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Abstract

For a finite field F of size n, the (patched) inverse permutation INV : F → F computes the inverse of x
over F when x ̸= 0 and outputs 0 when x = 0, and the ARKK (for AddRoundKey) permutation adds a
fixed constant K to its input, i.e.,

INV(x) = xn−2 and ARKK(x) = x+K .

We study the process of alternately applying the INV permutation followed by a random linear permu-
tation ARKK , which is a random walk over the alternating (or symmetric) group that we call the inverse
walk.

We show both lower and upper bounds on the number of rounds it takes for this process to approx-
imate a random permutation over F. We show that r rounds of the inverse walk over the field of size n
with

r = Θ

(
n log2 n+ n log n log

1

ε

)
rounds generates a permutation that is ε-close (in variation distance) to a uniformly random even permu-
tation (i.e. a permutation from the alternating group An). This is tight, up to logarithmic factors.

Our result answers an open question from the work of Liu, Pelecanos, Tessaro and Vaikuntanathan
(CRYPTO 2023) by providing a missing piece in their proof of t-wise independence of (a variant of)
AES. It also constitutes a significant improvement on a result of Carlitz (Proc. American Mathematical
Society, 1953) who showed a reachability result: namely, that every even permutation can be generated
eventually by composing INV and ARK. We show a tight convergence result, namely a tight quantitative
bound on the number of rounds to reach a random (even) permutation.
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1 Introduction

The design and analysis of block ciphers such as the Advanced Encryption Standard (AES) [DR02] is a cen-
tral topic in cryptography. On the one hand, despite extensive cryptanalysis, spanning a wide range of attacks
including linear [MY92] and differential [BS91] cryptanalysis, higher-order [Lai94], truncated [Knu94] and
impossible [Knu98] differential attacks, interpolation [JK97] and algebraic attacks [CP02], integral crypt-
analysis [KW02], biclique attacks [BKR11], there has not been a single devastating attack thus far that
undermines our confidence in AES. On the other hand, the situation is unsatisfactory from a foundational
perspective: indeed, it is not clear whether it is even possible to formulate a meaningful non-tautological
computational hardness assumption that implies the security of AES within the classical framework of prov-
able security.

In this work, we continue the line of research that attempts to formally prove the security of block ciphers
against restricted classes of attacks, with a focus on substitution permutation networks (SPNs), an important
class of block ciphers that includes AES. The guiding principle of this line of study is to gradually expand
the class of attacks we consider to include a large set of known cryptanalytic paradigms. In particular, we
build on a recent pair of works by Liu, Pelecanos, Tessaro, and Vaikuntanathan (LPTV) [LTV21, LPTV23]
who study the t-wise independence of SPNs, a statistical security property that prevents all t-input statistical
attacks including differential and linear cryptanalysis (with t = 2) and higher order differential attacks (with
larger t).1

Censored AES. The first of these works [LTV21] showed the 2-wise independence of the AES construc-
tion with many (over 9000) rounds. In an attempt to show comparable results with a lower number of
rounds, the second work [LPTV23] looked instead at SPNs with uniformly chosen random and secret S-
boxes, and proved t-wise independence of a construction called AES∗, first introduced by Baignères and
Vaudenay [BV05], which differs from AES in that it uses such random S-boxes. They also suggest a
generic way to instantiate their results with the concrete AES S-box, i.e., the patched inverse permutation
INV : x 7→ x2

8−2 over the binary extension field F28 . They observe in particular that a key-alternating ci-
pher obtained by iterating INV, alternated with adding a random sub-key between each two sequential calls
of INV, converges pretty quickly to being a pairwise independent permutation. We refer to this construction
as the “INV KAC.” Replacing the random S-box in their AES∗ result with the INV-KAC, they obtain in
particular the following result, which they cast in terms of a construction they call “censored AES”, which
is essentially AES with some of the mixing layers removed.

Theorem 1.1 ([LPTV23], Theorem 7). 192-round censored AES is 2−128-close to pairwise independent.

It is natural to conjecture that the actual AES cipher is not less secure than its censored counterpart, i.e.,
additional mixing layers only help, and so one can conjecture that the bound extends to 192-round AES,
hence improving the bound of [LTV21] under this conjecture.

Their result however only applies to pairwise independence. This calls the question of whether the
INV-KAC can be proved to be t-wise independent, in order to prove similar results for t > 2. In [LTV21],
the authors sketch a proof for why this cipher needs at least linear in the size of the field many rounds to
converge to a 4-wise independent permutation, but we note that this is not necessarily a major limitation in
a context where the domain itself has small size, i.e, 256 elements. This argument relies on a similar idea as
the interpolation attack by Jakobsen and Knudsen [JK97].

1We note here two caveats of their results: the first is that they assume the round keys are independent; and secondly, their proof
works for many rounds of SPN/AES, although this has been improved in subsequent works.
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Our contributions. In this work, we prove almost matching lower and upper bounds on the number of
rounds for the INV KAC to reach t-wise independence. We note here that since the cipher composes an
AddRoundKey (henceforth ARK) operation with an INV operation, each round of the cipher generates a
permutation with a fixed parity (the parity depends on the size of the field). Thus, we can only hope for the
cipher to converge to the alternating group (as opposed to the symmetric group) which means that t has to
be at most n− 2, for n being the size of our field.

Theorem (Lower bound, Theorem 4.2). An r-round INV KAC over the field of size n requires at least
r ≥ (1−ε)n

4 − 1
2 rounds to reach ε-close to a 4-wise independent permutation.

Theorem (Upper bound, Theorem 3.1). An r-round INV KAC over the field of size n with

r = O

(
n log2 n+ n log n log

1

ε

)
rounds generates a permutation that is ε-close to a uniformly random even permutation (equivalently a
uniformly random permutation from the alternating group An).

The proofs of our theorems view each round of the INV KAC as a step in a random walk over the
alternating group, starting from the identity permutation. In each step you apply a random one of the nmany
permutations ΠK(x) = INV(x+K) where the addition is over the underlying field. Thus, a random walk
of length r in this graph is equivalent to a composition of r many random permutations ΠK1 ,ΠK2 , . . . ,ΠKr ,
where the randomness is over the choice of the round keys K1,K2, . . . ,Kr. The problem then reduces to
bounding the mixing time of this random walk over the alternating group An (here, n is the size of the field
which, in the case of AES, is 28.)

A prior version of our upper bound theorem first appeared in the appendix of [LPTV24] with the poly-
nomially worse bound r ≲ O(n2 log n), and only for fields of characteristic 2. In this paper, we include
an additional argument for fields of odd characteristic, and use the comparison method to bound the log-
Sobolev constant of the underlying random walk, which gives a tighter bound on the mixing time for not too
small an ε, compared to the spectral gap.

Having the upper bound, one can now extend the random S-box results of [LPTV23] to the concrete
AES S-box. In particular, we get the following corollary.

Corollary 1.2. Assuming t < 2(0.499−1/(4k))b, Θ
(
b22b ·min{k, log t}

)
-round censored SPN with k b-bit

blocks, the AES S-box, and a maximal-branch-number linear mixing is 2−Θ(kb)-close to t-wise independent.

A Mathematical Motivation. In 1963, Carlitz [Car53, Car63, Zie13] proved that the group of all per-
mutations of Fq is generated by the permutations induced by degree-one polynomials and INV. Our result
extends Carlitz’s theorem in two ways. First, we show that if we restrict our attention to degree-one polyno-
mials whose linear coefficient is 1, then we still generate at least the group of all even permutations2. Second,
while Carlitz shows that every permutation can be reached via a composition of degree-one polynomials and
INV, it does not tell us anything about how many steps it takes to do so: we provide an almost-tight quan-
titative bound on the number of steps (operations) needed to reach a random permutation. We remark that
the notion of Carlitz rank of a permutation, namely the number of “Carlitz steps” one needs to take to get
the permutation, has been studied in the literature; see [AcMT09, Top14, IW18].

In reverse, the study of this mathematical problem brings to bear sophisticated techniques from both
finite field theory (cf. [Car53, Car63] and followups) and Markov chain theory to the practical problem of
proving block cipher security.

2In some cases this is the best we can do, e.g. over F7, since both the INV and ARK are even permutations. For other fields
(including fields of characteristic 2), we can generate the entire symmetric group since we combine both even and odd permutations.
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Related work. We believe that the INV KAC is an important cipher design to study for two reasons. First,
many substitution-permutation networks (SPNs) like the Advanced Encryption Standard (AES) [DR02] use
the INV as their (non-linear) S-box permutation. Thus studying the INV “in isolation” may provide insight
into its strengths and weaknesses. Additionally, the INV KAC is a block cipher that we can understand
almost exactly. Furthermore, our analysis of the INV KAC, perhaps in conjunction with generalizations
of Carlitz’s result to general power maps [Sta98], may be useful in the analysis of other KACs, such as
MiMC [AGR+16], which uses the cube instead of the inverse.

