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Abstract. Discrete Gaussian sampling on lattices is a fundamental prob-
lem in lattice-based cryptography. In this paper, we revisit the Markov
chain Monte Carlo (MCMC)-based Metropolis-Hastings-Klein (MHK)
algorithm proposed by Wang and Ling and study its complexity under
the Geometric Series Assuption (GSA) when the given basis is BKZ-
reduced. We give experimental evidence that the GSA is accurate in this
context, and we give a very simple approximate formula for the com-
plexity of the sampler that is accurate over a large range of parameters
and easily computable. We apply our results to the dual attack on LWE
of [21] and significantly improve the complexity estimates of the attack.
Finally, we provide some results of independent interest on the Gaussian
mass of a random q-ary lattices.
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1 Introduction

Discrete Gaussian sampling on lattices (DGS) is a fundamental problem in
lattice-based cryptography. It appears both in basic cryptographic primitives
such as “hash-and-sign” digital signature schemes [12,11], and in cryptanalysis
as a fundamental tool for solving hard problems such as the Shortest Vector
problem [3] or the Learning with Errors problem [21].

A Discrete Gaussian sampler is parameterized by a parameter “s” that con-
trols the width of the distribution. In general, the smaller s is, the harder it is to
construct the sampler. One important notion is called the smoothing parameter
[19]. It captures the idea that sampling for a value of s above this threshold is
significantly easier than sampling below because the distribution looks more like
a continuous Gaussian in the former case.

There is currently a gap in the literature concerning discrete Gaussian sam-
plers. We either have efficient but limited (s depends on the basis and must be
large enough3) samplers [15,12,5,2] or very inefficient but arbitrarily good sam-
plers [3]. The latter takes times 2n+o(n). For certain applications such as dual
attacks on LWE, it would be preferable to have access to a less rigid sampler
that lies somewhere in-between, i.e. that can sample at any value of s and such
3 Specifically, above a certain quantity that is always strictly greater than the smooth-

ing parameter.



that the complexity smoothly interpolates between polynomial and exponential.
Currently, the only known sampler to do that is the Monte Carlo Markov Chain-
based algorithm of [28]. It works for all values of s but the complexity formula
is involved and depends significantly the basis of the lattice. The authors gave
a generic upper bound that does not depend on the shape of the basis but only
applies to rather large values of s.

A natural question is whether we can obtain a better complexity bound for
[28] when the basis follows a certain shape. This is the case for example when
the basis is BKZ-reduced, a common occurrence in cryptanalysis.

In [21], the authors gave a simple approximation formula for the complexity of
[28] when the basis is BKZ-reduced, assuming the Geometric Series Assumption
(GSA) holds for the basis. Their formula also only applied to a limited range of
values of s due to the imprecision of the approximation. Furthermore, [21] did
not provide any experiments to compare the complexity of the algorithm when
using a BKZ-reduced basis with the complexity when using the GSA.

In this paper, we give a more precise, yet still simple, formula for the com-
plexity of [28] for a BKZ-reduced basis. Our formula is valid over a wider range
of values of s than [21] and we do a detailed analysis of the precision of the
formula. More precisely, we numerically show that our formula almost perfectly
captures the complexity of [28] assuming the GSA. Furthermore, we conduct
numerical experiments to compare the formula of [28] with a BKZ-reduced basis
against the same formula using the GSA. We observe that the GSA provides a
reasonably accurate complexity in this case. Finally, we update the complexity
estimates of the dual attack proposed in [21] using our new formula, as well as
other improvements in the code.

We also prove some results of independent interest on random lattices. Specif-
ically, we give probability bounds that the Gaussian mass of a random q-ary lat-
tice is close to 1. This quantity appears naturally when studying the smoothing
parameter of lattices.

Organization of the paper Section 2 contains preliminary technical results. Sec-
tion 3 provides an upper bound on the complexity of [28]. Section 4 studies this
upper bound in the case where the basis is BKZ-reduced. Section 5 contains an
application of our formula from Section 4 to refine the complexity estimates of
the dual attacks of [21]. Finally, Section 6 gives some probabilistic bounds on
the Gaussian mass of a random lattice.

