
Towards Explainable Side-Channel Leakage:
Unveiling the Secrets of Microarchitecture

Ischa Stork1, Vipul Arora1, Łukasz Chmielewski2, Ileana Buhan3

1Riscure B.V., The Netherlands, emails: {stork,arora}@riscure.com.
2Masaryk University, Czech Republic, email: chmiel@fi.muni.cz.

3Radboud University, The Netherlands, email: ileana.buhan@ru.nl.

Abstract
We explore the use of microbenchmarks, small assembly code snippets, to detect
microarchitectural side-channel leakage in CPU implementations. Specifically, we
investigate the effectiveness of microbenchmarks in diagnosing the predisposition
to side-channel leaks in two commonly used RISC-V cores: Picorv32 and Ibex. We
propose a new framework that involves diagnosing side-channel leaks, identifying
leakage points, and constructing leakage profiles to understand the underlying
causes. We apply our framework to several realistic case studies that test our
framework for explaining side-channel leaks and showcase the subtle interaction
of data via order-reducing leaks.

Keywords: Side-Channel Analysis, RiscV, Microarchitecture, Microbenchmarks

1 Introduction
A cryptographic implementation leaks information through side channels [1] when
its hardware trace depends on input data [2]. Masking, a popular countermeasure to
prevent side-channel attacks, is challenging to implement correctly. The independent
leakage assumption [3] can simplify the analysis of masked cryptographic implementa-
tions however, this assumption has important limitations. For example, in a pipelined
architecture, hidden registers1 between the different pipeline stages will store the re-
sults of the execution of each stage so that the next stage can read them. Sensitive
data may interact through hidden registers, creating unexpected leaks [4, 5].

1Hidden registers cannot be referenced externally but are implicitly used while processing data, causing
unexpected interactions.

1

Figure 1: Microbenchmarks test the presence of undocumented components (1). A code snip-
pet that tests the presence of the component is created (2). The microbenchmark is executed,
triggering (3) a specific part of the hardware while we measure side-channel traces (4). We
analyze the collected traces (5) for evidence regarding the presence of the undocumented com-
ponent.

Leaks that induce a gap between formal security proofs and practical resilience are
called order-reducing [6]. An important source of order-reducing leaks is the microar-
chitecture [7, 8]. Performance optimizations such as pipelining, out-of-order execution,
and speculative execution, necessary for modern computers’ performance demands,
are part of the microarchitecture. As optimization choices significantly affect the fi-
nal product’s performance, the microarchitecture is considered a trade secret, and its
specifications are typically unavailable in the public domain.

There are two approaches to capturing side-channel leakage effects resulting from
the microarchitecture. The first is experimental and involves using leakage simulation,
which generates side-channel measurements from a sequence of instructions using a
leakage model. Leakage simulation is device-specific, meaning that traces produced by
simulators match the traces obtained from the device using an oscilloscope. The accu-
racy of the match between the generated and measured traces depends on the quality
of the leakage model. However, developing a realistic leakage model that accurately
represents the interaction of intermediate values caused by hidden storage elements
requires significant effort. Open-source leakage simulators are available for ATMega
and ARM architectures [9].

The second approach is formal and uses the d-probing security model [10], where an
attacker is assumed to have access to a set of probes that allow observing the device’s
internal states during operation. Traditionally used to verify masked hardware imple-
mentations, recent developments describe new probes, which model microarchitecture
effects and allow the verification of masked software implementations. An open-source
tool that models an ARM architecture [11] allows a developer to make formal state-
ments about the security of a cryptographic implementation. By choosing different
types of probes, the developer can enable the verification of different microarchitecture

2

effects. While effective, the two approaches above apply to a subset of ARM archi-
tectures (ARM Cortex M0/M3). For microcontrollers with a RISC-V architecture, no
solution allows the (partial) verification of a cryptographic implementation.

Microbenchmarks [8] are a relatively new method for identifying order-reducing
leaks, such as subtle transition leaks. These benchmarks consist of small instructions to
detect how operands interact during processing. Microbenchmarks are general because
the code can be applied to any device; however, the output is device-specific, as are
the hardware components that cause order-reducing leaks. While the authors of [8]
focus on documenting microarchitecture effects, they do not delve into exploiting or
developing countermeasures based on leakage effects.
Our Contribution. We demonstrate the practical application of microbenchmarks
in characterizing side-channel leaks. Specifically, we propose a real-world use for
microbenchmarks, showcasing their effectiveness in identifying and understanding po-
tential vulnerabilities that can be exploited. We propose Diagnose-Identify-Explain,
a framework to explain the origin of order-reducing leaks. Diagnosis is the most
effort-intensive step, and we use microbenchmarks to examine the source of order-
reducing leaks. In the identify step, we examine the predisposition to side-channel
leaks for two open-source RISC-V cores, consolidating meaningful findings from the
literature [6, 8, 12]. In the final step, explain, we present a quantitative and qualita-
tive analysis of several realistic case studies that test our framework for explaining
side-channel leaks and showcase the subtle interaction of data via order-reducing leaks.
Results reproducibility. During this project, we used open-source cores and algo-
rithms. The dataset collected during this project is large (700GB), which unfortunately
limits its open-source release. We will publish all simulation results and the code we
created for labeling the traces upon acceptance.

2 Related work
We discuss state-of-the-art work on pre and post-silicon verification as we perform
side-channel attacks on cryptographic implementations using traces collected from
two RISC-V cores. We use the design information to trace signals and label execution
traces (diagnosis and identification).
Pre-silicon hardening of masked circuits. Several approaches have been devel-
oped to eliminate leaks during the pre-silicon phase. These approaches can be roughly
divided based on which device layer or development phase they aim to harden. De
Mulder et al. [13] proposed a solution to protect an AES implementation against side
channel leakage related to memory accesses on a RISC-V core. Gigerl et al. [12] intro-
duced COCO, a tool that can detect gate-level leakage by simulating execution with
Verilator. They annotate the registers and memory that hold secret data and trace
their flow through the circuit to find possible sources of leakage. Arsath et al. [14]
developed a framework that analyzes the RTL description of a processor and reports
the information leakage in each of the processor modules. He et al. [15] estimate the
power profile of a hardware design using functional simulation at the RTL level. Gao
et al. [16] designed and implemented an ISE (Instruction Set Extension) called FENL
that localizes and reduces microarchitectural leakage. The ISE acts as a leakage fence

3

that prevents interaction between instructions. A similar approach is taken by Pham
et al. [17], which combines a diversified ISE with hardware diversification through
a co-processor to achieve leakage mitigation. Bloem et al. [6] extended the concept
of hardware-software contracts to power-side channels and formally verified a wide
range of instructions for implementing cryptographic algorithms for the RISC-V Ibex
core. ACA [18] uses a gate-level model for a target design, typically available after
logic synthesis and a side-channel leakage model. Kiaei and Schaumont proposed Root
Canal [19], a framework that helps a designer with white-box access to the embed-
ded CPU system uncover the origin of a side-channel leak. Root Canal can eliminate
side-channel leaks before tape-out.
Post-silicon verification of side-channel leaks. Papagiannopoulos et al. [7] were
among the first to discuss order-reducing leaks which breached the independent leak-
age assumption. De Meyer et al. [20] continue their work and show the existence of
other microarchitecture leakage effects. McCann et al. [21] introduced ELMO, an ARM
Cortex M0 leakage simulator. ELMO models power consumption as a linear combina-
tion of values and transitions. Shelton et al. [22] improve the leakage model in ELMO
by capturing multiple cycles’ interactions. They also define small code sequences that
can identify effects that happen many cycles apart. Shelton et al. [23] further improve
upon previous work by detecting high-order leaks. Arora et al. [24] analyze the in-
fluence of the microarchitecture on side-channel leakage and confirm that differences
in the microarchitecture cause different leakages. Gao et al. [4] reverse engineer the
microarchitectural implementation of a commercial ARM Cortex-M3 microprocessor,
and Oleksenko et al. [2] propose a testing framework, Revisor, to detect microarchi-
tectural information leakage in commercial black-box CPUs. Revisor tests compliance
with violations of speculative contracts. Marshall et al. [8] propose MIRACLE, a com-
prehensive and generic set of microbenchmarks, but does not examine their application
in the context of side-channel attacks. Grandmaison et al. [25] use the RTL of an Arm
Cortex M3 to verify a cryptographic implementation with a microarchitectural model
formally. Gaspoz et al. [26] give necessary conditions for masked implementation to
be first-order secure in scalar microarchitectures. Buhan et al. [9] provides a compre-
hensive description of tools that can be used to automate the creation of side-channel
resilient implementations.