Our techniques. Our upper bound result follows from two separate lemmas, one for fields of characteristic
2 and one for fields of odd characteristic. In both cases, when dealing with a field of size n, we employ the
comparison method of Sinclair, Diaconis and Saloff-Coste [Sin92, DSC93] to establish the lower bound of
αINV
n ≳ 1

n logn on the log-Sobolev constant of the Markov chain P INV
n (described above) on the alternating

groupAn in which every step corresponds to one round of the INV KAC. (For a definition of the log Sobolev
constant and its implication for mixing times, the reader is referred to Section 2.2.) A bound on the log-
Sobolev constant implies a mixing time bound and thus an upper bound on the number of rounds required
for the INV KAC to approximate a uniformly random even permutation.

At a high level, the comparison method requires one to construct a multi-commodity flow between pairs
of vertices that are connected in a Markov chain, by using paths over the P INV

n edges (which correspond to
composing INV and ARK operations). Furthermore, this flow must have low congestion, that is, we would
like the flow passing through every edge in P INV

n to be roughly uniform. The main technical ingredient of
this work is constructing these flows and showing that they have low congestion.

For fields of characteristic 2, we first compare this Markov chain to the chain P 2cyc,0
n , in which a ran-

dom step corresponds to transposing a uniformly random element with the element 0, and leaving all other
elements intact. The key component in such a comparison is to show how to generate transpositions of the
form (0, i) for any non-zero i using ARK and INV. To do this, we extend the proof of Carlitz [Car63].
In turn, the log-Sobolev constant of P 2cyc,0

n can be bounded by a standard comparison to the well-studied
random transpositions walk P 2cyc

n where each step is a transposition of the form (i, j) that swaps i and j
and leaves the rest of the domain intact [DS81, LY98, FOW18, Sal20].

For fields of odd characteristic, we compare the P INV
n Markov chain to the chain P 3cyc,ap

n , in which a
random step corresponds to applying a 3-cycle chosen uniformly at random from a specific subset of all
3-cycles (that involve elements from an arithmetic progression). Then, we bound the log-Sobolev constant
of P 3cyc,ap

n by comparing it to the also well-studied Markov chain P 3cyc
n that applies a random 3-cycle at

every step [Goe04, STY22]. We do this by showing how one can combine a constant number of these
arithmetic-progression 3-cycles to generate an arbitrary 3-cycle over the n elements.

One may wonder whether there exists a common upper bound approach for fields of characteristic both
odd and even. We remark that our comparison approach in the characteristic-2 case follows in the footsteps
of [Car63] and shows how to perform a transposition. Our exact paths construction turns out to be very
different from Carlitz’s, as the ARK operation does not implement any degree-one polynomial (as Carlitz
requires) but is restricted to linear shifts. Instead, we show that we can implement the following set of
transpositions {(

u+ v(uv + 1)−1, u+ (v + 1)(uv + u+ 1)−1
)}

u,v

for most values of u, v ∈ Fn, using the following 7 rounds (8 random keys) of the INV KAC:

ARKu ◦ INV ◦ARKu ◦ INV ◦ARKv+1 ◦ INV ◦ARK1 ◦
◦ INV ◦ARK1 ◦ INV ◦ARKv ◦ INV ◦ARKu ◦ INV ◦ARKu .

The resulting multi-commodity flow does not give an optimal lower bound for the log-Sobolev constant
since the P INV

n edges corresponding to ARK1 suffer from higher congestion. To improve the congestion, we
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“spread out” the flow through these edges by demonstrating a randomized way to generate ARK1 ◦ INV ◦ARK1

using 6 random keys that depend on the random variable w ∈ Fn:

ARKw+1 ◦ INV ◦ARKw−1 ◦ INV ◦ARKw ◦ INV ◦
◦ARKw−1 ◦ INV ◦ARKw ◦ INV ◦ARKw−1+1 .

One additional tweak to the first and last round keys is required to obtain a low-congestion set of P INV
n

paths that transpose the element 0 with an almost uniformly random non-zero element i and complete the
comparison with P 2cyc,0

n .
Additional challenges come up when we move to fields of odd characteristic. This is because when

the size of the field n is a prime congruent to 3 modulo 4, then the INV operation transposes every element
except {−1, 0, 1}3. Thus it computes an even permutation, since it consists of n−3

2 transpositions. Moreover,
the ARKK operation is also an even permutation, since it is either the identity, or an odd-sized cycle for
all values of K ∈ Fn. We conclude that one cannot construct a transposition, which is an odd permutation,
by composing INV and ARK. This is why our construction for the odd characteristic goes through 3-
cycles, which are an even permutation. Our starting point is the observation that the following sequence of
operations

ARK−u−2v−1 ◦ INV ◦ARK v ◦ INV ◦ARK−2v−1 ◦ INV ◦ARKv ◦ARKu

generates the 3-cycle (−u,−u − 2v−1,−u − v−1) for any u, and v ̸= 0. This is precisely the subset of
3-cycles whose elements are terms of an arithmetic progression, as (−u− v−1)− (−u) = (−u− 2v−1)−
(−u − v−1). Furthermore, since every ARK operation in the above sequence has an almost uniformly
random key, the resulting multi-commodity flow has low congestion and allows us to compare P INV

n with
P 3cyc,ap
n .

For the lower bound, we formalize an argument of [Nyb93, LTV21], which relies on the following
observation: applying a sequence of ARK’s and INV’s to some input results in a rational function that
is described by 3 coefficients (which coefficients depend on the secret keys of the cipher), unless one of
the intermediate inputs to the INV becomes 0. Since the secret round keys are random, this happens with
probability 1

n per round. Thus, unless the number of rounds scales linearly with n, 4 inputs will be enough to
distinguish the value of these coefficients from random. This gives a lower bound on the number of rounds
to reach 4-wise independence, which in turn is also a lower bound for convergence to any t > 4.

2 Preliminaries

For the entirety of this paper, our inputs and operations will be over a finite field Fn, where n is a prime
power pb. For fields of odd characteristic, we use 2 to denote the sum of the multiplicative identity with
itself. We denote by INV the inverse over the field that maps x to xn−2. It holds that INV(x) · x = 1
for all non-zero x, and INV(0) = 0. We will also define ARKK to be the AddRoundKey operation with
secret round key K that maps x to x+K. Moreover, we use the symbols ≳,≲ to compare two asymptotic
quantities without specifying the constant factors.

2.1 The INV Key-Alternating Cipher

A Key-Alternating Cipher (KAC) is parameterized by a field size n, number of rounds r, and fixed permuta-
tion P : Fn → Fn. A KAC is a family of functions indexed by r+1 sub-keys K0,K1, . . . ,Kr, and defined
recursively as follows:

F
(0)
P (x) = x+K0

3Here 1 is the multiplicative identity of the field, and 0 the additive identity.
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F
(i)
P,K0,...,Ki

(x) = P
(
F

(i−1)
P,K0,...,Ki−1

(x)
)
+Ki.

The family of functions is
FP = {F (r)

P,K0,...,Kr
(x) | Ki ∈ Fn} .

One can also naturally extend this to have different permutations in each round. In this paper, we consider
the INV KAC, for which we use the INV map over Fn as the fixed permutation P .

2.2 Markov Chain Preliminaries

In this section, we recall some basic definitions of Markov chains, variational forms, and mixing time results.
The interested reader may refer to [SC97, WLP09] for more details and proofs.

Let Π be the transition matrix of an ergodic Markov chain over a finite state space Ω, and let π denote
its stationary distribution. We further use E to refer to the set of edges of the underlying graph, that is
E = {(x, y) : Π(x, y) > 0}. We identify a Markov chain with its transition matrix, so we will often say
that Π is both the transition matrix for a Markov chain and also the Markov chain itself.

Definition 2.1 (Reversible Markov chain). A Markov chain Π is reversible if for all x, y ∈ Ω,

π(x)Π(x, y) = π(y)Π(y, x).

Definition 2.2 (Dirichlet form). Let f : Ω → R≥0 be a function. The Dirichlet form of f with respect to Π
is

EΠ(f, f) =
1

2

∑
x,y∈Ω

(f(x)− f(y))2 π(x)Π(x, y).

Definition 2.3 (Entropy). The entropy of a function f : Ω → R≥0 with respect to Π is

Entπ[f ] =
∑
x∈Ω

π(x)f(x) log
f(x)

Eπ[f ]
,

where Eπ[f ] =
∑

x∈Ω π(x)f(x).

Definition 2.4 (Log-Sobolev constant of Markov chain). The log-Sobolev constant of Π is defined by

αΠ = inf
f :Ω→R≥0

f non-constant

EΠ(f, f)

Entπ[f2]
.

