
Hybrid Zero-Knowledge from Garbled Circuits⋆

Masayuki Abe1, Miguel Ambrona2, and Miyako Ohkubo3

1NTT Laboratories, abe.masayuki@iecl.ntt.co.jp, 2 Midnight, miguel.ambrona@iohk.io
3 NICT, m.ohkubo@nict.go.jp

We present techniques for constructing zero-knowledge argument systems
from garbled circuits, extending the GC-to-ZK compiler by Jawurek, Kerschbaum,
and Orlandi (ACM CCS 2023) and the GC-to-Σ compiler by Hazay and Venki-
tasubramaniam (J. Crypto, 2020) to the following directions:

- Our schemes are hybrid, commit-and-prove zero-knowledge argument sys-
tems that establish a connection between secrets embedded in algebraic
commitments and a relation represented by a Boolean circuit.

- Our schemes incorporate diverse cross-domain secrets embedded within
distinct algebraic commitments, simultaneously supporting Pedersen-like
commitments and lattice-based commitments.

As an application, we develop circuit-represented compositions of Σ-protocols
that support attractive access structures, such as weighted thresholds, that can
be easily represented by a small circuit. For predicates P1, . . . , Pn individually
associated with a Σ-protocol, and a predicate C represented by a Boolean circuit,
we construct a Σ-protocol for proving C(P1, . . . , Pn) = 1. This result answers
positively an open question posed by Abe, et. al., at TCC 2021.

Keywords: hybrid zero-knowledge, garbled circuit, Σ-protocol, composition

⋆ Preliminary version of this paper was presented at SCN2024. This is the full version.

Table of Contents

Hybrid Zero-Knowledge from Garbled Circuits . 1
Masayuki Abe1, Miguel Ambrona2, and Miyako Ohkubo3

1 Introduction . 3
1.1 Our Contribution . 4
1.2 Related Works . 7

2 Preliminaries . 9
2.1 Notations . 9
2.2 Affine Predicate and Affine Commitment . 9
2.3 Σ-protocol . 10

3 Garbling Scheme . 11
4 Generalized Affine Garbling with Common Labels 14
5 ZKGC: From GC to Interactive UCZK . 16

5.1 Construction . 16
5.2 Extension to Commit-and-Prove: CP-ZKGC 16
5.3 Monotone Compositions of CP-ZKGC. 17

6 CCZK: From GC to Σ-Protocols . 18
6.1 Construction . 18
6.2 Extension to Commit-and-Prove: CP-CCZK 20
6.3 Monotone Compositions of CP-CCZK . 21

7 General Composition of Σ-protocols . 22
A Other Building Blocks . 27

A.1 NNL Pseudo-random Generator . 27
A.2 Merkle Tree . 27
A.3 Key Derivation Function . 28
A.4 Symmetric-key Encryption . 29
A.5 Secret Sharing Scheme . 29

B Shuffled Label Commitment . 30
B.1 Definitions . 30
B.2 Construction . 31
B.3 Performance . 32
B.4 Security . 33

C ZKGC Framework [40] . 37
D Proofs . 37

D.1 Proof of Theorem 1 . 37
D.2 Proof of Theorem 3 . 40
D.3 Proof of Theorem 4 . 40
D.4 Proof of Theorem 5 . 42
D.5 Proof of Theorem 6 . 43
D.6 Proof of Theorem 7 . 44
D.7 Proof of Lemma 2 . 45
D.8 Proof of Theorem 8 . 45

1 Introduction

Garbled circuits (GC) [49, 50] are a fundamental building block for constructing
various cryptographic protocols. Zero-knowledge proof systems are no exception,
as they can be seen as a particular case of two-party computation where only
one party (the prover) has an input (the witness), and the other party (the
verifier) obtains the result of evaluating the concerned relation on the input.
Several works, e.g.,[40, 31, 37, 19, 33], have been devoted to constructing ZK
using GC as a black box. Due to the significant communication overhead per
gate in garbling, ZK from GC best suits proving relations that can be expressed
by small circuits. Nevertheless, their modular structure enables attractive yet
often overlooked properties such as online-offline delayed inputs, low-latency
pipelining, and small on-memory processing. It also facilitates the understanding
of algorithms, lowering the barrier for development and maintenance[27, 16].
These properties are orthogonal to those of other design paradigms, such as
succinct non-interactive arguments of knowledge (SNARKs) [35], which have seen
significant advances in recent years due to demand from blockchain applications.

There are two approaches of ZK from GC in the literature. One is represented
by [40] where the verifier garbles the circuit and the prover evaluates it with the
witness. The garbling is privacy-free and is done only once. Despite its interactive
nature for obliviously transmitting encoding keys, its value is demonstrated in
practical scenarios, e.g., [46]. The other approach introduced in [37, 27] is the
opposite; the prover garbles the circuit and the verifier evaluates it with a given
encoded witness. As their construction follows the cut-and-choose strategy to
ensure the correctness of garbling, several garbling and evaluations must be done.
Instead, it results in standard Σ-protocols [23], which is a significant advantage
in generic protocol designs. In particular, it can be non-interactive through
the Fiat-Shamir transformation. Nevertheless, its practical potential remains
unexplored.

Commit-and-prove ZK is a practical extension of zero-knowledge systems
for bridging several proofs on common inputs by reusing the same commitment
of the witness. Hybrid ZK is a particular class of commit-and-prove ZK whose
commitments are algebraic, but a Boolean circuit represents the relation to
prove. Consider two commitments com(s) and com(t) for secrets s and t for
which the prover argues that both the i-th bit of s and the j-th bit of t are 1.
A tiny circuit with just one AND gate can represent such a relation. However,
enforcing consistency between the input bits to the circuit and the committed
secrets could become a cumbersome task. This is particularly challenging with
cross-domain secrets, i.e., where the commitments are based on different domains
and mechanisms, like Pedersen commitments over elliptic-curve groups and
lattice-based commitments. (See Section 1.2 for more discussion.)

3

1.1 Our Contribution

The goal of this work is to extend the ZK-from-GC paradigms of [40] and [37]1
to construct hybrid, commit-and-prove zero-knowledge argument systems that
establish a connection between a relation represented by a Boolean circuit and
secrets embedded in algebraic commitments. They incorporate diverse cross-
domain secrets embedded within a broad range of algebraic commitments.

Our technical results are organized as follows:

• We first introduce a new garbling scheme supporting Boolean and affine
operations over rings altogether, generalizing the garbling technique of [34]
(Section 4). It is used to solve the input consistency issue for connecting a
Boolean circuit and algebraic commitments. This garbling is used commonly
for all constructions in this paper.

• The garbling scheme is then used to extend the construction of universally
composable zero-knowledge from garbled circuits in [40] (ZKGC hereafter)
to their commit-and-prove variant (CP-ZKGC) (Section 5.2). We show that
CP-ZKGC allows monotone compositions for proving partial knowledge
(Section 5.3).

• We next build a cut-and-choose garbled-circuit (CCZK) compiler. It converts
a privacy-preserving garbling scheme into a Sigma protocol following the
MPC-in-the-Head with pre-processing paradigm [41] (Section 6.1). It is then
combined with our garbling scheme from Section 4 to get its commit-and-prove
variant (CP-CCZK). The resulting CP-CCZK supports monotone composi-
tion, and provides non-interactive hybrid ZK from GC via the Fiat-Shamir
transformation. For the CCZK compiler to work efficiently, we introduce
a new building block, a shuffled label commitment scheme (Appendix B),
that improves the communication complexity induced by the cut-and-choose
structure of CCZK. Overall efficiency improvement from a naive construction
is the 90% saving in the proof size.

• As an application of CP-CCZK, we present a general circuit-represented com-
position of Σ-protocols (Section 7). Given Σ-protocols for proving arbitrary
predicates P1, . . . , Pn and a garbling scheme for Boolean circuit C, we con-
struct a Σ-protocol for predicate C(P1, . . . , Pn). Such a composition brings
a solution for attractive relations such as weighted threshold proofs where
committed secrets are assigned some weights, and circuit C verifies whether
the proven knowledge’s total weight exceeds a threshold. Note that the circuit
can use non-monotone gates, but the function that it represents must be
monotone.2 This is a qualitative improvement over previous work [25], given

1 We refer to the public-coin honest verifier ZK in Section 6 of [37]. They also present
interactive ZK with commit-and-prove property based on the 2PC-in-the-Head
paradigm.

2 This is inherent. Note that a modular composition of statements under non-monotone
functions is not a well-defined notion, as the prover could always pretend not to know
one of the witnesses.

4

that monotone span programs (or even monotone circuits) are not univer-
sal for efficient computation of monotone functions, see, e.g., [47], whereas
non-monotone circuits are.

We review our technical contributions slightly in more details below.

Definitional Work. In Section 3, we introduce refined security notions for garbling
schemes focused on authenticity and verifiability, aiding in identifying necessary
and sufficient properties for our constructions.

The standard authenticity is a computational problem that it is hard for the
adversary to compute a correct output label. For the purpose of composition where
the output from a circuit is used in further computation, we propose a decisional
variant of authenticity, which we call output indistinguishably. This property
enables replacing unrevealed output parts with random values independent of
the garbled circuit, useful for reductions involving other connected components.
It is achieved by applying a suitable key derivation function to the output labels.

Correctness typically permits negligible error probability, but in cut-and-
choose protocols, this may allow adversaries to choose coins so that evaluation
fails. We thus need it to work perfectly once verified. We refine verifiability in
[40, 31] to closely align with correctness, and introduce a variation verifiable
correctness as required in our cut-and-choose construction, CCZK. While standard
constructions readily achieve these notions, articulating them helps avoid pitfalls
when relaxed versions are desired.

Algebraic Commitments and Affine Garbling. We consider a class of commitment
schemes whose commitment function com is a generalized affine function, which
consists of an affine transformation over a ring or a transformation from a ring
to its module. To compute such a function in a garbled manner, we introduce an
affine garbling scheme, which is a garbling scheme for generalized affine functions,
and prove several properties as defined as above.

Wire Merging. Different circuit types use specific wire labeling strategies for
efficiency. A challenge arises when different types of circuits share the inputs.
To address this, we devised a garbling scheme to merge wire labels seamlessly,
ensuring consistency of committed values and inputs throughout computation.
We extend the wire merging technique of [34] developed for privacy-free garbling
by leveraging the color-bit technique [14] to add privacy as needed in CCZK.

Cut-and-Choose with Preprocessing. Our CCZK compiler follows the MPC-in-
the-Head with pre-processing paradigm, also known as KKW [41] as outlined
below.

(Pre-processing phase.)
1. The prover plays as a trusted party in each session by garbling the circuit,

and committing to the input wire label pairs generated, shuffling each
pair (through the shuffled label commitment scheme as explained later).
The prover executes M sessions and sends the verifier all the garbled
circuits and commitments.

5

2. The verifier selects τ sessions randomly as a challenge.
3. For each non-selected session, the prover publishes the garbled circuit

and the whole input wire labels in the correct order. This can be done
efficiently by publishing the random coins used for garbling.

4. The verifier accepts if, for all but τ sessions, the garbled circuits and the
encoding keys are correctly formed.

(On-line phase.)
5. For every selected session, the prover publishes the garbled circuit and

the encoded witness x̂ represented by half of the input wire labels and
the selective opening information π.

6. The verifier accepts if the commitment is recovered from x̂ and π, and x̂
evaluates the garbled circuit to 1 for all the selected τ sessions.

The protocol can be made three rounds by merging steps 3 and 4 with and 5 and
6, respectively.

Unlike KKW, cheating during the on-line phase is rendered impossible if the
circuits are honestly garbled. The soundness error is upper-bounded essentially
by the probability of guessing τ out of M sessions. With M = 512 and τ =
22 for 128-bit security, this optimization saves the number of evaluated GCs
down to 22/64 = 34% compared to a naive construction with M = 128 and
τ = 64. Including the savings by our shuffled label commitment, the dominant
communication of sending encoded inputs is reduced to 20%.

Shuffled Label Commitments. We develop an efficient shuffled label commitment
scheme (Appendix B.4) that functions like a vector commitment with either
all or a random half of the labels authentically opened. We present an efficient
construction that combines a Merkle tree [44] and an NNL length-doubling
pseudo-random generator [45]. Our analysis shows that it reduces the average
opening size to 61%, which is a dominant factor in the proof size.

While the concept is simple, the construction requires careful techniques. The
challenge is that labels in algebraic circuits can be very short, and revealing a
hash value of these short labels as a sibling can compromise the security of the
undisclosed labels. To address this, we devised steps to introduce pseudo-entropy
without significantly increasing the size of the disclosed information, making the
formal security proof complex. We prove security based on the pseudo-randomness
of the NNL generator and the MT correlation robustness of the Merkle hash
(Definition 15).

Circuit-Represented Composition. Our idea is to incorporate a flag si directly
indicating the prover’s possession of the witness for atomic predicate Pi. For
proving a composed statement, C(P1, . . . , Pn), the prover does as follows:

1. Commit to (s1, . . . , sn).
2. Prove (Pi = 1 ∧ si = 1) ∨ (si = 0) for every i ∈ [n].
3. Prove C(s1, . . . , sn) = 1.

6

We use hybrid zero-knowledge for proving C(s1, . . . , sn) = 1 on committed secrets
(s1, . . . , sn). This way, composition C can be represented by a Boolean circuit.
The proof in the second step associates flag si with predicate Pi. Provided a
Σ-protocol for proving si ∈ {0, 1}, it can be done through a standard composition
method [26].

1.2 Related Works

Comparison to hybrid ZKGC in [19]. Our advantage of CP-ZKGC over [19]
is primarily qualitative; the generality of the supported commitments and the
extended functionality allowing monotone composition. Regarding the perfor-
mance, we compare the communication and computation for the example of
proving statement {(m, r) | com(m; r) = c ∧ C(m)} for a Boolean predicate C,
with labels of size λ1 and com being Pedersen commitment with group size λ2.
Let COT(a, b) denote the bandwidth for committed OT with a choice bits and b
total input message size. Let Ĉ denote the garbled C. The dominant term in the
bandwidth of [19] is |m|λ2 + COT(|m|, 2λ1|m|) + |m|λ2 + |Ĉ|+ Π1(λ1) +Π2(|m|+
|m|λ2 + |r| + λ2

2) + Π3(|m| + 2λ2 + λ2
2) where Πi(a) denotes the bandwidth

for the i-th zero-knowledge proof whose witness size is a. For CP-ZKGC, it is
COT(|m|+ |r|, 2λ1(|m|+ |r|))+ |Ĉ|+λ2|m|. With a simple oblivious transfer from
[20] over 256-bit elliptic-curve groups, we estimate that [19] requires 140 kBytes
of communication additionally to |Ĉ|, whereas it is 66 kBytes with CP-ZKGC.
The prover computes 3335 exponentiations in [19] that is reduced to 513 with
CP-ZKGC.

Relation to arithmetic garbling in [34], [12], and more. Our affine garbling is a
mixture of techniques from [12] and [34]. We follow [34] in our affine garbling with
three substantial differences. The first is generality. We extend their approach
to which we call generalized affine operations over arbitrary rings, supporting
lattice-based cryptography. The second is that our garbling protects privacy,
which is essential for our construction of non-interactive zero-knowledge. The
third is the presence of a formal composition theorem with a Boolean garbling,
which is missing in their work. In [12], a binary decomposed value over a ring
is encoded in the same manner as ours. They support high-degree arithmetic
operations with inefficient decoding, which is not required in our case for garbling
affine predicates.

The encoding method used in SPDZ-2k [24, 13] has a similar flavor. They
extend the domain to 2s+k with sufficiently large s to achieve demanded soundness
error 2−s. We instead choose to repeat the garbing for the target domain η times
so that 2−ηk suffices for soundness. It simplifies the algorithm, particularly
when the arithmetic operations are extended to groups, in exchange for losing
fine-tuning in setting the target error level.

