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Abstract. We suggest two families of multivariate public keys defined
over arbitrary finite commutative ring K with unity. The first one has
quadratic multivariate public rule, this family is an obfuscation of pre-
viously defined cryptosystem defined in terms of well known algebraic
graphs D(n,K) with the partition sets isomorphic to Kn. Another fam-
ily of cryptosystems uses the combination of Eulerian transformation of
K[x1, x2, . . . , xn] sending each variable xi to a monomial term with the
quadratic encryption map of the first cryptosystem. The resulting map
has unbounded degree of size O(n) and the density O(n3) like in the case
of cubic multivariate map public user need O(n4) elementary operations
to encrypt. The space of plaintexts of the second cryptosystem is the
variety (K∗)n and the space of ciphertexts is the affine space Kn.

Keywords: Multivariate Cryptography over commutative rings · Graph
based symbolic computations · Quadratic public keys · Multivariate Pub-
lic keys of unbounded degree

1 Introduction

This paper presents the generalisation of the quadratic multivariate public key
given in [1] with the use of quantum computing. The progress in the design of
experimental quantum computers is speeding up lately. Expecting such develop-
ment, the National Institute of Standardisation Technologies of USA announced
in 2017 the tender on standardisation best known quantum-resistant algorithms
of asymmetrical cryptography. The first round was finished in March 2019, es-
sential part of presented algorithms were rejected. At the same time, the devel-
opment of new algorithms with postquantum perspective was continued. Similar
process took place during the 2nd, 3rd, and 4th rounds. The last algebraic pub-
lic key “Unbalanced Oil and Vinegar Rainbow like digital signatures” (ROUV)
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constructed in terms of Multivariate Cryptography was rejected in 2021 (see
[2,3]). Certain hopes of algebraists are connected with so-called Noncommuta-
tive Cryptography, which is based on problems connected with the studies of
algebraic objects such as groups, semigroups, noncommutative rings, and alge-
bras. Presented on Mist tender single algorithms from this class based on braids
group was broken. The first 4 winners of this competition were announced in
2022, they are developed in terms of Lattice Theory.

It is noteworthy that the NIST tender was designed for the selection and
investigation of public key algorithms, and in the area of Multivariate Cryptog-
raphy, only quadratic multivariate maps were investigated. Thus, a large class of
protocols supported by asymmetric algorithms of the El Gamal type was elim-
inated. We have been working on the design of new algorithms from this class
during our project. We must admit that the general interest in various aspects of
Multivariate Cryptography was connected with the search for secure and effective
procedures for digital signatures, where the mentioned above ROUV cryptosys-
tem was considered a serious candidate to produce the shortest signatures.

Let us summarize the outcomes of the aforementioned NIST tender. There
are five categories that were considered by NIST in the PQC standardization
(the submission date was 2017; in July 2022, the four winners and the four
final candidates were proposed for the 4th roundâĂŤthis is the current official
status). However, the current eight final winners and candidates belong to only
four different mathematical problems (not the five announced at the beginning):
lattice-based, hash-based, code-based, supersingular elliptic curve isogeny-based.

The standards are to be published in 2024. However, already at the end
of round 3, the last candidate ("Rainbow") from the multivariate cryptography
(MVC) category was eliminated. An interesting obfuscation, “TUOV: Triangular
Unbalanced Oil and Vinegar,” was presented to NIST by the principal submitter
Jintaj Ding [39].

Further development of Classical Multivariate Cryptography, which studies
quadratic and cubic endomorphisms of Fq[x1, x2, . . . , xn], can be found in [6]-
[18]. Current research in Postquantum Cryptography can be found in [35]-[38].

We use the concept of a quadratic accelerator of the endomorphism σ of
K[x1, x2, . . . , xn], which is a piece of information T such that its knowledge
allows us to compute the preimage of (σ,Kn) in time O(n2). Here, the symbol
K stands for an arbitrary commutative ring with unity. Our suggestion is to use
pairs (σ, T ) as public keys, where σ has polynomial density, i.e., the number of
monomial terms of σ(xi) for i = 1, 2, . . . , n. Some examples of such public keys
can be found in [4], [5].

For each pair (K,n) where n > 1, we present a quadratic automorphism σ
of K[x1, x2, . . . , xn] with a trapdoor accelerator T defined via special bipartite
Jordan-Gauss graphs, with the partition sets isomorphic to Kn. We discuss the
possible use of these transformations in the case of finite fields and arithmetic
rings Zq, where q is a prime power. Additionally, we create a public key as a
composition of quadratic σ with the Eulerian transformation, sending each x1
to a monomial term. The public map has unbounded degree and density O(n4).
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Therefore, the complexity of encryption is similar to that of a classical cubic
map.

2 On Jordan-Gauss Graphs and Multivariate Keys

The missing definitions of graph-theoretical concepts which appear in this paper
can be found in [19], [20], [21]. All graphs we consider are simple graphs, i.e.,
undirected without loops and multiple edges. Let V (G) and E(G) denote the set
of vertices and the set of edges of G respectively. When it is convenient, we shall
identify G with the corresponding anti-reflexive binary relation on V (G), i.e.,
E(G) is a subset of V (G) × V (G) and we write v G u for the adjacent vertices
u and v (or neighbours). We refer to |{x ∈ V (G)| xGv}| as the degree of the
vertex v.

The incidence structure is the set V with partition sets P (points) and L
(lines) and symmetric binary relation I such that the incidence of two elements
implies that one of them is a point and the other is a line. We shall identify I with
the simple graph of this incidence relation or bipartite graph. The pair (x, y),
where x ∈ P and y ∈ L such that xIy, is called a flag of incidence structure I.

