into K bits d0, . . . , dK−1 and select the term 22

i

or 1
based on the value of di. The product of these terms is the
result 2d. This method costs O(K) constraints. For example,
in R1CS, we need K + 1 constraints for bit decomposition
and K− 1 constraints for multiplying K terms, resulting in
2K constraints in total. This is not ideal, especially for our

https://c2pa.org/
https://c2pa.org/

Resolution
←−−−−−−−−−−−−−−− 0−−−−−−−−−−−−−−−→ ←−−−−−−−−−−−−−−− 1−−−−−−−−−−−−−−−→ ←−−−−−−−−−−−−−−− 2−−−−−−−−−−−−−−−→ ←−−−−−−−−−−−−−−− 3−−−−−−−−−−−−−−−→

P20
P40
F32
F64

←−−−−−−−−−−−−−−− 4−−−−−−−−−−−−−−−→ ←−−−−−−−−−−−−−−− 5−−−−−−−−−−−−−−−→ ←−−−−−−−−−−−−−−− 6−−−−−−−−−−−−−−−→ ←−−−−−−−−−−−−−−− 7−−−−−−−−−−−−−−−→
P20
P40
F32
F64

←−−−−−−−−−−−−−−− 8−−−−−−−−−−−−−−−→ ←−−−−−−−−−−−−−−− 9−−−−−−−−−−−−−−−→ ←−−−−−−−−−−−−−−− 10−−−−−−−−−−−−−−−→ ←−−−−−−−−−−−−−−− 11−−−−−−−−−−−−−−−→
P20
P40
F32
F64

←−−−−−−−−−−−−−−− 12−−−−−−−−−−−−−−−→ ←−−−−−−−−−−−−−−− 13−−−−−−−−−−−−−−−→ ←−−−−−−−−−−−−−−− 14−−−−−−−−−−−−−−−→ ←−−−−−−−−−−−−−−− 15−−−−−−−−−−−−−−−→
P20
P40
F32
F64

Figure 13: Testing proof generation for ZKLP with resolutions 0 to 15 for fixed-point (P20, P40), single precision (FP32)
and double precision (FP64) floating-point values. For a given resolution, we test 16 different distances from the test case
to the boundary, with 100 randomly sampled test cases at each distance. All tests are for Groth16 over BN254. Green =
pass all tests, Yellow and Red = fail some tests. A cell with deeper red indicates more failures.

CRC(v, L), based on bit decomposition

Require: 2L < p
1: Receive hint {v0, . . . , vL−1} = HDec(v)
2: for i ∈ [0, L− 1] do
3: vi(1− vi) = 0

4: v =
∑L−1

i=0 2ivi
CRC(v, L), based on lookup argument

Require: 2L < p
1: Receive hint {v′0, . . . , v′L/T−1

} = HDec′ (v)

2: for i ∈ [0, L/T − 1] do
3: tRC := tRC ∪ v′i
4: v =

∑L/T−1
i=0 2iT v′i

Figure 14: Circuit for checking v ∈ [0, 2L − 1].

CAbs(v, L)
Require: 2L < (p− 1)/2
1: Receive hint s = HGEZ(v)
2: s(1− s) = 0
3: abs := s ? v : −v
4: CRC(abs, L)
5: return s, abs

CMax(x, y, L)

Require: 2L < (p− 1)/2
1: s, := CAbs(x− y, L)
2: return (s) ?x : y

CMin(x, y, L)

Require: 2L < (p− 1)/2
1: s, := CAbs(x− y, L)
2: return (s) ? y : x

Figure 15: Circuits for computing sign & absolute value
(CAbs) and maximum (CMax) & minimum values (CMin).

case where shift operations are frequently used. In order to
minimize circuit size, we introduce TPow2, a lookup table for
2d. TPow2 is first populated with entries tPow2 = {(i, 2i)}Ki=0.
Then, to compute 2d, the prover provides a hint r, and the
circuit appends (d, r) to the vector of queries fPow2, which is
later enforced to satisfy fPow2 ∈ tPow2. Due to the soundness