On Garbled Circuit to Σ-protocols. Other than the simple cut-and-choose con-
struction mentioned above, [37] introduces a paradigm called 2PC-in-the-Head

7

that builds a Σ-protocol from garbled circuits. It is a variation of MPC-in-the-
Head [39] where the witness is secret-shared among the virtual players who
cooperate to evaluate the target function. It inherently doubles the input length
of the evaluating circuit, impacting the efficiency, and is used as a theoretical
tool in subsequent works, e.g., [42].

Hybrid zero-knowledge from other than garbling schemes. There are efficient
constructions of interactive ZK, e.g., [13, 48], for hybrid statements that combine
efficient proof systems within Boolean or arithmetic relations using edaBits [29]
optimized for the zero-knowledge scenario. Those schemes base on subfield vector
oblivious linear evaluation (sVOLE, [15]), and are particularly well-suited for
scenarios that allow an interactive preprocessing phase between the prover and
the verifier.

Regarding zero-knowledge succinct non-interactive argument of knowledge
(zk-SNARKs), there are several works, e.g., [3, 18, 32, 17, 4] that address commit-
and-prove structure as well as compositions. They are well suited for Pedersen-like
commitments in the classical domain.

The MPC-in-the-Head [39] (IKOS) paradigm provides alternative ways to
construct Σ-protocols for proving Boolean or arithmetic relations. Hybrid zero-
knowledge from IKOS/KKW paradigms is a potential approach for some specific
hybrids. In [38], a direct extension of KKW that supports transitions from Boolean
and arithmetic representations via edaBits [29] is addressed. Since [38] encodes
binary values without overhead, while CCZK encodes a bit with a λ-bit label for
security parameter λ, their proof size is λ times smaller. The resulting Σ-protocol
inherits a specific soundness property and does not compose straightforwardly.

A series of works, including [7, 6, 9, 5], have made significant progress in the
compressed Σ-protocols, considering various assumptions. These protocols can
be categorized as hybrid zero-knowledge since they utilize algebraic commitments
and provide proofs of relations represented by Boolean circuits. The underlying
computation principle of these protocols relies on the homomorphic property of
the commitments and how witnesses are encoded within them.

On general compositions of Σ-protocols. Early works on composition methods [26,
25] support a wide range of access structures, including monotone formulas and
monotone span programs. Subsequent works, such as [21, 22, 1, 8, 11, 30, 36],
enhance efficiency for specific access structures like disjunctions and thresholds. A
recent work [2], considers composition represented by acyclicity programming, a
new model of computation that is incompatible with monotone span programming.
Their method inherently turns Σ-protocols into non-interactive arguments in the
random oracle model. A composition preserving the structure of sigma protocols
with a model of computation that subsumes monotone span programs was an open
problem. Our construction indeed produces Σ-protocols for desired compound
statements.

8

2 Preliminaries

2.1 Notations

By a ↞ b, we denote that structured object b is parsed into a. In case of
parse error, the relevant algorithm halts outputting a special symbol ⊥. For
positive integers a, b ∈ N, we denote by [a] and [a, b] the range {1, . . . , a} and
{a, a+1, . . . , b}, respectively. For a finite set, S, a← S denotes uniform sampling
from S, and |S| denotes carnality of S. By (xi)i∈I , we denote (xi1 , . . . , xi|I|) for
ij ∈ I. For a ring element x, ⟨x⟩ denotes binary representation of x, and |x|
is the number of bits in ⟨x⟩. For a binary value ⟨x⟩ := (x1, . . . , xℓ) ∈ {0, 1}ℓ

and 2ℓ elements indexed as (k0
i , k1

i)i∈[ℓ], we denote by kx an array of ℓ elements
kx := (kxi

i)i∈[ℓ]. By {w : R(w)} we denote a statement that witness w satisfies
relation R. We denote by PoK{w : R(w)} a proof of knowledge system about
witness w satisfying relation R. Variables not included in w are understood as
an instance.

For finite set X, we denote the number of bits needed to represent an arbitrary
element of X by rep(X), and the number of bits needed to represent an array of
all elements in X by len(X). Formally, rep(X) := maxx∈X(|x|), and len(X) :=∑

x∈X |x|.

2.2 Affine Predicate and Affine Commitment

Let (R, +, ·) be a commutative ring and group (G, +) be right R-module with
scalar multiplication operation ⊙ : G × R → G. In particular, we use the
following properties: for all a, b ∈ G and x, y ∈ R, (a⊙ x)⊙ y = a⊙ (x · y) and
(a + b)⊙x = a⊙x + b⊙x. We also require that, for fixed a ̸= 0, a⊙x is injective
from R to G, and for all distinct a, b in G and non-zero x in R, a⊙x ≠ b⊙x. Let
g : Ru → Rv be an affine function over R where g(x) := g1 ·x + g2 for g1 ∈ Rv×u

and g2 ∈ Rv for some positive integers u and v with operations · and + extended
to matrix multiplication and vector addition. Similarly, we consider generalized
affine function f : Ru → Gv where f(x) = ĝ1⊙ x + ĝ2 for ĝ1 ∈ Gv×u and ĝ2 ∈ Gv.
For x ∈ Ru and its binary representation ⟨x⟩ translated into {0R, 1R}ℓ, we define
bit-composition by G · ⟨x⟩ = x where G ∈ Ru×ℓ is a gadget matrix. We define
affine predicate, F , for generalized affine function f and constant y. It takes
binary representation of x and outputs 1 if f(x) = y, otherwise outputs 0, i.e.,
F (⟨x⟩) := (f(x) ?= y).

Definition 1 (Affine Commitment Scheme). A commitment scheme is a
tuple of polynomial-time algorithms (gen, com, open) that:

• gen(1λ) → ck is a commitment-key generation algorithm that, on input
security parameter λ, outputs a commitment key ck. The commitment key
defines the message space and the randomness space.

• comck(m; r) → c is a commitment function, on input ck, message m, and
random coins r, outputs a commitment c.

9

• openck(c, m, r) → 0/1 is a predicate that takes commitment c, message m
and random coin r and outputs 1 or 0.

It is an affine commitment scheme if, additionally,

• comck(m; r) is a generalized affine function on m and r over a ring,
• there exists a predicate domverck(m; r) that checks if m and r are in the

respective domains defined by ck, and
• openck(c, m, r) outputs 1 if and only if (comck(m; r) ?= c)∧ domverck(m, r) is

true.

It is correct if, for any sufficiently large λ, ck ∈ Gen(1λ), and any m and r,
satisfying domverck(m, r), openck(comck(m; r), m, r) outputs 1.

We follow standard hiding and binding properties [28]. For simplicity, we often
omit gen and ck whenever links between com and open are obvious.

Many commitments of practical interest are affine commitments. We further
assume that the predicate domverck(m, r) can be represented by a small boolean
circuit taking binary representations of m and r as input. Given binary repre-
sentations, checking the input size being smaller than a public constant is free
of communication cost. The same is true for checking that the infinity norm is
smaller than 2k for some positive integer k.

2.3 Σ-protocol

Definition 2 (Σ-protocol). A Σ-protocol for relation R(y, x) = 1 is a three-
move public-coin protocol between prover P having y, x and the verifier V having
y. It satisfies special soundness and special honest verifier zero-knowledge that:

- Special soundness : There exists a polynomial time algorithm extractor E
which is given y and two accepting transcripts (a, c, z) and (a, c′, z′) for c ̸= c′,
outputs x which satisfies R(y, x) = 1. This property is also referred to as
2-special soundness.

- Special honest verifier zero-knowledge: There exists a polynomial time simula-
tor that outputs a transcript (a, c, z) on input y and a random c with the same
probability distribution as that produced by the honest interaction between P
and V on the common instance y.

Following [10], we handle arguments based on hardness assumptions by extend-
ing the statement to {x |R(y, x) = 1 ∨ (x solves the hard problem)}. Extractor
E outputs x that either satisfies R(y, x) = 1 or solves the hard problem with
probability 1. This way, we achieve knowledge soundness from special soundness.
The instance of the hard problem must not be chosen by the prover but provided
as a common reference string (CRS) or generated transparently. In our construc-
tion, this corresponds to setting up a collision-resistant hash function, usually
hardwired in the protocol. Therefore, our construction yields Σ-protocols in the
CRS or Transparent model. We will handle the setup implicitly in this paper.

10

3 Garbling Scheme

In this section, we explore several security notions of garbling schemes used in
succeeding sections.

Definition 3 (Garbling Scheme [14]). A projective garbling scheme is a triple
of PPT algorithms G = (Gb, Ev, En, De) where:

• Gb(1λ, C)→ (Ĉ, e, d): On input security parameter λ and the description of a
function C over domain {0, 1}ℓ, outputs a garbled function Ĉ, encoding key e,
and a decoding key d.

• En(e, x)→ x̂: On input encoding key e and input value x, it outputs an encoded
input value x̂.

• Ev(Ĉ, x̂) → ẑ: On input a garbled Ĉ and an encoded input x̂, outputs an
encoded output ẑ.

• De(ẑ, d) → z: On input an encoded output ẑ and a decoding key d, outputs
decoded result z.

It is correct if for all polynomial-size functions C of domain {0, 1}ℓ, and all
x ∈ {0, 1}ℓ, the following probability is negligible in λ:

Pr

 (Ĉ, e, d)← Gb(1λ, C)
x̂← En(e, x)
ẑ ← Ev(Ĉ, x̂)

: De(ẑ, d) ̸= C(x)

 .

We focus on projective garbling schemes where the encoding is applied individually
on each input variable. In particular, encoding key e defines input wire label pairs,
(k0

i , k1
i)i∈[ℓ], and encoding function En(e, x) outputs x̂ := (kxi

i)i∈[ℓ]. Encoding key
e is understood as equivalent to the label pairs, but it may be a small random
seed for pseudo-random generation of the label pairs. We note that such encoding
is invertible in a sense that, given x̂ and e, it is easy to obtain x that x̂ = En(e, x)
by simple lookup decoding. By En−1, we denote the decoding algorithm. It holds
that, for all e← Gb1(1λ, P) and x in the domain of P , En−1(e, En(e, x)) = x. For
any x̂ that x satisfying x̂ = En(e, x) does not exist, En−1(e, x̂) outputs ⊥. We
also require a garbling scheme be separable in the sense that Gb consists of two
algorithms, input label generator Gb1 and circuit garbler Gb2 that e← Gb1(1λ, C)
and (Ĉ, d)← Gb2(C, e). We further require Gb1 generate input wire labels in a
way that it is perfectly indistinguishable which of each label pair is generated
randomly:

Definition 4 (Random Invertible Labels). Input wire labels are random
invertible if there exists an invertible function D, and k1

i = D(k0
i) holds for each

pair (k0
i , k1

i), and either k0
i or k1

i is chosen (pseudo) randomly.

Labels compatible with Free-Xor, k1
i = k0

i ⊕∆, are random invertible. Jumping
ahead, labels in our garbling scheme for affine commitments are k1

i = k0
i + δ

in a ring and are random invertible. The following property holds for separable
garbling schemes with random invertible labels.

11

Lemma 1. If a separable garbling scheme has random invertible input labels,
then, for any circuit C and any input x, x̂ := En(Gb1(1λ, C), x) is indistinguish-
able from uniform.

Soundness and verifiability are defined for garbling of predicates. Intuitively,
soundness captures the idea that it must be hard to find the encoding of 1, given
an encoded input of arbitrary x′ such that f(x′) ̸= 1.

Definition 5 (Soundness [40]). A garbling scheme is sound if for all polynomial-
size predicate f : {0, 1}ℓ → {0, 1}, all x ∈ {0, 1}ℓ that f(x) = 0, and all PPT ad-
versaries A, the following probability is negligible in λ:

Pr
[
(f̂ , e, d)← Gb(1λ, f) : d← A(f̂ , En(e, x))

]
.

We introduce a decisional counterpart of soundness called output indistin-
guishability. For predicates f , we only concern output indistinguishability with
respect to x satisfying f(x) = 0.

Definition 6 (Output Indistinguishability). A garbling scheme is output
indistinguishable if there exists a PPT algorithm, SimD, that, for all polynomial-
size f : {0, 1}ℓ → {0, 1}n, for all PPT adversaries A, and x ∈ {0, 1}ℓ, the
following advantage is negligible in λ:

Pr

 (f̂ , e, d)← Gb(1λ, f)
x̂ = En(e, x)
b← A(x̂, d)

: b = 1

− Pr

(f̂ , e, d)← Gb(1λ, f)
x̂ = En(e, x)
ẑ = Ev(f̂ , x̂)
d′ ← SimD(ẑ, d)
b← A(x̂, d′)

: b = 1

Privacy and obliviousness capture the idea that encoded input kx does not

give useful information about x. Depending on extra information given to the
adversary, we use either obliviousness or privacy defined as follows.

Definition 7 (Obliviousness [14]). A garbling scheme is oblivious if there
exists a polynomial-time simulator S that, for all polynomial-size (in λ) functions
f of domain {0, 1}ℓ, and all PPT adversaries A, the following advantage is upper
bounded by a negligible function in λ:

Pr

(x, st)← A(1λ)
(f̂ , e, d)← Gb(1λ, f)
x̂ := En(e, x)
b← A(st, f̂ , x̂)

: b = 1

− Pr

 (x, st)← A(1λ)
(f̂ , x̂)← S(1λ, f)
b← A(st, f̂ , x̂)

: b = 1

Definition 8 (Privacy [14]). A garbling scheme is private if there exists a
polynomial-time simulator S that, for all polynomial-size (in λ) functions f , and
all PPT adversaries A, the following advantage is upper bounded by a negligible

12

function in λ:

Pr

(x, st)← A(1λ)
(f̂ , e, d)← Gb(1λ, f)
x̂← En(e, x)
b← A(st, f̂ , x̂, d)

: b = 1

− Pr

 (x, st)← A(1λ)
(f̂ , x̂, d)← S(1λ, f, f(x))
b← A(st, f̂ , x̂, d)

: b = 1

We say that privacy simulator S is separable if there exists polynomial-time
algorithms, S1 and S2, where S1(1λ, f, f(x)) outputs x̂ and S2(f, f(x), x̂) outputs
f̂ and d. The notion of privacy may be demanded for inputs belonging to a subset
of its domain. For instance, to argue zero-knowledge, we only need to consider
privacy over x satisfying our target relation (see Section 6.1) and restrict A in
the above definition to choose to satisfy x.

Often a garbling scheme allows one to extract the decoding key from the
whole encoding key and a garbled circuit. As observed in [33], this concept is
formalized in incomparable flavors as shown in the following definitions. We first
present decode key extractability where, once the decoding key is extracted, it
works perfectly in decoding any encoded output.

Definition 9 (Decode Key Extractability). A garbling scheme is decode
key extractable if, there exist PPT algorithms, VeD and ExtD, that, for all
polynomial-size (in λ) functions f of domain {0, 1}ℓ, probability

Pr
[

(f̂ , e, d)← Gb(1λ, f) : 1 ̸= VeD(f, f̂ , e)
]

(1)

is negligible in λ, and ExtD(f̂ , e) outputs d that satisfies f(x) = De(Ev(f̂ , En(e, x)), d)
for all x ∈ {0, 1}ℓ and (f̂ , e, d) that 1 = VeD(f, f̂ , e).

In [40], verifiability is defined as slightly limited notion that only concerns
output value of 1. This notion suffices for the ZKGC framework in Section 5.

Definition 10 (Verifiability). A garbling scheme is verifiable if, there exists
PPT algorithms, VeE and ExtE, that, for all polynomial-size (in λ) functions
f of domain {0, 1}ℓ, all polynomial-time adversary A, all x ∈ {0, 1}ℓ satisfying
f(x) = 1, the following probabilities are negligible in λ.