Let K be a finite commutative ring. We refer to an incidence structure with
a point set P = Ps,m = Ks+m and a line set L = Lr,m = Kr+m as a linguistic
incidence structure Im, if point x = (x1, x2, . . . , xs, xs+1, xs+2, . . . , xs+m) is in-
cident to line y = [y1, y2, . . . , yr, yr+1, yr+2, . . . , yr+s] if and only if the following
relations hold:

a1xs+1 − b1yr+1 = f1(x1, x2, . . . , xs, y1, y2, . . . , yr)

a2xs+2 − b2yr+2 = f2(x1, x2, . . . , xs, xs+1, y1, y2, . . . , yr, yr+1)

...
amxs+m − bmyr+m = fm(x1, x2, . . . , xs, xs+1, . . . , xs+m−1, y1, y2, . . . , yr,

yr+1, . . . , yr+m−1)

where aj and bj , j = 1, 2, . . . ,m, are not zero divisors, and fj are multivariate
polynomials with coefficients from K (see [22], [23]). Brackets and parentheses
allow us to distinguish points from lines.

The color ρ(x) = ρ((x)) (and ρ(y) = ρ([y])) of point (x) (line [y]) is defined
as the projection of an element (x) (respectively [y]) from a free module on its
initial s (relatively r) coordinates. As it follows from the definition of linguistic
incidence structure, for each vertex of incidence graph there exists a unique
neighbour of a chosen color. We refer to ρ((x)) = (x1, x2, . . . , xs) for (x) =
(x1, x2, . . . , xs+m) and ρ([y]) = (y1, y2, . . . , yr) for [y] = [y1, y2, . . . , yr+m] as the
color of the point and the color of the line, respectively. For each b ∈ Kr and
p = (p1, p2, . . . , ps+m), there is a unique neighbour of the point [l] = Nb(p) with
the color b. Similarly, for each c ∈ Ks and line l = [l1, l2, . . . , lr+m], there is
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a unique neighbour of the line (p) = Nc([l]) with the color c. The triples of
parameters s, r,m define the type of linguistic graph.

We consider also linguistic incidence structures defined by an infinite num-
ber of equations. Linguistic graphs are defined up to isomorphism. We refer
to the written above equations as canonical equations of linguistic graph. We
say that a linguistic graph is of Jordan-Gauss type if the map [(x), [y]] →
(f1(x1, x2, . . . , xs, y1, y2, . . . , yr), f2(x1, x2, . . . , xs, xs+1, y1, y2, . . . , yr, yr+1), . . . ,
fm−1(x1, x2, . . . , xs, xs+1, . . . , xs+m−1, y1, y2, . . . , yr, yr+1, . . . , yr+m−1)) where
(x) ∈ Ks+m, [y] ∈ Kr+m is a bilinear map into K1. Thus, all fi are special
quadratic maps. In the case of Jordan-Gauss graphs, the neighbourhood of each
vertex is given by the system of linear equations written in its row-echelon form.

Let Im be a linguistic graph defined over the commutative ring K. For
each b ∈ Kr and p = (p1, p2, . . . , ps+m), there is the unique neighbour of
the point [l] = Nb(p) with the color b. Similarly, for each c ∈ Ks and line
l = [l1, l2, . . . , lr+m] there is the unique neighbour of the line (p) = Nc([l]) with
the color c. We refer to the operator of taking the neighbour of a vertex according
to the chosen color as the neighbourhood operator.

On the sets P and L of points and lines of the linguistic graph, we define jump
operators 1J = 1Jb(p) = (b1, b2, . . . , bs, p1, p2, . . . , ps+m), where (b1, b2, . . . , bs) ∈
Ks and 2J = 2Jb([l]) = [b1, b2, . . . , br, l1, l2, . . . , lr+m], where (b1, b2, . . . , br) ∈ Kr.
We refer to the tuple (s, r,m) as the type of the linguistic graph I.

We say that point (p) and line [l] are adjacent in the linguistic graph I if
1Jb(p)I

2Jc[l] for some colors b ∈ Ks and c ∈ Kr. Let ψ stand for the adjacency
relation of the linguistic graph. We say that a linguistic graph has degree d, d ≥ 2
if the maximal degree of nonlinear multivariate polynomials fi, i = 1, 2, . . . ,m
is d.

Noteworthy, the path v0, v1, . . . , vk in the linguistic graph Im is determined
by the starting vertex v0 and the colors of vertices v1, v2, . . . , vk such that ρ(vi) 6=
ρ(vi+2) for i = 0, 1, . . . , k − 2.

Let us consider the sequence of colors c(1), c(2), c(3), c(4), c(5) where c(1) and
c(4), c(5) are from Ks and c(2), c(4) are elements of Kr.

Let v0 = (x) be a general point of the graph I then for the vertices v1 =
1Jc(1)(v0), v2 = Nc(2)(v1), v3 = 2Jc(3)(v2), v4 = Nc(4)(v3), v5 = 1Jc(5)(v4) the
relations v0ψv3, v2ψv5 hold.

We consider the tuple of colors c(1), c(2), . . . , c(t), t = 1 mod 4 such that
c(i) ∈ Ks for i = 0, 1 mod 4 and c(i) ∈ Kr for i = 2, 3 mod 4.

We refer to the sequence of vertices v1 = 1J(v0), v2 = Nc(2)(v1), v3 = 2Jc(3)(v2),
v4 = Nc(4)(v3), v5 = 1J(v4), v6 = Nc(6)(v5), v7 = 2Jc(7)(v6), v8 = Nc(8)(v7), . . . ,
vt−1 = Nc(t−1)(vt−2), vt =

1J(vt−1) as a walk on the adjacency graph with the
starting point (x) and the color trace c(1), c(2), . . . , c(t).

For each positive integer l we can consider the graph Im(K) together with
lJm = Im(K[y1, y2, . . . , yl]) defined by the same polynomials fi, i = 1, 2, . . . ,m
with coefficients from K.