2 Preliminaries

We denote vectors and matrices in bold case. We denote by xT the transpose of
the (column) vector x, which is therefore a row vector. For any vector x ∈ Rn,
we denote by ∥x∥ its Euclidean norm. For any finite set X, we denote by U(X)
the uniform distribution over X. As usual, if P and Q are two probability distri-
butions over X and Y respectively, we denote by PQ the product distribution
over X × Y . For any two distributions P and Q, we denote by dTV(P,Q) the



statistical distance (or total variation distance) between P and Q. Recall that
the exponential integral can be defined for any x ⩾ 0 by

E1(x) =

∫ ∞

1

e−xt

t
d t. (1)

Furthermore, we also have for any a, b > 0 that∫ b

a

e−xt

t
d t = E1(at)− E1(tb). (2)

2.1 Lattices

We denote by L̂ the dual of a lattice L ⊂ Rn defined by

L̂ = {x ∈ span(L) : ∀y ∈ L, ⟨y,x⟩ ∈ Z}.

Let n ∈ N, 1 ⩽ k ⩽ n and q be a prime power. We say that a lattice L is
a n-dimensional q-ary lattice if qZn ⊆ L ⊆ Zn. Given a matrix A ∈ Zn×k, we
consider the following n-dimensional q-ary lattices:

Lq(A) =
{
x ∈ Zn : ∃s ∈ Zk, As = x mod q

}
,

L⊥
q (A) =

{
x ∈ Zn : ATx = 0 mod q

}
.

It is well-know that for any q-ary lattice L, there exists A and B such that
L = Lq(A) = L⊥

q (B), and that L̂⊥
q (A) = 1

qLq(A). Furthermore det(Lq(A)) =

qn−rkA ⩾ qn−k and therefore det(L⊥
q (A)) = qrkA ⩽ qk. Finally, since Zq is a

field, a random matrix A has full rank (equal to k) with probability at least
1− kqk−1−n.

We refer the reader to [9], [29, Section 2.5.1], [20] or [21] for more details
on those constructions and why these lattices play a crucial role in lattice-based
cryptography, in particular because of the LWE problem.

2.2 Discrete Gaussian distribution

Let n ∈ N and s > 0. For any x ∈ Rn, we let ρs(x) := e−π∥x∥2/s2 . We extend ρs
to sets by ρs(X) =

∑
x∈X ρs(x) for any set X. We denote the discrete Gaussian

distribution over a lattice L ⊂ Rn by DL,s(x) =
ρs(x)
ρs(L) for any x ∈ L. We denote

DL,1 by DL for simplicity. Given a vector t ∈ Rn,the shifted discrete Gaussian
distribution over L is defined by DL,s,t(x) =

ρs(x−t)
ρs(L−t) for any x ∈ L. It is well-

known by the Poisson summation formula that for any lattice L and any s > 0,

ρ1/s(L̂) = s−nρs(L).

We will also use the fact that for any t ∈ Rn, ρs(t+L) ⩽ ρs(L). See e.g. [27] for
a good introduction on this topic.



In general, the smaller s is, the harder it is to construct a sampler for DL,s.
The notion of smoothing parameter [19] captures the idea that sampling for
a valuer of s above this threshold is significantly easier than sampling below
because the distribution looks more like a continuous Gaussian. Formally, for
any ε > 0, the smoothing parameter of a lattice L is defined by

ηε(L) = inf
{
s > 0 : ρ1/s(L̂) ⩽ 1 + ε

}
.

There are many algorithms to sample above the smoothing parameter [15,12,5],
including a time-space trade-off [2]. Sampling below the smoothing parameter
is much more challenging and usually inefficient [3]. At the extreme, sampling
for sufficiently small values of s allows one to solve the Shortest Vector problem
(SVP) [3] which is known to be NP-hard under randomized reduction [4]. The
Monte Carlo Markov Chain based algorithm of [28] works for all values of s but
the complexity significantly depends on s and the shape of the basis. We give a
short description of this algorithm in Section 2.3.

We will also make use of the following simple lemma:

Lemma 1. Define, for any s > 0,

ρ̃(s) =

{
1 + 2e−π/s2 if s ⩽ 1,

s(1 + 2e−πs2) otherwise.

Then ρ̃ is a continuously increasing function and for any s > 0 and ε = 7×10−6,

0 < ρs(Z)− ρ̃(s) < 2

∞∑
k=2

e−πk2

⩽ ε.

Proof. The continuity is immediate since lims→1,s>1 ρ̃(s) = 1 + 2e−π = ρ̃(1).
It is clearly increasing over (0, 1] so by continuity it suffices to show that it is
increasing over (1,∞). To see that, note that the derivative over this interval is
1 + 2e−πs2 − 4s2πe−πs2 which can easily be seen to be positive for all s > 1.

Over the interval (0, 1], it is clear that ρs(Z) − ρ̃(s) = 2
∑∞

k=2 e
−πk2/s2 is

increasing. Similarly over (1,∞), by the Poisson summation formula, it is clear
that ρs(Z)− ρ̃(s) = 2s

∑∞
k=2 e

−πk2s2 is decreasing. Therefore, by continuity, the
maximum between ρs(Z) and ρ̃(s) is attained at s = 1.