The log-Sobolev constant of a Markov chain captures some of its mixing properties, as quantified by the
following theorem.

Theorem 2.5 (Mixing time by log-Sobolev, [DSC96], Theorem 3.7). Let Π be the transition matrix of a
reversible Markov chain whose stationary distribution is π, and πmin be the smallest stationary probability.
For ε ≤ 1

e , the ε-mixing time is bounded by

τε(Π) ≲
1

αΠ

(
log log

1

πmin
+ log

1

ε

)
.
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2.3 The INV KAC cipher as a Markov Chain

To study the t-wise independence of the INV KAC cipher, we will model its execution as a random walk
over the alternating group of permutations over Fn. Even though generating a truly random even permutation
may initially seem too strong for t-wise independence, we will see (perhaps surprisingly) that the number of
rounds required to reach 4-wise independence and (n − 2)-wise independence are close (up to logarithmic
factors). Thus considering convergence to the entire alternating group makes our analysis more convenient.

A first idea is to consider our block cipher to be a random walk over the alternating group An, where
every step of the walk applies first the ARKK operation with a random key K from Fn, and then the INV
operation. The main issue of representing the block cipher this way is that the underlying Markov chain is
not reversible, and thus it is harder to apply the mixing time result of Theorem 2.5.

We will instead use the following reversible Markov chain to represent our cipher:

Definition 2.6 (INV KAC Markov chain). The chain P INV
n on the alternating group An has the following

transition matrix. Given the current even permutation σt, one step in this Markov chain corresponds to
drawing uniformly and independently two random keys K1,K2 from Fn, and setting

σt+1 = ARKK2 ◦ INV ◦ARKK1 ◦ σt.

Note that the degree of the underlying graph has increased from n to n2. It is not hard to observe that
this transformation has not introduced any parallel edges to our Markov chain.

Lemma 2.7. The Markov chain P INV
n does not have any parallel edges for n ≥ 5. That is, if there exists

σ ∈ An such that
ARKi ◦ INV ◦ARKj ◦ σ = ARKk ◦ INV ◦ARKℓ ◦ σ,

then (i, j) = (k, ℓ).

Proof. First, observe that if i = k, then the statement is true. Indeed, we can apply the permutation
INV ◦ARK−i to both sides and obtain

ARKj ◦σ = ARKℓ ◦σ =⇒ j = ℓ.

Similarly, if j = ℓ, then the statement also holds. Hence we proceed by considering the case when both
i ̸= k, and j ̸= ℓ.

Now consider the n − 2 values of x such that y = σ(x) ̸∈ {−j,−ℓ}. The value of x is mapped under
the two permutations to equal values:

i+
1

y + j
= k +

1

y + ℓ

Therefore,
iy + ij + 1

y + j
=
ky + kℓ+ 1

y + ℓ

Simplifying, we get

iy2 + (ij + 1 + iℓ)y + ijℓ+ ℓ = ky2 + (kℓ+ 1 + kj)y + jkℓ+ j.

and so
(i− k)y2 + ((i− k)j + (i− k)ℓ) y + (i− k)jℓ+ (ℓ− j) = 0.

For the above equality to be true for more than 2 values of y, it must hold that i = k. This concludes the
proof for n ≥ 5.
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We will bound the mixing time of this Markov chain by comparing it to the following well-studied
Markov chains. On one hand, when Fn is of characteristic 2, we will use the random transposition Markov
chain.

Definition 2.8 (Random transposition Markov chain). The chain P 2cyc
n on the symmetric group Sn has the

following transition matrix. Given the current permutation σt, one step in this Markov chain corresponds to
drawing uniformly a random transposition (i, j) from Sn, and setting

σt+1 = (i, j) ◦ σt.

Prior work has obtained tight estimates for the log-Sobolev constant of this chain [DS81, LY98, FOW18,
Sal20].

Theorem 2.9 ([Sal20], Theorem 5). The log-Sobolev constant of the random transposition chain satisfies

2

(n− 1) log n
≤ α2cyc

n ≤ log 2

2(n− 1) log n
.

On the other hand, when Fn is of odd characteristic, we will use the random 3-cycle Markov chain.

Definition 2.10 (Random 3-cycle Markov chain). The chain P 3cyc
n on the alternating group An has the

following transition matrix. Given the current permutation σt, one step in this Markov chain corresponds to
drawing uniformly a random 3-cycle (i, j, k) from An, and setting

σt+1 = (i, j, k) ◦ σt.

The underlying graph of P 3cyc
n is 2

(
n
3

)
-regular and thus P 3cyc,ap

n (x, y) = 1
2(n3)

for (x, y) ∈ E3cyc
n . A

bound on the log-Sobolev constant of the 3-cycle chain can be obtained using another variational form, the
modified log-Sobolev constant.

Theorem 2.11 ([Goe04], Corollary 3.2). The modified log-Sobolev constant of the 3-cycle Markov chain
satisfies

1

n− 2
≤ β3cycn ≤ 6

n− 1
.

We can use the modified log-Sobolev bound to get a log-Sobolev bound using a result of [STY22]:

Theorem 2.12 ([STY22], Theorem 1). For any reversible Markov chain Π, let α be its log-Sobolev constant,
and β be its modified log-Sobolev constant. Moreover, let p be defined as follo

p = min
x,y∈Ω

Π(x,y)̸=0

Π(x, y)

max
{∑

y ̸=xΠ(x, y),Π(y, x)
} .

Then
α ≥ 1

20 log 1
p

· β.

Corollary 2.13 (Log-Sobolev constant of 3-cycle chain). The log-Sobolev constant of the 3-cycle Markov
chain satisfies

α3cyc
n ≥ 1

60(n− 2) log n
.

Proof. For the 3-cycle Markov chain, it holds that p = 1

(n3)
≥ 1

n3 . Thus

α3cyc
n ≥ 1

20 log n3
· 1

n− 2
=

1

60(n− 2) log n
.
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(λref or) αref αtar (or λtar)

τε
(
P ref

)
≲ . . . τε

(
P tar

)
≲ . . .

Theorem 2.5 Theorem 2.5

Corollary 2.15: αref ≤ A(F ) · αtar

Figure 1: Schematic representation of the comparison method. The comparison method of Corollary 2.15
allows one to compare the log-Sobolev constant (or spectral gap) of a “target” Markov chain P tar with the
known log-Sobolev (or spectral gap) constant of a “reference” chain P ref , as long as they have the same
stationary distribution. The resulting log-Sobolev bound αtar then implies a mixing time bound τε(P tar)
using Theorem 2.5. On a high-level, the comparison method allows one to transfer mixing time bounds from
a well-studied chain P ref to a new Markov chain P tar, as long as we can construct a valid multi-commodity
flow with low congestion.

2.4 The comparison method

Below we sketch the “comparison with multicommodity flows” method of Sinclair, Diaconis and Saloff-
Coste [Sin92, DSC93].

Let P ref and P tar be two reversible Markov chains on the same ground set, with stationary distributions
πref , πtar and edge sets Eref , Etar respectively. We will think of P ref as the “reference” chain for which
we have somehow obtained estimates for its log-Sobolev constant. Our goal is to bound the log-Sobolev
constant of the “target” chain P tar, by relating it to that of P ref .

Define a path γxy for (x, y) ∈ Eref to be a sequence of steps

(x = a0, a1, . . . , ak = y)

in the target chain P tar. For this to be a valid path, it must hold that (ai, ai+1) ∈ Etar. We say that
such a path has length |γxy| = k. Let Pxy be the set of all simple paths connecting x to y. Also let
P = ∪(x,y)∈ErefPxy be the union of all such paths. For (a, b) ∈ Etar, let P(a, b) = {γ ∈ P | (a, b) ∈ γ}.
That is, P(a, b) contains all paths that use the edge (a, b) of the target graph.

A function F on P is called a (P tar, P ref)-flow if∑
γ∈Pxy

F (γ) = P ref(x, y)πref(x).

Theorem 2.14 ([DSC93], Theorem 2.3). Let P tar, P ref be reversible Markov chains on a finite set Ω. For
any (P tar, P ref)-flow F , the Dirichlet forms satisfy

Eref(f, f) ≤ A(F ) · Etar(f, f)

with

A(F ) = max
(a,b)∈Etar

 1

πtar(a)P tar(a, b)

∑
γ∈P(a,b)

|γ| · F (γ)

 .

Moreover, when these two Markov chains have the same stationary distribution, the theorem above
directly implies a relation between their log-Sobolev constants.
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Corollary 2.15. Let P tar and P ref be reversible Markov chains on a finite set Ω with the same stationary
distribution π. For any (P tar, P ref)-flow F , their log-Sobolev constants satisfy

αref ≤ A(F ) · αtar.