Assume that l = m + s. We can consider the walk on the adjacency graph
ψ(K[y1, y2, . . . , yl]) of length 4t+1 with starting point (y1, y2, . . . , ys, ys+1, ys+2,
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. . . , ym+s) and colors c(1), c(2), . . . , c(t) such that c(i) ∈ K[y1, y2, . . . , ys]
s for

i = 0, 1 mod 4 and c(i) ∈ K[y1, y2, . . . , ys]
r for i = 2, 3 mod 4. Assume that

c(t) = (h1(y1, y2, . . . , ys), h2(y1, y2, . . . , ys), . . . , hs(y1, y2, . . . , ys)).
Then v1 = (h1, h2, . . . , hs, g1, g2, . . . , gm). Let us consider the polynomial

map I(K),cPass, c ∈ K[x1, x2, . . . , xs]
(2t+1)s+2rt of Ks+m to itself which sends

(y1, y2, . . . , ys, ys+1, . . . , ys+m) to vt, i.e., the map

y1 → h1(y1, y2, . . . , ys),

y2 → h2(y1, y2, . . . , ys),

...
ys → hs(y1, y2, . . . , ys),

ys+1 → g1(y1, y2, . . . , ys, ys+1, ys+2, . . . , ys+m),

ys+2 → g2(y1, y2, . . . , ys, ys+1, ys+2, . . . , ys+m),

...
ys+m → gm(y1, y2, . . . , ys, ys+1, ys+2, . . . , ys+m).

It is easy to see that this transformation is bijective if and only if the map
y1 → h1(y1, y2, . . . , ys), y2 → h2(y1, y2, . . . , ys), . . . , ys → hs(y1, y2, . . . , ys) is
bijective onKs [24]. The defined above transformations form a semigroup I(K)SP
of multivariate transformations. Some basic properties of this semigroup are
discussed in [24].

Of course, we can use lines instead of points and define another semigroup
I(K)SL formed by transformations of the kind I(K),cPass,
c ∈ K[x1, x2, . . . , xs]

(2t+1)r+2ts acting on the variety Km+r.

Remark 1. We may omit some operators of the kind Jc(i) by making the color
c(i) the same as c(i− 1).

We can treat the sequence c from K[x1, x2, . . . , xs]
l as the tuple of its co-

ordinates ci from K[x1, x2, . . . , xs] and define the degree of c as the maximum
degree of the polynomials ci(x1, x2, . . . , xs).

In [25], a special Jordan-Gauss graph JG(r, s,m, Fq), where q = 2t, t > 1 was
used for the construction of a public key. This linguistic graph of type (r, s,m)
is obtained from the projective geometry PGn(Fq), i.e., the totality of nonzero
proper subspaces of (Fq)n+1. The corresponding bipartite graph is obtained as an
induced subgraph of the bipartite incidence graph with the partition sets which
are largest Schubert cells, i.e., largest orbits of UTn(Fq) acting on l-dimensional
subspaces and subspaces of dimension t, l 6= t.

Cubic public keys defined in [26] used Jordan-Gauss graphs A(n, Fq) [27]
and D(n, Fq) (see [28]). These two families of graphs were used in [1] for the
construction of a quadratic public key. This paper also contains the construction
of a trapdoor accelerator T of quadratic endomorphism σ of K[x1, x2, . . . , xn]
acting bijectively on Kn and defined in terms of graph D(n,K) where K is an
arbitrary commutative ring with unity (see [23]).
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The description of the generalisation of this construction is given below.
The affine root system Ã1 (A1 with a wave, see [29]) is the totality of vectors

in the two-dimensional Euclidean space R2 with the standard basis e1 = (1, 0)
and e2 = (0, 1), containing vectors (1, 0), (0, 1), (i, i), (i, i+ 1), (i+ 1, i), i ≥ 1.
All multiples of (1, 1) are known as imaginary roots, while other roots which
have no multiples are known as real roots.

We modify Ã1 by adding copies (i, i)′ for each imaginary root (i, i), i > 1.
Thus, we obtain a set Root consisting of roots of Ã1 and elements (i, i)′, i > 1.

Let R1 = Root\{(0, 1)} and R2 = Root\{(1, 0)} and letK be a commutative
ring with unity. We consider sets Li = KRi , i = 1, 2, of all functions f from Ri
to K such that only for finite elements x from Ri, the value f(x) differs from
zero.

We write an element X = (x) from P = L1 as the tuple (x) = (x1,0, x1,1, x1,2,
x2,1, x2,2, x

′
2,2, . . . , xi,i+1, xi+1,i, xi+1,i+1, x

′
i+1,i+1, . . .) where xα is the value of X

on the root α from Ã1 and x′i,i is the value of X on (i, i)′, i > 1.
Similarly, we write an element Y = [y] from L = L2 as the tuple [y] =

[y0,1, y1,1, y1,2, y2,1, y2,2, y
′
2,2, . . . , yi,i+1, yi+1,i, yi+1,i+1, y

′
i+1,i+1, . . .] where yα is

the value of Y on the root α from Ã1 and y′i,i is the value of Y on (i, i)′, i > 1.
We introduce the incidence structure (P,L, I) as the following bipartite graph
on P ∪ L.

A point (x) of this incidence structure I is incident with a line [y], i.e. (x)I[l],
if their coordinates obey the following relations:

xi,i − yi,i = x1,0yi−1,i,

x′i,i − y′i,i = xi,i−1y0,1,

xi,i+1 − yi,i+1 = xi,iy0,1,

xi+1,i − yi+1,i = x1,0y
′
i,i.

(These four relations are well defined for i > 1, x1,1 = x′1,1, y1,1 = y′1,1.)
We start the description of the connectivity invariants of D(k,K).
To facilitate notation in the future results on "connectivity invariants" of

D(n,K), it will be convenient for us to define x−1,0 = y0,−1 = y1,0 = x0,1 =
0, x0,0 = y0,0 = −1, x′0,0 = y′0,0 = −1, x1,1 = x′1,1, y1,1 = y′1,1 and to assume that
our equations are defined for i ≥ 0.