2.3 The Metropolis-Hastings-Klein (MHK) algorithm

In [28], the authors analyze a Markov chain Monte Carlo (MCMC)-based sam-
pling algorithm called the independent Metropolis-Hastings-Klein (MHK) al-
gorithm. Without going into the details, the Metropolis-Hastings algorithm is
a particular way of sampling from a distribution which can be defined as the
stationary distribution of an associated Markov chain. This algorithm is very
flexible and requires to choose a “proposal distribution” which affects the speed
of convergence of the Markov chain. In the particular case of the lattice discrete



Gaussian distribution, the authors in [28] use the Klein algorithm [15] to define
the proposal distribution and call this the MHK algorithm. In a previous pa-
per, the authors had already shown that the associated Markov chain converges
exponentially quickly to the stationary distribution. The main contribution of
[28] is then to analyze the spectral gap of the transition matrix of the associated
Markov chain. This spectral gap is what defines the rate of convergence of the
chain and therefore the mixing time which defines the number of steps of the
algorithm. Note that by design, this algorithm always samples with an error
since the chain converges to, but does not attain, its stationary distribution:
by increasing the number of steps, we can nevetherless get closer to it in total
variation. Finally, the algorithm only performs elementary matrix and vector
operations which take time polynomial in the dimension.

Theorem 1 ([28, Theorem 1, (8), (23) and (24)4]). There is an algorithm
that given a basis of a lattice L ⊂ Rd, any vector t ∈ Rn, any ε > 0 and
any s > 0, returns a sample according to some distribution DL,s,t,ε such that
dTV(DL,s,t,ε, DL,s,t) ⩽ ε. This algorithm runs in time ln

(
1
ε

)
· 1
∆ · poly(d) where

1
∆ = 1

ρs(t+L)

∏k
i=1 ρs/∥b̃i∥(Z) and b̃1, . . . , b̃k are the Gram-Schmidt vectors of

the basis.

2.4 Random q-ary lattices

We will consider the distributions Ln,k,q and L⊥
n,k,q of q-ary lattices defined over

the set of integer lattices by

Ln,k,q(L) = PrA∼U(Zn×k
q )[L = Lq(A)],

L⊥
n,k,q(L) = Pr

A∼U(Zn×(n−k)
q )

[
L = L⊥

q (A)
]
.

In other words, the distribution is obtained by taking a matrix A ∈ Zn×k
q with

uniform and independently distributed entries, and looking at the q-ary lattice
generated by A; and similarly for the orthogonal version. When neither k nor
n− k are too small, those two distributions are very close [21, Lemma 5].

Those distributions satisfy good uniformity properties when q goes to infin-
ity. In particular, the following theorem shows that we can compute statistical
properties of lattices sampled according to L⊥

n,k,q. See [21, Section 2.5] for more
context.

Theorem 2 ([21, Theorem 3]). Let n ∈ N, 1 ⩽ k ⩽ n and q be a prime
power. Let 1 ⩽ p and f : (Zn)p → R, then

EL∼L⊥
n,k,q

 ∑
x1,...,xp∈L

f(x1, . . . ,xp)

 =
∑

x1,...,xp∈Zn

q(k−n)r(x1,...,xp)f(x1, . . . ,xp)

where r(x1, . . . ,xp) := rkZn
q
(x1, . . . ,xp) is the rank of the xi mod q over Zn

q .

4 [28] uses the normal distribution e−∥x∥2/2σ2

so s =
√
2πσ with our notations.



In this paper, we will only make use of the following special case to compute
the variance of a sum over a lattice.

Corollary 1. Let n ∈ N, 1 ⩽ k ⩽ n and q be a prime power. For any f : Zn →
R,

VL∼L⊥
n,k,q

[∑
x∈L

f(x)

]
= (qk−n−q2(k−n))

∑
x∈Zn\qZn

∑
u∈qZn

∑
α∈Zq\{0}

f(x)f(αx+qu).

Proof. Observe that

VL

[∑
x∈L

f(x)

]
= EL

 ∑
x,y∈L

f(x)f(y)

− EL

[∑
x∈L

f(x)

]2

=
∑

x,y∈Zn

q(k−n) rkZn (x,y)f(x)f(y)−

(∑
x∈Zn

q(k−n) rkZn (x)f(x)

)2

=
∑

x,y∈Zn

(
q(k−n) rkZn (x,y) − q(k−n)(rkZn (x)+rkZn y))

)
f(x)f(y).