Pr
[

(f̂ , e, d)← Gb(1λ, f) : 1 ̸= VeE(f, f̂ , e)
]

(2)

Pr
[

(f̂ , e)← A(1λ, f)
1← VeE(f, f̂ , e)

: Ev(f̂ , En(e, x)) ̸= ExtE(f̂ , e, 1)

]
(3)

Note that it can happen that Ev(f̂ , kx̃) = En(e, 1) for x̃ satisfying f(x̃) ̸= 1
even if (f̂ , e) verifies with VeE. Soundness prevents from finding such x̃ for
honestly generated (f̂ , e), but there is no guarantee for maliciously chosen (f̂ , e)
as in the above definition. Also note that verifiability is implied by decode key
extractability, but the reverse is not.

13

When a garbling scheme is used in the cut-and-choose strategy, it is crucial
to verify that the garbling is done honestly. Typically, if a garbling is opened and
verified, we expect it to be correct. However, if correctness allows for a small error,
the garbling could be manipulated to exploit this. Therefore, once a garbling is
opened and verified, it must guarantee perfect correctness. This idea is formalized
as verifiable correctness as follows and used in our CCZK in Section 6.

Definition 11 (Verifiable Correctness). A garbling scheme is verifiably cor-
rect if there exists a polynomial-time algorithm VeC that, for all polynomial-size
function f with domain {0, 1}ℓ, probability

Pr
[

(f̂ , e, d)← Gb(1λ, f) : 1 ̸= VeC(f, f̂ , e, d)
]

(4)

is negligible in λ, and De(Ev(f̂ , En(e, x), d) = f(x) holds for all x ∈ {0, 1}ℓ and
(f̂ , e, d) that 1← VeC(f, f̂ , e, d).

Verifiable correctness is implied by decoding key extractability. But the reverse is
not necessarily hold. Note also that soundness and verifiability do not necessarily
imply verifiable correctness. They however are achieved in standard garbling
schemes.

4 Generalized Affine Garbling with Common Labels

We construct a garbling scheme for affine predicate F with a property that some
input wires specified by B-Labels ⊆ [ℓ] are given labels that can be directly used
in garbling other Boolean predicates that share the input wires. The remaining
input wires, denoted by A-Labels, are given exclusively to F . These attributes
are determined arbitrarily and regarded as a part of the specification of F in the
following description.

In Figure 1, we illustrate our garbling scheme whose B-Labels are compatible
with Free-XOR garbling [43]. Note that Ev only computes f(x)− ĝ2 and decoding
key d equals encoding of y − ĝ2. It is the decoding function that evaluates
the equality. Note also that our scheme does not support high-degree algebraic
relations. We prove Theorem 1 in Appendix D.1.

Theorem 1. Algorithms, (Gb1, Gb2, Ev, En, De), in Figure 1 constitute a garbling
scheme of predicate F (x) := (f(x) ?= y) for generalized affine function f(x) =
ĝ1 ⊙ x + ĝ2 and constant y. If B-Labels = ∅, it is perfectly correct and verifiably
correct, verifiable, and it is private with respect to x satisfying F (x) = 1. It is
output indistinguishable for x satisfying F (x) = 0 and sound with soundness error
1/|R|. If B-Labels(F) ̸= ∅, the same properties hold except for KDF be correlation
robust for privacy.

14

Gb1(1λ, F):
∆← {0, 1}λ−1||1
δ ←R∗

For i ∈ B-Labels
k0

i ← {0, 1}λ, k1
i := k0

i ⊕∆
For i ∈ A-Labels

k0
i ← R, k1

i := k0
i + δ

Output e := (k0
i , k1

i)i.

Gb2(F, e):
(k0

i , k1
i)i ↞ e

For i ∈ B-Labels
πi := LSB(k0

i)
Ki := KDF(i, k0

i), Di := KDF(i, k1
i)

ti := (1− 2πi)(Ki −Di + δ)
w0

i := (1− πi) ·Ki + πi · (Di − δ)
For i ∈ A-Labels

w0
i := k0

i

d := (ĝ1 ⊙ (G · w0)) + ((y − ĝ2)⊙ δ)
Output F̂ := (ti)i, and d.

En(e, x):
(k0

i , k1
i) ↞ e

Output x̂ := kx.

Ev(F̂ , x̂):
(ti)i ↞ F̂ , (ki)i ↞ x̂
For i ∈ B-Labels

φi := KDF(i, ki) + LSB(ki) · ti

For i ∈ A-Labels
φi := ki

ẑ := ĝ1 ⊙ (G · φ)
Output ẑ.

De(ẑ, d):

Output (ẑ ?= d).

Fig. 1: Garbling affine predicate F (x) := (ĝ1 ⊙ x + ĝ2
?= y) with partial Free-Xor

labels. Index i sweeps from 1 to the bit size of x. B-Labels and A-Labels determine
indices i where input wire i is with Free-Xor labels or arithmetic ones, respectively.
Notation: w0 = (w0

i)i, φ = (φi)i. R∗ denotes invertible elements of R.

Small Domain with Free Range Proof. If the actual inputs to F are taken from
a smaller domain, say S1 × · · · × Su ⊆ Ru for rep(Si) ≤ rep(R), the binary
representation of the inputs can be compressed to n :=

∑u
i=1 rep(Si) ≤ rep(Ru)

by adjusting G so that bit-composition FG operates over the smaller domain.
Thus, the total size of e is reduced to len(e) = 2η · rep(R) ·

∑u
i=1 rep(Si).

This optimization not only saves the space for encoded inputs, but allows
range proofs almost for free. Operating on an encoded input that inherently
corresponds to one bit, the value is naturally restricted to one or zero. Generally,
it extends to range [0, 2κ − 1] with κ encoded inputs.

Compact Encoding of Input Bits. WhenR has a subgroupR′ whose representation
is smaller and group operation is the same as that in R, we can select Kb

i from
R′ instead of R to gain efficiency. This reduces the total bit size of K by
rep(R′)/rep(R), namely, len(K) = 2η · rep(R′) ·

∑u
i=1 rep(Si) (with the first

optimization in mind). This optimization is particularly effective for lattice-based
target function F where rep(R′)/rep(R) = |q|/rep(R) is as large as hundreds to
a few thousand.

Theorem 1 holds also for the above optimized construction. We note that the
conditions that R′ is a subgroup of R and additive operation preserves in R′

15

and R are sufficient for correctness of GC. Other properties hold almost in the
same way with trivial differences on domains.

5 ZKGC: From GC to Interactive UCZK

5.1 Construction

We rely on the following theorem from [40] about constructing a zero-knowledge
proof system from a projective garbling scheme.

Theorem 2 (Interactive ZK from GC). [40, Theorem 2] There exists an
efficient compiler that, given a correct, sound, and verifiable projective garbling
scheme for a predicate computing a relation, outputs a protocol that securely
realizes zero-knowledge proof functionality for the relation in the presence of a
malicious prover and a malicious verifier in the (FCOT,FCOM)-hybrid model.

We refer to [40] for concrete constructions substantiating the above theorem.
For completeness, we copied it in Appendix C. It is stressed that the ZKGC
compiler does not require privacy in the underlying garbling schemes. Privacy-free
garbling [31, 51] produces more compact garbled circuits than privacy-preserving
ones. In [33], variations of ZKGC that enjoy security against adaptive corruption
are presented.

5.2 Extension to Commit-and-Prove: CP-ZKGC

We consider conjunctive composition of Boolean garbling B and arithmetic
garblingA for proving relation P (x) := (C(x)∧F (x)). It is assumed that B and A
are Input Compatible in the sense that input wire labels and encoding functions
are common, i.e., B.Gb1 = A.Gb1 and B.En = A.En. Allowing dedicated inputs
to C and F like P (x, y, z) := (C(x, y) ∧ F (x, z)) can be done straightforwardly
in the manner by generating input keys separately for y and z. The resulting U

U.Gb1(1λ, P):
(C, F) ↞ P
e← B.Gb1(1λ, C)
Output e.

U.Gb2(P, e):
(C, F) ↞ P
(Ĉ, dB)← B.Gb2(C, e)
(F̂ , dA)← A.Gb2(F, e)
Output P̂ := (Ĉ, F̂)
and d := (dB, dA).

U.En(e, x):
x̂← B.En(e, x)
Output x̂.

U.Ev(P̂ , x̂):
(Ĉ, F̂) ↞ P̂
ẑB ← B.Ev(Ĉ, x̂)
ẑA ← A.Ev(F̂ , x̂)
Output ẑ := (ẑB, ẑA).

U.De(ẑ, d):
(ẑB, ẑA) ↞ ẑ
(dB, dA) ↞ d
bB ← B.De(ẑBdB)
bA ← A.De(ẑAdA)
Output (bB ∧ bA)?

Fig. 2: Garbling scheme U for conjunctive relation P (x) := (C(x) ∧ F (x)).

16

leaks information about which of B and A fails when P (x) = 0. It is, however,
irrelevant for our purpose since ZKGC admits privacy-free garbling.

We prove Theorem 3 in Appendix D.2.

Theorem 3 (Privacy-free Conjunctive Composition). Garbling scheme U
in Figure 2 is correct, sound, and verifiable if both garbling schemes B and A are
correct, sound , and verifiable.

Applying the ZKGC compiler in Section 5 to garbling scheme U, we obtain a
commit-and-prove zero-knowledge proof protocol for P (x) = 1. That constitutes
the CP-ZKGC compilation.

5.3 Monotone Compositions of CP-ZKGC

We consider predicates P1, . . . , Pn garbled by B or A, and their composition
P = P0(P1(x), . . . , Pn(x)) where P0 is a monotone Boolean function representing
an access structure. Let SE := (Enc, Dec) be a one-time CPA-secure symmetric-
key encryption scheme whose key space is {0, 1}λ and message space is {0, 1}∗.
Let SS := (Share, Rec, Ver) be a correct, secure, and verifiable secret sharing
scheme. We refer to Appendix A for these building blocks. For i ∈ [n], let Pi

be a garbling scheme for Pi. All Pi.Gb1 and Pi.En are common and denoted by
Gb1 and En. Figure 3 illustrates privacy-free garbling scheme M for predicate P .
Theorem 4 is proved in Appendix D.3.

M.Gb(1λ, P):
(P0, Pi∈[n]) ↞ P

e← Gb1(1λ, P1)
∀ i ∈ [n], (P̂i, di)← Pi.Gb2(Pi, e)
d← {0, 1}λ

ti∈[n] ← SS.Share(P0, d)
∀ i ∈ [n], ci ← SE.EncKDFi(di)(ti)
Output P̂ := (P̂i, ci)i∈[n], e and d.

M.Ev(P̂ , x̂′):
(P̂i, ci)i∈[n] ↞ P̂
(x̂, x) ↞ x̂′

T := {i ∈ [n] |Pi(x) = 1}
∀ i ∈ [T]

di ← Pi.Ev(P̂i, x̂)
ti ← SE.DecKDFi(di)(ci)

ẑ ← SS.Rec(P0, ti∈[T])
Output ẑ.

M.En(e, x):
x̂ := En(e, x)
x̂′ := (x̂, x)
Output x̂′.

M.De(ẑ, d):
Output (ẑ = d)?.

Fig. 3: Privacy-free monotone composition. P0: description of monotone access
structure over [n].

Theorem 4. Garbling scheme M in Figure 3 is correct, sound, and verifiable
garbling of predicate P0(P1(x), . . . , Pn(x)) if every Pi is correct, output indistin-
guishable with decoding key domain Di for x satisfying Pi(x) = 0, and verifiable,
and SS is correct, secure, and verifiable, SE with key space {0, 1}λ is correct and
indistinguishable against chosen plaintext attacks, and every KDFi is indistin-
guishable over Di.

17

Prover(P, x) Verifier(P)

s← {0, 1}λ

RT := (s, M)
(si)i∈[M] ← N.Expand(RT)
∀i ∈ [M]

(ei, hi)← S.ComGb1(1λ, P ; si)
(P̂i, di)← G.Gb2(P, ei)

H← Hash((P̂i, di, hi)i∈[M])
H−−−−−→

ST ← N.SubTrees(RT, [M] \ CH) CH←−−−−−− CH← [M]
∀i ∈ CH

(x̃i, σi)← S.ProvEn(P, x, si)
GE := (P̂i, di, x̃i, σi)i∈CH

ST,GE−−−−→ V := [M] \ CH
(si)i∈V ← N.Expand(ST)
∀i ∈ V

(ei, hi)← S.ComGb1(1λ, P ; si)
(P̂i, di)← G.Gb2(P, ei)
1 ?= G.VeC(P, P̂i, ei, di)

∀i ∈ CH
(P̂i, di, x̃i, σi)i∈CH ↞ GE
hi ← S.VerCom(x̃i, σi)
x̂i ← S.UnComp(P, x̃i)
1 ?= G.De(G.Ev(P̂i, x̂i), di)

H ?= Hash((P̂i, di, hi)i∈[M])

Fig. 4: Σ-protocol for statement {x |P (x)}. Predicate P is garbled by garbling
scheme G.

6 CCZK: From GC to Σ-Protocols

6.1 Construction

In Figure 4, we present our construction of Σ-protocol from garbling scheme G :=
{Gb1, Gb2, Ev, En, De, VeC}, shuffled label commitment scheme S := {ComGb1,
ProvEn, VerCom} (Appendix B), and NNL pseudo-random generator N := {Expand,
SubTrees} (Appendix A.1).

The security is stated in Theorem 5 whose proof is given in Appendix D.4.

Theorem 5. The protocol in Figure 4 is special honest verifier zero-knowledge if
garbling scheme G is correct and private for x satisfying P (x) = 1, shuffled label
commitment scheme S is hiding, N is pseudo-random, and hash function Hash is
collision-resistant. It is special sound with respect to the extended statement that
either P (x) = 1 or Hash is not collision-resistant, or S is not binding, or G is
not verifiably correct.

18

With the challenge space of size
(

M
τ

)
, the protocol in Figure 4 constitutes a

proof of knowledge for the extended statement with knowledge error
(

M
τ

)−1.

Performance: We estimate the communication complexity of CP-CCZK for
{(m, r) |C(m) ∧ F (m, r)} where there are ℓ input wires of which ℓB are Boolean
encoding and ℓA are arithmetic encoding. First, only small seeds si are needed
for verifying sessions. They are compressed as nodes of the NNL expansion tree,
which requires |ST | ≤ τ · (log M

τ) · λ assuming |s| = |si| = λ. The bound is
obtained by considering the worst case where sessions are divided into τ groups
of M/τ sessions each, and one evaluating session is chosen by CH from each
group. Each group has the number of NNL nodes to open M/τ , but one session
is log2

M
τ . Given the node size as λ, summing it up for τ groups gives the bound.

Next we estimate evaluating sessions, where GE = (P̂i, di, x̃i, σi)i∈CH is sent.
According to Equation (10) in Section B.1, the average size of (x̃i, σi) from
shuffled label commitment S is estimated as |x̃|+ |σ| ≈ (|kA|

2 + 136
64 λ)ℓA + 145

64 λℓB .
P̂i consists of Ĉi and F̂i. According to Figure 1, we have |F̂i| = |kA| · ℓB . Output
decoding key di can be a hash of output wire labels of the desired output value.
Since collision resistance is expected, we have |di| = 2λ. Summing them up to τ
evaluating sessions, we have |GE| = τ(|Ĉ|+ |F̂ |+ |di|+ |x̃i|+ |σi|). Thus, the
total proof size sent out from the prover will be

|H|+ |ST |+ |GE| ≈ 2λ + τ · (log M

τ
) · λ + τ |kA|ℓB + τ |Ĉ|+ 2τλ

+(|kA|
2 + 136

64 λ)τℓA + 145
64 τλℓB . (5)

For λ = 128 we can select (τ, M) from, for instance, (36, 192), (30, 256),
(22, 512), (18, 1024), (12, 8192) and (10, 32768) considering the tradeoff between
communication and computation.