3 Preliminaries
RISC-V is an open-source ISA established on the principles of RISC design. RISC-V is
a LOAD/STORE architecture, which means that there are specific instructions to interface
with memory, making it impossible to directly access memory when, for example,
executing an add instruction. As a result, the design of RISC-V is highly modular:
a CPU designer can pick one of the various base ISAs to implement, depending on
requirements and hardware support. Optional extensions can be added to the CPU
design for auxiliary functionality. For example, the Multiplication extension provides
integer multiplication and division through the MUL and DIV instructions, respectively.
Similarly, extensions exist that enable compressed instructions (C), bit operations
(B), and vector operations (V). The open nature of the architecture has led to many

4

contributions, resulting in a comprehensive platform that includes several publicly
available RISC-V core implementations and a well-maintained toolchain2.

In this work, we evaluate two open-source designs regarding side-channel leakage.
All programs are compiled and linked using the aforementioned toolchain. We use the
RV32I base of RISC-V, which has 32 fast storage registers. Each register can hold 32
bits of information. Following the RISC-V calling conventions, eight of these registers
(referred to as a0 - a7) can be used to pass arguments to functions, where a0 and
a1 are also used to pass back return values. x0 is a special register hardwired to zero
and is prevalent in many pseudo-instructions. The binary encoding of an operation is
referred to as its instruction format. RISC-V has six core instruction formats, which
determine how instruction processes data. Each format accommodates certain types
of instructions: register-register ALU instructions (R), ALU and load immediate in-
structions (I), store, comparison, and branch instructions (S/B), and finally, jump
and link instructions (U/J).
Anatomy of a microbenchmark Microbenchmarks use side-channel information
to determine undocumented features of the microarchitecture, as shown in Figure 1.
The first step is to make a hypothesis about the microarchitecture implementation.
For example, consecutive memory accesses interact via a hidden register. This effect
may occur one or many cycles apart as memory access instructions may be separated
by non-memory related instructions (e.g., arithmetic instructions). Our working hy-
pothesis for this example is that there is a hidden state in the memory access path for
ldr instructions.

1 l d r rA , [rC , #0]
2 xor rE , rE , rE
3 l d r rB , [rD , #0]

Listing 1: LD_LD: triggers hamming distance leakage of the values loaded from
memory locations rC and rD.

Next, we create (or use an existing) microbenchmark to test the existence of a
hidden register. Listing 1 loads two intermediate values in the memory from the ad-
dresses specified in registers rC and rD. Since rC and rD refer to different registers, we
do not expect interaction between the values loaded from the two registers. However,
the loaded values will interact if a state (e.g., register) exists in the memory path. We
repeat the execution of the microbenchmark, varying the values loaded from the two
registers while measuring the power consumption. If there is an interaction, we will
observe evidence of this interaction when analyzing the power traces. For example,
we can look at the correlation between the values of these two registers and the mea-
sured power traces. Marshall et al. [8] created a set of microbenchmarks that target
six microarchitecture optimization features related to an embedded CPU’s pipeline
and memory subsystems. An appealing feature of the proposed microbenchmarks is
that these are generic, meaning that can they can be run on different architectures.
We list the existing microbenchmarks in Table 1.
Key rank estimate is a commonly used metric in SCA for assessing the performance
of an attack. It is performed in a known key scenario and returns the rank of the

2https://github.com/riscv-collab/riscv-gnu-toolchain

5

https://github.com/riscv-collab/riscv-gnu-toolchain

correct key candidate in the sorted score vector of all key candidates. The key rank
estimate is related to the success rate curve [27], which shows the evolution of the
correct key candidate as more traces are added. There are two differences compared
to the success rate: first, key ranking is performed on a fixed set of traces, whereas
the success rate is performed on a variable set of traces to capture the evolution of
the correct key candidate; second, key ranking can be performed for all samples in the
trace, whereas the success rate is typically shown for one sample. The result of the key
rank estimate is affected by the number of traces used for analysis. If leaks are present,
the correct key rank converges towards the first position as more traces are added.

4 Step 1: Diagnosis of predisposition to side-channel
leaks

All experiments are run on two RISC-V cores: Picorv323 and Ibex4. We chose them
because they are relatively small, uncomplicated, well-documented, and support the
same RISC-V ABI. Additionally, both cores have already played a significant role in
academic research, meaning any (interesting) findings can be related to and corrob-
orated. In the following two sections, we discuss the high-level design for both cores
and the integration into their respective SoCs.
Picorv32 is a multicycle RISC-V core that implements the RV32(I/E) bases and
supports the Multiplication/division and Compressed instructions extensions. The
core is size-optimized but is still configurable by setting certain Verilog parameters
that alter the core’s behavior. The core is synthesized with the barrel shifter and a
dual-port register bank to shorten the computation time and, thereby, the number of
samples in the power traces. The core is integrated into an SoC containing the bare
minimum peripherals: 1KB of RAM, a UART controller to handle communication
with the workstation, and a GPIO controller used to toggle the trigger. This simple
setup is chosen because it minimizes peripheral noise and is convenient for simulation.
Ibex is a two-stage pipelined RISC-V core written in SystemVerilog. Similarly to
Picorv32, this core implements the RV32I and RV32E base and has multiplication and
compressed instruction extensions. The core supports several parameters that can be
used to configure the core. However, we did not enable any options as they complicate
the microarchitecture. The core is integrated into a simple SoC with all essential
components, such as SRAM (16KB), a UART controller, and a GPIO controller. The
SoC also has a timer and debug support.
Measurement setup. All experiments are carried out on a Arty A7-35T 5 develop-
ment board powered by a Xilinx Artix-7 FPGA. This board is convenient to work with,
as it comes with an FTDI USB - UART bridge that can be used for serial commu-
nication. It also serves as a controller for the included USB-JTAG circuitry, allowing
the FPGA to be programmed over USB. For all experiments, the sample rate is set
to 500 MHz. Arty also contains circuitry to measure the power consumption of the
FPGA’s core. However, this circuitry is incompatible with the available acquisition

3https://github.com/YosysHQ/picorv32
4https://github.com/lowRISC/ibex
5https://digilent.com/reference/programmable-logic/arty-a7/start

6

https://github.com/YosysHQ/picorv32
https://github.com/lowRISC/ibex
https://digilent.com/reference/programmable-logic/arty-a7/start

equipment and tooling, so we made a new power cut to measure the FPGA’s power
consumption. In addition to this modification, several decoupling capacitors along the
VCCINT power rail are removed to improve the quality of the power signal.
Microbenchmarks results. We apply the microbenchmarks to both cores using
the above-mentioned measurement setup. Although Picorv32 has been profiled in [8],
we repeat the experiments for three reasons. First, this core is a baseline to verify
our setup. Second, the explanation for some of the leaks observed in the original
article is brief, and we aim for a more in-depth description. Finally, configuration
differences between our core and the version in [8] could cause different leakage effects,
and we are interested in learning to what extent the microbenchmarks are reusable.
Table 1 summarizes the results obtained for these experiments. Similarly to [8], we
use correlation to demonstrate the existence of leakage.

We observe a marked difference in the signal-to-noise ratio between the trace sets
collected for the two cores. This means that for the Picorv32, we used a set of 250k
traces for each experiment, while for the Ibex core, we observed a clear correlation
at 50k traces. To diagnose the side-channel leakage of this core, we performed a total
of 26 benchmarks, as shown in Table 1, consisting of 76 experiments. An experiment
is a small variation in the parameters of the microbenchmark code. For example, for
the BUS-WIDTH-LD-BYTE, we experiment with 8 offsets. We list all microbenchmarks
(code and side channel results) that show leaks in Appendix C.