Proof. Since they have the same stationary distribution, the denominator in the definition of the log-Sobolev
chain is equal. Then

αref = inf
f :Ω→R≥0

f non-constant

Eref(f, f)

Entπ[f2]
≤ inf

f :Ω→R≥0

f non-constant

A(F ) · Etar(f, f)

Entπ[f2]
= A(F ) · αtar.

Representing edges and paths. To employ the comparison method, we will need a way to specify paths in
the P INV

n Markov chain. Since each edge of P INV
n is determined by two keys r1, r2, we will use the notation

[[r1, r2]] to denote the edge ARKr2 ◦ INV ◦ARKr1 . The starting vertex will be specified separately.
Whenever we need to describe a longer path of P INV

n , we will write it as a tuple of double square
brackets, by specifying the first edge first and so on, e.g. ([[r1, r2]], [[q1, q2]])4. Since ARK operations form
a subgroup, this path is also equal to

(ARKq2 ◦ INV ◦ARKq1) ◦ (ARKr2 ◦ INV ◦ARKr1)

= ARKq2 ◦ INV ◦ARKq1+r2 ◦ INV ◦ARKr1 .

We will also use the notation [[r1, r2+q1, q2]] to describe the above path in P INV
n . In general, we will extend

the double square bracket notation to mean:

[[r1, r2, . . . , rk]] = ARKrk ◦ INV ◦ · · · ◦ARKr2 ◦ INV ◦ARKr1 .

3 Upper Bound

In this section, we formally prove our claim that a random S-box over Fn can be approximated via the
sequential composition of alternating AddRoundKey and INV S-box operations. Our proof is different for
fields of characteristic 2 and fields of odd characteristic.

The following subsections show that αINV
n ≥ 1

n logn for all fields Fn with n ≥ 5. This log-Sobolev
constant bound implies a mixing time bound from Theorem 2.5, and thus the following theorem.

Theorem 3.1. Let n ≥ 5. The INV KAC over the field of size n with r ≤ O(n log2 n+n log n log 1
ε ) rounds

generates a permutation that is ε-close to a uniformly random even permutation (equivalently a uniformly
random permutation from the alternating group An).

Proof. Theorem 2.5 implies:

τε(P
INV
n ) ≤ O

(
n log n

(
log logn! + log

1

ε

))
= O

(
n log2 n+ n log n log

1

ε

)
.

Thus after this many rounds, the distribution of permutations computed by the INV KAC is ε-close to a
uniformly random permutation from An.

4If we are writing the edges as permutations, we write the permutations corresponding to the edges from right-to-left.

10



3.1 Fields of odd characteristic

The main result of this section is a bound on the log-Sobolev constant of P INV
n when n = pb is a power of

an odd prime p.

Lemma 3.2. Let n = pb, where p is an odd prime. The log-Sobolev constant of P INV
n satisfies

αINV
n ≥ Ω

(
1

n log n

)
.

We employ the comparison method in two steps. We introduce an intermediate chain P 3cyc,ap
n , which is

a slight variant of the 3-cycle chain, and compare the log-Sobolev constant of P INV
n with it. Then we bound

α3cyc,ap
n by comparing it to the 3-cycle chain P 3cyc

n . On a high level the proof looks as follows:

αINV
n ≳

Lemma 3.5
α3cyc,ap
n ≳

Lemma 3.4
α3cyc
n ≳

Lemma 2.13

1

n log n
.

Definition 3.3 (Arithmetic progression 3-cycle Markov chain). The chain P 3cyc,ap
n on the alternating group

An has the following transition matrix. Given the current permutation σt, one step in this Markov chain
corresponds to drawing a uniformly random 3-cycle (i, j, k) from An, conditioned on the fact that i, k, j
form an arithmetic progression, that is, k − i = j − k. Then set

σt+1 = (i, j, k) ◦ σt.

Our paths construction shows that the underlying graph is connected, and thus the stationary distribution
of this Markov chain is uniform over An, i.e. π3cyc,apn (x) = 1

|An| =
2
n! . Moreover, the underlying graph is

n(n − 1)-regular. This is because there are n options for the first term of the arithmetic progression u, and
n− 1 options for the difference − 1

v . Thus if (x, y) ∈ E3cyc,ap
n , then P 3cyc,ap

n (x, y) = 1
n(n−1) .

Lemma 3.4. The log-Sobolev constant of P 3cyc,ap
n satisfies

α3cyc,ap
n ≥ α3cyc

n

81
.

Proof. To apply the Comparison Theorem (Theorem 2.14), we will define a set of paths Pxy for each edge
(x, y) ∈ E3cyc and assign flow F (·) to each path.

Our construction of paths in this case is quite simple. We will assign exactly one path to each such
edge (x, y). In particular, let y = (i, k, j) ◦ x for some triple of pairwise distinct elements i, j, k. Then
Pxy = {γxy}, and this path is chosen according to the following two cases:

1. The elements i, j, k form an arithmetic progression. This means that either k − i = j − k, or i− j =
k − i, or j − k = i− j. Then (i, k, j) is also in E3cyc,ap

n and we set

γxy = (x, (i, k, j) ◦ x = y).

2. The elements i, j, k do not form an arithmetic progression. Let u = i+j
2 , v = j+k

2 , w = k+i
2 . Then

E3cyc,ap
n contains the distinct 3-cycles

C1 = (i, j, u), C2 = (j, k, v), C3 = (k, i, w).
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We assign to (x, y) the length-9 path

γxy = (x,C1 ◦ x︸ ︷︷ ︸
a1

, C3 ◦ a1︸ ︷︷ ︸
a2

, C3 ◦ a2︸ ︷︷ ︸
a3

, C2 ◦ a3︸ ︷︷ ︸
a4

,

C2 ◦ a4︸ ︷︷ ︸
a5

, C3 ◦ a5︸ ︷︷ ︸
a6

, C1 ◦ a6︸ ︷︷ ︸
a7

, C2 ◦ a7︸ ︷︷ ︸
a8

, C2 ◦ a8 = y).

The proof that this path connects x to y is deferred to Lemma A.1.

Since each edge (x, y) ∈ E3cyc
n has exactly one path to it, all of the flow must go through this path:

F (γxy) = P 3cyc
n (x, y) · π3cycn (x, y) =

1

2
(
n
3

) · 2

n!
=

6

n(n− 1)(n− 2) · n!
.

The comparison constant we get is

A(F ) = max
(a,b)∈E3cyc,ap

 1

π3cyc,ap(a) · P 3cyc,ap(a, b)

∑
γ∈P(a,b)

|γ| · F (γ)


≤ max

(a,b)∈E3cyc,ap

{
n!

2
·
(
n

2

)
· 9 · |P(a, b)| · 6

n(n− 1)(n− 2) · n!

}
≤ n(n− 1) · n!

4
· 54(n− 2) · 6

n(n− 1)(n− 2) · n!
= 81.

We used the fact that the number of paths γ in P(a, b) is at most 6(n− 2). This is because P(a, b) contains
paths of length 1 and 9. The set P(a, b) contains at most 1 path of length 1 for any (a, b) ∈ E3cyc,ap.

Moreover, length-9 paths γ in P(a, b) must be using the edge (a, b) as their cycleC1, C2, orC3. Without
loss of generality, assume (a, b) is used as cycle C1 in γxy, and we will multiply the number of paths by 3 to
capture the other two cases. Then the edge (a, b) specifies the set of elements {i, j, u}. There are two ways
to choose i, j from this set, and for each such setting of i, j there are n − 3 remaining elements that could
be k. Thus the total number of length-9 paths is at most 3 · 2 · (n− 3) = 6(n− 3).

The total number of paths is at most 1 + 6(n− 3) ≤ 6(n− 2).

Lemma 3.5. Let n = pb, where p is an odd prime. The log-Sobolev constant of P INV
n satisfies

αINV
n ≥ α3cyc,ap

n

24
.

The proof uses the following way to generate the arithmetic progression 3-cycle
(
−u, − u− 2

v , − u− 1
v

)
by combining INV and ARK operations.

Lemma 3.6. Let n = pb, where p is an odd prime. For any u, v ∈ Fn, v ̸= 0, the following sequence
ψodd(u, v) of ARK and INV operations

ψodd(u, v) =

[[
u, v, − 2

v
, v, − u− 2

v

]]
maps x to 

−u− 2
v , x = −u

−u, x = −u− 1
v

−u− 1
v , x = −u− 2

v

x, otherwise

.
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Proof. We consider first the application of ψeven(u, v) on some x that is not equal to any of {−u,−u −
1
v ,−u− 2

v}.

x
ARKu−−−−→ x+ u

ARKv ◦ INV−−−−−−−→ 1

x+ u
+ v =

xv + uv + 1

x+ u
ARK−2/v ◦ INV
−−−−−−−−−−→ x+ u

xv + uv + 1
− 2

v
= − xv + uv + 2

v(xv + uv + 1)

ARKv ◦ INV−−−−−−−→ − v(xv + uv + 1)

xv + uv + 2
+ v =

v

xv + uv + 2
ARK−u−2/v ◦ INV
−−−−−−−−−−−→ − xv + uv + 2

v
− u− 2

v
= x.