2d = 1<< d

Require: d ∈ [0,K], 2K < p
1: Receive hint r = HPow2(d)
2: tPow2 := tPow2 ∪ (d, r)
3: return r

v << d

Require: v ∈ [0, 2L − 1], d ∈
[0,K], 2L+K < p

1: return v · 2d

v >> d

Require: v ∈ [0, 2L − 1], d ∈ [0,K],
2L+K < p

1: v′ := v · 2K−d

2: Receive hints q, r = HDiv(v
′, 2K)

3: CRC(q, L)
4: CRC(r,K)
5: v′ = q · 2K + r
6: return q

Figure 16: Circuits for shift operations

of the lookup argument, r is guaranteed to be 2d.
Assuming that v ∈ [0, 2L − 1] and d ∈ [0,K] where

2L+K < p, it is straightforward to compute the left shift
v << d; we only need to compute 2d and then return v · 2d.

Constructing an efficient right shift gadget v >> d
needs non-trivial techniques. Here, we also assume that
v ∈ [0, 2L − 1], d ∈ [0,K], and 2L+K < p. Naively,
we could treat the right shift operation as integer division,
i.e., v >> d = v/2d. The prover computes the quotient
q and the remainder r such that v = q · 2d + r, and
feeds q, r := HDiv(v, 2

d) as hints to the circuit. Then to
check the predicate PDiv(v, 2

d, q, r), it is required to enforce
that q ∈ [0, 2L − 1], i.e., q · 2d does not overflow, that
r ∈ [0, 2d − 1], i.e., the remainder should be positive and
smaller than the divisor, and that v = q · 2d+ r. We can see
that checking the range of q requires decomposing an L-bit
integer, and checking the range of r requires decomposing
two K-bit integers r and 2d − 1 − r (note that the upper
bound 2d−1 is a variable). This is suboptimal, as the above
checks are equivalent to decomposing an L+2K-bit integer.

We now reduce the number of bits to be decomposed.

α÷ β

1: s := sα ⊕ sβ
2: e := eα − eβ
3: Receive hints q, r = HDiv(mα << (M + 2),mβ)
4: CRC(r,M + 1)
5: CRC(mβ − r − 1,M + 1)
6: mα << (M + 2) = q ·mβ + r
7: m := q
8: a := aα ∨ CIsEq(mβ , 0)
9: Receive hint b = HMSB(m)

10: b(1− b) = 1
11: CRC(m− (b << (M + 2)),M + 2)
12: m := b ?m : m<< 1
13: e := e+ b− 1
14: ∆e := CMax(CMin(−2E−1 + 2− e,M + 2, E + 1), E + 1)
15: e′,m′ := CFpRound(e,m,∆e, CIsEq(r, 0))
16: a′ := a ∨ CGEZ(e′ − 2E−1, E + 1)
17: m′ is 0 := CIsEq(m′, 0)
18: e′ := a′ ? 2E−1 : ((m′ is 0∨ aβ) ?−2E−1 +1−M : e′)
19: m′ := aβ ? 0 : (a′ ? 2M : m′)
20: return s, e′,m′, a′

Figure 17: Circuit for floating-point division

Instead of naively computing v >> d, the prover first com-
putes v′ := v << (K − d) = v · 2K−d. Since d ∈ [0,K], we
have K−d ∈ [0,K], and thus v ·2K−d < 2L+K < p is safe.
Then we handle v′ >>K analogously: the prover computes
the quotient q and the remainder r for v′/2K and provides
q, r = HDiv(v

′, 2K) as hints, and the circuit checks the
predicate PDiv(v

′, 2K , q, r) by asserting that q ∈ [0, 2L− 1],
r ∈ [0, 2K − 1], and v′ = q · 2K + r. Another way
to understand how to check v′ >> K is that the circuit
first decomposes v′ into L + K bits, and then computes
q =

∑L−1
i=0 2iv′i. The optimized approach only requires

decomposing L+K bits, saving O(K) constraints.