We now look at the various cases:

– If rkZn(x,y) = 0 then rkZn(x) = rkZn(y) = 0 so those terms of the sum are
0.

– If rkZn(x,y) = 2 then rkZn(x) = rkZn(y) = 1 so those terms of the sum are
0.

– If rkZn(x,y) = 1 and rkZn(x) = 0 then rkZn(y) = 1 so those terms of the
sum are 0.

– The same holds if rkZn(x,y) = 1 and rkZn(x) = 1.

Therefore the only potentially non-zero terms are those for which rkZn(x,y) =
rkZn(x) = rkZn(y) = 1. When this is the case, this means that x ∈ Zn \ qZn and
there exists α ∈ Zq \ {0} such that y = αx mod 0, i.e. y = αx + qu for some
u ∈ qZn.

2.5 BKZ

The BKZ algorithm is a well-known lattice reduction algorithm [25]. It processes
the basis in blocks of size β and achieves a trade-off between the reduction quality
and the running time. We refer the reader to [13] or [16] to recent work on this
topic.

Let B be a BKZ-β reduced basis of a rank k lattice in Rd and b̃1, . . . , b̃k

be the corresponding Gram-Schmidt vectors. First recall that the root Hermite
factor δB is defined by

∥b1∥ = δk−1
B vol(L)1/k.



By [13], we have that δmB ⩽ 2γ

m−1
2(β−1)+

3
2

β where γβ is the β-Hermite number.
Experimentally, it has been verified [6] that

δB ≈ Hβ :=

(
β

2πe
(πβ)1/β

)1/2(β−1)

(3)

See [10] for more details on this point. We also need to estimate ∥b̃i∥. For this, we
will assume that the Geometric Series Assumption (GSA) [24] holds for BKZ-β
reduced basis.

Heuristic 1 (Geometric Series Assumption (GSA)). Let b1, . . . ,bm be a
BKZ-β reduced basis and b̃1, . . . , b̃m be the corresponding Gram-Schmidt vectors.
Then for all i = 1, . . . ,m,

∥b̃i∥ = ∥b1∥H−2(i−1)
β , ∥b1∥ = Hk−1

β vol(L)1/k.

The GSA is known to be reasonably accurate when β ≪ m and β ≫ 50 which
is the case in our experiments, but it does not correctly model what happens in
the last m − β coordinates. See [1] for detailed discussions on the shape of the
BKZ-reduced basis, and a more thorough literature review on this topic.

3 Complexity of DGS

The complexity of the sampling algorithm (Theorem 1) from [28] primarily de-
pends on the quantity

1

∆
=

1

ρs(t+ L)

k∏
i=1

ρs/∥b̃i∥(Z). (4)

Estimating this quantity is not easy because it depends on all the b̃i, and on
ρs(t + L). As was previously observed in [28], we can find an upper bound on
this quantity that is quite tight when s is not too small and t = 0 (or s is above
the smoothing the parameter).

Lemma 2. For any s > 0, lattice L and b̃1, . . . , b̃k the Gram-Schmidt vectors
of a basis of L,

1

ρs(L)

k∏
i=1

ρs/∥b̃i∥(Z) =
1

ρ1/s(L̂)

k∏
i=1

ρ∥b̃i∥/s(Z) ⩽
k∏

i=1

ρ∥b̃i∥/s(Z)

Remark 1. When t ̸= 0 in (4), we cannot apply Lemma 2 directly. This is because
for certain choices of t, s and L, we might have ρs(t+L) < 1. In this case, as was
already noted in [28, above (76)], we can at least give a bound when s is above the
smoothing parameter of the lattice. Indeed, if s ⩾ ηε(L) then 1

ρs(t+L) ⩽
1+ε
1−ε

1
ρs(L)

by [22, Claim 3.8]. In this paper, we will only be interested in the case t = 0.



Proof. Recall the standard fact that vol(L) =
∏k

i=1∥b̃i∥. Using the Poisson
summation formula, we get that∏k

i=1 ρs/∥b̃i∥(Z)
ρs(L)

=

∏k
i=1

s

∥b̃i∥
ρ∥b̃i∥/s(Z)

sk

vol(L)ρ1/s(L̂)

=
vol(L)∏k
i=1∥b̃i∥

∏k
i=1 ρ∥b̃i∥/s(Z)

ρ1/s(L̂)
=

∏k
i=1 ρ∥b̃i∥/s(Z)

ρ1/s(L̂)

and we get the wanted inequality since ρ1/s(L̂) ⩾ 1.