4.1 Discussion of the results for the Picorv32
Picorv32 core is part of the MIRACLE experimental setup [8]. Picorv32 was the only
device (among the fourteen tested in [8]) that did not show positive results for the
hidden state effect. Picorv32 suffers from leaks caused by a mismatch between bus
width and data size. Inspecting the Picorv32 source code, it becomes clear that the
observed leakage is indeed expected. When performing a memory look-ahead, the least
significant two bits are set to zero, leading to word-size memory accesses. This can be
seen in Listing 2, which defines the memory look-ahead address signal. Additionally,
the address on the memory bus is dual-purpose; there is no strict separation between
read and write addresses. This means that a store operation also inadvertently leads
to a read operation. This explains why store operations also show leakage.

1 a s s i gn mem_la_addr = (mem_do_prefetch | | mem_do_rinst) ? {next_pc [31 : 2] +
mem_la_firstword_xfer , 2 ’ b00} : {reg_op1 [31 : 2] , 2 ’ b00 } ;

Listing 2: The look-ahead address signal, reg_op1 is the address to be read from in memory.

No interaction between sequentially loaded values was observed (SEQ-LD). On the
contrary, sequential store operations show clear leakage (SEQ-ST). We believe this
leakage is caused by the multiplexer when selecting the source register.

Positive leaks for the register overwrite microbenchmark might seem counterin-
tuitive given the absence of a pipeline. However, in the absence of a pipeline, the
instruction operands have to be temporarily saved, and Picorv32 has two internal reg-
isters reg_op1 and reg_op2 for this purpose. These are not pipeline registers, but
leakage still occurs when values in these registers are overwritten.

The core shows positive leakage for the control-flow microbenchmarks. In the
BRANCH-POST and JUMP-POST, there is an immediate, unconditional branch or jump

7

Type Microbenchmark Picorv32 Ibex

M
em

or
y Hidden state LD-LD ✗ ✗

LD-ST ✗ ✗

ST-LD ✗ ✗

ST-ST1 ✗ ✗

ST-ST2 ✗ ✗

ST-ST3 ✗ ✗

Bus-width LD-BYTE ✓(0-3) ✗

LD-HALF ✓(2-3) ✗

ST-BYTE ✓(0-3) ✗

ST-HALF ✓(2-3) ✗

Sequential access SEQ-LD ✗ ✗

SEQ-ST ✓ ✓

P
ip

el
in

e Register overwrites EOR-EOR ✓ ✓

EOR-ADD ✓ ✓

EOR-LSL ✓ ✓

EOR-ROR not supported not supported

EOR-LDR ✓ ✓

EOR-STR ✓ ✓

NOP-EOR not performed not performed

Speculative execution BRANCH-FWD ✗ ✓

BRANCH-BWD ✗ ✓

JUMP-FWD ✗ ✓

JUMP-BWD ✗ ✓

LOOP-0 ✗ ✓

Control-flow BRANCH-PRE ✓ ✓

BRANCH-POST ✓ ✓

JUMP-PRE ✓ ✓

JUMP-POST ✓ ✓

Table 1: Overview of the diagnosis. The ✗ indicates no leakage; the ✓indicates leakage;
the ✓+ numbers indicate that the experiment succeeded for the specified parameter.

to the second XOR, thus skipping the XOR between operands A and B entirely. Ex-
cept one experiment, our results align with those reported in [8]. Despite the jump
instruction [8], report correlation between operands A and B for BRANCH-POST and
JUMP-POST microbenchmarks, we do not see this leakage in our experiments.

4.2 Discussion of the results for the Ibex core
According to the documentation, most instructions in the Ibex core are executed inde-
pendently of their input operand [28], which should offer a certain degree of protection
against side-channel attacks. The Ibex core has a 2-stage pipeline and, surprisingly,
does not exhibit leaks caused by the pipeline registers. Bloem et al. [6] also note the

8

lack of transitional leakage effects in memory stores separated by non-memory instruc-
tions. Gigerl et al. [12] mention that a hidden state in the LSU exists and is a source
of leakage. However, this hidden state only handles word accesses on non-word-aligned
addresses—no microbenchmarks tests for this leakage pattern.

We observe transitive leakage for sequential store instructions and assume that this
leakage effect is caused by switching multiplexers. Gigerl et al. [12], report that the read
addresses from the register file are not glitch-free since they come from combinatorial
logic. We see leakage due to operand interaction, but only in specific instruction combi-
nations and operands. For example, EOR_EOR and EOR_ADD leak the second instruction
operand but not the first operand. The EOR_SRLI benchmark transitional leakage is
observed. It is unclear what the cause behind this unusual operand interaction is.

Branch instructions can introduce operand interaction between an instruction that
is never executed (i.e., an instruction that comes after a branch is taken) and the
instruction that sequentially follows the branch. The control-flow experiments show
varying interactions. BRANCH_PRE and JUMP_PRE are consistent and do not show any
operand interaction, but the correlation is seen with the results of the executed bit-
wise additions. For JUMP_POST, only bitwise addition for the instruction after the jump
shows leakage. Considering a jump is executed unconditionally, the CPU will not load
operands for an instruction that is not executed. BRANCH_POST is the only microbench-
mark that shows operand interaction. In this benchmark, the assumption is made
that the branch will be taken. The operands of the instruction at the branch address
are loaded. When the condition is processed, the operands are already in the pipeline
registers and can interact with the subsequent instruction.

5 Step 2: Identifying exploitable leaks
Exploitable leaks are sample points in a measured trace set where the correct key
is ranked highest when performing an attack. When constructing our experimental
dataset, we identify such exploitable leaks for various implementations of AES, the
most well-established symmetric cryptographic primitive now.

We present three case studies. Two of them consider the execution of an unpro-
tected implementation running on the two cores we profiled; here, we chose a small and
portable implementation —Tiny AES in C6. The third case study targets a Boolean
masked AES implementation7 based on Tiny AES, documented in [29](page 228-231).
Since this implementation admittedly contains no protections against glitching, we
discuss two interesting leakage effects on Ibex. For the first two use cases, we perform a
first-order univariate Differential Power Analysis (DPA) [30] targeting the first round
SubBytes operation assuming that it leaks the Hamming weight model8. Every Sub-
Bytes operation consists of multiple S-box substitutions, each using a different part of
the state and key.

6https://github.com/kokke/tiny-AES-c
7https://github.com/CENSUS/masked-aes-c
8To be precise, we use a variant of DPA, called Correlation Power Analysis [31], but for simplicity, we

use the customary DPA term. Initially, we also used Test Vector Leakage Assessment (TVLA) [32] to see
whether the implementation leaks; however, we decided to employ DPA for the sake of precision since TVLA
is known to result in false positives.

9

https://github.com/kokke/tiny-AES-c
https://github.com/CENSUS/masked-aes-c

For convenience, we define SubBytes SBK as the Kth iteration of the first SubBytes
operation. To reliably detect exploitable leakage, we divide the samples of the traces
into small fragments and attack these fragments separately. This way, we can detect
which samples leak. In all our tests, the fragments are sequential and do not overlap.
Depending on the experiment, they contain different samples, such that the total
number of fragments is 400; due to different core frequencies, the fragment size was
17 for Ibex and 25 for Picorv32.

The correct key was recovered with 500k traces for Picorv32 for some trace frag-
ments (note that different key bytes leak at different points in time). On the other
hand, recovering the key on the Ibex required only 100k traces. We attribute the dif-
ference in the number of traces required to perform a successful attack to the Picorv32
core being area-optimized.

In our third case study, AES is protected with Boolean masking. We target the
re-masking step between ShiftRows and MixColumns in the first round. The old mask
is removed and replaced with a new one during the re-masking. The assembly code
for this operation is shown in Listing 7. We leave evaluation using higher-order and
multivariate analysis as future work.

5.1 Results of the first-order DPA attack

Figure 2: Key ranking plot of a first-order attack on the first SubBytes operation on Ibex
core for the unmasked AES implementation. Dark color shows high leakage.

Figure 2 shows the attack results on the unprotected implementation on Ibex
core; for each attacked fragment, we show the rank of the correct subkey using a
logarithmic heatmap. Black indicates recovery of the correct subkey and white indi-
cates the opposite: the correct key is ranked low (so there is no leak). Note that a
staircase-like leakage pattern emerges, which makes sense since the key is fitted into
a two-dimensional state, after which different key parts are used sequentially.