As a concrete example of cross-domain composition, we consider a scenario
where, given a Pedersen commitment and an NTRU ciphertext, the prover proves
that at least one of the committed messages fulfills the restriction represented
by Boolean predicate C. It can be done by an OR composition of two proofs for
statements St1 and St2 where

St1 := {(m, r)|C(m) = 1 ∧ c1 = PedCom(m; r)}, and
St2 := {(m, r)|C(m) = 1 ∧ c2 = NTRUEnc(m; r)}.

For 128 bits of security, m and r are 256-bits long in the Pedersen case. We
estimate the case where NTRU over Rq with |q| = 11 and dimension n = 509 (as
defined in ntruhps2048509) is used for affine commitment, NTRUh(m; r) = hr +m
over Rq whose atomic operation is over Zq. For m and r being binary, we have
input length ℓ = n. Assuming that only m is input to the Boolean part, we have
ℓA = ℓB = ℓ/2. With this setting, and (τ, M) = (18, 1024) for λ = 128, (5) is
approximately 332kBytes plus 18|Ĉ|.

19

For comparison, we consider [37] turned into a hybrid scheme with our garbling
scheme with no further optimizations. Since [37] and ours output standard
Σ-protocols, they can compose St1 and St2 in a disjunctive manner for free
using [26]. [38] performs the disjunctive composition at the circuit level. Since
the result of arithmetic equality checking is translated to Boolean for further
logical composition, it is slightly more expensive than translation from Boolean
to arithmetic. [3] uses SNARK and is suitable for Pedersen commitments. It
works only for St2 and requires CRS but composes well with a small overhead.
Table 1 summarizes the estimated proof sizes.

Scheme Proof of St1 Proof of St2 Cost of OR Basis
[3] N/A 25.5kB + |CRS| 128B SNARG+Σ
[38] 399kB + 46|C| 453kB + 46|C| 910kB MPC
[37] 5.5MB + 128|GC(C)| 68MB + 128|GC(C)| 0 GC

Ours 631kB + 18|GC(C)| 332kB + 18|GC(C)| 0 GC
Table 1: Estimated proof size for statements St1, St2, and overhead for their
conjunctive composition.

6.2 Extension to Commit-and-Prove: CP-CCZK

U.Gb1(1λ, P):
(C, F) ↞ P
e← B.Gb1(1λ, C)
Output e.

U.Gb2(P, e):
(C, F) ↞ P
(Ĉ, dB)← B.Gb2(C, e)
(F̂ , dA)← A.Gb2(F, e)
Output P̂ := (Ĉ, F̂)
and d := (dB, dA).

U.En(e, x):
x̂← B.En(e, x)
Output x̂.

U.Ev(P̂ , x̂):
(Ĉ, F̂) ↞ P̂
ẑB ← B.Ev(Ĉ, x̂)
ẑA ← A.Ev(F̂ , x̂)
Output ẑ := (ẑB, ẑA).

U.De(ẑ, d):
(ẑB, ẑA) ↞ ẑ
(dB, dA) ↞ d
bB ← B.De(ẑB, dB)
bA ← A.De(ẑA, dA)
Output (bB ∧ bA)

Fig. 5: Garbling scheme U for conjunctive relation P (x) := (C(x) ∧ F (x)).

We extend CCZK to a commit-and-prove style by building a garbling scheme
for conjunctive statement P (x) := (C(x) ∧ F (x)) with properties demanded in
Theorem 6. The construction is illustrated in Figure 5. Recall that the resulting
garbling scheme U is not fully private since it leaks information about which
of B and A fails when P (x) = 0. It is acceptable since Theorem 6 demands U

20

being private only for x satisfying P (x) = 1 since zero-knowledge only concerns
satisfying inputs by definition. It indeed is the case if both B and A are private
with respect to input x, resulting in output 1. Correctness and verifiability of U
are carried over from the underlying garbling schemes. Theorem 6 is proved in
Appendix D.5.

Theorem 6 (Privacy-preserving Conjunctive Composition). The garbling
scheme U in Figure 5 is correct, verifiably correct, and private with respect to
x satisfying P (x) = 1 if both garbling schemes B and A are correct, verifiably
correct, and private with respect to x satisfying C(x) and F (x).

Applying CCZK to the above garbling scheme U for F being commitment
function com, we obtain commit-and-prove Σ-protocol for proving relation C(x)
for x committed with com(x). That constitutes CP-CCZK.

6.3 Monotone Compositions of CP-CCZK

We consider predicates P1, . . . , Pn garbled by B or A, and their composition
P0(P1(x), . . . , Pn(x)) where P0 is a monotone Boolean function. A first attempt
would be to garble P0 using the outputs of garbled P1, . . . , Pn as its inputs. But
this does not work: in A of predicates, only output 1 is encoded with a fixed
value. Any value other than the fixed encoding of 1 is translated as an encoding
of 0. Thus, P cannot be evaluated when a Pi(x) evaluates to zero. Therefore, P0
must be garbled in such a way that it can be evaluated only with encodings of
1 as input. Such a true-only garbling is possible when P0 is a monotone access
structure where only input of 1 contributes to make the final result be 1. To
garble P0, we assign a random value as an output of garbled P0 and secret-share
the output. Then encrypt each share with the encoded output of Pi as a key.
The ciphertext is output as a part of garbled P0. This way, it will become clear
which Pi is satisfied or not as the decryption will fail if Pi is not satisfied and
an incorrect decryption key is obtained. It is however acceptable as we seek for
privacy-free solution here.

For compositions with privacy, recall that garbling with privacy is needed
for CCZK, which in tern produces sigma-protocols. Monotone composition of
statements for Sigma protocols is a well studied topic, and we have several ways
to do the task. It also applies to sequential composition of type C ◦ F reduced to
a conjunctive composition as we observed in the previous section. Then, we show
that garbling of sequential composition of type F ◦ C is doable.

It is required that A.En and B.De are compatible in the following sense.

Definition 12 (Out-In-Compatibility). For any dB generated honestly by
B.Gb and any ŷ that B.De(ŷ, dB) ̸= ⊥, A.En(dB, B.De(ŷ, dB)) = ŷ holds.

This condition is satisfied with our construction of A combined with any B
whose output wire labels follows the Free-Xor style. The sequential composition
presented in Figure 6 works for the privacy-preserving case. The following theorem
is proved in Appendix D.6.

21

U.Gb(1λ, P):
(Ĉ, e, dB)← B.Gb(1λ, C).
(F̂ , d)← A.Gb2(F, dB).
P̂ := (Ĉ, F̂)
Output P̂ , e, and d.

U.En(e, x) = B.En(e, x).

U.Ev(P̂ , x̂):
(Ĉ, F̂) ↞ P̂ .
ŷ ← B.Ev(Ĉ, x̂).
ẑ ← A.Ev(F̂ , ŷ).
Output ẑ.

U.De(ẑ, d) = A.De(ẑ, d).

Fig. 6: Sequential Composition F ◦ C.

Theorem 7 (Privacy-Preserving Sequential Composition). If B is correct,
decode key extractable and oblivious, and A is correct, verifiably correct and
private with respect to y that fA(y) = 1, then U in Figure 6 is a garbling scheme
for P := fA ◦ fB that is correct, verifiably correct and private with respect to x
that g(x) = 1.

7 General Composition of Σ-protocols

We now present a method to compose a variety of proof systems into one following
the access structure represented by a circuit. Formally, for n witnesses, x1, . . . , xn

and n relations, R1, . . . , Rn, and a monotone predicate C represented by a (not
necessarily monotone) circuit, we construct a proof system for proving

S := {xi∈[ℓ] : C(R1(x1), . . . , Rℓ(xℓ))} (6)

given a proof system for each Ri. For instance, with circuit C recognizing a
weighted threshold, it can be a proof of weighted threshold.

Our first step is to translate the above statement into

S′ := {(xi∈[ℓ], si∈[ℓ]) : C(s1, . . . , sℓ) ∧ℓ
i=1 (Ri(xi) ∨ si = 0)}. (7)

We then claim that, for monotone C, if S′ is true, then so is S. Lemma 2 is
proved in Appendix D.7.

Lemma 2. For any relation Ri, any monotone predicate C, and any (xi∈[ℓ], si∈[ℓ]),
if S′ is satisfied, so is S.

It is sufficient to construct a proof system for S′. Let comi and openi be affine
commitment function and its opening verification predicate whose commitment
key is implicit. We decompose S′ into clauses and connect them with commitment
ci := comi(si; ri) as follows:

ΠRi := PoK{xi : Ri(xi)},
Πsi := PoK{(si, ri) : si = 0 ∧ openi(ci, si, ri)}, and
ΠC := PoK{(si, ri)i∈[ℓ] : C(s1, . . . , sℓ) ∧i∈[ℓ] openi(ci, si, ri)}.

22

Consider a protocol wrapping ΠRi
and Πsi

in a disjunctive manner as follows:

ΠRi∨si
:= PoK{(xi, si) : Ri(xi) ∨ (si = 0 ∧ openi(ci, si, ri)}. (8)

The final protocol ΠS′ for statement S′ is obtained by executing ΠC and ΠRi∨si

for all i ∈ [ℓ] in parallel. The following claim is proved in Appendix D.8.

Theorem 8. The above ΠS′ is complete, knowledge sound, and zero-knowledge
if every comi is hiding and binding, ΠC is zero-knowledge proof of knowledge, and
every ΠRi∨si

is a commit-and-prove witness-indistinguishable proof of knowledge.

Suppose that a Σ-protocol for ΠRi
is given, and we construct Πsi

and ΠC by
CCZK obtaining corresponding Σ-protocols. By composing ΠRi

and Πsi
using

the disjunctive composition of [26], we have a Σ-protocol for ΠRi∨si
. Then final

protocol ΠS′ that executes ΠC and ΠRi∨si for all i ∈ [ℓ] in parallel as before
constitute a Σ-protocol for S′.

Finally, we note that commitment key for each comi is generated by the
prover. Thus, it can only be computationally hiding. Alternatively, a commitment
key for statistically hiding comi can be given as a common reference string.

Acknowledgments

The authors would like to express their sincere gratitude to Keita Xagawa for his
invaluable comments on lattice-based commitments. We also deeply appreciate
the detailed and constructive feedback provided by the reviewers of SCN 2024
and past conferences.

References

1. Masayuki Abe, Miguel Ambrona, Andrej Bogdanov, Miyako Ohkubo, and Alon
Rosen. Non-interactive composition of sigma-protocols via share-then-hash. In
ASIACRYPT 2020, volume 12493 of LNCS, pages 749–773, 2020.

2. Masayuki Abe, Miguel Ambrona, Andrej Bogdanov, Miyako Ohkubo, and Alon
Rosen. Acyclicity programming for sigma-protocols. In TCC 2021, Part I, volume
13042 of LNCS, pages 435–465, 2021.

3. Shashank Agrawal, Chaya Ganesh, and Payman Mohassel. Non-interactive zero-
knowledge proofs for composite statements. In CRYPTO 2018, Part III, volume
10993 of LNCS, pages 643–673, 2018.

4. Diego F. Aranha, Emil Madsen Bennedsen, Matteo Campanelli, Chaya Ganesh,
Claudio Orlandi, and Akira Takahashi. ECLIPSE: enhanced compiling method for
pedersen-committed zksnark engines. In PKC 2022, Part I, volume 13177 of LNCS,
pages 584–614, 2022.

5. Thomas Attema, Ignacio Cascudo, Ronald Cramer, Ivan Damgård, and Daniel
Escudero. Vector commitments over rings and compressed $\varsigma $-protocols.
In TCC 2022, Part I, volume 13747 of LNCS, pages 173–202, 2022.

6. Thomas Attema and Ronald Cramer. Compressed Σ-protocol theory and practical
application to plug & play secure algorithmics. IACR Cryptol. ePrint Arch., page
152, 2020.

23

7. Thomas Attema and Ronald Cramer. Compressed $\varsigma $-protocol theory
and practical application to plug & play secure algorithmics. In CRYPTO 2020,
Part III, volume 12172 of LNCS, pages 513–543, 2020.

8. Thomas Attema, Ronald Cramer, and Serge Fehr. Compressing proofs of k-out-of-n
partial knowledge. In CRYPTO 2021, Part IV, volume 12828 of LNCS, pages
65–91, 2021.

9. Thomas Attema, Ronald Cramer, and Lisa Kohl. A compressed $\varsigma $-
protocol theory for lattices. In CRYPTO 2021, Part II, volume 12826 of LNCS,
pages 549–579, 2021.

10. Thomas Attema, Serge Fehr, and Nicolas Resch. Generalized special-sound interac-
tive proofs and their knowledge soundness. In TCC 2023, Part III, volume 14371
of LNCS, pages 424–454. Springer, 2023.

11. Gennaro Avitabile, Vincenzo Botta, Daniele Friolo, and Ivan Visconti. Efficient
proofs of knowledge for threshold relations. In ESORICS 2022, Part III, volume
13556 of LNCS, pages 42–62, 2022.

12. Marshall Ball, Tal Malkin, and Mike Rosulek. Garbling gadgets for boolean and
arithmetic circuits. In ACM CCS 2016, pages 565–577, 2016.

13. Carsten Baum, Lennart Braun, Alexander Munch-Hansen, Benoît Razet, and
Peter Scholl. Appenzeller to brie: Efficient zero-knowledge proofs for mixed-mode
arithmetic and z2k. In ACM CCS 2021, pages 192–211, 2021.

14. Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled
circuits. In ACM CCS 2012, pages 784–796, 2012.

15. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter
Scholl. Efficient pseudorandom correlation generators: Silent OT extension and
more. In CRYPTO 2019, Part III, volume 11694 of LNCS, pages 489–518, 2019.

16. David Butler, Andreas Lochbihler, David Aspinall, and Adrià Gascón. Formalising
ς-protocols and commitment schemes using crypthol. J. Autom. Reason.,
65(4):521–567, 2021.

17. Matteo Campanelli, Antonio Faonio, Dario Fiore, Anaïs Querol, and Hadrián
Rodríguez. Lunar: A toolbox for more efficient universal and updatable zksnarks
and commit-and-prove extensions. In ASIACRYPT 2021, Part III, volume 13092
of LNCS, pages 3–33, 2021.

18. Matteo Campanelli, Dario Fiore, and Anaïs Querol. LegoSNARK: Modular design
and composition of succinct zero-knowledge proofs. In ACM CCS 2019, pages
2075–2092, 2019.

19. Melissa Chase, Chaya Ganesh, and Payman Mohassel. Efficient zero-knowledge proof
of algebraic and non-algebraic statements with applications to privacy preserving
credentials. In CRYPTO 2016, Part III, volume 9816 of LNCS, pages 499–530,
2016.

20. Tung Chou and Claudio Orlandi. The simplest protocol for oblivious transfer. In
LATINCRYPT 2015, volume 9230 of LNCS, pages 40–58, 2015.

21. Michele Ciampi, Giuseppe Persiano, Alessandra Scafuro, Luisa Siniscalchi, and Ivan
Visconti. Improved or-composition of sigma-protocols. In TCC 2016-A, Part II,
volume 9563 of LNCS, pages 112–141, 2016.

22. Michele Ciampi, Giuseppe Persiano, Alessandra Scafuro, Luisa Siniscalchi, and Ivan
Visconti. Online/offline OR composition of sigma protocols. In Marc Fischlin and
Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS,
pages 63–92, 2016.

23. Ronald Cramer. Modular Design of Secure yet Practical Cryptographic Protocols.
PhD thesis, University of Amsterdam, 1997.

24

24. Ronald Cramer, Ivan Damgård, Daniel Escudero, Peter Scholl, and Chaoping Xing.
SPDZ

2k: Efficient MPC mod 2k for dishonest majority. In CRYPTO 2018, Part
II, volume 10992 of LNCS, pages 769–798, 2018.