Graphs CD(k,K) with k ≥ 6 were introduced in [23], as induced subgraphs
of D(k,K) with vertices u satisfying special equations a2(u) = 0, a3(u) =
0, . . . , at(u) = 0, t = [(k + 2)/4], where u = (uα, u1,1, u1,2, u2,1, . . . , ur,r, u

′
r,r,

ur,r+1, ur+1,r, . . .), 2 ≤ r ≤ t, α ∈ {(1, 0), (0, 1)} is a vertex of D(k,K) and
ar = ar(u) =

∑r
i=0(ui,iu

′
r−i,r−i−ui,i+1ur−i,r−1−1) for every r from the interval

[2, t].
We set a = a(u) = (a2, a3, . . . , at) and assume that D(k,K) = CD(k,K) if

k = 2, 3, 4, 5. As it was proven in [23] graphs D(n,K) are edge transitive. So
their connected components are isomorphic graphs.
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Let vCD(k,K) be a solution set of system of equations a(u) = (v2, v3, . . . , vt) =
v for certain v ∈ Kt−1. It is proven that each vCD(k,K) is the disjoint union of
some connected components of graph D(n,K).

If K is a commutative ring with unity of odd characteristic then vCD(k,K)
is an actual connected component of the graph (see [30]).

If K is a finite field of even characteristics of order ≥ 8 then vCD(k,K) is an
actual connected component of the graph (see [31]).

Let us consider the following graphs DT (k,K) associated with D(n,K) and
subset T = {j(1), j(2), . . . , j(s)} of {2, 3, . . . , [(k + 2)/2]} via the following pro-
cedure:

1. Delete coordinates of points and lines indexed by roots (i(l), i(l))′, l =
1, 2, . . . , s, together with corresponding equations of the kind x′i(l),i(l)−y

′
i(l),i(l) =

. . ., l = 1, 2, . . . , s.
2. Substitute equations xi(l)+1,i(l) − yi(l)+1,i(l) = x1.0y

′
i(l),i(l) by xi(l)+1,i(l) −

yi(l)+1,i(l) = x1.0yi(l),i(l). The last action is just a deletion of the prime symbol
on the right-hand side of the equation.

Proposition 1. Graphs DT (k,K) are Jordan-Gauss graphs of type (1, 1, n −
m− 1) where m is the cardinality of T .

Polynomials ai(v) where 1 < i < j(1) are connectivity invariants of vertex v
(point or line) from DT (k,K) or D(k,K).

Let G be a t-regular simple graph and v be the vertex from V (G). We say
that k is the local depth of the vertex v if the induced graph of all vertices at
distance ≤ k is a tree and the graph on vertices at the distance k+1 has a cycle.
The depth of G is the maximal local depth.

Computer simulation supports the conjecture that the depths of graphs
D(k,K) and DT (k,K) are the same. It is known that the depth of D(k,K)
is at least [(k + 3)/2].

Let us rename the coordinates of points and lines of DT (k,K) with one
variable index i accordingly to the lexicographical order on roots of Ã1. So we
have point (x1, x2, . . . , xk−m) and line [y1, y2, . . . , yk−m] of linguistic graph.

We take the "symbolic" line [y1, y2, . . . , yk−m] of this graph and consider the
infinite graph DT (k,K[y1, y2, . . . , yk−m]). We use the presented above technique
to associate with this graph the polynomial transformations acting on K, but
slightly modify the procedure.

Let Γ (n,K), n = k −m be one of the graphs DT (k,K). The graph Γ (n,K)
has so-called linguistic colouring ρ of the set of vertices. We assume that
ρ(x1, x2, . . . , xn) = x1 for the vertex x (point or line) given by the tuple with
coordinates x1, x2, . . . , xn. We refer to x1 from K as the colour of vertex x.

Recall that Na and Ja are operators of taking the neighbour with colour a
and jump operator changing the original colour of point or line to a new colour
a from K.

Let [y1, y2, . . . , yn] be the line y of Γ (n,K[y1, y2, . . . , yn]) and (α(1), α(2), . . . ,
α(t)) and (β(1), β(2), . . . , β(t)) are the sequences of colours from K[y1] of length
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at least 2. We consider the sequence 0v = y, 1v = Jα(1)(
0v), 2v = Nβ(1)(

1v), 3v =
Nα(2)(

2v), 4v = Nβ(2)(
3v), 5v = Nα(3)(

4v), . . . , 2t−2v = Nβ(t−1)(
2t−3v), 2t−1v =

Nα(t)(
2t−2v), 2tv = Jβ(t)(

2t−1v).
Assume that v = 2tv = [v1, v2, . . . , vn] where vi are from K[y1, y2, . . . , yn]. We

consider the polynomial transformation g(α(1), α(2), . . . , α(t), β(1), β(2), . . . , β(t)),
t ≥ 2 of affine spaceKn of kind y1 → y1+β(t), y2 → v2(y1, y2), y3 → v3(y1, y2, y3),
. . . , yn → vn(y1, y2, . . . , yn).

It is easy to see that g(α(1), α(2), . . . , α(t), β(1), β(2), . . . , β(t)) · g(γ(1), γ(2),
. . . , γ(s), σ(1), σ(2), . . . , σ(t)) = g(α(1), α(2), . . . , α(t), γ(1)(β(t)), γ(2)(β(t)), . . . ,
γ(s)(β(t)), β(1), β(2), . . . , β(s), σ(1)(β(t)), σ(2)(β(t)), . . . , σ(s)(β(t)).

The following statements are formulated in [1] in the case of graph D(k,K),
but they hold for arbitrary graph DT (k,K):

Proposition 2. Transformations of kind g = g(α(1), α(2), . . . , α(t), β(1),
β(2), . . . , β(t)), t ≥ 2 generate a semigroup S(Γ (n,K)) of transformations of
Kn.

Lemma 1. The degree of transformation g of Proposition 2 is at least deg(α(1))+
deg(α(1) − α(2)) + deg(α(2) − α(3)) + . . . + deg(α(t − 1) − α(t)) + deg(β(1)) +
(deg(β(1)− β(2)) + deg(β(2)− β(3)) + . . .+ deg(β(t− 2)− β(t− 1)).