For Picorv32, the plot is very similar. Namely, a similar leakage is found, as shown
in Figure 3.

10

Figure 3: Key ranking plot of a first-order attack on the first SubBytes operation on Picorv32
core for the unmasked AES implementation. Dark color shows high leakage.

5.2 Results of the first-order DPA attack
For both cores, we noticed several key bytes leak at the exact moment, even if they
are not accessed simultaneously. We investigate such aspects in the remainder of this
paper. Upon closer inspection of the last four iterations of SubBytes, we observe
interesting leakage patterns.

During the last iteration of SubBytes SB15, when the last subkey (k[3][3]) is used
for a Sbox lookup, leakage also occurs for subkeys k[3][2], k[3][1] and k[3][0].
This suggests that not only the expected subkey k[3][3] is used, but also the other
subkeys are somehow involved

We also observed slightly less pronounced additional leakage patterns for the Ibex
core. We verified that these extra leakage points could be used in a practical attack
to recover the key. Similarly to the previous experiment, we succeeded with 500k and
75k traces for Picorv32 and Ibex, respectively.

Subsequently, we ran the first-order attack on the masked implementation targeting
the re-masking step after the first ShiftRows operations; we did not notice first-order
leakage during other operations.

Similarly to the unprotected implementations, we found a staircase-like leakage
pattern, though leakage was only observed for the first two rows of the AES state. Due
to space constraints, we do not present the heatmap plot for this case in this version
of the paper.

5.3 Identifying the source of the exploitable leakage
To understand which instructions are causing leaks, we match the samples in a power
trace with the instruction corresponding to the respective sample. For this purpose,
we simulate the cores and the cryptographic computations running on these cores and
generate an execution trace. This execution trace can then be aligned with the power
trace to obtain instruction-labeled power traces. During the measurement campaign,
the core tracing was disabled to not influence the power traces. We enabled core tracing
when generating the execution trace.

11

Simulation. The Picorv32 core can generate execution trace by setting the Ver-
ilog parameter ENABLE_TRACE=1. The generated trace is not cycle-accurate, i.e., it is
impossible to determine which samples belong to which instructions precisely. To over-
come this, we adjusted the trace generation mechanism to include cycle information
using the clock cycle counter already integrated into the core. We use Icarus Verilog 9

for this simulation. To ensure that the simulation matches FPGA execution, the same
SoC that is flashed on the FPGA is instantiated by a testbench. This testbench sup-
plies the required input/output signals, like the clock signal, and the UART Tx/Rx
lines.

We conveniently match the simulation’s clock frequency to the supplied clock on
the FPGA. We use a similar approach for the Ibex core. However, we used Verilator10
since support for this simulation tool is well-documented. Conveniently, Ibex a has a
separate module called ibex_tracing which can generate a clock-cycle accurate exe-
cution trace. Matching instruction labels to power trace samples are more cumbersome
in Ibex since the core has a two-stage pipeline. This makes it more difficult to pinpoint
leakage to a specific instruction. This is less problematic for microbenchmarks, as the
instructions of interest are isolated (e.g., by surrounding them with nop instructions).
Attaching instructions to traces. The firmware running on the simulated cores is
slightly adjusted: hard-coded input values are replaced by the UART communication
that supplies input for the experiments. This should not impact the resulting execution
trace since only the operation during power acquisition has to be accurately simulated,
and the UART communication is not part of the acquisition. For both cores, we
compute the number of samples per cycle. The Picorv32 and the Ibex core are running
at 100 MHz and 50 MHz, respectively, and the sample rate is consistently 500 MHz,
meaning that for Picorv32, there are ten samples per cycle, whereas for Ibex, there
are five samples per cycle.

6 Step 3: Explaining exploitable side-channel leakage
We identified several interesting leakage patterns in the previous section, including the
instructions causing these leaks. In this section, we aim to explain the root cause of
the identified side-channel leaks using the diagnosis of the leakage profile for each core.
To have an accurate view of the state of registers and executed assembly instructions
for the cryptographic implementations, we disassembled the .elf files using Ghidra11.

6.1 CASE STUDY: unprotected AES on Picorv32
Picorv32 is a multi-cycle CPU; most leakage occurs during the last cycles of an in-
struction, when data is fetched and instructions are executed. Figure 4 shows the
correlation between the power traces and several sub-keys during the SB13. Four clear
leak patterns can be identified (A, B, C, and D), which we attempt to relate to the
earlier constructed leakage profile.

9http://iverilog.icarus.com/
10https://verilator.org/guide/latest/
11https://github.com/NationalSecurityAgency/ghidra

12

http://iverilog.icarus.com/
https://verilator.org/guide/latest/
https://github.com/NationalSecurityAgency/ghidra

Figure 4: Leaks observed during SB13 for the Picorv32 core. The x-axis corresponds to the
line numbers in the Listing 3.

Load AES state. Instruction lbu a5,0(a5) (line 7, Listing 3) loads one state byte
Sij from memory; this byte is later used to retrieve a value from the Sbox. While
lbu instruction specifies that only a single byte should be loaded, correlation can be
observed with other state bytes. This happens because of the bus width leakage effect
that was part of the leakage profile. The Sbox output values of [0][0], [0][1], [0][2] are
computed in earlier iterations of SubBytes and stored in the state in memory. When
retrieving state byte [0][3], these bytes are transported on the bus, resulting in leakage
of earlier computed Sbox output values.

1 lbu a4 ,−18(s0) ; Load i t e r a t o r j
2 lbu a5 ,−17(s0) ; Load i t e r a t o r i
3 lw a3 ,−36(s0) ; Load s t a t e S
4 s l l i a4 , a4 , 0 x2
5 add a4 , a3 , a4
6 add a5 , a4 , a5 ; S_ij
7 lbu a5 , 0 (a5) ; Load S_ij from memory
8 mv a2 , a5 ; Store S_ij in r e g i s t e r a2
9 lbu a3 ,−18(s0) ; Load i t e r a t o r j

10 lbu a5 ,−17(s0) ; Load i t e r a t o r i
11 l i a4 , 0 ; 0 i s the base address of RAM
12 add a4 , a4 , a2 ; Sbox [S_ij]
13 lbu a4 , 0 (a4) ; Load Sbox [S_ij] from memory
14 lw a2 ,−36(s0) ; Load s t a t e S
15 s l l i a3 , a3 , 0 x2
16 add a3 , a2 , a3
17 add a5 , a3 , a5
18 sb a4 , 0 (a5) ; S_ij = Sbox [S_ij]
19 lbu a5 ,−18(s0) ; Load i t e r a t o r j
20 addi a5 , a5 , 1 ; j = j + 1
21 sb a5 ,−18(s0) ; Store i t e r a t o r j
22 lbu a4 ,−18(s0) ; Load i t e r a t o r j
23 l i a5 , 3 ; a5 = 3
24 bgeu a5 , a4 ,100 a14 ; j>=3?

Listing 3: One iteration of AES SubBytes (for both cores).

13

Load Sbox byte. Instruction lbu a4, 0(a4) (line 13, Listing 3) loads a value from
Sbox, i.e., Sbox[Sij]. A correlation peak for this value is expected since load and store
operations are known to cause leaks as they directly put a value on the bus. The bus-
width micro-benchmark implicitly tests for this kind of leakage. An experiment loads
an earlier stored value from memory and uses the correct memory address to load
from. Given this result, the bus-width microbenchmarks anticipated this leakage, but
not because of a mismatch between the size of retrieved data and the bus width.
Store Sbox byte. Instruction sb a4, 0(a5) (line 18, Listing 3) stores the retrieved
Sbox output value at the right location in the state. Like loading, the operand we
correlate with is directly put on the bus; therefore, we anticipate leaks. The bus-width
store micro-benchmark is not applicable as this benchmark attempts to find leakage
in situations where a target intermediate is overwritten by zero. We attribute this leak
to sensitive data being put on the data bus.
Load loop iterator. Instruction lbu a4, -18(s0) (line 22, Listing 3) loads loop
iterator j after it was incremented. Such a load would not be expected to leak. How-
ever, register a4 previously hosted the Sbox-out value, which is now overwritten. In
the 13th iteration, the value of j equals 1, meaning all bits of the Sbox values are over-
written with zeroes except the least significant bit. MIRACLE does not incorporate
any microbenchmarks that can trigger this effect. The hidden-state microbenchmarks
come closest but focus on overwriting effects in memory rather than in registers.