Appendix B.
Circuit for Floating-Point Division

Dividing an IEEE 754 floating-point number α =
(sα, eα,mα, aα) by another β = (sβ , eβ ,mβ , aβ) is done
in the following 4 steps — (i) computing the quotient of
α and β, (ii) normalizing and (iii) rounding the intermedi-
ate mantissa and (iv) handling edge cases. We depict the
corresponding in-circuit logic in Figure 17.
Compute quotient (lines 1-8). Analogous to multiplication,
the quotient has sign s := sα⊕sβ and exponent e := eα−eβ .
However, extra care is needed for computing the mantissa.
Our rounding operation necessitates intermediate mantissas
with infinite precision, but it is infeasible to represent the
exact quotient when mβ ∤ mα. To address this, we instead
divide α’s scaled mantissa mα<<(M+2) by mβ and obtain
the quotient q and remainder r, such that mα<< (M +2) =
q ·mβ + r, and the intermediate mantissa is m := q. Since
mα,mβ are either 0 or lie in [2M , 2M+1 − 1], a non-zero,
finite m should be bounded by m ∈ (2M+1, 2M+3).

The shift M + 2 is the smallest value that allows m to
retain the correct round bit mM+1, and r is used to assist
the rounding process and determine the sticky bit, just as

if we are rounding a mantissa with infinite precision. This
is achieved by checking if r is zero. If this is the case,
mβ | (mα << (M + 2)), and the remaining bits after the
round bit in the exact result mα

mβ
are all 0, implying that the

sticky bit is 0. Otherwise, the sticky bit is 1.
To compute (mα<<(M+2))/mβ inside the circuit, the

prover needs to do the division outside the circuit and pro-
vide q, r := HDiv(mα<<(M+2),mβ) as hints, and the cir-
cuit will check the predicate PDiv(mα<< (M +2),mβ , q, r)
by enforcing (i) q ∈ [0, 22M+3 − 1], (ii) r ∈ [0,mβ), and
(iii) mα << (M + 2) = q ·mβ + r. We eliminate the check
(i), which is unnecessary as q’s range will be narrowed to
[0, 2M+3 − 1], as we describe later. (ii) is converted to two
range checks since the upper bound mβ is a variable.

The quotient is abnormal if the dividend is abnormal or
the divisor is ±0 or NaN, i.e., a := aα ∨ CIsEq(mβ , 0).
Normalize intermediate mantissa (lines 9-13). m is nor-
malized in the same way as the normalization of multiplica-
tion. Since a non-zero and finite m is in (2M+1, 2M+3), the
leading 1 of a non-zero m is either the M + 1-th bit or the
M+2-th bit, and we check if mM+2 = 1. If so, m and e are
unchanged. Otherwise, m := m<< 1, e := e− 1, where e is
decremented as mM+2 = 0 indicates that the division bor-
rows. The in-circuit operation is similar to normalization for
multiplication. The prover feeds b := HMSB(m) = mM+2,
the MSB of m, as a hint to circuit, and the circuit checks the
predicate PMSB(m, b) in 2 steps: (i) enforce b is a boolean,
and (ii) assert m−(b<<(M+2)) ∈ [0, 2M+2). Note that (ii)
implies that m ∈ [0, 2M+3 − 1], which indicates the hinted
m := q is the correct quotient mantissa and thus lies in
(2M+1, 2M+3). Finally, the circuit updates m, e according
to b, i.e., m := b ?m : m<< 1, e := e+ b.
Round intermediate mantissa (lines 14-15). The normal-
ized mantissa m of length N = M+3 is rounded as in Sec-
tion 3.2, with ∆e = max(min(−2E−1+2− e,K), 0),K =
M+2, obtaining e′ and m′. In addition, the equality between
r and 0 is used to determine the sticky bit, thus we set the
in-circuit parameter aux := CIsEq(r, 0).
Edge Cases (lines 16-20). We omit the detailed explanation
due to space limit.

Appendix C.
Authentic Location Information

Currently, the ZKLP paradigm described in Section 4
only introduces efficient circuits for transforming (θ, ϕ) to
(i, j, k) in the Uber H3 [17] hexagonal spatial index. Whilst
(θ, ϕ) are private inputs, and hence not disclosed to the
verifier, the prover could still choose arbitrary values as
input to the circuit, as it doesn’t constrain that location
information is obtained correctly, i.e., it does not ensure
data provenance. We introduce three approaches to mitigate
this issue by proving that data comes from a trusted source.