Now consider what happens when x = −u:

− u
ARKu−−−−→ 0

ARKv ◦ INV−−−−−−−→ v
ARK−2/v ◦ INV
−−−−−−−−−−→ −1

v
ARKv ◦ INV−−−−−−−→ 0

ARK−u−2/v ◦ INV
−−−−−−−−−−−→ −u− 2

v
.

Now consider what happens when x = −u− 1
v :

− u− 1

v

ARKu−−−−→ −1

v

ARKv ◦ INV−−−−−−−→ 0
ARK−2/v ◦ INV
−−−−−−−−−−→ −2

v
ARKv ◦ INV−−−−−−−→ v

2

ARK−u−2/v ◦ INV
−−−−−−−−−−−→ −u.

Now consider what happens when x = −u− 2
v :

− u− 2

v

ARKu−−−−→ −2

v

ARKv ◦ INV−−−−−−−→ v

2

ARK−2/v ◦ INV
−−−−−−−−−−→ 0

ARKv ◦ INV−−−−−−−→ v
ARK−u−2/v ◦ INV
−−−−−−−−−−−→ −u− 1

v
.

Using the above Lemma, we can construct paths that connect adjacent vertices of P 3cyc,ap
n using edges

of P INV
n .

Corollary 3.7 (Corollary of Lemma 3.6). Let n = pb, where p is an odd prime. For any u, v ∈ Fn such
that v ̸= 0, and any r1, r2, r3 ∈ Fn we can generate the 3-cycle

(
−u,−u− 2

v ,−u− 1
v

)
using the following

length-4 path ϕodd(u, v, r1, r2, r3) in P INV
n :

ϕodd(u, v, r1, r2, r3) =(
[[u, r1]] , [[v − r1, r2]] ,

[[
−2

v
− r2, r3

]]
,

[[
v − r3, − u− 2

v

]])
.

Proof of Lemma 3.5. Towards applying the Comparison Theorem (Theorem 2.14), we will assign to the
edge (x, y) ∈ E3cyc,ap the set of ϕodd paths defined in Corollary 3.7. Formally, let y = (−u,−u −
2
v ,−u,−

1
v ) ◦ x, then:

Pxy = {ϕodd(u, v, r1, r2, r3) : r1, r2, r3 ∈ Fn}.
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It holds that |Pxy| = n3. We will assign the same amount of flow through all paths in P(x, y). This means
that

F (γxy) =
P 3cyc,ap
n (x, y) · π3cyc,apn (x, y)

n3
=

1

n3
· 1

n(n− 1)
· 2

n!
=

2

n4(n− 1) · n!
.

The comparison constant we get is

A(F ) = max
(a,b)∈EINV

 1

πINV(a) · P INV(a, b)

∑
γ∈P(a,b)

|γ| · F (γ)


= max

(a,b)∈EINV

{
n2 · n!

2
· 4 · 2
n4(n− 1) · n!

· |P(a, b)|
}

≤ n2 · n!
2

· 4 · 2
n4(n− 1) · n!

· 4n3

=
16n

n− 1
≤ 24.

We used the fact that |P(a, b)| ≤ 4n3. Lemma 2.7 implies that P INV
n has no parallel edges, and thus the

edge (a, b) fully specifies a unique permutation of the form [[r1, r2]].
Now consider a path γ = ϕodd(u

′, v′, r′1, r
′
2, r

′
3) that uses edge (a, b). This edge can be one of 4 edges

of γ; let’s say that it is the ith edge, for i ∈ {1, 2, 3, 4}. Every value of i implies two equations that the
set of variables {u′, v′, r′1, r′2, r′3} must satisfy. This restricts 2 of the 5 degrees of freedom; thus, we can
have at most n3 such paths, since all paths are linearly dependent on the variables (u′, v′, r′1, r

′
2, r

′
3), or their

inverses.
The last inequality holds because n ≥ 3.

3.2 Fields of characteristic 2

The main result of this section is a bound on the log-Sobolev constant of P INV
n when n is a power of 2.

Lemma 3.8. Let n = 2b. The log-Sobolev constant of P INV
n satisfies

αINV
n ≥ Ω

(
1

n log n

)
.

Similar to the odd characteristic case, our comparison method proceeds in two steps. We introduce an
intermediate chain P 2cyc,0

n , which is a slight variant of the random transposition chain, and compare the
log-Sobolev constant of P INV

n with it. Then we bound α2cyc,0
n by comparing it to the random transposition

chain P 2cyc
n . On a high level the proof looks as follows:

αINV
n ≳

Lemma 3.11
α2cyc,0
n ≳

Lemma 3.10
α2cyc
n ≳

Theorem 2.9

1

n log n
.

Definition 3.9 (Transposition with fixed element Markov chain). The chain P 2cyc,0
n on the alternating group

An has the following transition matrix. Given the current permutation σt, one step in this Markov chain
corresponds to drawing a uniformly random non-zero element i from [n]. Then set

σt+1 = (0, i) ◦ σt.
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Lemma 3.10. The log-Sobolev constant of P 2cyc,0
n satisfies

α2cyc,0
n ≥ α2cyc

n

18
.

Proof. We will assign exactly one path to every edge (x, y) ∈ E2cyc
n . Let y = (i, j) ◦ x for some i ̸= j.

Then we will set Pxy = {γxy}, where γxy is chosen according to the following two cases:

1. One of i, j is equal to zero. Then (i, j) is also in E2cyc,0
n and we set

γxy = (x, (i, j) ◦ x = y).

2. Both i, j are non-zero. Then we set

γxy = (x, (0, i) ◦ x︸ ︷︷ ︸
a1

, (0, j) ◦ a1︸ ︷︷ ︸
a2

, (0, i) ◦ a2 = y).

We will assign to each path the same flow F (γxy) = P 2cyc
n (x, y) · π2cycn (x) = 2

n!(n2)
= 4

n(n−1)·n! .

The comparison constant we get is

A(F ) = max
(a,b)∈E2cyc,0

 1

π2cyc,0(a) · P 2cyc,0
n (a, b)

∑
γ∈P(a,b)

|γ| · F (γ)


= max

(a,b)∈E2cyc,0

{
n!(n− 1)

2
· 3 · |P(a, b)| · 4

n(n− 1) · n!

}
≤ n!(n− 1)

2
· 9(n− 1) · 4

n(n− 1) · n!
≤ 18.

We used the fact that the number of paths γ in P(a, b) is at most 3(n − 1). This is because P(a, b)
contains paths of length 1 and 3. The set P(a, b) contains at most 1 path of length 1.

We bound the number of length-3 paths in |P(a, b)| by 3(n − 2) in the following way. The edge (a, b)
specifies a unique ℓ such that b = (0, ℓ) ◦ a. Consider a length-3 path γxy that uses edge (a, b), where
y = (i, j) ◦ x. This edge can be one of 3 edges of γxy, and the position of (a, b) in the path specifies one
of i, j to be equal to ℓ. Thus the remaining variable has n − 2 possible values (except 0 and ℓ). The total
number of paths is at most 1 + 3(n− 2) ≤ 3(n− 1).

Lemma 3.11. Let n = 2b ≥ 8. The log-Sobolev constant of P INV
n satisfies

αINV
n ≥ α2cyc,0

n

830
.

The proof uses the following way to generate the transposition (0, v
uv+1+

v+1
uv+u+1) by combining INV and ARK

operations.

Lemma 3.12. For any u, v, w ∈ Fn such that uv ̸= 1, u(v + 1) ̸= 1, and v ̸∈ {0, 1}, we can generate the
transposition

(
0, v

uv+1 + v+1
uv+u+1

)
using the following sequence ψeven(u, v, w) of ARK and INV opera-

tions

ψeven(u, v, w) =

[[
v

uv + 1
, u, v, INV(w) + 1, w,

INV(w), w, INV(w), w + 1, v + 1, u,
v

uv + 1

]]
.
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Our proof of Lemma 3.12 will follow from Lemmas 3.13 and 3.14.

Lemma 3.13. For any u, v ∈ Fn such that uv ̸= 1, u(v + 1) ̸= 1, and v ̸∈ {0, 1}, we can generate
the transposition

(
u+ v

uv+1 , u+ v+1
uv+u+1

)
using the following sequence γ(u, v) of AddRoundKey and

INV S-box operations
γ(u, v) = [[u, u, v, 1, 1, v + 1, u, u]] .