6.2 CASE STUDY: unprotected AES on Ibex core
Figure 5 shows the correlation of the Sbox output values during the SB13 for the
Ibex core. We do not plot other sub-keys since no clear leakage was observed in the
key ranking. Instead, we investigate other intermediate values and plot the Hamming
distance between plaintext and Sbox-in.

Additionally, the interaction between all intermediates is plotted. Again four leak-
age points are seen (Figure 5, A,B,C and D). Interestingly, these leaky instructions
correspond to the exact instructions as Picorv32. Below, these points of leakage are
discussed in more detail. Ibex has a 2-stage pipeline; therefore, some leakage from
instruction may occur during the preceding instruction.
Move loaded state. Instruction mv a2,a5 (line 8, Listing 3) moves state byte Sij

from register a5 to register a2. Leakage is seen with the loaded (Sbox-in) value and
plaintext. The explanation for this leakage can not be found in the leakage profile,
as the mv instruction was not part of any of the microbenchmarks. However, the
instruction directly writes the leaked value to register a2, which explains the leak.
Load Sbox byte. Instruction lbu a4, 0(a4) (line 7, Listing 3) loads a value from
Sbox; leakage here is not expected as such leakage was not implicitly seen during the
bus-width microbenchmarks and was, therefore, also not part of the leakage profile.
Store Sbox byte. Instruction sb a4, 0(a5) (line 13, Listing 3) stores the retrieved
Sbox output value at the right location in the state. During this operation, the cor-
related value is directly put on the bus leakage is anticipated. As more thoroughly
described in the Picorv32 paragraph, no micro-benchmark specifically tests for this
kind of leakage. Furthermore, note that for Sbox-out, there appear to be two correla-
tion peaks at this location, which are “merged” together. Looking at the simulation, an

14

Figure 5: Leaks during SB13 for the Ibex core. The x-axis corresponds to the line-numbers
in the Listing 3.

interesting effect is seen: just before the value in register a4 is stored at the memory
location of a5, the value of a4 is loaded from the register. This is because after Ibex
decodes an instruction, it interprets parts of the instruction as registers and immedi-
ately reads from them, even when this is not needed to execute the instruction. These
unnecessary reads from the register file were also noted by [12]—no microbenchmark
tests for this specific effect.
Load loop iterator. lbu a4, -18(s0) (line 18, Listing 3) Similar to Picorv32, the
register that holds the Sbox-out value is overwritten, which results in an overwrite
leakage effect. The resulting correlation peak is rather low compared to the other
leakage points, but considering the absolute correlation is so high, it is still significant.
This effect is not part of MIRACLE and, therefore, not the profile.

Figure 6: Leaks during the first iteration of the re-masking step for the Ibex core. The x-axis
corresponds to the line numbers in Listing 7.

15

6.3 CASE STUDY: masked AES on Ibex core
Figure 6 shows the correlation with the Sbox-out values corresponding to k[0][0]
and k[1][1] when the first two AES state bytes are re-masked. Since the re-masking
step involves a loop going over all of the AES state columns, it is sufficient to focus on
the first iteration of the loop. The leakage during the other iterations repeats what is
seen during the first iteration. Figure 6 shows two high correlation peaks (patterns A
and B). One peak (pattern A) of leakage corresponds to when the re-masked value is
written to memory. The second peak (pattern B) of leakage corresponds to the masked,
and mask values are loaded from memory. These correlation peaks are discussed in
detail below.

1 lw a4 ,−36(s0)
2 lw a5 ,−20(s0)
3 s l l i a5 , a5 , 0 x2
4 add a5 , a4 , a5
5 lbu a4 , 0 (a5)
6 lbu a3 ,−37(s0)
7 lbu a5 ,−41(s0)
8 xor a5 , a3 , a5
9 andi a5 , a5 ,255

10 xor a5 , a4 , a5
11 andi a4 , a5 ,255
12 lw a3 ,−36(s0)
13 lw a5 ,−20(s0)
14 s l l i a5 , a5 , 0 x2
15 add a5 , a3 , a5
16 sb a4 , 0 (a5)

17 lw a4 ,−36(s0) ; Load s t a t e S
18 lw a5 ,−20(s0) ; Load i t e r a t o r i
19 s l l i a5 , a5 , 0 x2
20 add a5 , a4 , a5 ; Compute S_i loca t ion
21 lbu a4 , 0 (a5) ; Load s t a t e byte S [0] [i]
22 lbu a3 ,−38(s0) ; Load new mask
23 lbu a5 ,−42(s0) ; Load old mask
24 xor a5 , a3 , a5 ; o ld mask XOR new mask
25 andi a5 , a5 ,255
26 xor a5 , a4 , a5 ; S [0] [i] XOR (old mask XOR new mask)
27 andi a4 , a5 ,255
28 lw a3 ,−36(s0) ; Load s t a t e S
29 lw a5 ,−20(s0) ; Load i t e r a t o r i
30 s l l i a5 , a5 , 0 x2
31 add a5 , a3 , a5 ; Compute S [0] [i] l o ca t ion
32 sb a4 , 0 (a5) ; Store remasked S [0] [i]

Figure 7: Re-masking operation of a state byte in the first row (left) and in the second row
(right). The comments give a semantic context for the assembly instructions.

Figure 8: Unintended register read of lw a4,-36(s0) reads bits 11100 as an operand. The
color code shows instruction encoding according to the instruction type (Section 3).

Store re-masked byte. Instruction sb a4,0(a5) stores the remasked AES state
byte in memory. Ibex performs unintended register loads, as noted in [12]. In this
instance, the instruction decoder from Ibex decodes the subsequent instruction lw
a4,-36(s0) where it interprets the -36 immediate value not only as a constant but
also as an encoding for the 28th register. Therefore, an unintended read is performed
from the 28th register, also known as t3. Figure 8 shows how the RISC-V instruction
decoder/encoder12 translate the instructions to machine code. Register 28 temporarily

12https://luplab.gitlab.io/rvcodecjs/

16

https://luplab.gitlab.io/rvcodecjs/

Example Core Type of Leak Listing Figure Notes
CS1 Picorv32 Load AES state 3(line 7) 4 (A) Bus width effect (LD-BYTE)
CS1 Picorv32 Load Sbox byte 3(line 13) 4 (B) Bus width effect (LD-BYTE)
CS1 Picorv32 Store Sbox byte 3(line 18) 4 (C) Data bus leakage
CS1 Picorv32 Load loop iterator 3(line 22) 4 (D) Register overwrite
CS2 Ibex Move loaded state 3(line 8) 5 (A) Register overwrite
CS2 Ibex Load Sbox byte 3(line 13) 5 (B) Register overwrite
CS2 Ibex Store Sbox byte 3(line 18) 5 (C) Unintended register read
CS2 Ibex Load loop iterator 3(line 22) 5 (D) Register overwrite
CS3 Ibex Store remasked byte 7(lines 16-17) 6 (A) Unintended register read
CS3 Ibex Load old mask byte 7(lines 22-23) 6 (B) Multiplexer switching

Table 2: Overview of the explained leak examples.

stores the new mask in the prelude of the re-masking function, which is not shown
here. Therefore the new mask is unnecessarily loaded from the register file where it
interacts with the newly masked Sbox-out value, loaded from the register file during
the sb instruction.

As the new masks are row specific, this effect is only seen when re-masking values
in the first row of the AES state. The first-row mask is also loaded for the other rows,
but since this mask is not used to mask the state bytes in these rows, leakage for these
state bytes is not observed.
Load old mask. Instruction lbu a5, -42(s0) loads the old mask. The second leak-
age effect only occurs when re-masking a byte in the second row of the AES state.
Correlation with Sbox-out values is seen before the old and new masks are XORed.
Since the Sbox-out is not yet re-masked, leakage happens because of an interaction
between the masked Sbox-out value and the old mask.