(i) Offline Finding Networks Offline Finding ecosys-
tems, such as Apple’s “Find My” network, allow device
owners to track the location of missing offline devices via
Bluetooth, and report an approximated location via the inter-
net [12], [54]. Each device within these networks generates

CIJK(x, y)
1: a1 := |x| ; a2 := |y|
2: x2 := a2

sin(π
3
)
; x1 := a1 + x2

2

3: m1 := ⌊x1⌋ ; m2 := ⌊x2⌋
4: r1 := x1 −m1 ; r2 := x2 −m2

5: r1,A = (r1 < 1
2
) ? 1 : 0 ; r1,A1 = (r1 < 1

3
) ? 1 : 0

6: r1,B1 = (r1 < 2
3
) ? 1 : 0

7: iA2,1 = (1− r1 ≤ r2) ? 1 : 0 ; iA2,2 = (2 · r1 > r2) ? 1 : 0
8: iB1,1 = (r2 > 2 · r1 − 1) ? 1 : 0 ; iB1,2 = (1− r1 > r2) ? 1 : 0
9: iA = (iA2,2 ?m1 + 1 : m1)

10: iB = (iB1,1 ? (iB1,2 ?m1 : m1 + 1) : m1 + 1)
11: i = r1,A ? (r1,A1 ?m1 : iA) : (r1,B1 ? iB : m1 + 1)
12: jA = (r1+1

2
> r2) ? 1 : 0 ; jB = (1− r1 > r2) ? 1 : 0

13: jC = (r1
2

> r2) ? 1 : 0
14: jA = r1,A1 ? ((jA) ?m2 : m2 + 1) : ((jB) ?m2 : m2 + 1)
15: jB = r1,B1 ? ((jB) ?m2 : m2 + 1) : ((jC) ?m2 : m2 + 1)
16: j = r1,A ? jA : jB
17: i> = (j < i) ? 1 : 0
18: i− = (x < 0) ? ((y < 0) ? 1 : i>) : ((y < 0) ? (1− i>) : 0)
19: iA = (y < 0)?(i>?(i−j) : (j−i)) : −i; iB = (i>?(i−j) : (j−i))
20: i = (x < 0) ? iA : ((y < 0) ? iB : i)
21: return CNormalize(i−, i, y.S, j, 0, 0)

Figure 18: Sub-Circuit for computing the conversion of two
dimensional hexagon coordinates x, y to three dimensional
coordinates i, j, k. Primitive Operations are floating-point.

CNormalize(i−, i, j−, j, k−, k)

1: i>j = (j < i) ? 1 : 0 ; i>k = (k < i) ? 1 : 0
2: jA = (j−) ? ((i>j) ? (i− j) : (j − i)) : (i+ j);
3: jA− = (j−) ? (1− i>j) : 0
4: kA = (k−) ? ((i>k) ? (i− k) : (k − i)) : (i+ k);
5: kA− = (k−) ? (1− i>k) : 0
6: i = (i−) ? 0 : i
7: j = (i−) ? jA : j ; j− = (i−) ? jA− : j−
8: k = (i−) ? kA : k ; k− = (i−) ? kA− : k−
9: i = (j−) ? (i+ j) : i ; j = (j−) ? 0 : j ; k = (j−) ? kA : k

10: k− = (j−) ? kA− : k−
11: i = (k−) ? (i+ k) : i ; j = (k−) ? (j + k) : j ; k = (k−) ? 0 : k
12: min = (i>j) ? j : i
13: min = (k < min) ? k : min
14: i = i− min ; j = j − min ; k = k − min
15: return [i, j, k]

Figure 19: Normalization Sub-Circuit for adjusting i, j, k
coordinates. Primitive Operations are floating-point.

unique public-private key pairs and frequently rotates its
public keys to mitigate tracking risks. Lost devices broadcast
their public key, which nearby Apple devices utilize to
encrypt their own location. The encrypted location data is
then sent to and stored on Apple’s servers and can only
be decrypted by device owner’s private key. Although these
ecosystems is proprietary to the manufacturer, recent work
shows how to utilize these offline finding protocols (e.g., Ap-
ple’s “Find My” network) to localize arbitrary devices [12].