Lemma 2. Transformation g as in Proposition 2 is bijective if and only if
β(t)(x) = a has a unique solution for each a from K.

Proposition 3. Transformations of kind ng = g(α(1), α(2), . . . , α(t), β(1), β(2),
. . . , β(t)), t ≥ 2 such that deg(α(i)) = 0 and β(i) = y1 + c(i), c(i) ∈ K, i =
1, 2, . . . , t generate a subgroup 2G(Γ (n,K)) of transformation of maximal degree
2.

Remark 2. The inverse element of ng = g(α(1), α(2), . . . , α(t), β(1), β(2), . . . ,
β(α(t))), t ≥ 2, as in Proposition 2, can be written as ng(α(t), α(t−1), . . . , α(1), β(t−
1)(β(t)−1), β(t− 2)(β(t)−1), . . . , β(1)(β(t)−1), β(t)−1).

Remark 3. In the case of two quadratic transformations of Kn of "general posi-
tion", their composition will have degree 4.

We associate with the sequence α(1), α(2), . . . , α(t), β(1), β(2), . . . , β(t − 1) of
Proposition 3 and β∗(t) = f(y1, y2, . . . , yn) of degree 2 another quadratic trans-
formation h = H(α(1), α(2), . . . , α(t), β(1), β(2), . . . , β(t−1), β∗(t)), constructed
via the sequence of vertices 0v = y, 1v = Jα(1)(

0v), 2v = Nβ(1)(
1v), 3v = Nα(2)(

2v), 4v =
Nβ(2)(

3v), 5v = Nα(3)(
4v), . . . , 2t−2v = Nβ(t−1)(

2t−3v), 2t−1v = Nα(t)(
2t−2v). We

compute 2tv = Jβ∗(t)(
2t−1v) = v and define h as the quadratic map yi → vi,

i = 1, 2, . . . , n.

Theorem 1. Let K be the finite field Fq, q = 2r, r > 1. Then transformation
h = h(α(1), α(2), . . . , α(t), β(1), β(2), . . . , β∗(t)) for which deg α(i) = 0, i =
1, 2, . . . , t, β(i) = y1 + c(i), c(i) ∈ K, i = 1, 2, . . . , t − 1 and β∗(t) = (y1)

2 is a
bijective quadratic transformation of the vector space (Fq)

n, and the polynomial
degree of its inverse transformation is at least 2r−1.
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We use the modifications of transformation Theorem 1 for the construction of
another quadratic public keys.

Let us consider the transformation h∗ = H∗(α(1), α(2), . . . , α(t−1), β(1), β(2),
. . . , β(l−1), α∗(l)) where degree β(i) = 0 for i = 1, 2, . . . , t−1 and α = y1+ c(i)
for i = 1, 2, . . . , t−1, with α∗(t) an element of K[y1, y2, . . . , yn] of degree at most
2, constructed via the sequence of vertices:

0v = y, 1v = Jα(1)(
0v), 2v = Nβ(1)(

1v), 3v = Nα(2)(
2v), 4v = Nβ(2)(

3v), 5v =
Nα(3)(

4v), . . . , 2t−2v = Nβ(t−1)(
2t−3v), 2t−1v = Jα∗(t)(

2t−2v) = (f1, f2, . . . , fn).
We define h∗ as the quadratic map yi → fi, i = 1, 2, . . . , n. Noteworthy that

the walk with two jumps is taken on the graph defined over K[y1, y2, . . . , yn], [y1,
y2, . . . , yn] is starting line of the walk and (f1, f2, . . . , fn).

2.1 Algorithm 1: Key Generation and Decryption

Key Generation Procedure. Alice selects a commutative ring K with unity
and K∗ of order greater than 2, together with parameters k and m. She selects
T = {j(1), j(2), . . . , j(m)} and works with the graph DT (k,K). Let us assume
that j(1) > 3.

Alice selects two transformations L1 and L2 from the group AGLn(K). She
takes t = O(n), 2 < t < [(n+ 3)/2], and selects the parameters α1 = c(0) + y1,
α2 = α1+d(1), . . ., α3 = α2+d(2), . . ., αt−1 = αt−2+d(t−1) where parameters
d(i) are elements of K∗, and β1 = c(1), β2 = c(2), . . ., βt−1 = c(t − 1) where
elements c(1)− c(2), c(2)− c(3), . . ., c(t− 2)− c(t− 1) are elements of K∗. Alice
forms α(t)∗ as a polynomial of the kind

d((d′y1 + λ)r +
∑

i=2,3,...,i(1)−1

ai([α1, y1, y2, . . . , yn])µi + µ)

where d ∈ K∗, d′ ∈ K∗, r = 2 if the order of K = Fq is a finite field
of characteristic 2d, r = 1 in other cases, and elements λ, µi, and µ can be
arbitrary elements from K. She has to select β∗ as a nontrivial multivariate
polynomial of degree 2.

Alice uses the transformation h∗ = H(α(1), α(2), . . . , α(t−1), β(1), β(2), . . . ,
β(t−1), α∗(t)) and computes the standard form ofG = L1H

∗(α(1), α(2), . . . , α(t−
1),
β(1), β(2), . . . , β(t− 1), α∗(t))L2 of the kind:

y1 → g1(y1, y2, . . . , yn), y2 → g2(y1, y2, . . . , yn), . . . , yn → gn(y1, y2, . . . , yn)

Alice sends the multivariate polynomials gi to Bob via the open channel. He
will use it to encrypt the plaintext from Kn.

Private Decryption Procedure. Let us assume that Alice gets the ci-
phertext c from Bob. At the beginning, Alice forms the intermediate tuple
L1(p) = [y1, y2, . . . , yn] and treats its coordinates as variables yi.

She computes the vector b = (L2)
−1(c) = (b1, b2, . . . , bn).