Similar to the previous correlation peak, there is an instruction with an immediate
value interpreted as a register encoding, resulting in a redundant read from the register
file. The value -42 is interpreted as the 22nd register, and the value in this register
is loaded. However, this register does not contain the masked Sbox-out value or the
old mask. We explain this leak due to switching wires in the multiplexer tree of the
register file effect described in [12]. When two consecutive read operations occur, the
multiplexer wires switch values, leading to transitional leakage. In our case, a load is
performed from the 22nd register (s6) followed by a read from a5 (15th register). The
least significant bit of the read address switches from 0 to 1, which causes changes in
multiplexer wires. The multiplexer connected to registers a4 and a5 switches from the
value in a4 (the masked Sbox-out) to a5 (the old mask), which results in transitional
leakage of these values and thus leakage of the Sbox-out.

7 Conclusions
As a result of the complexity of devices and their undocumented features, detecting the
source of a side-channel leak is not a trivial exercise. This paper introduces a three-step
methodology for systematically explaining side-channel leaks using microbenchmarks.
Reusability of side-channel profile. The first step, diagnosis of predisposition for
a side-channel leak, is effort intensive. However, as the microbenchmarks results for
the Picorv32 core matched that of [8] we conclude that microbenchmarks are reusable
and such profiling needs to be done only once for each device. A diagnosis can be an

17

invaluable guide to a designer who must implement a masked cryptographic algorithm.
The advantage of microbenchmarks is that they can be run on any embedded CPU,
regardless of the available knowledge about its design.
Efficacy in identifying leakage. The experiments performed in this research, see
Table 2 show that microbenchmarks partially explain seven out of ten leaks seen
during our examples. However, not all leaks could be identified by relating them to the
leakage profile. More subtle effects, like the unintended redundant register file read in
Ibex, were not explained by existing microbenchmarks. The diagnosed leakage profiles
included effects related to control-flow and speculative execution, which are interesting
but only when the core has a deep pipeline or the assembly code has a lot of branch
statements. Cryptographic implementations consist mainly of arithmetic instructions;
branch instructions are often avoided as much as possible since they leak trivial side-
channel information. Ultimately we conclude that in terms of efficacy, improvements
justify the usage of microbenchmarks.
Accuracy of identified leakage. The main challenge in creating effective mi-
crobenchmarks is establishing that the code interacts only with the intended part of
the microarchitecture. If the relationship between the undocumented microarchitec-
tural component and the code of the microbenchmarks is inaccurate, the results of the
diagnosis phase cannot be relied upon. For example, in Picorv32, leakage was observed
for several pipeline benchmarks. Much of this leakage is believed to be caused by val-
ues colliding in registers that hold the instruction operands and is not, for example,
related to control flow or speculative execution. Naturally, isolating the microarchi-
tecture with software-based testing is difficult, and it could be argued that this is just
a general disadvantage of this technique. Although microbenchmarks cannot (yet) ex-
plain all microarchitectural features, they are a fundamental step toward explainable
side-channel analysis.

We conclude that existing microbenchmarks are a good start to help explain
the root cause of side-channel leakage but are incomplete. Our framework Diagnose-
Identify-Explainis general and can be applied to any architecture.

Appendix A Unprotected AES Implementation
Figure A1 shows the execution trace (with cycle information) of the execution of the
unprotected AES implementation of the IBEX core.

Appendix B Masked AES Implementation
The protected AES implementation we used for our experiments is the boolean mask-
ing described in [29]. For completeness, we include the overview of the masking scheme
and the execution trace on the IBEX core scheme (with cycle information), shown in
Figure B2. The scheme uses six independent masks (one byte each). The masks, de-
noted with m and m′, are the input and output for the masked SubBytes operation.
The remaining four masks, m1, m2,m3, and m4, are the MixColumn Operation’s input
masks.

18

Figure A1: Execution trace for the unprotected AES implementation on the IBEX core.

Initialize masking scheme
At the beginning of an AES encryption, two precomputations take place:

1. The masked Sbox table Sm is precomputed, such that

Sm(x⊕m) = S(x)⊕m′.

2. Compute output mask for MixColumn operation by applying the MixColumn
operation to m1, m2,m3, and m4. The result of this operation is denoted with
m′

1, m′
2,m′

3, and m′
4.

Masking the key schedule
The remask function is called ten times to mask the round keys. Each round key is
masked such that the masks change from m′

1,m′
2,m′

3,m′
4 to m. The last round key is

an exception and is only masked with m′.

Masking the plaintext
At the beginning of the first round, the remask function is called to mask the plaintext
with m′

1, m′
2,m′

3, and m′
4.

Masking the round transformation
• AddRoundKey: the round key is masked such that the masks change from

(m′
1,m

′
2,m

′
3,m

′
4) → m

• SubBytes: Is the only non-linear operation of AES in SubBytes and is imple-
mented as a table look-up. The Sbox table lookup operation is protected with a
mask and precomputed when the algorithm is initialized. Sm is performed. The
mask has been changed to m′.

• The ShiftRows moves the bytes of the state to different positions. Therefore,
this operation does not influence the masks.

• MaskedMixColumn mixes different bytes from each column. Each row is
masked with a different mask. The protected implementation changes the masks

19

mi → m′
i for i ∈ 1, 2, 3, 4. The remask function is called on the input to

MixColumn, and it changes the mask from m1, m2,m3, and m4 to m′.

Figure B2: Execution trace for the protected AES implementation on the IBEX core. The
masked execution of AES starts at cycle 8952, the masking scheme is initialized at cycle
12799, and the first round starts at cycle 33855. The whole encryption is completed at cycle
70914.

20

Appendix C Microbechmarks results
Here, we show the figures for all the microbenchmarks that show leaks

Figure C3: LD_BYTE results for Picorv32, the instructions corresponding to the line
numbers can be found in 4.

1 lbu a3 ,0(a0)
2-9 nop
10 lbu a2 ,0(a1) # a2 = A only for I=3

11-18 nop
19 lbu a3 ,0(a0)

20-26 nop

Listing 4: LD_BYTE experiment code listing, the instruction highlighted with yellow is
the target instruction of this experiment.

Figure C4: SEQ_ST results for Picorv32, the instructions corresponding to the line
numbers can be found in 5.

21

1 jal ra ,10059c
2 xor t0,t0,t0
3 xor t1,t1,t1
4 xor t2,t2,t2
5 xor t3,t3,t3

6-13 nop
14 sb a1 ,0(a0) # a1 = A
15 sb a2 ,1(a0) # a2 = B
16 sb a3 ,2(a0) # a3 = C
17 sb a4 ,3(a0) # a4 = D
18 sb a5 ,4(a0) # a5 = E
19 sb a6 ,5(a0) # a6 = F
20 sb a7 ,6(a0) # a7 = G

20-27 nop

Listing 5: SEQ_ST experiment code listing, the instructions highlighted with yellow are
the targeted instructions of this experiment.

Figure C5: XOR_XOR results for Picorv32, the instructions corresponding to the line
numbers can be found in 6.

1 jal ra ,100214
2 xor t0,t0,t0
3 xor t1,t1,t1
4 xor t2,t2,t2
5 xor t3,t3,t3

6-13 nop
14 xor a0,a0,a1 # a0 = A, a1 = B
15 xor a2,a2,a3 # a2 = C, a3 = D

16-23 nop

Listing 6: XOR_XOR experiment code listing, the instruction highlighted with yellow is
the target instruction of this experiment.

22

Figure C6: JUMP_PRE results for Picorv32, the instructions corresponding to the line
numbers can be found in 7.

1 jal ra ,1002 f8
2 xor t0,t0,t0
3 xor t1,t1,t1
4 xor t2,t2,t2
5 xor t3,t3,t3

6-13 nop
14 xor a0,a0,a1 # a0 = A, a1 = B
15 j 10026c
16 xor a2,a2,a3 # a2 = C, a3 = D
10 nop

Listing 7: JUMP_PRE experiment code listing, the instructions highlighted with yellow
are the targeted instructions of this experiment.

Figure C7: SEQ_ST results for Ibex, the instructions corresponding to the line numbers
can be found in 8.