25. Ronald Cramer, Ivan Damgård, and Philip D. MacKenzie. Efficient zero-knowledge
proofs of knowledge without intractability assumptions. In PKC 2000, volume 1751
of LNCS, pages 354–372, 2000.

26. Ronald Cramer, Ivan Damgård, and Berry Schoenmakers. Proofs of partial knowl-
edge and simplified design of witness hiding protocols. In CRYPTO 1994, volume
839 of LNCS, pages 174–187, 1994.

27. Hongrui Cui and Kaiyi Zhang. A simple post-quantum non-interactive zero-
knowledge proof from garbled circuits. In Inscrypt 2021, volume 13007 of LNCS,
pages 269–280, 2021.

28. Ivan Damgård. On the existence of bit commitment schemes and zero-knowledge
proofs. In CRYPTO 1989, volume 435 of LNCS, pages 17–27, 1989.

29. Daniel Escudero, Satrajit Ghosh, Marcel Keller, Rahul Rachuri, and Peter Scholl.
Improved primitives for MPC over mixed arithmetic-binary circuits. In CRYPTO
2020, Part II, volume 12171 of LNCS, pages 823–852, 2020.

30. Pierre-Alain Fouque, Adela Georgescu, Chen Qian, Adeline Roux-Langlois, and
Weiqiang Wen. A generic transform from multi-round interactive proof to NIZK.
In PKC 2023, Part II, volume 13941 of LNCS, pages 461–481, 2023.

31. Tore Kasper Frederiksen, Jesper Buus Nielsen, and Claudio Orlandi. Privacy-free
garbled circuits with applications to efficient zero-knowledge. In EUROCRYPT
2015, Part II, volume 9057 of LNCS, pages 191–219, 2015.

32. Ariel Gabizon and Zachary J. Williamson. plookup: A simplified polynomial
protocol for lookup tables. IACR Cryptol. ePrint Arch., 2020:315, 2020.

33. Chaya Ganesh, Yashvanth Kondi, Arpita Patra, and Pratik Sarkar. Efficient
adaptively secure zero-knowledge from garbled circuits. In PKC 2018, Part II,
volume 10770 of LNCS, pages 499–529, 2018.

34. François Garillot, Yashvanth Kondi, Payman Mohassel, and Valeria Nikolaenko.
Threshold schnorr with stateless deterministic signing from standard assumptions.
In CRYPTO 2021, Part I, volume 12825 of LNCS, pages 127–156, 2021.

35. Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic
span programs and succinct nizks without pcps. In EUROCRYPT 2013, volume
7881 of LNCS, pages 626–645, 2013.

36. Aarushi Goel, Mathias Hall-Andersen, Gabriel Kaptchuk, and Nicholas Spooner.
Speed-stacking: Fast sublinear zero-knowledge proofs for disjunctions. In EURO-
CRYPT 2023, Part II, volume 14005 of LNCS, pages 347–378, 2023.

37. Carmit Hazay and Muthuramakrishnan Venkitasubramaniam. On the power of
secure two-party computation. In CRYPTO 2016, Part II, volume 9815 of LNCS,
pages 397–429, 2016.

38. David Heath, Vladimir Kolesnikov, and Jiahui Lu. Efficient generic arithmetic for
KKW - practical linear mpc-in-the-head NIZK on commodity hardware without
trusted setup. In CSCML 2021, volume 12716 of LNCS, pages 414–431, 2021.

39. Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge
from secure multiparty computation. In ACM STOC 2007, pages 21–30, 2007.

40. Marek Jawurek, Florian Kerschbaum, and Claudio Orlandi. Zero-knowledge using
garbled circuits: how to prove non-algebraic statements efficiently. In ACM CCS
2013, pages 955–966, 2013.

41. Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. Improved non-interactive
zero knowledge with applications to post-quantum signatures. In ACM CCS 2018,
pages 525–537, 2018.

25

42. Dakshita Khurana, Rafail Ostrovsky, and Akshayaram Srinivasan. Round optimal
black-box "commit-and-prove". In TCC 2018, Part I, volume 11239 of LNCS, pages
286–313, 2018.

43. Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free XOR
gates and applications. In ICALP 2008, Part II - Track B: Logic, Semantics, and
Theory of Programming & Track C: Security and Cryptography Foundations, volume
5126 of LNCS, pages 486–498, 2008.

44. Ralph C. Merkle. A digital signature based on a conventional encryption function.
In CRYPTO 1987, volume 293 of LNCS, pages 369–378, 1987.

45. Dalit Naor, Moni Naor, and Jeffery Lotspiech. Revocation and tracing schemes for
stateless receivers. In CRYPTO 2001, volume 2139 of LNCS, pages 41–62, 2001.

46. Ky Nguyen, Miguel Ambrona, and Masayuki Abe. WI is almost enough: Contingent
payment all over again. In ACM CCS 2020, pages 641–656, 2020.

47. É. Tardos. The gap between monotone and non-monotone circuit complexity is
exponential. Combinatorica, 8(1):141–142, 1988.

48. Chenkai Weng, Kang Yang, Xiang Xie, Jonathan Katz, and Xiao Wang. Mystique:
Efficient conversions for zero-knowledge proofs with applications to machine learning.
In USENIX Security 2021, pages 501–518, 2021.

49. Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In
IEEE FOCS 1982, pages 160–164, 1982.

50. Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract).
In IEEE FOCS 1986, pages 162–167, 1986.

51. Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole - reducing
data transfer in garbled circuits using half gates. In EUROCRYPT 2015, Part II,
volume 9057 of LNCS, pages 220–250, 2015.

26

Appendix

A Other Building Blocks

A.1 NNL Pseudo-random Generator

An NNL pseudo-random generator is a pair of polynomial-time algorithms
(Expand, SubTrees) that:

- Expand(RT)→ (ri)i: Given RT = (s, ℓ) ∈ {0, 1}λ × N, it outputs (ri)i∈[ℓ] ∈
{0, 1}λ×ℓ. For notational convenience, we overlay this function to its k-fold
repetition that takes RT = (RT1, . . . , RTk) as input, executes Expand(RTi)
for i = 1, . . . , k, and outputs the results concatenated.

- SubTrees(RT, I) → ST : Given RT = (s, ℓ) ∈ {0, 1}λ × N, and indices
I ⊆ [ℓ], it outputs ST = (sj , ℓj)j∈[k] that, for (r′

i)i∈I = Expand(ST) and
(ri)i∈[ℓ] ← Expand(RT), r′

i = ri hold for all i ∈ I.

Expand forms a binary tree whose root node value is s, and child nodes are
generated by applying a length-doubling pseudo-random generator to the parent
node. The standard indexing identifies every node for binary trees. For ease of
notation, we assume that every node value is accompanied by the index implicitly.
Therefore, Expand consistently expands sub-trees from intermediate nodes given
by SubTrees to the whole tree. The convention about indexing also applies to
functions and variables in Merkle trees.

Definition 13. An NNL pseudo-random generator is pseudo-random if, for all
polynomial ℓ and all polynomial-time adversaries A, the following advantage is
upper bounded by a negligible function in λ:

Pr

(I, st)← A(1λ, ℓ)
s← {0, 1}λ

RT := (s, ℓ)
(ri)i∈[ℓ] ← Expand(RT)
ST ← SubTrees(RT, I)
b← A(st, (ri)i∈[ℓ]\I , ST)

− Pr

(I, st)← A(1λ, ℓ)
s← {0, 1}λ

RT := (s, ℓ)
(ri)i∈[ℓ] ← {0, 1}λ×ℓ

ST ← SubTrees(RT, I)
b← A(st, (ri)i∈[ℓ]\I , ST)

A.2 Merkle Tree

We consider a family of Merkle trees MT = {MT λ} parameterized by security
parameter λ. MT ∈MT λ is a tuple of polynomial-time deterministic algorithms
(Com, Proof, Ver) that:

- Com(L) → R: Given leaf-values L := (L1, . . . , Lℓ) ∈ {0, 1}λ×ℓ as input, it
outputs a root value R.

- Proof(L, I) → Π : Given leaf-values L and a set of indices I := (i1, . . . , ik)
as input, it outputs Π, siblings for every path from leaf ij to the root.

27

- Ver(S, Π)→ R : Given a subset of indexed leaf-values S and siblings Π as
input, it computes the root value R.

It is correct if, for all L ∈ {0, 1}λ×ℓ, I ⊆ [ℓ], S ⊆ L, R ← Com(L), Π ←
Proof(L, I), it holds that R = Ver(S, Π).

A Merkle tree is unforgeable if an unauthorized leaf passes the verification
only with negligible probability.

Definition 14 (Unforgeability). A Merkle tree family MT is unforgeable if,
for any polynomial-time adversary A, any polynomial ℓ, the following probability
is negligible in λ:

Pr
[

MT←MT λ

(L, S, Π)← A(1λ) : L ∈ {0, 1}λ×ℓ ∧ S ̸⊆ L ∧
MT.Com(L) = MT.Ver(S, Π)

]
We require a Merkle tree not to leak information about the unopened, corre-

lated leaves even if a half of the leaves are opened. We call this property as MT
correlation robustness formally defined as follows.

Definition 15 (MT Correlation Robustness). For relation R ∈ R, let
DR = {L1, . . . , L2ℓ | ∀i ∈ [ℓ], R(Li, Li+ℓ) = 1}. A Merkle tree MT is MT corre-
lation robust with respect to R, if, for any polynomial-time adversary A, any
(ξ1, . . . , ξℓ) ∈ {0, 1}ℓ, and I := (i + ξi · ℓ)i∈[ℓ], the following advantage is negligible
in λ:

Pr

R← R, L← DR

h← Com(L)
π ← Proof(L, I)
b← A(h, π, Li∈I)

: b = 1

− Pr

R← R, L← DR

I ′ := [2ℓ] \ I
∀i ∈ I, L′

i := Li

∀i ∈ I ′, L′
i ← {0, 1}λ

L′ := {L′
i | i ∈ [2ℓ]}

h← Com(L′)
π ← Proof(L′, I)
b← A(h, π, Li∈I)

: b = 1

A.3 Key Derivation Function

A key derivation function is indistinguishable from random if its output on
random input is indistinguishable from random.

Definition 16 (KDF Indistinguishability). Let KDF be a key derivation
function KDF : D(λ) → {0, 1}λ. Let OKDF be an oracle that, given a query, it
samples x←R D(λ) and returns KDF(x). Let OR denote an oracle that, given a
query, it returns a uniformly chosen value from {0, 1}λ. KDF is indistinguishable
from random if, for all polynomial-time adversary A, oracles OKDF and OR are
indistinguishable.

We follow the notion of correlation robustness [34] of KDF with minor adjust-
ment for the privacy setting. Roughly, it states that, it is hard for the adversary
to distinguish oracle OKDF that, on receiving (i, ki), returns KDF(i, ki ⊕∆) for
random fixed ∆, and oracle OR that evaluates a random function.

28

Definition 17 (Correlation Robustness [34]). Let KDF : {0, 1}λ×{0, 1}λ →
R be a key derivation function, and U be all functions over {0, 1}λ×{0, 1}λ → R.
Let O∆ and OR be oracles that O∆(i, x) := KDF(i, x ⊕ ∆) and OR(i, x) :=
R(i, x). Oracles accept queries with unique i. KDF is correlation robust if, for all
polynomial-time algorithms A, advantage function

Pr
∆∈{0,1}λ−1||1

[
AO∆(1λ) = 1

]
− Pr

R∈U

[
AOR(1λ) = 1

]
(9)

is negligible in λ.

For privacy-free setting, ∆ can be chosen from {0, 1}λ.
We note that the correlation robustness in the above definition is implied by

circular correlation robustness introduced in [51] whose oracles are O∆(i, x, b) :=
KDF(i, x⊕∆)⊕ (b ·∆) and OR(i, x, b) := R(i, x, b). This observation is important
because we use common label generation mechanism for Boolean that requires
circular correlation robustness and arithmetic garbling that require correlation
robustness. By the above implication, our construction eventually rely on the
circular correlation robustness.

A.4 Symmetric-key Encryption

A symmetric-key encryption scheme SE consists of a key generation algorithm
Gen, encryption algorithm Enc and decryption algorithm Dec. We assume that
Gen uniformly samples a key from {0, 1}λ, and follow the standard notion of
indistinguishability against chosen plaintext attacks. By M and K, we denote
the message and key spaces defined implicitly for security parameter λ. Indistin-
guishability against chosen message attacks (IND-CPA) is defined in the standard
manner where a challenge ciphertext of either of the two messages chosen by the
adversary is indistinguishable in the presence of the encryption oracle.

A.5 Secret Sharing Scheme

Secret sharing scheme SS := (Share, Rec, Ver) is a tuple of polynomial-time
algorithms that

• t ← Share(Γ, w) is a sharing algorithm that takes a description of access
structure Γ over (1, . . . , n), and a secret w, and outputs shares t = (t1, . . . , tn),

• w ← Rec(Γ, t′) is a reconstruction algorithm that takes t′ = (ti1 , . . . , tin′)
and outputs w or ⊥, and

• 0/1 ← Ver(Γ, t) is a verification algorithm that takes a full set of shares
t = (t1, . . . , tn) and outputs 1 or 0.

It is correct if, for any w in a fixed domain, t ← Share(Γ, w), T ∈ Γ , U /∈ Γ ,
w = Rec(Γ, (ti)i∈T) and w ̸= Rec(Γ, (ti)i∈U).

It is secure if, for any polynomial-time adversary A, any U /∈ Γ , and uniformly
chosen w, w = A((ti)i∈U) happens only with negligible probability.

29

A secret sharing scheme is verifiable if Ver(Γ, t) outputs 1 if and only if t ∈
Share(Γ, w) for some w. Shamir’s secret sharing is verifiable for threshold structure
Γ with a threshold of one-third. To accept more complex access structures, we
can use a verifiable secret sharing scheme where Share outputs a public parameter
that is given as input to Rec and Ver.

B Shuffled Label Commitment

B.1 Definitions

The role of the shuffle label commitment scheme is threefold: 1) to commit to
correlated pairs of labels for a garbled circuit in a pairwise shuffled manner, 2)
to open one of each paired label, and 3) to open all labels in the correct order.

Definition 18. A shuffled label commitment scheme S for garbling scheme B is
a tuple of polynomial-time algorithms (ComGb1, ProvEn, VerCom) that:

ComGb1(1λ, P ; s)→ (e, h): Given security parameter 1λ and predicate P as
input, it generates encoding key e and commits to e by h.
ProvEn(P, x, s)→ (x̃, σ) : Given predicate P , input value x, and coins s (used
in ComGb1) as input, it outputs compressed encoded input x̃ and commitment
verification information σ.
VerCom(x̃, σ) → h : Given compressed encoded input x̃ and commitment
verification information σ as input, it reconstructs commitment h.

It is accompanied by supplemental functions, (CompEn, CompEn−1, UnComp) that:

CompEn(P, s, x) → x̃: Given predicate P , seed s, and value x, it outputs
compressed encoding x̃ of x.
CompEn−1(P, s, x̃)→ x: Given P , s and compressed encoding x̃ as input, it
outputs x.
UnComp(P, x̃)→ x̂: Given P and compressed x̃, it outputs standard x̂.

It is correct if, for all s ∈ {0, 1}∗, predicate P , x in the domain of P , (e, h)←
ComGb1(1λ, P ; s), (x̃, σ)← ProvEn(P, x, s), e′ ← Gb1(1λ, P ; s), and x̃′ ← CompEn
(P, s, x), it holds that e = e′, x̃ = x̃′, h = VerCom(x̃, σ), x = CompEn−1

(P, s, CompEn(P, s, x)), and UnComp(P, CompEn(P, s, x)) = En(e, x).