To obtain authentic location information, one can lever-
age the network of unknown devices that post “Location
Reports” to Apple’s server. A “Location Report” can only
be decrypted by the owner of the private key using AES-
128-GCM. After decryption, the location data (latitude and
longitude) is available in plain. To ensure authenticity and
prevent forgery, one can prove the correct key derivation

and decryption of several location reports, and further prove
correct triangulation before applying the optimized ZKLP
circuits. Given recent work that shows how to optimize
non-native field arithmetic in SNARKs with lookup ar-
guments [55], this solution effectively bridges the cyber-
physical gap without demanding for additional hardware or
distributed networks that may not yet be in place.

(ii) Authenticated GNSS signals. Traditionally, GNSS
services were for military use, which meant that they lacked
robust security features like signal authentication. Address-
ing this legacy issue necessitates modifications to millions
of GPS receivers. Recently, the security vulnerabilities in
GPS have gained attention, leading to efforts to improve
its security. One such effort is Open Service Navigation
Message Authentication (OSNMA), which targets the lack
of signal authentication [11]. Open-source implementations
of OSNMA receivers exist and are well-documented [56].

OSNMA combines ECDSA signatures, the Timed Ef-
ficient Stream Loss-tolerant Authentication (TESLA) key
chain mechanism, and Messages Authentication Codes
(MACs) for message authentication. The receiver’s cryp-
tographic operations in OSNMA include verifying a root
key of the TESLA chain, authenticating new public keys,
verifying TESLA chain keys, and authenticating the MACs
of navigation messages. First, the receiver validates the
authenticity of a Root Key through an ECDSA signature.
Successively, the receiver uses the authenticated root key to
verify the current chain key. By successfully verifying the
chain key against the root key, the receiver ensures that the
chain key is part of the legitimate TESLA key chain. Using
the verified chain key, the receiver computes the MAC of the
navigation data. The computed MAC is compared with the
extracted MAC. If they match, it confirms that the navigation
message is authentic and has not been tampered with.

We presume that the overhead of proving an authenti-
cated GNSS signals with OSNMA will be dominated by the
in-circuit verification of ECDSA signatures. At the time of
writing, it requires 4·106 constraints for in-circuit emulation
over the circuit unfriendly curve secp256k1 in gnark. Fur-
ther, there remains an open problem — a malicious prover
may collaborate with a third party, which obtains the GNSS
signal and forwards it. The verifier needs to ensure that
(i) obtaining the location and (ii) computing the proof is
conducted atomically — which remains unsolved.

(iii) TLS Oracles. Alternatively, one may trust a third
party entity to verify that location information is obtained
from a trusted entity. TLS Oracles [57], [58], [59], [60] pro-
vide the possibility to verify data provenance by extending
a plain TLS session with a third party, which verifies that
the data obtained by a client from a server is authentic.
As such, one could extend the ZKLP paradigm to obtain
location information from an API endpoint. The request
includes information about nearby cell towers and WiFi
access points detected by a mobile client, which allows for
accurate location estimation via an external API. We leave
the details of potential optimizations for authenticated and
atomic GNSS, and a concrete system design for integration
with TLS oracles, to potential future work.

	Introduction
	Contributions & Results

	Preliminaries
	Notation
	Background On Floating-Point Values
	Discrete Global Grid Systems
	SNARKs
	SNARK Optimizations

	Primitive Floating-Point Operations
	Initializing Floating-Point Numbers
	Rounding
	Addition And Subtraction
	Multiplication And Division
	Square Root Computation
	Comparison

	Zero Knowledge Location Privacy
	Empirical Evaluation
	Microbenchmarks and Comparison
	Zero-Knowledge Location Proofs

	Related Works
	Discussion & Future Work
	References
	Appendix A: Circuits for Integer Operations
	Appendix B: Circuit for Floating-Point Division
	Appendix C: Authentic Location Information