Proof. We will consider the following cases.

Case 1. u = 0: We will show that the sequence γ(0, v) = [[0, 0, v, 1, 1, v + 1, 0, 0]] generates the
transposition (v, v + 1).

We consider first the application of π on some x that is not equal to v or v + 1.

x
ARK0−−−−→ x

ARK0 ◦ INV−−−−−−−→ INV(x)

ARKv ◦ INV−−−−−−−→ x+ v
ARK1 ◦ INV−−−−−−−→ 1

x+ v
+ 1 =

x+ v + 1

x+ v
ARK1 ◦ INV−−−−−−−→ x+ v

x+ v + 1
+ 1 =

1

x+ v + 1

ARKv+1 ◦ INV−−−−−−−−−→ x

ARK0 ◦ INV−−−−−−−→ INV(x)
ARK0 ◦ INV−−−−−−−→ x.

Now consider what happens when x = v:

v
ARK0−−−−→ v

ARK0 ◦ INV−−−−−−−→ INV(v)
ARKv ◦ INV−−−−−−−→ 0

ARK1 ◦ INV−−−−−−−→ 1
ARK1 ◦ INV−−−−−−−→ 0

ARKv+1 ◦ INV−−−−−−−−−→ v + 1

ARK0 ◦ INV−−−−−−−→ INV(v + 1)
ARK0 ◦ INV−−−−−−−→ v + 1.

And when x = v + 1:

v + 1
ARK0−−−−→ v + 1

ARK0 ◦ INV−−−−−−−→ INV(v + 1)
ARKv ◦ INV−−−−−−−→ 1

ARK1 ◦ INV−−−−−−−→ 0

ARK1 ◦ INV−−−−−−−→ 1
ARKv+1 ◦ INV−−−−−−−−−→ v

ARK0 ◦ INV−−−−−−−→ INV(v)
ARK0 ◦ INV−−−−−−−→ v.

Case 2. We will now prove the result for all valid parameters u ̸= 0, v and inputs x that do not cause any
input to INV(·) to vanish. Thus, for these calculations, we will use the fact that y · INV(y) = 1 for all
non-zero y. Also for brevity, we will use INV(y) and 1

y interchangeably.
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x

ARKu−−−−→ x+ u

ARKu ◦ INV−−−−−−−−→ 1

x+ u
+ u =

ux+ u2 + 1

x+ u

ARKv ◦ INV−−−−−−−→ x+ u

ux+ u2 + 1
+ v =

(uv + 1)x+ u2v + v + u

ux+ u2 + 1

ARK1 ◦ INV−−−−−−−→ ux+ u2 + 1

(uv + 1)x+ u2v + v + u
+ 1

=
(uv + u+ 1)x+ u2v + v + u+ u2 + 1

(uv + 1)x+ u2v + v + u

ARK1 ◦ INV−−−−−−−→ (uv + 1)x+ u2v + v + u

(uv + u+ 1)x+ u2v + v + u+ u2 + 1
+ 1

=
ux+ u2 + 1

(uv + u+ 1)x+ u2v + v + u+ u2 + 1

ARKv+1 ◦ INV−−−−−−−−−→ (uv + u+ 1)x+ u2v + v + u+ u2 + 1

ux+ u2 + 1
+ v + 1 =

x+ u

ux+ u2 + 1

ARKu ◦ INV−−−−−−−−→ ux+ u2 + 1

x+ u
+ u =

1

x+ u
ARKu ◦ INV−−−−−−−−→ x+ u+ u = x

So we have seen that for u, v, x such that no input to INV(·) is zero, γ(u, v) acts like the identity and
maps x to itself. To complete our proof, we now consider what happens if some input to INV(·) equals 0.
This happens when one of the following equalities hold:

(a) x+ u = 0 =⇒ x = u.

(b) ux+ u2 + 1 = 0 =⇒ ux = u2 + 1 =⇒ x = u+ 1
u , since the equality doesn’t hold if u = 0.

(c) (uv + 1)x+ u2v + v + u = 0 =⇒ x = u+ v
uv+1 , since we have imposed that uv ̸= 1.

(d) (uv + u + 1)x + u2v + v + u + u2 + 1 = 0 =⇒ x = u + v+1
uv+u+1 , since we have imposed that

u(v + 1) ̸= 1.

Note that the third and fourth cases are the claimed non-fixed points of γ(u, v). Looking forward, we
will verify that γ(u, v) transposes these two inputs.

Case 2(a). x = u ̸= 0: The permutation γ(u, v) maps u to itself as we show below:

u
ARKu−−−−→ u+ u = 0

ARKu ◦ INV−−−−−−−−→ 0 + u = u
ARKv ◦ INV−−−−−−−→ 1

u
+ v =

uv + 1

u
ARK1 ◦ INV−−−−−−−→ u

uv + 1
+ 1 =

uv + u+ 1

uv + 1

ARK1 ◦ INV−−−−−−−→ u

uv + u+ 1
ARKv+1 ◦ INV−−−−−−−−−→ uv + u+ 1

u
+ v + 1 =

1

u
ARKu ◦ INV−−−−−−−−→ u+ u = 0

ARKu ◦ INV−−−−−−−−→ 0 + u = u.
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Note that in all the above computations, we have only evaluated INV(·) at the values u, uv + 1, and
uv + u+ 1, which are non-zero.

Case 2(b). x = u+ 1
u : The permutation γ(u, v) maps u+ 1

u to itself as we show below:

u+
1

u

ARKu−−−−→ u+
1

u
+ u =

1

u

ARKu ◦ INV−−−−−−−−→ u+ u = 0

ARKv ◦ INV−−−−−−−→ 0 + v = v
ARK1 ◦ INV−−−−−−−→ 1

v
+ 1 =

v + 1

v
ARK1 ◦ INV−−−−−−−→ v

v + 1
+ 1 =

1

v + 1

ARKv+1 ◦ INV−−−−−−−−−→ 0

ARKu ◦ INV−−−−−−−−→ u
ARKu ◦ INV−−−−−−−−→ 1

u
+ u.

Note that in all the above computations, we have only evaluated INV(·) at the values u, v, and v+ 1, which
are non-zero.

Case 2(c). x = u+ v
uv+1 : The permutation γ(u, v) maps u+ v

uv+1 to u+ v+1
uv+u+1 as we show below:

u+
v

uv + 1

ARKu−−−−→ u+
v

uv + 1
+ u =

v

uv + 1

ARKu ◦ INV−−−−−−−−→ uv + 1

v
+ u =

1

v
ARKv ◦ INV−−−−−−−→ v + v = 0

ARK1 ◦ INV−−−−−−−→ 0 + 1 = 1
ARK1 ◦ INV−−−−−−−→ 1 + 1 = 0

ARKv+1 ◦ INV−−−−−−−−−→ 0 + v + 1 = v + 1
ARKu ◦ INV−−−−−−−−→ 1

v + 1
+ u =

uv + u+ 1

v + 1
ARKu ◦ INV−−−−−−−−→ v + 1

uv + u+ 1
+ u.

Note that in all the above computations, we have only evaluated INV(·) at the values uv+1, uv+u+1, v,
and v + 1, which are non-zero.

Case 2(d). x = u+ v+1
uv+u+1 : The permutation γ(u, v) maps u+ v+1

uv+u+1 to u+ v
uv+1 as we show below:

u+
v + 1

uv + u+ 1

ARKu−−−−→ u+
v + 1

uv + u+ 1
+ u =

v + 1

uv + u+ 1
ARKu ◦ INV−−−−−−−−→ uv + u+ 1

v + 1
+ u =

1

v + 1

ARKv ◦ INV−−−−−−−→ v + 1 + v = 1

ARK1 ◦ INV−−−−−−−→ 1 + 1 = 0
ARK1 ◦ INV−−−−−−−→ 0 + 1 = 1

ARKv+1 ◦ INV−−−−−−−−−→ 1 + v + 1 = v

ARKu ◦ INV−−−−−−−−→ 1

v
+ u =

uv + 1

v

ARKu ◦ INV−−−−−−−−→ v

uv + 1
+ u.

Note that in all the above computations, we have only evaluated INV(·) at the values uv+1, uv+ u+1, v,
and v + 1, which are non-zero.

Note that Lemma 3.13 is already enough to give us a bound on the number of operations required to
simulate a random S-box. We use Lemma 3.14 to construct a flow with lower congestion, and thus a better
comparison constant.