23

1 jal ra ,10059c
2 xor t0,t0,t0
3 xor t1,t1,t1
4 xor t2,t2,t2
5 xor t3,t3,t3

6-13 nop
14 sb a1 ,0(a0) # a1 = A
15 sb a2 ,1(a0) # a2 = B
16 sb a3 ,2(a0) # a3 = C
17 sb a4 ,3(a0) # a4 = D
18 sb a5 ,4(a0) # a5 = E
19 sb a6 ,5(a0) # a6 = F
20 sb a7 ,6(a0) # a7 = G

20-27 nop

Listing 8: SEQ_ST experiment code listing, the instructions highlighted with yellow are
the targeted instructions of this experiment.

Figure C8: XOR_SRLI results for Ibex, the instructions corresponding to the line
numbers can be found in 10.

1 jal ra ,100214
2 xor t0,t0,t0
3 xor t1,t1,t1
4 xor t2,t2,t2
5 xor t3,t3,t3

6-13 nop
14 xor a0,a0,a1 # a0 = A, a1 = B
15 srli a2,a3 ,8 # a2 = C, a3 = D

16-23 nop

Listing 9: XOR_SRLI experiment code listing, the instructions highlighted with yellow
are the target instructions of this experiment.

24

Figure C9: LOOP_0 results (only the last five iterations are shown) for Ibex, the
instructions corresponding to the line numbers can be found in ??.

1 li a7 ,0
2 addi a6,a6 ,-1
3 bnez a6 ,100804 # 100804: xor a0, a0, a1
4 xor a7,a7,a5
5 li a7 ,0
6 addi a6,a6 ,-1
7 bnez a6 ,100804 # 100804: xor a0, a0, a1
8 xor a7,a7,a5
9 li a7 ,0

10 addi a6,a6 ,-1
11 bnez a6 ,100804 # 100804: xor a0, a0, a1
12 xor a7,a7,a5
13 li a7 ,0
14 addi a6,a6 ,-1
15 bnez a6 ,100804 # 100804: xor a0, a0, a1
16 xor a7,a7,a5
17 li a7 ,0
18 addi a6,a6 ,-1
19 bnez a6 ,100804 # 100804: xor a0, a0, a1
20 xor a0,a0,a1
21 xor a2,a2,a3
22 xor a4,a4,a5

23-30 nop

Listing 10: XOR_SRLI experiment code listing, the instructions highlighted with yellow
are the target instructions of this experiment.

1 jal ra ,100624
2 xor t0,t0,t0
3 xor t1,t1,t1
4 xor t2,t2,t2
5 xor t3,t3,t3

6-13 nop

25

Figure C10: BRANCH_POST micro-benchmark results for Ibex the instructions corre-
sponding to the line numbers can be found in 11.

14 beqz zero ,1005f4 # 1005f4: xor a0, a1, a1
15 xor a2,a2,a3 # a2 = C, a3 = D

16-23 nop

Listing 11: BRANCH_POST experiment code listing, the instructions highlighted with
yellow are the target instructions of this experiment.

References
[1] Kocher PC, Jaffe J, Jun B. Differential Power Analysis. In: Wiener MJ, editor.

Advances in Cryptology - CRYPTO ’99, 19th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 15-19, 1999, Proceedings.
vol. 1666 of Lecture Notes in Computer Science. Springer; 1999. p. 388–397.
Available from: https://doi.org/10.1007/3-540-48405-1_25.

[2] Oleksenko O, Fetzer C, Köpf B, Silberstein M. Revizor: testing black-box CPUs
against speculation contracts. In: Falsafi B, Ferdman M, Lu S, Wenisch TF, edi-
tors. ASPLOS ’22: 27th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Lausanne, Switzerland, 28
February 2022 - 4 March 2022. ACM; 2022. p. 226–239.

[3] Renauld M, Standaert F, Veyrat-Charvillon N, Kamel D, Flandre D. A Formal
Study of Power Variability Issues and Side-Channel Attacks for Nanoscale De-
vices. In: Paterson KG, editor. Advances in Cryptology - EUROCRYPT 2011 -
30th Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Tallinn, Estonia, May 15-19, 2011. Proceedings. vol. 6632 of
Lecture Notes in Computer Science. Springer; 2011. p. 109–128. Available from:
https://doi.org/10.1007/978-3-642-20465-4_8.

26

https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-3-642-20465-4_8

[4] Gao S, Oswald E, Page D. Towards Micro-architectural Leakage Simulators:
Reverse Engineering Micro-architectural Leakage Features Is Practical. In:
Dunkelman O, Dziembowski S, editors. Advances in Cryptology - EUROCRYPT
2022 - 41st Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Trondheim, Norway, May 30 - June 3, 2022, Proceed-
ings, Part III. vol. 13277 of Lecture Notes in Computer Science. Springer; 2022.
p. 284–311.

[5] Akkar M, Giraud C. An Implementation of DES and AES, Secure against Some
Attacks. In: Koç ÇK, Naccache D, Paar C, editors. Cryptographic Hardware
and Embedded Systems - CHES 2001, Third International Workshop, Paris,
France, May 14-16, 2001, Proceedings. vol. 2162 of Lecture Notes in Computer
Science. Springer; 2001. p. 309–318. Available from: https://doi.org/10.1007/
3-540-44709-1_26.

[6] Bloem R, Gigerl B, Gourjon M, Hadzic V, Mangard S, Primas R. Power Con-
tracts: Provably Complete Power Leakage Models for Processors. In: Yin H,
Stavrou A, Cremers C, Shi E, editors. Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2022, Los Ange-
les, CA, USA, November 7-11, 2022. ACM; 2022. p. 381–395. Available from:
https://doi.org/10.1145/3548606.3560600.

[7] Papagiannopoulos K, Veshchikov N. Mind the Gap: Towards Secure 1st-Order
Masking in Software. In: Guilley S, editor. Constructive Side-Channel Analysis
and Secure Design - 8th International Workshop, COSADE 2017, Paris, France,
April 13-14, 2017, Revised Selected Papers. vol. 10348 of Lecture Notes in Com-
puter Science. Springer; 2017. p. 282–297. Available from: https://doi.org/10.
1007/978-3-319-64647-3_17.

[8] Marshall B, Page D, Webb J. MIRACLE: MIcRo-ArChitectural Leakage Evalu-
ation A study of micro-architectural power leakage across many devices. IACR
Trans Cryptogr Hardw Embed Syst. 2022;2022(1):175–220. https://doi.org/10.
46586/TCHES.V2022.I1.175-220.

[9] Buhan I, Batina L, Yarom Y, Schaumont P. SoK: Design Tools for Side-Channel-
Aware Implementations. In: Suga Y, Sakurai K, Ding X, Sako K, editors. ASIA
CCS ’22: ACM Asia Conference on Computer and Communications Security,
Nagasaki, Japan, 30 May 2022 - 3 June 2022. ACM; 2022. p. 756–770. Available
from: https://doi.org/10.1145/3488932.3517415.

[10] Ishai Y, Sahai A, Wagner DA. Private Circuits: Securing Hardware against Prob-
ing Attacks. In: Boneh D, editor. Advances in Cryptology - CRYPTO 2003, 23rd
Annual International Cryptology Conference, Santa Barbara, California, USA,
August 17-21, 2003, Proceedings. vol. 2729 of Lecture Notes in Computer Science.
Springer; 2003. p. 463–481.

27

https://doi.org/10.1007/3-540-44709-1_26
https://doi.org/10.1007/3-540-44709-1_26
https://doi.org/10.1145/3548606.3560600
https://doi.org/10.1007/978-3-319-64647-3_17
https://doi.org/10.1007/978-3-319-64647-3_17
https://doi.org/10.46586/TCHES.V2022.I1.175-220
https://doi.org/10.46586/TCHES.V2022.I1.175-220
https://doi.org/10.1145/3488932.3517415

[11] Zeitschner J, Müller N, Moradi A. PROLEAD_SW Probing-Based Software
Leakage Detection for ARM Binaries. IACR Trans Cryptogr Hardw Embed Syst.
2023;2023(3):391–421. https://doi.org/10.46586/TCHES.V2023.I3.391-421.