She forms the tuple (β(t − 1), b2, b3, . . . , bn) = u and computes invariants
ai(u) for i = 2, 3, . . . , i(1)− 1.
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Alice computes
∑
i=2,3,...,i(1)−1 ai(u)µi + µ = t(2), which coincide with∑

i=2,3,...,i(1)−1 ai([α2, y2, y3, . . . , yn])µi + µ), respectively.
She solves d((d′y1 + t(1))r + t(2) = b1 for y1 and gets the solution y1 = y∗1 .
She computes α∗(i) for i = 1, 2, . . . , t− 1.
Alice computes Nα∗(t−1)(u) = 1u, Nβ(t−2)(1u) = 2u, Nα∗(t−2)(

2u) = 3u,
Nβ(t−3)(

3u) = 4u, . . ., Nβ∗(1)(
2t−4u) = 2t−3u, Nα∗(1) = (α(1), y∗2 , y

∗
3 , . . . , y

∗
n). So

Alice changes the firs coordinates for
y1
∗ and gets the intermediate tuple [y1, y2, . . . , yn] = [y∗1 , y

∗
2 , . . . , y

∗
n] = y∗.

Finally she computes the plaintext [p] as (L1)
−1(y∗).

3 Special Endomorphisms of K[x1, x2, . . . , xn] and
Cryptosystems of Post Quantum Cryptography

3.1 Some Definitions

Affine Cremona Semigroup nCS(K) is defined as the endomorphism group of the
polynomial ring K[x1, x2, . . . , xn] over the commutative ring K. It is an impor-
tant Cremona object of Algebraic Geometry (see Max Noether’s paper [32] about
the Mathematics of Luigi Cremona, who was a prominent figure in Algebraic Ge-
ometry in the XIX century [33] and further references on papers which use the
term affine Cremona group). An element of the semigroup σ can be given via its
values on variables, i.e., as the rule xi → fi(x1, x2, . . . , xn), i = 1, 2, . . . , n. This
rule induces the map σ′: (a1, a2, . . . , an)→ (f1(a1, a2, . . . , an), f2(a1, a2, . . . , an),
. . . , fn(a1, a2, . . . , an)) on the free moduleKn. Automorphisms ofK[x1, x2, . . . , xn]
form the affine Cremona Group nCG(K).

Let nES(K) stand for the semigroup of all endomorphisms ofK[x1, x2, . . . , xn]
of the kind

x1 → µ1x
a(1,1)
1 x

a(1,2)
2 . . . xa(1,n)n ,

x2 → µ2x
a(2,1)
1 x

a(2,2)
2 . . . xa(2,n)n ,

...

xn → µnx
a(n,1)
1 x

a(n,2)
2 . . . xa(n,n)n ,

where K is a finite commutative ring with the multiplicative group K∗ of reg-
ular elements (nonzero divisors) of the ring. a(i, j) are elements of the arithmetic
ring Zd, d = |K∗|, µi ∈ K∗.

We consider the natural action of the Eulerian semigroup nES(K) on the
set nE(K) = (K∗)n. Let nEG(K) stand for the Eulerian group of invertible
transformations from nES(K). They act as bijective maps on the variety (K∗)n.

We can use the following method of generating invertible elements. Let π and
δ be two permutations on the set {1, 2, . . . , n}. Let us consider a transformation
of (K∗)n, d = |K∗| (the most important cases are K = Zm or K = Fq). We
define the transformation AJG(π, δ), where A is a triangular matrix with positive
integer entries 0 ≤ a(i, j) ≤ d, i ≥ j, defined by the following closed formula:
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yπ(1) = µ1x
a(1,1)
δ(1) ,

yπ(2) = µ2x
a(2,1)
δ(1) x

a(2,2)
δ(2) ,

...

yπ(n) = µnx
a(n,1)
δ(1) x

a(n,2)
δ(2) . . . x

a(n,n)
δ(n) ,

where (a(1, 1), d) = 1, (a(2, 2), d) = 1, . . ., (a(n, n), d) = 1.
We refer to AJG(π, δ) as a Jordan-Gauss multiplicative transformation or

simply a JG element. It is an invertible element of nES(K) with the inverse of
the kind BJG(δ, π) such that a(i, i)b(i, i) = 1 mod d. Notice that in the case
K = Zm, the straightforward process of computation of the inverse of the JG
element is connected with the factorization problem of the integer m.

3.2 Some Algorithms

Alice can generate the element J as a product of several Jordan-Gauss transfor-
mations. The simplest case, in the spirit of LU factorization, is the composition
of lower and upper triangular transformations. The cryptosystem involves the
following procedure:

Alice can select several Jordan-Gauss transformations J1, J2, . . . , Jd, d > 1
from mEG(K) and compute their product J . One option is to send J to the
public user Bob. It seems that the security of such a cryptosystem depends on
the choice of the commutative ring K (see [34]).

We suggest the following use of J as a public rule. The public user works
with the space of plaintexts (K∗)m.

The idea of using a polynomial map F of bounded degree with the trapdoor
accelerator T is used in [34] for the construction of a multivariate public key
in the case of special rings K = Fq and K = Zq. These schemes use a cubic
endomorphism F of K[x1, x2, . . . , xn] with the trapdoor accelerator T defined in
terms of graphs D(n,K) (or their homomorphic images A(n,K)). We suggest
the following modification of these algorithms.

3.3 Multivariate Public Key of Unbounded Degree

Alice selects a finite commutative ring K with unity.
She takes parameters m and k such that n = m− k. Alice selects the graph

DT (m,K) such that T contains k elements. She chooses affine transformations L1

and L2 from AGLn(K). She forms α(1), α(2), . . . , α(t− 1), β(1), β(2), . . . , β(t−
1), α∗(t) as in Algorithm 1 of Section 2. Alice uses the transformation G =
L1H

∗(α(1), α(2), . . . , α(t− 1), β(1), β(2), . . . , β(t− 1), α∗(t))L2.
Alice takes a positive integer d = O(1), d > 2, and selects Jordan-Gauss

multiplicative transformations J1, J2, . . . , Jd of K[x1, x2, . . . , xn]. She computes
their inverses J−1j and the composition J = J1J2 . . . Jd.
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She computes the standard form F of JG, which has a linear degree O(n)
and density O(n3). Alice sends F to the public user Bob.