Lemma 3.14. The following two sequences of ARK and INV operations implement the same permutations

[[1, 1]] = [[INV(w) + 1, w, INV(w), w, INV(w), w + 1]]
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Proof. Denote by σLHS , σRHS as the permutations of the LHS and RHS respectively. Then σLHS maps
x→ INV(x+ 1) + 1. We will show that this is the case of σRHS . For simplicity, we will first compute the
image of x under σRHS , assuming that no input to INV(·) is equal to zero. Thus, we will use the fact that
y · INV(y) = 1 for all non-zero y. Also for brevity, we will use INV(y) and 1

y interchangeably.

x

ARKINV(w)+1−−−−−−−−−→ x+
1

w
+ 1 =

xw + w + 1

w

ARKw ◦ INV−−−−−−−−→ w

xw + w + 1
+ w =

xw2 + w2

xw + w + 1
ARKINV(w) ◦ INV
−−−−−−−−−−−→ xw + w + 1

xw2 + w2
+

1

w
=

1

xw2 + w2

ARKw ◦ INV−−−−−−−−→ xw2 + w2 + w

ARKINV(w) ◦ INV
−−−−−−−−−−−→ 1

xw2 + w2 + w
+

1

w
=

xw + w

xw2 + w2 + w
=

x+ 1

xw + w + 1
ARKw+1 ◦ INV−−−−−−−−−→ xw + w + 1

x+ 1
+ w + 1 =

xw + w + 1 + (xw + x) + (w + 1)

x+ 1

=
x

x+ 1
= INV(x+ 1) + 1

To complete our proof, we now consider what happens if some input to INV(·) equals 0. Thus, we will
consider the following cases separately:

1. w = 0,

2. xw + w + 1 = 0 =⇒ x = w+1
w

3. xw2 + w2 = 0 =⇒ x = 1

4. x+ 1 = 0 =⇒ x = 1.

Case 1. w = 0: σRHS becomes the permutation denoted by [[1, 0, 0, 0, 0, 1]]. This permutation maps

x
ARK1−−−−→ x+ 1

ARK0 ◦ INV−−−−−−−→ INV(x+ 1)
ARK0 ◦ INV−−−−−−−→ x+ 1

ARK0 ◦ INV−−−−−−−→ INV(x+ 1)
ARK0 ◦ INV−−−−−−−→ x+ 1

ARK1 ◦ INV−−−−−−−→ INV(x+ 1) + 1.

Note that in the above expression, we only used the fact that INV(INV(y)) = y, which holds for all y.
Hence the above mapping holds for all x.

Case 2. x = w+1
w : For simplicity we will assume that w ̸= 0, as this case was already covered above.

This allows us to replace INV(w) + 1 with 1
w + 1 = w+1

w . The permutation σRHS maps w+1
w to

w + 1

w

ARKINV(w)+1−−−−−−−−−→ w + 1

w
+
w + 1

w
= 0

ARKw ◦ INV−−−−−−−−→ 0 + w = w

ARKINV(w) ◦ INV
−−−−−−−−−−−→ INV(w) + INV(w) = 0

ARKw ◦ INV−−−−−−−−→ 0 + w = w

ARKINV(w) ◦ INV
−−−−−−−−−−−→ INV(w) + INV(w) = 0

ARKw+1 ◦ INV−−−−−−−−−→ 0 + w + 1 = w + 1.

Note that

INV(x+ 1) + 1 = INV

(
w + 1

w
+ 1

)
+ 1 = INV

(
1

w

)
+ 1 = w + 1.

Thus σRHS maps this value of x to the same image as the [[1, 1]] permutation.
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Case 3. x = 1: For simplicity we will assume that w ̸= 0, as this case was already covered above. This
allows us to replace INV(w) + 1 with 1

w + 1 = w+1
w . The permutation σRHS maps 1 to

1
ARKINV(w)+1−−−−−−−−−→ 1 + INV(w) + 1 = INV(w)

ARKw ◦ INV−−−−−−−−→ w + w = 0

ARKINV(w) ◦ INV
−−−−−−−−−−−→ 0 + INV(w) = INV(w)

ARKw ◦ INV−−−−−−−−→ w + w = 0

ARKINV(w) ◦ INV
−−−−−−−−−−−→ 0 + INV(w) = INV(w)

ARKw+1 ◦ INV−−−−−−−−−→ w + w + 1 = 1.

Again, INV(1 + 1) + 1 = 1, thus σRHS maps x = 1 to the same image as the [[1, 1]] permutation.

Proof of Lemma 3.12. From Lemmas 3.13 and 3.14 we know that the sequence

ψ′
even(u, v, w) = [[u, u, v, INV(w) + 1, w, INV(w),

w, INV(w), w + 1, v + 1, u, u]].

generates the transposition (u+ v
uv+1 , u+

v+1
uv+u+1). This sequence is obtained by substituting the statement

of Lemma 3.14 into the middle part of γ(u, v) from Lemma 3.13.
Now we modify ψ′

even to obtain transpositions with the fixed element 0, i.e. (0, i) for non-zero i ∈ Fn.
We do this by “relabelling” the left endpoint of the resulting transposition to be a 0. It suffices to conjugate
ψ′
even with a permutation that maps u+ v

uv+1 to 0, e.g. ARKu+ v
uv+1

.
Composing two ARK operations gives another ARK operation with a key equal to the sum of the two

original round keys. Thus

ψeven(u, v, w) = ARKu+ v
uv+1

◦ψ′
even(u, v, w) ◦ARKu+ v

uv+1
.

Using Lemma 3.12, we can construct paths that connect adjacent vertices of P 2cyc,0
n using edges of

P INV
n .

Corollary 3.15 (Corollary of Lemma 3.12). Let n = 2b. For any u, v, w ∈ Fn such that uv ̸= 1, u(v+1) ̸=
1, and v ̸∈ {0, 1}, and any r1, . . . , r10 ∈ Fn we can generate the transposition

(
0, v

uv+1 + v+1
uv+u+1

)
using

the following path ϕeven(u, v, w, r1, . . . , r10) of 11 edges of P INV
n :

ϕeven(u, v, w, r1, . . . , r10) =

([[
v

uv + 1
, r1

]]
, [[u+ r1, r2]] ,

[[v + r2, r3]] , [[INV(w) + 1 + r3, r4]] , [[w + r4, r5]] ,

[[INV(w) + r5, r6]] , [[w + r6, r7]] , [[INV(w) + r7, r8]] ,

[[w + 1 + r8, r9]] , [[v + 1 + r9, r10]] ,

[[
u+ r10,

v

uv + 1

]])
.

Proof of Lemma 3.11. Towards applying the Comparison Theorem (Theorem 2.14), we will only assign a
non-zero amount of flow to the ϕeven paths defined in Corollary 3.15. Formally, let y = (0, v

uv+1+
v+1

uv+u+1)◦
x, then:

Pxy =
{
ϕeven(u, v, w, r1, r2, . . . , r10)

: u, v, w, r1, r2, . . . , r10 ∈ Fn, uv ̸= 1, u(v + 1) ̸= 1, v ̸∈ {0, 1}
}
.
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We further denote by Px be the set of ϕeven paths that start from x. It holds that |Px| = n11(n− 2)2 =
Θ(n13).

Lemma A.2 implies that if we push the same amount of flow through all paths in Px, we will get
an almost uniform flow routed through all edges (x, y) ∈ E2cyc,0

n . Formally, for n ≥ 8 it holds that
for any (x, y), (x, y′) ∈ E2cyc,0

n : 1
3 ≤ |Pxy |

|Pxy′ |
≤ 3. In other words, the maximum total flow along any

(x, y) ∈ P 2cyc,0
n 0 is at most 3 times the total flow along any other edge.

Since the stationary distribution for P 2cyc,0
n is uniform over the alternating group and P 2cyc,0

n (x, y) =
1

n−1 for all (x, y) ∈ E2cyc,0
n , it should hold that that total amount of flow through the simple paths that

connect the vertices x and y is ∑
γ∈Pxy

F (γ) =
2

n!(n− 1)
=: F.

Since the number of edges incident to x in P 2cyc,0
n 0 is (n− 1), pushing one unit of flow through each of

the n11(n−2)2 paths will result in each edge (x, y) getting cxy · n
11(n−2)2

n−1 = Θ(n12) (where 1/3 ≤ cxy ≤ 3)
units of flow. Since our goal is to push F units through each edge, the flow through each path will be

F (γ) =
F

cxy · n11(n−2)2

n−1

= dxy ·
F

n12
= Θ

(
F

n12

)
,

where dxy = n(n−1)
(n−2)2cxy

∈ [1/3, 6] for n ≥ 8.
We are now ready to compute the comparison constant for this flow.

A(F ) = max
(a,b)∈EINV

n

 1

πINV(a)P INV
n (a, b)

∑
γ∈P(a,b)

|γ| · F (γ)


≤ max

(a,b)∈EINV
n

{
1

2
n! ·

1
n2

|P(a, b)| · 11 · 2

n!(n− 1)
· dxy
n12

}

≤ max
(a,b)∈EINV

n

{
n!n2

2
· 11n11 · 11 · 2

n!(n− 1)
· dxy
n12

}
≤ 121n13 · dxy

n12(n− 1)
≤ 830.