Security properties are binding and hiding. Intuitively, binding property states
that successful opening of commitment h with encoded input x̂ implies extraction
of embedded x.

Definition 19 (Binding). A shuffled label commitment scheme S for garbling
scheme B is binding if, for any polynomial-time algorithm A, the following
probability is negligible in λ:

Pr
[

(e, h)← ComGb1(1λ, P ; s)
(x̃, σ)← A(s) : h = VerCom(x̃, σ) ∧

⊥ = CompEn−1(P, s, x̃)

]

30

Hiding property is that correct opening (x̃, σ) of commitment h does not leak
information about e and x more than x̃ does. Combined with Lemma 1, it implies
that no information about x is leaked.
Definition 20 (Hiding). A shuffled label commitment scheme S for garbling
scheme B is hiding if there exists a polynomial-time simulator SS that, for all
predicate P and x in the domain of P , and all polynomial-time adversaries A,
the following advantage is negligible in λ:

Pr

 (e, h)← ComGb1(1λ, P ; s)
(x̃, σ)← ProvEn(P, x, s)
b← A(x̃, σ, h)

: b = 1

−Pr

e← Gb1(1λ, P ; s)
x̃← CompEn(P, s, x)
(h, σ)← SS(P, x̃)
b← A(x̃, σ, h)

: b = 1

B.2 Construction
We construct a shuffled label commitment scheme, S, from NNL pseudo-random
generator N (Appendix A.1), Merkle tree scheme MT (Appendix A.2), and key
derivation function KDF : {0, 1}∗ → R (Appendix A.3). We begin by building
functions, GbB and GbA that, given two random coins, r and p, generate a pair of
labels for i-th Boolean or arithmetic wire. Let ∆ be a global parameter sampled
as shown in Figure 1.

GbB(r, p, i)
π := LSB(r)⊕ LSB(p)
kπ := r
kπ̄ := r ⊕∆
L0 := r
L1 := kπ̄

Output (L0, L1, π, k0, k1).

GbA(r, p, i)
π := LSB(r)⊕ LSB(p)
kπ := KDF(i, r)
kπ̄ := KDF(i, r) + (1− 2π)δ
L0 := r
L1 := kπ̄ || p
Output (L0, L1, π, k0, k1).

We then show an algorithm, GetLeaf, that generates label pairs for P using
GbB and GbA with random coins generated by NNL pseudo-random generator,
and associate the labels to the leaves of Merkle tree in an appropriate place
and form. Each label pairs (kbi

i , kb̄i
i) permuted randomly is associated to i-th

and i + ℓ-th leaves, Li and Li+ℓ. However, directly putting labels as a leaf value
causes a problem when labels are taken from a small domain, as in the case
of arithmetic labels. Our idea is to generate kbi

i directly from random coins ri

and assign ri, which has more entropy than kbi
i , to leaf Li. For i + ℓ-th leaves,

however, kb̄i
i depends on kbi

i and cannot be generated randomly. Hence, we pad
random coins pi to gain entropy.

GetLeaf(P, s)
01: ℓ← InputLen(P)
02: (s1, s2)← N.Expand(s, 2)
03: (r1, . . . , rℓ)← N.Expand(s1, ℓ)
04: (p1, . . . , pℓ)← N.Expand(s2, ℓ)
05: For i ∈ B-Labels
06: (Li, Li+ℓ, πi, k0

i , k1
i)

← GbB(ri, pi, i)

07: For i ∈ A-Labels
08: (Li, Li+ℓ, πi, k0

i , k1
i)

← GbA(ri, pi, i)
09: L := (L1, . . . , L2ℓ)
10: π := (π1, . . . , πℓ)
11: e := (k0

i , k1
i)i∈[ℓ]

12: Output (L, π, e).

31

We are ready to present the main functions of S.

ComGb1(1λ, P ; s)
(L, π, e)← GetLeaf(P, s)
h← MT.Com(L)
Output (e, h).

VerCom(x̃, σ)
(ST1, K2, I1, I2) ↞ x̃
(ki)i∈I2 ↞ K2
(Π, ST2A) ↞ σ
I2A := {i ∈ I2 | i− ℓ ∈ A-Labels}
(Li)i∈I1 ← N.Expand(ST1)
(pi)i∈I2A ← N.Expand(ST2A)
∀i ∈ I2

If i− ℓ ∈ A-Labels
Li := ki||pi

If i− ℓ ∈ B-Labels
Li := ki

S := (Li)i∈I1∪I2

h← MT.Ver(S, Π)
Output h.

ProvEn(P, x, s)
ℓ← InputLen(P)
(L, π, e)← GetLeaf(P, s)
I := {i + ℓ(xi ⊕ πi) | i ∈ [ℓ]}
I1 := {i ∈ I | i ≤ ℓ}, I2 := I \ I1
I2A := {i ∈ I2 | i− ℓ ∈ A-Labels}
RT := (s, 2)
(s1, s2)← N.Expand(RT)
RT1 := (s1, ℓ)
ST1 ← N.SubTrees(RT1, I1)
K2 := {kxi−ℓ

i−ℓ ∈ e | i ∈ I2}
x̃ := (ST1, K2, I1, I2)
Π ← MT.Proof(L, I)
RT2 := (s2, ℓ)
ST2A ← N.SubTrees(RT2, I2A)
σ := (Π, ST2A)
Output (x̃, σ).

Accompanied functions for handling compressed encoding are given below.

CompEn(P, s, x):
ℓ← InputLen(P)
(L, π, e)← GetLeaf(P, s)
I1 := {i ∈ [ℓ] |xi ⊕ πi = 0}
I2 := {i + ℓ | i ∈ [ℓ], xi ⊕ πi = 1}
(s1, s2)← N.Expand(s, 2)
RT1 := (s1, ℓ)
ST1 ← N.SubTrees(RT1, I1)
K2 := {kxi−ℓ

i−ℓ ∈ e | i ∈ I2}
x̃ := (ST1, K2, I1, I2)
Output x̃.

CompEn−1(P, s, x̃):
(L, π, e)← GetLeaf(P, s)
x̂← UnComp(P, x̃)
x← En−1(e, x̂)
Output x.

UnComp(P, x̃):
ℓ← InputLen(P)
(ST1, K2, I1, I2) ↞ x̃
(ri)i∈I1 ← N.Expand(ST1)
∀ i ∈ B-Labels

k′
i := ri

∀ i ∈ A-Labels
k′

i ← KDF(ri)
(k′

i−ℓ)i∈I2 ↞ K2
x̂ := (k′

i)i∈[ℓ]
Output x̂.

Whenever x̂ in the compressed form is parsed into (ST1, K2, I1, I2), its proper
formatting is implicitly verified. Namely, it checks if ST1 follows the form of
nodes of a NNL tree, K2 is a list of labels, I1 ⊆ [ℓ], I2 ⊆ [ℓ + 1, 2ℓ], and for
I ′

2 := {i − ℓ | i ∈ I2}, I1 ∪ I ′
2 = [ℓ]. If the check fails, the algorithm halts with

output ⊥.

B.3 Performance

We estimate the size of (x̃, σ), which is the most relevant to the construction
in Section 6.1. Consider the minimal case of ℓ = 2 where labels (k0

1, k1
1) and

(k0
2, k1

2) are allocated to leaves (L1, L3) and (L2, L4) pairwise shuffled. If L1 is

32

opened, the other side of the pair, L3, is kept hidden. Namely, a hash value of
L3 is published. If L3 is opened, L1 has to be kept hidden. The same for the
other pair. To open L1 and L2 at the same time, a corresponding NNL node
is published. Then, a corresponding MT node is published to hide L3 and L4
altogether. Unfortunately, it is not symmetric when opening and hiding are
altered. To open L3 and L4, corresponding labels must be published one by one
because they are not generated directly from the NNL tree. When L3 and L4 are
arithmetic labels, random padding parts can be taken from the NNL tree. This
process is done in ProvEn.

Extending the above to ℓ = 4 and counting all 16 possible opening and hiding
patterns of leaves with an assumption that NNL nodes and labels for Boolean
wires are λ bits, and MT nodes are 2λ bits, the average size of (x̃, σ) produced
by ProvEn is estimated as (|kA|/2 + 136λ/64)ℓ when all labels are for arithmetic
with size |kA|, and (145λ/64)ℓ when all labels are for Boolean. For ℓ = ℓA + ℓB

where ℓA and ℓB are a number of input wires of P for arithmetic and Boolean,
respectively, we have

|x̃|+ |σ| ≈ (|kA|
2 + 136

64 λ)ℓA + 145
64 λℓB . (10)

The naive construction with individual commit and open approach, ((|kA|+ λ) +
2λ)ℓA + 4λℓB in the same setting. For |kA| = λ and ℓA = ℓB = ℓ/2 for instance,
our construction costs 313/128 · λℓ whereas that of naive approach is 4λℓ. Thus,
our shuffled label commitment with compressed encoding saves ≈ 39% over the
naive approach.

B.4 Security

Theorem 9. Shuffled label commitment scheme S in Section B.2 is binding if
Merkle tree MT is unforgeable.

Proof. Suppose that there is an adversary that, given 1λ and P , outputs (s, x̃, σ)
that satisfies h = VerCom(x̃, σ) for (e, h)← ComGb1(1λ, P ; s), but fails to recover
embedded value, ⊥ = CompEn−1(P, s, x̃).

Recall that ComGb1 executes (L, π, e)← GetLeaf(P, s) and h← MT.Com(L).
Since CompEn−1(P, s, x̃) outputs⊥, we have⊥ ← En−1(e, x̂) for x̂← UnComp(P, x̃).
Consider the case that x̂ = ⊥. It can only happen when parsing (RT1, K2, I1, I2) ↞
x̃ in UnComp(P, x̃) fails. Since the same parsing is done in VerCom, it ends up
with ⊥ ← VerCom(x̃, σ) contradicting that it outputs h. On the contrary, consider
the case that x̂ ̸= ⊥. En−1(e, x̂) outputs ⊥ only if x̂ is not a subset of e. (More
precisely, there is an element, ki in x̂ that does not match either k0

i or k1
i in

e.) Denote this by x̂ ̸⊂ e. Recall that VerCom(x̃, σ) computes S that determines
x̂, and Π that satisfies h = MT.Ver(S, Π) for h ← MT.Com(L) computed in
ComGb1(1λ, P ; s). Since L also uniquely determines e in the same manner, if
S ⊂ L, then x̂ ⊂ e. However, since we have x̂ ̸⊂ e, we conclude that S ̸⊂ L. Thus,
A producing such (s, x̂, σ), we can compute (L, S, Π) breaks unforgeability of
MT. ⊓⊔

33

We consider relations between i-th and i + ℓ-th leave values corresponding to
arithmetic and Boolean wires. Let RA and RB be relations for arithmetic and
Boolean labels, respectively, as defined below. RA is a fixed relation (for any
fixed δ), and RB is parameterized by ∆.

RA(Li, Li+ℓ) :
k′

i||pi ↞ Li+ℓ

πi := LSB(Li)⊕ LSB(pi)
ki := KDF(i, Li)
Output k′

i
?= ki + (1− 2πi)δ

RB(Li, Li+ℓ) :
Output Li+ℓ

?= Li ⊕∆

Theorem 10. Shuffled label commitment scheme S in Section B.2 is hiding if N
is pseudo-random and MT is MT correlation robust for correlations RB and RA.

Proof. We construct SS as follows.
SS(P, x̃)
01: ℓ← InputLen(P)
02: (ST1, K2, I1, I2) ↞ x̃, ki∈I2 ↞ K2
03: I ′

1 := {i + ℓ | i ∈ I1}
04: I ′

2 := {i− ℓ | i ∈ I2}
05: (ri)i∈I1 ← N.Expand(ST1)
06: ∀ i ∈ I ′

2, ri ← {0, 1}λ

07: s2 ← {0, 1}λ

08: RT2 := (s2, ℓ)
09: (pi)i∈[ℓ+1,2ℓ] ← N.Expand(RT2)
10: ∀ i ∈ I ′

1,
11: if i− ℓ ∈ B-Labels
12: ri ← {0, 1}λ

13: if i− ℓ ∈ A-Labels
14: ri ←R× {0, 1}λ

15: ∀ i ∈ I2
16: if i− ℓ ∈ B-Labels
17: ri = ki

18: if i− ℓ ∈ A-Labels
19: ri := ki|| pi

20: L := (r1, · · · , r2ℓ)
21: h← MT.Com(L)
22: Π ← MT.Proof(L, I1 ∪ I2)
23: I2A := {i ∈ I2 | i− ℓ ∈ A-Labels}
24: ST2A ← N.SubTrees(RT2, I2A)
25: σ := (Π, ST2A)
26: Output (h, σ)

Let H0 be the game with simulator SS in the right-hand term of the advantage
defined in Definition 20.

H1: We replace random choices of ri in step 12 and 14 with the following process.
∆ is the one used in Gb1.

12: ri := ri−ℓ ⊕∆ 14-1: πi := LSB(ri−ℓ)⊕ LSB(pi)
14-2: ki ← KDFR(ri−ℓ) + (1− 2π)δ
14-3: ri := ki|| pi

This makes ri and ri+ℓ for i ∈ I1 in relation RB and RA. The difference caused
by this change is negligible due to the MT correlation robustness of MT for
correlations RB and RA.

H2: Let s be the random coins used in Gb1. We replace step 05 with (s1, s2)←
N.Expand(s, 2) and (ri)i∈[ℓ] ← N.Expand(s1, ℓ). This transition is a cosmetic
change. It is because that ri for i ∈ I1 is generated in the same way using the
same seed s in Gb1. Regarding ri, ri for i ∈ I ′

2 are overwritten in step 06 as
before. Hence, Game H2 is equivalent to H1.

34

H3: We remove step 06. It means that the random choice of ri for i ∈ I ′
2 is

replaced with the ones generated by N.Expand in step 05. Due to the pseudo-
randomness of NNL, Game H3 is indistinguishable from Game H2.

H4: We remove step 07. It means that the random choice of s2 is replaced with
the one generated by N.Expand in step 05. Due to the pseudo-randomness of
NNL, Game H4 is indistinguishable from Game H3.

The process done in H4 is exactly what is done in the real game in the
left-hand term of the advantage defined in Definition 20. ⊓⊔

What remains is to make it clear under what assumption such MT correla-
tion robust MT can be constructed. For two variables Li and Li+ℓ in relation
RA(Li, Li+ℓ) = 1, we consider sampling one given the other. For this purpose,
we define sets, D1, that defines all possible choices of Li+ℓ when Li is fixed. D2
is defined as the set of possible Li when Li+ℓ is fixed.

D1(Li) :=

Li+ℓ

∣∣∣∣∣∣
p ∈ {0, 1}λ

π = LSB(p)⊕ LSB(L)
Li+ℓ = (KDF(i, Li) + (1− 2π)δ)||p

 ,

D2(Li+ℓ) :=

Li

∣∣∣∣∣∣∣∣
Li ∈ {0, 1}λ

k||p ↞ Li+ℓ

π = LSB(p)⊕ LSB(Li)
k = KDF(i, Li) + (1− 2π)δ

We then define oracles as follows.

OA1(i, Li):
Li+ℓ ←R D1(Li)
Return Hash(Li+ℓ).

OA2(i + ℓ, Li+ℓ):
Li ←R D1(Li+ℓ)
Return Hash(Li).

OB(i, Li):
Return Hash(Li ⊕∆).

Let OAB denote the wrapper oracle that takes (i, Li) as input and sends (i, Li) to
OB if i ∈ B-Labels, or to OA1 if i ∈ A-Labels and i ∈ [ℓ], or to OA2 if i ∈ A-Labels
and i ∈ [ℓ + 1, 2ℓ]. The oracle is accessible only once for each index i. Also, let OR

be an oracle that evaluates a random function on given inputs. We consider Hash
being correlation robust (as defined in Definition 17) with respect to relations
RA and RB . Hash is correlation robust if OAB and OR are indistinguishable.