Correspondents Alice and Bob use the variety (K∗)n as the space of plaintexts
and a free module Kn as the space of ciphertexts. Bob writes the plaintext p =
(p1, p2, . . . , pn) in the alphabet K∗. He sends the ciphertext c = F (p) to Alice.
( Alice computes u = G−1(c) according to her private decryption procedure of
Algorithm 1. Noteworthy is that u is an element of (K∗)n.

Alice computes consecutively:

du = Jd(u),
d−1u = Jd−1(

du),

. . . ,
1u = J1(

2u) = p.

The suggested multivariate rule of unbounded degree is pseudo cubic,i. e. The
complexity of encryption procedure for public user is O(n4) like in the case of
cubic multivariate rule. Note that in the cases of examples [4], [5] the procedure
to encrypt costs O(n5).

4 Description of the implementation in the case of
D(n, q).

After the renumeration of indexes of points and lines, we can assume that the
point (p) = (p1, p2, . . . , pn) is incident with the line [l] = [l1, l2, . . . , ln], if the
following relations between their coordinates hold:

l2 − p2 = l1p1, l3 − p3 = l2p1, l4 − p4 = l1p2, li − pi = l1pi−2,

li+1 − pi+1 = li−1p1, li+2 − pi+2 = lip1, li+3 − pi+3 = l1pi+1 where i ≥ 5.

Let us denote G as G(n, l,K) in the case when the sequence of colors b(1), b(2),
. . . , b(l) has length l. We present the time of generation (in ms) of element
G = G(n, l,K) and the total numberM(G) of monomial terms in all gi. We refer
to parameter l as the length of the word. For simplicity, subset J was always
selected as a singleton. We can see the "condensed matters physics" digital effect.
If t is "sufficiently large", then M(g) is independent of the constant t (c).

We have written a program for generating elements and for encrypting a text
using the generated public key. The program is written in SAGE. We used an
MacBook with a Intel Core 1,2 GHz processor, 8GB RAM, and the WmaxOS
Sieerra operating system. We have implemented three cases: 1. L1 and L2 are
identities, 2. L1 and L2 are maps of the kind z1 → z1 + a2z2 + a3z3 + · · ·+ atzt,
z2 → z2, z3 → z3, . . . , zn → zn, with ai 6= 0, i = 1, 2, . . . , n (linear time of
computing for L1 and L2), 3. L1 = Ax+ b, L2 = A1x+ b1; matrices A, A1 and
vectors b, b1 mostly have nonzero elements.

Tables 2, 4 and 6 present the generation time of the public key in the first case
mentioned above. In Tables 1, 3 and 5, we describe the numbers of monomials
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in case 1 for different sizes of the field. In Tables 7, 9 and 11, we describe the
numbers of monomials in case 2 for different sizes of the field. Tables 8, 10 and
12 present the time of generation of multivariate rules in case 2. The number of
monomial terms in the third case is given in Tables 13, 15, and 17. Tables 14,
16, and 18 present the generation time of the public rules in the third case.

A similar program was designed for the case when K is a Boolean ring Bm
of size 2m. Currently, we are expanding this computer package to the case of
commutative rings Zm, where m is a power of 2.

Table 1. Number of coefficients, field of size 28, Case 1.

Vector size
Pass length 16 32 64 128

15 123 425 1204 2740
31 123 439 1625 4716
63 123 439 1626 6364
127 122 439 1647 6367

Table 2. Time (ms), field of size 28, Case 1.

Vector size
Pass length 16 32 64 128

15 10 10 12 40
31 5 13 38 113
63 8 30 95 320
127 22 61 197 826

Table 3. Number of coefficients, field of size 212, Case 1.

Vector size
Pass length 16 32 64 128

15 123 436 1204 2740
31 123 439 1644 4716
63 123 439 1647 6364
127 123 439 1647 6367
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Table 4. Time (ms), field of size 212, Case 1.

Vector size
Pass length 16 32 64 128

15 13 11 16 39
31 7 19 55 141
63 11 42 132 469
127 24 87 295 1167

Table 5. Number of coefficients, field of size 216, Case 1.

Vector size
Pass length 16 32 64 128

15 123 436 1204 2740
31 123 439 1644 4716
63 123 439 1647 6364
127 123 439 1647 6367

Table 6. Time (ms), field of size 216, Case 1.

Vector size
Pass length 16 32 64 128

15 10 15 22 52
31 9 24 80 174
63 15 58 176 679
127 34 107 407 1682

Table 7. Number of coefficients, field of size 28, Case 2.

Vector size
Pass length 16 32 64 128

15 783 4828 26174 120959
31 782 4833 32940 192050
63 782 4831 32951 240840
127 781 4832 32930 240840
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Table 8. Time (ms), field of size 28, Case 2.

Vector size
Pass length 16 32 64 128

15 76 112 531 3349
31 39 288 1749 10793
63 101 630 4520 37036
127 164 1277 10073 100360

Table 9. Number of coefficients, field of size 212, Case 2.

Vector size
Pass length 16 32 64 128

15 783 4832 26189 121132
31 783 4835 32967 192157
63 783 4835 32968 241034
127 783 4835 32967 241036

Table 10. Time (ms), field of size 212, Case 2.

Vector size
Pass length 16 32 64 128

15 69 211 1047 8146
31 89 565 4748 28555
63 153 1209 13501 79965
127 380 2482 29101 212006

Table 11. Number of coefficients, field of size 216, Case 2.

Vector size
Pass length 16 32 64 128

15 783 4832 26192 121135
31 783 4835 32968 192168
63 783 4835 32971 241046
127 783 4835 32971 241051
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Table 12. Time (ms), field of size 216, Case 2.

Vector size
Pass length 16 32 64 128

15 94 345 1761 9652
31 111 1102 5778 32550
63 233 1880 15304 109038
127 520 4104 33386 277744

Table 13. Number of coefficients, field of size 28, Case 3.