[12] Gigerl B, Hadzic V, Primas R, Mangard S, Bloem R. Coco: Co-Design and
Co-Verification of Masked Software Implementations on CPUs. In: Bailey MD,
Greenstadt R, editors. 30th USENIX Security Symposium, USENIX Security
2021, August 11-13, 2021. USENIX Association; 2021. p. 1469–1468. Available
from: https://www.usenix.org/conference/usenixsecurity21/presentation/gigerl.

[13] De Mulder E, Gummalla S, Hutter M. Protecting RISC-V against side-channel
attacks. In: 2019 56th ACM/IEEE Design Automation Conference (DAC). IEEE;
2019. p. 1–4.

[14] KF MA, Ganesan V, Bodduna R, Rebeiro C. PARAM: A microprocessor hard-
ened for power side-channel attack resistance. In: 2020 IEEE International
Symposium on Hardware Oriented Security and Trust (HOST). IEEE; 2020. p.
23–34.

[15] He M, Park J, Nahiyan A, Vassilev A, Jin Y, Tehranipoor M. RTL-PSC: Auto-
mated Power Side-Channel Leakage Assessment at Register-Transfer Level. In:
2019 IEEE 37th VLSI Test Symposium (VTS); 2019. p. 1–6.

[16] Gao S, Großschädl J, Marshall B, Page D, Pham TH, Regazzoni F. An Instruction
Set Extension to Support Software-Based Masking. IACR Trans Cryptogr Hardw
Embed Syst. 2021;2021(4):283–325. https://doi.org/10.46586/TCHES.V2021.I4.
283-325.

[17] Pham TH, Marshall B, Fell A, Lam SK, Page D.: XDIVINSA: eXtended DIVer-
sifying INStruction Agent to Mitigate Power Side-Channel Leakage. Cryptology
ePrint Archive, Report 2021/1053.

[18] Yao Y, Kathuria T, Ege B, Schaumont P. Architecture Correlation Analysis
(ACA): Identifying the Source of Side-channel Leakage at Gate-level. In: 2020
IEEE International Symposium on Hardware Oriented Security and Trust, HOST
2020, San Jose, CA, USA, December 7-11, 2020. IEEE; 2020. p. 188–196.

[19] Kiaei P, Schaumont P. SoC Root Canal! Root Cause Analysis of Power Side-
Channel Leakage in System-on-Chip Designs. IACR Trans Cryptogr Hardw
Embed Syst. 2022;2022(4):751–773. https://doi.org/10.46586/TCHES.V2022.I4.
751-773.

[20] De Meyer L, De Mulder E, Tunstall M.: On the Effect of the (Micro)Architecture
on the Development of Side-Channel Resistant Software. https://eprint.iacr.org/
2020/1297. Cryptology ePrint Archive, Report 2020/1297.

28

https://doi.org/10.46586/TCHES.V2023.I3.391-421
https://www.usenix.org/conference/usenixsecurity21/presentation/gigerl
https://doi.org/10.46586/TCHES.V2021.I4.283-325
https://doi.org/10.46586/TCHES.V2021.I4.283-325
https://doi.org/10.46586/TCHES.V2022.I4.751-773
https://doi.org/10.46586/TCHES.V2022.I4.751-773
https://eprint.iacr.org/2020/1297
https://eprint.iacr.org/2020/1297

[21] McCann D, Oswald E, Whitnall C. Towards Practical Tools for Side Channel
Aware Software Engineering: ’Grey Box’ Modelling for Instruction Leakages. In:
Kirda E, Ristenpart T, editors. 26th USENIX Security Symposium, USENIX
Security 2017, Vancouver, BC, Canada, August 16-18, 2017. USENIX Associ-
ation; 2017. p. 199–216. Available from: https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/mccann.

[22] Shelton MA, Samwel N, Batina L, Regazzoni F, Wagner M, Yarom
Y. Rosita: Towards Automatic Elimination of Power-Analysis Leakage
in Ciphers. In: 28th Annual Network and Distributed System Secu-
rity Symposium, NDSS 2021, virtually, February 21-25, 2021. The Internet
Society; 2021. Available from: https://www.ndss-symposium.org/ndss-paper/
rosita-towards-automatic-elimination-of-power-analysis-leakage-in-ciphers/.

[23] Shelton MA, Chmielewski L, Samwel N, Wagner M, Batina L, Yarom Y.
Rosita++: Automatic Higher-Order Leakage Elimination from Cryptographic
Code. In: Kim Y, Kim J, Vigna G, Shi E, editors. CCS ’21: 2021 ACM SIGSAC
Conference on Computer and Communications Security, Virtual Event, Repub-
lic of Korea, November 15 - 19, 2021. ACM; 2021. p. 685–699. Available from:
https://doi.org/10.1145/3460120.3485380.

[24] Arora V, Buhan I, Perin G, Picek S. A tale of two boards: On the influence of mi-
croarchitecture on side-channel leakage. In: Smart Card Research and Advanced
Applications - 20th International Conference, CARDIS 2021, Lübeck, Germany,
November 11-12, 2021, Revised Selected Papers. vol. 13173 of Lecture Notes in
Computer Science. Springer; 2021. p. 80–96.

[25] de Grandmaison A, Heydemann K, Meunier QL. ARMISTICE: Microarchi-
tectural Leakage Modeling for Masked Software Formal Verification. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems.
2022;41:3733–3744.

[26] Gaspoz J, Dhooghe S. Threshold Implementations in Software: Micro-
architectural Leakages in Algorithms. IACR Trans Cryptogr Hardw Embed Syst.
2023;2023(2):155–179. https://doi.org/10.46586/TCHES.V2023.I2.155-179.

[27] Standaert F, Malkin T, Yung M. A Unified Framework for the Analysis of Side-
Channel Key Recovery Attacks. In: Joux A, editor. Advances in Cryptology -
EUROCRYPT 2009, 28th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Cologne, Germany, April 26-30, 2009.
Proceedings. vol. 5479 of Lecture Notes in Computer Science. Springer; 2009. p.
443–461.

[28] Chadwick G.: Ibex Reference Guide - Security Features.

[29] Mangard S, Oswald E, Popp T. Power analysis attacks - revealing the secrets of
smart cards. Springer; 2007.

29

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/mccann
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/mccann
https://www.ndss-symposium.org/ndss-paper/rosita-towards-automatic-elimination-of-power-analysis-leakage-in-ciphers/
https://www.ndss-symposium.org/ndss-paper/rosita-towards-automatic-elimination-of-power-analysis-leakage-in-ciphers/
https://doi.org/10.1145/3460120.3485380
https://doi.org/10.46586/TCHES.V2023.I2.155-179

[30] Kocher PC, Jaffe J, Jun B. Differential Power Analysis. In: Wiener M, editor.
Advances in Cryptology – CRYPTO ’99. vol. 1666 of LNCS. Springer; 1999. p.
388–397. http://www.cryptography.com/public/pdf/DPA.pdf.

[31] Brier E, Clavier C, Olivier F. Correlation Power Analysis with a Leakage Model.
In: Joye M, Quisquater JJ, editors. Cryptographic Hardware and Embedded
Systems – CHES 2004. vol. 3156 of LNCS. Springer; 2004. p. 16–29.

[32] Goodwill G, Jun B, Jaffe J, Rohatgi P.: A testing methodology for side-channel
resistance validation, NIAT.

30

http://www.cryptography.com/public/pdf/DPA.pdf

	Introduction
	Related work
	Preliminaries
	Step 1: Diagnosis of predisposition to side-channel leaks
	Discussion of the results for the Picorv32
	Discussion of the results for the Ibex core

	Step 2: Identifying exploitable leaks
	Results of the first-order DPA attack
	Results of the first-order DPA attack
	Identifying the source of the exploitable leakage

	Step 3: Explaining exploitable side-channel leakage
	CASE STUDY: unprotected AES on Picorv32
	CASE STUDY: unprotected AES on Ibex core
	CASE STUDY: masked AES on Ibex core

	Conclusions
	Unprotected AES Implementation
	Masked AES Implementation
	Initialize masking scheme
	Masking the key schedule
	Masking the plaintext
	Masking the round transformation

	Microbechmarks results