We next define distribution of label sets by an algorithm, SmplLeaves, that
samples an instance as follows. We also show an algorithm, SmplHalfLeaves, that
simulates GetLeaf perfectly for specified half of the positions.

35

SmplLeaves(P)
01: ℓ← InputLen(P)
02: ∀i ∈ [ℓ]
03: Li ← {0, 1}λ

04: if i ∈ B-Labels
05: Li+ℓ := Li ⊕∆
06: if i ∈ A-Labels
07: p← {0, 1}λ

08: π := LSB(Li)⊕ LSB(p)
09: k := KDF(i, Li) + (1− 2π)δ
10: Li+ℓ := k||p
11: Output L := (L1, . . . , L2ℓ)

SmplHalfLeaves(P, I)
01: ℓ← InputLen(P)
02: I1 := {i ∈ I | i ≤ ℓ}, I2 := I \ I1
03: ∀i ∈ I1
04: Li ← {0, 1}λ

05: ∀i ∈ I2
06: if i− ℓ ∈ B-Labels
07: Li ← {0, 1}λ

08: if i− ℓ ∈ A-Labels
09: p← {0, 1}ℓ

10: Li−ℓ ← {0, 1}λ

11: π := LSB(Li−ℓ)⊕ LSB(p)
12: k := KDF(i− ℓ, Li−ℓ) + (1− 2π)δ
13: Li := k||p
14: Output L := (Li)i∈I .

We use SmplLeaves to simulate O∆ in the left-term game of the advantage
function in Definition 17, and SmplHalfLeaves for OR in the right term. Note
that in the right-term game, only the I-indexed part of L sampled from OR is
used. Hence, SmplHalfLeaves suffices. We consider a Merkle tree algorithm that
first hashes each of the given leaves by Hash and then computes binary hash
trees towards the root. For leaf values L, let HL denote the hashed leaves. Let
MT.Com′ and MT.Proof′ be respective Merkle tree algorithms that take hashed
leaves HL as input instead of L. MT Correlation robustness games are unchanged
but now described equivalently by separately hashing the inputs and applying
MT.Com′ and MT.Proof′.

Theorem 11. Merkle tree scheme MT with Hash as above is MT correlation
robust (as defined in Definition 15) with respect to correlations RA and RB if
Hash is correlation robust (as defined in Definition 17) with respect to RA and
RB.

Proof. We show that if there is an adversary, A, that distinguishes the MT
correlation robustness games with the Merkle tree, we can construct algorithm B
that distinguishes oracle OAB from OR, breaking the correlation robustness of
Hash. For P and I, algorithm B works as follows.

Reduction BO:
01: ℓ← InputLen(P)
02: I1 := {i ∈ I | i ≤ ℓ}, I2 := I \ I1
03: (Li)i∈I ← SmplHalfLeaves(P, I)
04: ∀i ∈ I1, hi+1 ← O(i, Li)
05: ∀i ∈ I2, hi−ℓ ← O(i, Li)

06: ∀i ∈ I, hi = Hash(Li)
07: HL := (hi)i∈[2ℓ]
08: h← MT.Com′(HL)
09: π ← MT.Proof′(HL, I)
10: Output A(h, π, Li∈I).

By construction of BO, if O = OR, B produces HL of the right term of the MT
correlation robustness game. If, on the other hand, O = OAB, HL follows the
distribution of hashing L given from SmplLeaves. Thus, it constitutes the view in
the left term of the MT correlation robustness game. Accordingly, the advantage
of B is the same as that of A. ⊓⊔

36

C ZKGC Framework [40]

The protocol πZK in [40] is shown in Figure 7. Let G = (Gb, Ev, Ve) be a garbling
scheme. Let L be an NP language with |w| < n = poly(|y|) and fy : {0, 1}n →
{0, 1} be the verification function that outputs 1 if w is a valid witness for y.
Both parties have input y and a security parameter 1k. In addition, the prover
P has input w = (w1, · · · , wn).

1. For all i ∈ [n], P sends (choose, i, wi) to FCOT;
2. FCOT sends V messages (chosen, i) (for all i ∈ [n]);
3. V runs (GC, {K0

i , K1
i }i∈[n], Z) ← Gb(1k, fy);

4. For all i ∈ [n], V sends to FCOT the input (transfer, i, K0
i , K1

i);
5. FCOT sends P messages (transferred, i, K

′
i) (for all i ∈ [n]);

6. V sends GC to P ;
7. P runs Z′ ← Ev(GC, {K

′
i}i∈[n]); In case the function Ev aborts, set Z′

to ⊥;
8. P sends (commit, 1, Z′) to FCOT, and FCOM outputs (committed, 1, Z′)

to V ;
9. V sends the message (open-all) to the FCOT functionality;

10. FCOT sends P , for all i ∈ [n], the values (transfer, i, K0
i , K1

i);
11. P runs Ve(GC, {Ko

i , K1
i }i∈[n]), if the output is not accept, P terminates

the protocol. Otherwise, if Ve outputs accept, P sends (reveal, 1) to FCOM;
12. When V receives (reveal, 1, Z′) from FCOM, V outputs accept if Z′ ?= Z;

Fig. 7: ZKGC protocol in the (FCOT, FCOM)-hybrid model in [40]. See [40] for
details of the functionalities.

D Proofs

D.1 Proof of Theorem 1

Proof. (Correctness.) First observe that, since LSB(x0
i) ̸= LSB(x1

i), it holds
that LSB(kxi

i) = πi ⊕ xi = πi + xi − 2πixi for πi = LSB(k0
i). Then, for every

i ∈ B-Labels(F), we have:

φi = KDF(i, kxi
i) + LSB(kxi

i) · ti

= (1− xi) ·Ki + xi ·Di + (πi + xi − 2πixi) · (1− 2πi) · (Ki −Di + δ)
= (1− πi) ·Ki + πi ·Di + (xi − πi)δ
= w0

i + xiδ.

37

For i ∈ A-Labels, φi = wi + xiδ holds. By letting w0 = (w0
i)i and φ = (φi)i, we

can write φ = w0 + ⟨x⟩δ. Then, for every x satisfying ĝ1 ⊙ x + ĝ2 = y, we have

ẑ = ĝ1 ⊙ (G · φ)
= {ĝ1 ⊙ (G · ⟨x⟩ · δ)}+ {ĝ1 ⊙ (G · w0)}
= {ĝ1 ⊙ (G · ⟨x⟩ · δ)}+ ĝ2 ⊙ δ + {ĝ1 ⊙ (G · w0)} − ĝ2 ⊙ δ

= y ⊙ δ − ĝ2 ⊙ δ + {ĝ1 ⊙ (G · w0)}
= d,

and De(Ev(F̂ , En(e, x)), d) = 1. For x that ĝ1 ⊙ x + ĝ2 ≠ y, ẑ ̸= d holds in the
same transitions as above since (ĝ1 ⊙ x + ĝ2)⊙ δ ̸= y ⊙ δ. We thus conclude that
De(Ev(F̂ , En(e, x)), d) = 0.
(Verifiable Correctness.) We construct VeC as follows.
1. Given (F, F̂ , e, d), it first parses e into (k0

i , k1
i)i. It then checks that there

exists ∆ that ∆ = k1
i ⊕ k0

i for all i ∈ B-Labels, and δ that δ = k1
i − k0

i for all
i ∈ A-Labels. It then checks that ∆ ∈ {0, 1}λ−1||1 and δ ∈ R∗.

2. Furthermore, it checks if (F̂ , d) = Gb2(F, e).
3. Output 1 if all the above checks pass. Output 0, otherwise.

If the checks in the first step pass, then e ∈ Gb1(1λ, F) and (F̂ , d) = Gb2(F, e).
From the perfect correctness, De(Ev(F̂ , En(e, x)), d) = F (x) holds for all x.
(Verifiability.) We construct VeE in the same way as VeC except that it drops

the check about d in the second step. We then construct ExtE as follows.
1. Given F, F̂ , e, 1 as input, parse e into (k0

i , k1
i)i.

2. For every i ∈ B-Labels, compute πi := LSB(k0
i), Ki := KDF(i, k0

i), Di :=
KDF(i, k1

i), and w0
i := (1− πi) ·Ki + πi · (Di − δ).

3. For every i ∈ A-Labels, set w0
i := k0

i .
4. Set δ := k1

i − k0
i with arbitrary i ∈ A-Labels.

5. Output d
?= (ĝ1 ⊙ (G · w0)) + ((y − ĝ2)⊙ δ).

For (F, F̂ , e) that VeE outputs 1, there exists δ ∈ R∗ that δ = k1
i − k0

i for all
i ∈ A-Labels. Observe that ExtE computes w0

i and d in the same way as Gb2 does.
Thus, due to the correctness, Ev(F̂ , kx) = ExtE(F̂ , e, 1) holds for all x satisfying
F (x) = 1.
(Privacy.) We construct a separable privacy simulator (S1,S2) as illustrated
below.

S1(1λ, F):
For i ∈ B-Labels

ki ← {0, 1}λ

For i ∈ A-Labels
ki ← R

Output x̂ := (ki)i.

S2(F, 1, x̂):
(ki)i ↞ x̂,
For i ∈ B-Labels

ti ← R∗

φi := KDF(i, ki) + LSB(ki) · ti

For i ∈ A-Labels
φi := ki

d := ĝ1 ⊙ (G · φ)
Output T̂ = (ti)i∈[ℓ] and d.

38

We begin with the privacy game with the simulator S1 and S2 as shown in
Definition 8. It is the starting point, H0, of the hybrid we make. Let Pi denote
the probability that the adversary outputs 1 in game Hi. Note that the adversary
is restricted to output x satisfying F (x) = 1.

In H1, we replace x̂ ← S1(1λ, F) with e ← Gb1(1λ, F) and x̂ ← Ev(e, x).
Since x̂ distributes uniformly over the appropriate domain in both H0 and H1,
we have P0 = P1.

In H2, we generate ti as follows:

if xi = 0
πi := LSB(ki), Ki := KDF(i, ki), Di ← R∗

else
πi := 1− LSB(ki), Ki ← R∗, Di := KDF(i, ki)

ti := (1− 2πi)(Ki −Di + δ)

Since either Ki or Di is uniformly random, ti remains uniform over R. Thus,
P1 = P2.

In H3, we replace uniform selections from R with oracle calls to O∆. The
difference, P3 − P2, is bound by the correlation robustness of KDF. It is noted
that ∆ defined by O∆ differs from the one defined by e. It, however, does not
interfere with the reduction since kx̄i

i defined by e is independent of the view of
the adversary, and so is ∆.

In H4, parse x̂ as x̂ = (kxi
i)i, and set πi, Ki, and Di as

πi := LSB(k0
i), Ki := KDF(i, k0

i), Di := KDF(i, k1
i).

This change replaces ∆ defined by oracle O∆ with the one defined by e. Since
both distribute uniformly, the view of the adversary is unchanged. Thus P4 = P3.

In H5, we change φi and the way d is computed as follows:

For i ∈ B-Labels
w0

i := (1− πi) ·Ki + πi · (Di − δ)
For i ∈ A-Labels

w0
i := k0

i

d := (ĝ1 ⊙ (G · w0)) + ((y − ĝ2)⊙ δ)
As shown in the proof of correctness, this change yields the same d when x
satisfies F (x) = 1 (it is indeed the case we consider). Hence, P5 = P4.

In H6, we replace (F̂ , d)← S2(F, 1, x̂) with (F̂ , d)← Gb2(F, e). Since modified
S2 is the same as Gb2, their output (F̂ , d) distributes identically. Hence, P6 = P5.

Now, H6 is the same as the privacy game with the real garbling scheme. By
accumulating the above bounds, we conclude that the garbling scheme is private
with respect to x satisfying F (x) = 1 if KDF is correlation robust.
(Soundness and Output Indistinguishability.) Recall the soundness game defined
in Definition 5 where (F̂ , e, d) ← Gb(1λ, F) is run and adversary A is given F̂
and x̂ := En(e, x) for x satisfying F (x) = 0. Call it game H0 and let P0 denote
the probability that A outputs d. Let e parse into (k0

i , k1
i)i.

39

In H1, we modify Gb2 by replacing KDF(i, k1−xi
i) for each i ∈ B-Labels with

randomly and independently chosen values in R. A does not notice the change
due to the correlation robustness of KDF. Namely, P1 − P0 is bound by the
advantage in the correlation robustness of KDF.

Observe that, in H1, ti for every i ∈ B-Labels distributes uniformly due to the
randomness used in place of KDF(i, k1−xi

i). Also, x̂ distributes uniformly over its
appropriate domain. Hence, the view of A is independent of δ.

For w0
i in Gb2, let w1

i = w0
i + δ. Observe that, for x∗ satisfying f(x∗) = y,

d = (ĝ1 ⊙ (G · w0)) + ((y − ĝ2)⊙ δ)
= (ĝ1 ⊙ (G · w0)) + (ĝ1 ⊙ (G · ⟨x∗⟩ · δ))
= ĝ1 ⊙ (G · (w0 + ⟨x∗⟩ · δ))
= ĝ1 ⊙ (G · wx∗

)

where wx = (wx∗
i

i)i.
Given x̂ = w0 + ⟨x⟩δ for any x of f(x) ̸= y, the adversary sees ĝ1 ⊙ (G · x̂) =

ĝ1⊙(G·w0)+ĝ1⊙(G·⟨x⟩·δ) = ĝ1⊙(G·w0)+(y−ĝ2)⊙δ+ĝ1⊙(G·⟨x⟩·δ)−(y−ĝ2)⊙δ =
(d) + (f(x)− y)⊙ δ. Observe that, for x̂ and any δ, there exists w0 that satisfies
x̂ := w0 + ⟨x⟩ · δ. Therefore, for d = ĝ1⊙ (G · x̂)− (f(x)−y)⊙ δ, we can think that
the first term, ĝ1 ⊙ (Gx̂), is fixed, independent of δ. Also observe that operation
⊙ is injective for f(x)− y ̸= 0. Thus, d follows the distribution of δ, and event
d′ = d happens only with probability 1/|R∗| over the choice of δ. Accordingly,
it is sound with soundness error 1/|R∗|. As it is shown that d is independent
of the view of the adversary, it is indistinguishable from one uniformly sampled
from D = {d | d := (ĝ1 ⊙ (G · w0)) + ((y − ĝ2)⊙ δ), δ ∈ R∗}. Thus, the scheme is
output indistinguishable for x satisfying F (x) = 0. ⊓⊔

D.2 Proof of Theorem 3

Proof. As Gb1 and En are assumed to be common for B and A, the correctness and
soundness of U are directly reduced from the respective properties of B and A. For
verifiability, U.VeE and U.ExtE are obtained simply by executing corresponding
algorithms of B and A in parallel as below. Proof is done by straightforward
reduction from the verifiability of B and A.

U.VeE(P, P̂ , e):
(Ĉ, F̂) ↞ P̂

bB ← B.VeE(C, Ĉ, e)
bA ← A.VeE(F, F̂ , e)
Output b := bB ∧ bA.

U.ExtE(P̂ , e, 1) :
(Ĉ, F̂) ↞ P̂

ẑB ← B.ExtE(Ĉ, e, 1)
ẑA ← A.ExtE(F̂ , e, 1)
Output ẑ := (ẑB, ẑA).