Vector size
Pass length 16 32 64 128

15 2439 17887 136749 1069013
31 2443 17885 136760 1069129
63 2442 17885 136725 1069034
127 2434 17884 136768 1069097

Table 14. Time (ms), field of size 28, Case 3.

Vector size
Pass length 16 32 64 128

15 84 686 9342 212812
31 113 1131 14193 210437
63 176 1601 20020 256831
127 312 2760 31016 378571

Table 15. Number of coefficients, field of size 212, Case 3.

Vector size
Pass length 16 32 64 128

15 2447 17948 137240 1073017
31 2448 17945 137247 1073002
63 2448 17949 137249 1072985
127 2448 17946 137254 1073007
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Table 16. Time (ms), field of size 212, Case 3.

Vector size
Pass length 16 32 64 128

15 160 1519 22812 343487
31 181 2326 30212 376482
63 332 3413 34633 464977
127 576 6319 51722 663752

Table 17. Number of coefficients, field of size 216, Case 3.

Vector size
Pass length 16 32 64 128

15 2448 17952 137276 1073256
31 2448 17952 137277 1073261
63 2448 17952 137280 1073261
127 2448 17952 137280 1073266

Table 18. Time (ms), field of size 216, Case 3.

Vector size
Pass length 16 32 64 128

15 244 1843 24884 430393
31 297 2722 32053 497491
63 456 4249 44661 622781
127 815 7425 71509 883939

We recommend cases 2 and 3 for practical use in cryptographic applications.
Presented above results can be used for the evaluation of pseudo-cubic multi-

variate public keys presented in the Section 3. The encryptioon pseudo-cubic map
JG has the same number of monomial terms with the quadratic map G. These
numbers are reflected in tables 7, 9 and 11 (case 2, fields of order 28, 212, 216 and
tables 13, 15 and 17 (case 3).

The encryption time of single plaintext p is proportional to number of mono-
mial terms. In the case of JG we can simply multiply time of computation of
the value of single monomial term on p and number of monomial terms.

5 Conclusion

Multivariate Cryptography in the broad sense involves the construction and in-
vestigation of public keys in the form of a nonlinear multivariate rule defined over
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some finite commutative ring K. This rule F must be written as a transforma-
tion xi → fi, i = 1, 2, . . . , n, where fi ∈ K[x1, x2, . . . , xn] over the commutative
ring K. A bijective F can be used for the encryption of tuples (plaintexts) from
the affine space Kn. Multivariate rules can also serve as instruments for creat-
ing digital signatures. In the case of a bijective transformation, the decryption
process can be thought of as the application of the inverse rule G. The degree
of G can be defined as the maximum of the degrees of the polynomials G(xi),
i = 1, 2, . . . , n. For the public use of F as an efficient and secure instrument,
its degree must be bounded by some constant c (traditionally c = 2), but the
polynomial degree of the inverse G should be high.

The key owner (Alice) is supposed to have some additional piece S of private
information about the pair (F,G) to decrypt ciphertext obtained from the public
user (Bob). Recall that the family Fn, n = 2, 3, . . . from K[x1, x2, . . . , xn] has a
trapdoor accelerator nS if the knowledge of the piece of information nS allows
one to compute the preimage x of y = Fn(x) from Kn in time O(n2). Of course,
the concept of a trapdoor accelerator is just an instrument to search for practical
trapdoor functions. As you know, the existence of theoretical trapdoor functions
is just a conjecture. In fact, it is closely connected to the Main Conjecture of
Cryptography about the fact that P 6= NP .

Without the knowledge of Sn, one has to solve a nonlinear system of equa-
tions, which is generally an NP-hard problem. Finding the inverse for Fn is an
NP-hard problem if these maps are in so-called "general position". In the case
of specific maps, additional argumentation of the complexity to find inverses Gn
can be useful.

We present such heuristic arguments in the case of DT (n,K)-based encryp-
tion defined for an arbitrary commutative ring K with unity and at least 3
elements, as presented in the previous section. Subset T can be viewed as part
of the corresponding trapdoor accelerator nS.

Graphs DT (n,K) have partition sets Kn (set of points and set of lines), and
the incidence relation between points and lines is given by a system of linear
equations over K.

To define the trapdoor accelerator for standard forms Fn, n = 2, 3, . . ., we
use special walks on graphs DT (n,K) and DT (n,K[x1, x2, . . . , xn]). The con-
structed map Fn acts on the selected partition set Kn. In the case of trivial
affine transformations L1 and L2, the relation Fn(x) = y for x = (x1, x2, . . . , xn)
and y = (y1, y2, . . . , yn) implies that vertices x and y are joined in the graph
DT (n,K) by a path of length > cn, where c is a positive constant.

Finding the path will give us the trapdoor accelerator for the computation
of preimages. This can be done by Dijkstra’s algorithm of complexity O(v ln(v))
where v is the order of the graph. It could not be done in polynomial time
because v = 2|K|n and |K| ≥ 3. Noteworthy is that the usage of nontrivial L1

and L2 will complicate the cryptanalysis.
It is also noteworthy that any nonlinear system of multivariate equations of

constant degree d over a finite field can be rewritten as a quadratic system with
extra variables.



On the Jordan-Gauss graphs and new multivariate public keys 19

Studies of quadratic multivariate public rules over finite rings with zero di-
visors is an interesting task for cryptanalysts. Arithmetic rings modulo 2s are
an important practical task because several natural alphabets for the presenta-
tion of files in informatics have sizes that are powers of 2. We are looking for a
"K-theory of multivariate cryptography" and presenting the public rule defined
over a general finite commutative ring with unity.

We believe that studies of multivariate public rules of polynomial degree in
variable n and polynomial density are also an interesting area of research.

Thus, we present a new cryptosystem from this area, obtained via the com-
position of an Eulerian map of unbounded degree O(n) with the constructed
quadratic endomorphism of K[x1, x2, . . . , xn] with the trapdoor accelerator.
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