The last inequality holds for n ≥ 8. We used the fact that |P(a, b)| ≤ 11n11. This is because P INV
n

has no parallel edges (Lemma 2.7), and thus the edge (a, b) fully specifies a unique permutation of the form
[[r1, r2]].

Now consider a path γ = ϕeven(u
′, v′, w′r′1, r

′
2, . . . , r

′
10) that uses edge (a, b). This edge can be one

of 11 edges of γ; let’s say that it is the ith edge, for i ∈ {1, 2, . . . , 11}. Every value of i implies two
equations that the set of variables {u′, v′, w′, r′1, r

′
2, . . . , r

′
10} must satisfy. This restricts 2 of the 13 degrees

of freedom; thus, we can have at most n11 such paths, since all paths are linearly dependent on the variables
(u′, v′, w′, r′1, r

′
2, . . . , r

′
10), or their inverses.

4 Lower Bound

In this section, we demonstrate a lower bound on the number of rounds required for the INV KAC to be
close to a 4-wise independent permutation, first shown by [LTV21]. This directly implies the same lower
bound for the block cipher to converge to An.
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The crucial observation is the following lemma from [LTV21], whose statement and proof we include
below almost verbatim for completeness.

Lemma 4.1 (Lemma B.1 of [LTV21]). For every r, with probability 1 − r
n over a random choice of

K0, . . . ,Kr ∼ Fn, there are L1, L2, L3 ∈ Fn such that

F
(r)
INV,K0,...,Kr

(x) = (x+ L1) · INV(L2x+ L3).

Proof. The proof is by induction. For r = 0, L1 = K0, L2 = 0 and L3 = 1. Let us now assume that the
statement is true for i. Then:

F
(i+1)
INV,K0,...,Kr

(x) = INV
(
F

(i)
INV,K0,...,Kr

(x) +Ki+1

)
= INV

(
x+ L1

L2x+ L3
+Ki+1

)
=

L2x+ L3

(Ki+1L2 + 1)x+ (KiL3 + L1)

which is of the same form as well. The only way this fails is if one of the numerators in the expression turns
out to be 0. The probability of this happening for any one of the r rounds is at most r

n .

Theorem 4.2. An r-round INV KAC requires at least r ≥ (1−ε)n
4 − 1

2 rounds to reach ε-close to a 4-wise
independent permutation.

Proof. We will construct the following algorithm A that distinguishes between an r-round INV KAC and
a truly random 4-wise independent permutation. The algorithm first chooses 4 inputs x1, x2, x3, x4 and
computes their images y1, y2, y3, y4. Then if there are L1, L2, L3 such that yi = (xi+L1)·INV(L2xi+L3),
the distinguisher will guess “INV KAC”. Otherwise, it will guess a random permutation.

From the lemma above, the probability that the distinguisher correctly detects the INV KAC is at least
1− 4r

n , since we can union bound over all 4 inputs.
On the other hand, the distinguisher will be fooled by a 4-wise independent permutation with probability

at most 1
n−3 . This is because the first three inputs and outputs will give linear equations that determine the

constants L1, L2, L3. Thus the last input and output must satisfy y4 = (x4 + L1) · INV(L2x4 + L3). Since
y4 is uniformly random from n− 3 values this can only happen with probability at most 1

n−3 .
The total variation distance implies an upper bound in the distinguishing advantage of any adversary.

Thus for the r-round INV KAC to be ε-close to a uniformly random 4-wise independent permutation, the
advantage of A must be at most ε. Thus

1− 4r

n
− ε ≤ 1

n− 3

=⇒ 4r

n
≥ 1− ε− 1

n− 3

=⇒ r ≥ (1− ε)n

4
− n

4(n− 3)

≥ (1− ε)n

4
− 1

2
.

Where the last inequality holds for n ≥ 8.
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A Missing Details on the Paths Constructions

A.1 Fields of odd characteristic

Lemma A.1. Let n = pb, where p is an odd prime. Let i, j, k ∈ Fn be distinct numbers that do not form an
arithmetic progression. Moreover, let u = i+j

2 , v = j+k
2 , w = k+i

2 . Consider the following 3-cycles acting
on Sn.

C1 = (i, j, u), C2 = (j, k, v), C3 = (k, i, w).

Then
C2
2 ◦ C1 ◦ C3 ◦ C2

2 ◦ C2
3 ◦ C1 = (i, k, j).

Proof of Lemma A.1. Since the Ci’s are 3-cycles, applying Ci twice is equal to C−1
i . We will thus compute

the permutation C−1
2 ◦ C1 ◦ C3 ◦ C−1

2 ◦ C−1
3 ◦ C1 and show that it is equal to (i, k, j). Since the 3-cycles

only touch the elements i, j, k, u, v, w, it suffices to restrict our attention to these 6 elements. Furthermore,
it is convenient to arrange these 6 elements in a triangle as in Figure 2. In the following proof, we also use
boldface to indicate the elements that are involved in the 3-cycle that will get applied. The statement follows
by a straightforward calculation:
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Applying C2
2 ◦ C1 ◦ C3 ◦ C2

2 ◦ C2
3 ◦ C1 gives

u i w
j k
v

C1−→
j u w

i k
v

C−1
3−−−→

j w k
i u

v

C−1
2−−−→

j w k
u v

i

C3−→
j v w

u k
i

C1−→
u j w

v k
i

C−1
2−−−→

u j w
k i

v
.

Applying (i, j, k) gives

u i w
j k
v

(i,k,j)−−−−→
u j w

k i
v

.

A.2 Fields of even characteristic

Lemma A.2. Let n = 2b, for b ≥ 3, and Ni be the number of valid ψeven paths that generate the transposi-
tion (0, i) for i ∈ Fn. That is,

Ni = |{(u, v, w) | (0, i) = ψeven(u, v, w), uv ̸= 1, u(v + 1) ̸= 1, v ̸∈ {0, 1}}| .

Then

Ni =


0 i = 0

n(2n− 4) i = 1

n(n− 4) i ̸∈ {0, 1}.

And in particular
1

3
≤ Ni

Nj
≤ 3

for any non-zero i, j.

Proof. Recall that a valid sequence ψeven(u, v, w) generates the transposition
(
0, v

uv+1 + v+1
uv+u+1

)
. Then

to generate (0, i) it must hold that v
uv+1 + v+1

uv+u+1 = i. We rewrite this sum below

s =
v

uv + 1
+

v + 1

uv + u+ 1
=
v(uv + u+ 1) + (v + 1)(uv + 1)

(uv + 1)(uv + u+ 1)

=
uv2 + uv + v + uv2 + v + uv + 1

(uv + 1)(uv + u+ 1)
=

1

(uv + 1)(uv + u+ 1)
.

From our constraints on u, v, the value of s is always non-zero. Now, if we set u = 0, all n− 2 valid values
of v (v ̸∈ {0, 1}) will satisfy s = 1.
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Finally, when u ̸= 0, we write

s =
1

(uv + 1)(uv + u+ 1)

=⇒ 1

s
= u2v(v + 1) + u+ 1

=⇒ v(v + 1) =
1/s+ u+ 1

u2
.

It is well known that in characteristic 2, the quadratic equation above has 2 solutions if the trace of the
right-hand side is equal to 0, and no solutions otherwise.

Tr

(
1/s+ u+ 1

u2

)
= Tr

(
1/s

u2

)
+Tr

(
1

u

)
+Tr

(
1

u2

)
= Tr

(
1/s

u2

)
Here the first equality follows from the linearity of trace and the second equality from the fact that Tr(x2) =
Tr(x). The square is an injective map over Fn, and thus 1/s

u2 obtains every non-zero value in the field. Since
Tr(·) = 0 defines a subspace, the number of u’s that make 1/s

u2 have 0 trace is exactly n/2− 1 (we exclude
zero, since κ

u2 is never zero and Tr(0) = 0).
All of these values are valid, except u = 1/s+ 1, for s ̸= 1. This is because even though

Tr

(
1/s

(1/s+ 1)2

)
= Tr

(
1

1/s+ 1
+

1

(1/s+ 1)2

)
= 0,

this implies that v(v + 1) = 0 and thus the two solutions to this equation are v = 0, 1, which are not valid.
The remaining n/2− 2 values of u give 2 valid solutions for v, which means that all s ̸∈ {0, 1} have n− 4
solutions for non-zero u.

The case of s = 1 has the n − 2 solutions with u = 0 and 2 solutions for the n/2 − 1 non-zero valid
values of u, for a total of 2n − 4 solutions. We conclude the proof of this lemma by noting that the last
parameter w can be chosen arbitrarily from the field of size n without changing the value of s. Thus the
number of paths increases by a multiplicative factor of n.
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