⊓⊔

D.3 Proof of Theorem 4

Proof. (Correctness) Let Γ be the access structure implied by P0. For every x ∈
{0, 1}ℓ, let T := {i |Pi(x)}. Due to correctness of Pi, Pi.Ev(P̂i, En(e, x)) = di for

40

all i ∈ T . Let t′
i := SE.DecKDFi(di)(ci). Due to correctness of SE, t′

i = ti for i ∈ T .
For T ∈ Γ , SS.Rec(P0, t′

i∈[T]) = d holds and, for T /∈ Γ , SS.Rec(P0, t′
i∈[T]) ̸= d

holds due to the correctness of SS.
(Soundness) Starting from the soundness game as in Definition 5, we construct a
hybrid of games changing how P̂ is prepared.
H0: The soundness game where, for legitimately generated (P̂ , e, d) and some
fixed x that P (x) = 0, A is given P̂ and x̂′ := M.En(e, x) as input. It then outputs
d̃. Let pr0 be the probability that d̃ = d happens. In the following, pri denotes
the probability that d̃ = d happens in Hi. Let T := {i |Pi(x)}.
H1: For each i /∈ T , replace di with a random value sampled from decoding key
domain Di for x. This change is bound by the output indistinguishability of Pi.
Thus, the difference from pr0 to pr1 is negligible.
H2: For each i /∈ T , replace KDFi(di) with a random value over key space {0, 1}λ

of SE. This change is bound by the indistinguishability of KDFi. Thus, the
difference from pr1 to pr2 is negligible.
H3: For each i /∈ T , replace ti with a random value of the same length. This
change is bound by the CPA security of SE. Thus, the difference from pr2 to pr3
is negligible.

We then claim that in H3, the probability of the adversary correctly guessing
d is bound by the security of SS. Accumulating all the above bounds, we conclude
that A in the original soundness game outputs d only with negligible probability.
(Verifiability) We construct M.VeE and M.ExtE as follows.

M.VeE(P̂ , P, e):
(P̂i, ci)i∈[n] ↞ P̂ ,
(P0, Pi∈[n]) ↞ P ,
∀ i ∈ [n]

bi ← Pi.VeE(Pi, P̂i, e)
di ← Pi.ExtE(P̂i, e, 1)
ti ← SE.DecKDFi(di)(ci)

b0 ← SS.Ve(P0, ti∈[n])
Output ∧n

i=0bi.

M.ExtE(P̂ , e, 1):
(P̂i, ci)i∈[n] ↞ P̂ ,
∀ i ∈ [n],

di ← Pi.ExtE(P̂i, e, 1)
ti ← SE.DecKDFi(di)(ci).

d← SS.Rec(P0, ti∈[n]).
Output d.

We first argue that M.VeE outputs 1 for honestly generated (P̂ , e). Every
Pi.VeE(Pi, P̂i, e) returns bi = 1 for e← Gb1(1λ, P1) and (P̂i, di)← Pi.Gb2(Pi, e),
and Pi.ExtE(P̂i, e, 1) outputs d′

i = di if Pi is satisfiable. Then, di decrypts correctly
formed ciphertext ci and recovers share ti. As the shares are correctly made
through SS.Share, SS.Ve(P0, ti∈[n]) returns b0 = 1. As each step works except for
negligible probability, M.VeE outputs 1 except for negligible probability as well.

We then show that if M.VeE outputs 1, then M.ExtE outputs d that decodes
to 1. Observe that if M.VeE accepts (P̂ , P, e), then, due to the verifiability of
SS, there exists unique d that (P̂ , e, d) ∈ M.Gb(1λ, P). For such P̂ and e, every
Pi.ExtE in M.ExtE recovers correct di, which in turn recovers share ti that passes
SS.Ve. Then SS.Rec on the shares recovers d, which is the encoding of output
1. ⊓⊔

41

D.4 Proof of Theorem 5

Proof. Since correctness can be verified by inspection, we focus on zero-knowledge
and soundness. We first construct a special honest verifier zero-knowledge sim-
ulator, SZK, using privacy simulator SG and hiding simulator SS as defined in
Definition 8 and Definition 20, respectively as follows.

SZK(CH):
01: s← {0, 1}λ

02: RT := (s, M)
03: (si)i∈[M] ← N.Expand(RT)
04: ST ← N.SubTrees(RT, [M] \ CH)
05: ∀i ∈ [M] \ CH
06: (ei, hi)← S.ComGb1(1λ; si)
07: (P̂i, di)← G.Gb2(P, ei)

08: ∀i ∈ CH
09: (P̂ , x̃, d)← SG(1λ, P, 1)
10: (hi, σi)← SS(x̃)
11: H ← Hash((P̂i, di, hi)i∈[M])
12: Output H, ST , (P̂i, di, x̃i, σi)i∈CH .

We then argue that the output from SZK is indistinguishable from the real
one. As usual, we follow the hybrid argument. Let H0 be the process where SZK
is executed and transcript (H, ST, (P̂i, di, x̃i, σi)i∈CH) is produced. We consider
how the output distribution changes as we modify SZK.

In H1, we replace simulator SG in line 09 with the real process

09-1: ei ← G.Gb1(1λ, P ; s′
i)

09-2: x̃← S.CompEn(P, s′
i, x)

09-3: (P̂i, di)← G.Gb2(P, ei)

using the real witness x and uniformly random s′
i. This change is negligible, i.e.,

the output distribution in H0 and H1 are indistinguishable due to the privacy of
G for x satisfying P (x) = 1.

In H2, we remove simulator SS in line 10, and replace G.Gb1 and S.CompEn
in 09-1 and 09-2 as follows:

09-1: (ei, hi)← S.ComGb1(1λ, P ; s′
i)

09-2: (x̃, σi)← S.ProvEn(P, s′
i, x)

This change is negligible due to the hiding property of S.
In H3, we replace all s′

i in line 09-1 with si generated by N.Expand in line
03. This change is negligible due to the pseudo-randomness of N.

By rearranging the lines appropriately, we observe that the modified simulator
in H3 does precisely the same as the real prover algorithm. It completes the proof
of special honest verifier zero-knowledge.

Next, we show that the protocol is special sound for the extended statement.
Suppose that two accepting transcripts having the same initial message H with
different challenges are given. Observe that there exists at least one session,
i∗, that i∗ is in the first challenge but not in the second one. Namely, si∗ and
(P̂i∗ , di∗ , x̃i∗ , σi∗) are obtained from the transcripts.

We construct extractor E that, given the transcripts, either outputs witness
x satisfying P (x) = 1, or a collision for Hash, or (s, x̃, σ) breaking binding of S,
or an evidence that G is not verifiably correct. E works as follows.

42

1. It verifies the transcripts as the verifier does in Figure 1. If (P̂i, di, hi)i∈[M]
obtained from the transcripts differ, output them and halt. The output forms
a collision of Hash since both satisfies H = Hash((P̂i, di, hi)i∈[M]) for the same
first message H.

2. Compute xi∗ ← S.CompEn−1(P, si∗ , x̃i∗). If xi∗ = ⊥, output (si∗ , x̃i∗ , σi∗)
and halt. The output breaks the binding of S since hi∗ ← S.VerCom(x̃i∗ , σi∗)
holds for (ei∗ , hi∗)← S.ComGb1(1λ, P ; si∗).

3. If P (xi∗) = 0, output (P, P̂i, ei∗ , di∗) and halt. Observe that 1 = G.VeC(P, P̂i∗ ,
ei∗ , di∗) and 1 = G.De(G.Ev(P̂i∗ , x̂i∗), di∗) holds. Also observe that, in the pre-
vious step, S.CompEn−1 computes xi∗ by xi∗ ← G.En−1(e, x̂i∗). Accordingly,
P (xi∗) = 0 implies G.De(G.Ev(P̂i∗ , G.En(e, xi∗), di∗) ̸= P (xi∗), breaking the
verifiable correctness of G.

4. Output xi∗ . This satisfies P (xi∗) = 1.

It is obvious that above extractor E works in polynomial time. This completes
the proof of special soundness for the extended statement. ⊓⊔

D.5 Proof of Theorem 6

Proof. The correctness hold trivially from the correctness of B and A as Gb1 and
En are common in B and A.

For verifiable correctness and privacy, we construct the verification algorithm,
VeC, and the privacy simulator S as follows:

U.VeC(P, P̂ , e, d):
(Ĉ, F̂) ↞ P̂
(dB, dA) ↞ d

bB ← B.VeC(C, Ĉ, e, dB)
bA ← A.VeC(F, F̂ , e, dA)
Output (bB ∧ bA).

U.S(1λ, P, 1):
x̂← B.S1(1λ, C)
(Ĉ, dB)← B.S2(C, 1, x̂)
(F̂ , dA)← A.S2(F, 1, x̂)
Output P̂ := (Ĉ, F̂), x̂, d := (dB, dA).

From the construction of U.VeC, verifiable correctness is directly obtained by
that of B and A.

For proving privacy, we follow the hybrid argument starting from the privacy
game with the above simulator. Let H0 denote the game and P0 be the probability
that the adversary outputs 1.

In H1, we replace B.S1 and B.S2 with e← B.Gb1(1λ, C), x̂← B.Ev(e, x), and
(Ĉ, dB)← B.Gb2(C, e). The difference, P0 − P1, is bound by the privacy of B.

In H2, we replace A.S2 with (F̂ , dA)← A.Gb2(F, e). The difference, P2 − P1,
is bound by the privacy of A.

Game H2 is the same as the privacy game with the real garbling scheme.
Accordingly, by observing that the above differences are all negligible if B and
A are private with respect to x satisfying C(x) = 1 and F (x) = 1, we conclude
that U is private with respect to x respecting the same restriction. ⊓⊔

43

D.6 Proof of Theorem 7

Proof. (Correctness) From the correctness of A and B, and their out-in-compatibility,
we have:

U.De(U.Ev(P̂ , U.En(e, x)), d)
= A.De(A.Ev(F̂ , B.Ev(Ĉ, B.En(e, x))), d)
= A.De(A.Ev(F̂ , A.En(dB, C(x))), d)
= F ◦ C(x)

(Verifiable Correctness) We construct U.VeC as follows.

U.VeC(1λ, P, P̂ , e, d):
(C, F) ↞ P , (Ĉ, F̂) ↞ P̂

bB ← B.VeD(C, Ĉ, e)
dB ← B.ExtD(Ĉ, e)
bA ← A.VeC(F, F̂ , dB, d)
Output (bB ∧ bA)?

We first show that U.VeC returns 1 for honestly generated inputs. Let (Ĉ, e, dB, F̂ , d)
be those observed in running U.Gb. Suppose that U.VeC is run on input (C, F, Ĉ, F̂ ,
e, d). Due to the decode key extractability of B, B.VeD returns 1 and B.ExtD out-
puts dB except for a negligible probability. Then, due to the verifiable correctness
of A, A.VeC(F, F̂ , dB, d) outputs 1. Thus, U.VeC returns 1 for honestly generated
inputs.

Next we argue that, whenever U.VeC returns 1, U.De(U.Ev(P̂ , U.En(e, x)), d) =
P (x) holds for all x. Suppose that, for given C, Ĉ, and e, U.VeC returns 1 and
B.ExtD outputs dB. Then, due to the decode key extractability of B, it holds that
C(x) = B.De(B.Ev(Ĉ, B.En(e, x)), dB) for any x. Consider U.Ev(P̂ , U.En(e, x)).
From the construction of U.Ev and U.En, it is equivalent to A.Ev(F̂ , B.Ev(Ĉ, B.En(e,
x))). As we assume the decoding of B and encoding of A are compatible, it holds
that A.En(dB, B.De(ŷ, dB)) = ŷ for any ŷ. Thus, we have

U.Ev(P̂ , U.En(e, x))
= A.Ev(F̂ , B.Ev(Ĉ, B.En(e, x)))
= A.Ev(F̂ , A.En(dB, B.De(B.Ev(Ĉ, B.En(e, x)), dB)))
= A.Ev(F̂ , A.En(dB, C(x))

Finally, from the verifiable correctness of A, we have

U.De(U.Ev(P̂ , U.En(e, x)), d)
= A.De(A.Ev(F̂ , A.En(dB, C(x)), d)
= F ◦ C(x)

44

as expected. Thus, U is verifiably correct.

(Privacy) Using obliviousness simulator B.S and separable privacy simulator
A.S2, we construct a privacy simulator U.S as follows.

U.S(1λ, P, 1):
(C, F) ↞ P

(Ĉ, x̂)← B.S(1λ, C)
ŷ ← B.Ev(Ĉ, x̂)
(F̂ , d)← A.S2(F, 1, ŷ)
Output P̂ := (Ĉ, F̂), x̂, and d.

H0: the privacy game with the above simulator.
H1: Replace B.S with (Ĉ, e, dB)← B.Gb(1λ, C) and x̂← B.En(e, x). P1 − P0

is bound by the obliviousness of B.
H2: Replace A.S2(F, 1, ŷ) with A.Gb2(F, dB). P2 −P1 is bound by the privacy

of A.
Aggregating the above transitions, we can conclude that U is private if B

is oblivious and A is private. Since the privacy of A holds only for y satisfying
F (y) = 1, U preserves privacy only for x satisfying P (x) = F (C(x)) = 1. ⊓⊔

D.7 Proof of Lemma 2

Proof. Recall that for any monotone function f , x ≤ y implies f(x) ≤ f(y).3
From the rightmost clause of S′, we have Ri(xi) = 1 if si = 1, which means
si ≤ Ri(xi) holds for every i. Therefore, C(s1, . . . , sℓ) ≤ C(R1(x1), . . . , Rℓ(xℓ))
holds. Since S′ is satisfied, C(s1, . . . , sℓ) = 1. Thus, C(R1(x1), . . . , Rℓ(xℓ)) = 1,
and S is satisfied as well. ⊓⊔

D.8 Proof of Theorem 8

Proof. Completeness is verified by inspection. It is knowledge sound as argued as
follows. From ΠC , “switches” s1, . . . , sn that open commitments c1, . . . , cℓ and
satisfies C(s1, . . . , sn) = 1 are extracted. From each ΠRi∨si

, either valid witness
xi for Ri, or s′

i = 0 is extracted. For those indices i that s′
i = 0, si = s′

i holds
if comi is binding. For every index i that si = 1, we’ve got xi that Ri(xi) = 1.
For every index i that si = 0, set xi an arbitrary value. Such x1, . . . , xℓ and
s1, . . . , sℓ obviously fulfills S′. For zero-knowledge, we build a simulator that
sets si = 0 for all i and executes ΠRi∨si honestly using the right-hand side of
the disjunction. Then, given commitments ci for all i ∈ [n], the simulator runs
zero-knowledge simulator of ΠC . One can then apply a hybrid argument to prove
that the view created by this simulator is indistinguishable from the real one
due to zero-knowledge of ΠC and witness indistinguishability of ΠRi∨si

and the
hiding property of the commitment schemes.

3 For x, y ∈ {0, 1}ℓ, ≤ is a partial ordering. We write x ≤ y if and only if xi ≤ yi for
every i ∈ [ℓ].

45

	Hybrid Zero-Knowledge from Garbled Circuits
	Introduction
	Our Contribution
	Related Works

	Preliminaries
	Notations
	Affine Predicate and Affine Commitment
	-protocol

	Garbling Scheme
	Generalized Affine Garbling with Common Labels
	ZKGC: From GC to Interactive UCZK
	Construction
	Extension to Commit-and-Prove: CP-ZKGC
	Monotone Compositions of CP-ZKGC

	CCZK: From GC to -Protocols
	Construction
	Extension to Commit-and-Prove: CP-CCZK
	Monotone Compositions of CP-CCZK

	General Composition of -protocols
	Other Building Blocks
	NNL Pseudo-random Generator
	Merkle Tree
	Key Derivation Function
	Symmetric-key Encryption
	Secret Sharing Scheme

	Shuffled Label Commitment
	Definitions
	Construction
	Performance
	Security

	ZKGC Framework JKO13
	Proofs
	Proof of Theorem 1
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 5
	Proof of Theorem 6
	Proof of Theorem 7
	Proof of Lemma 2
	Proof of Theorem 8