This upper bound (the last inequality of Lemma 2) is more convenient to
study since it does not depend on ρs(L). On the other hand, we need to keep
in mind that it is only tight when ρ1/s(L̂) ≈ 1 or at least ρ1/s(L̂) is not large.
This is precisely the definition of the smoothing parameter. For example, we
might only want to use Lemma 2 for s ⩾ η1(L) to guarantee that ρ1/s(L̂) ⩽ 2.
Unfortunately, estimating η1 is difficult for arbitrary lattices [7] and the generic
bounds are very pessimistic.

In practice, however, we will most likely apply the sampling algorithm to
random lattices. In this case, we can hope to obtain bounds on ρ1/s(L̂) for most
lattices. This is exactly what we do in Section 6 for random q-ary lattices which
are fundamental for LWE-based cryptography.

q-ary lattices By Corollary 2, for any n ∈ N, 1 ⩽ k ⩽ n, prime power q, ξ > 1
and α, if s = ξqk/n, qk/n ⩾ 2 and α > µ then

PrL∼L⊥
n,k,q

[
ρ1/s(L̂) > α

]
⩽

σ2

(α− µ)2

where

µ = 1.000007n + ξ−n · 1.000014n, σ2 = q · 1.000028n · ξ−n.

If we assume that n ⩽ 10000, which is always true in practice, then all the above
constants are very close to 1 and for α = 2, we get that

PrL

[
ρ1/s(L̂) > 2

]
⩽ A · ξ−n

for some small constant A. Furthermore, a random lattice L ∼ L⊥
n,k,q satisfies

that vol(L) = qk with overwhelming probability. When this is the case, s =

ξ vol(L)1/n. If we take ξ = 1.1 for example, then ρ1/s(L̂) > 2 with overwhelming
probability for large values of n.

Summary We can estimate that as soon as s ⩾ vol(L)1/n then we essentially
have ρ1/s(L̂) ⩽ 2 with overwhelming probability over the choice of L, for large
enough values of n.



4 DGS for BKZ-reduced basis

The goal of this section is to study the complexity of the sampler given by
Theorem 1 when the basis is BKZ-reduced. More precisely, we will study the
upper bound in Lemma 2:

k∏
i=1

ρ∥b̃i∥/s(Z). (5)

Recall that for values of s that are not tool small, this upper bound is quite tight
(see previous section).

4.1 How accurate is the GSA?

In this section, we compare the values given by (5) when using actual BKZ-
reduced basis or when using the GSA (Heuristic 1) for the values of the ∥b̃i∥.
We will refer to the former by “(5)+BKZ” and to the latter by “(5)+GSA”.

Before going into the experimental results, it is useful to heuristically think
about why the GSA should give good results in this context. Recall that the
GSA is known to be quite accurate for most lattices, except in the head and in
the tail. Looking at (5), we can expect that for values of s that are not too small,
all terms of the product will be very close to 1. Since the GSA is accurate for
most values, the only errors will come from a few terms in the head and in the
tail. But since those terms are close to 1, we expect the overall error of (5)+GSA
to be small.

We run the following experiment: for several values of k = n and β, we pick
N = 5 bases at random and BKZ-β reduce them. We then plot the complexity
given by (5)+BKZ for each of those N bases. On the other hand, we also plotted
the value given by (5)+GSA. Since the latter only depends on x = vol(L)1/n/s
(for fixed n and β), we plot all curves as a function of x. As discussed in Section 4,
the upper bound (5) is only tight for values of s that satisfy s ⪆ vol(L)1/k, i.e.
x ⩽ 1. Therefore we only plot the curves over the interval [0, 1]. To make the
comparison easier, we give two plots per value of k and β:

– the “upper” plot gives the (logarithm) of (5)+GSA in red and the (N values
of) (5)+BKZ in grey,

– the “lower” plot gives the (N values of) of the (logarithm) of (5)+BKZ
(5)+GSA in blue.

In certain applications, it is important to run the sampler on q-ary bases. It is
well-known [1,8] that running BKZ on the standard5 q-ary basis yields a basis of a
very particular shape called the “Z-shape”. The Z-shape can deviate substantially
from the GSA for certain choices of parameters n, k and q and it is still an open
problem to give a good model for those bases. For this reason, we also ran
the same experiments with some q-ary bases. Strangely, in our experiments, we

5 A basis of the form
[
Ir 0
B qIn−r

]
for some 1 ⩽ r ⩽ n and integer matrix B.



observed that the GSA seems to give better results than the Z-shape adapted
GSA, which is why in Figure 2 we plot (5)+GSA. We leave as an open question
to explain why this is the case.

The results can be found in Figure 1 and Figure 2. We observe a reasonably
good agreement between (5)+BKZ and (5)+GSA. Unsurprisingly, the error in-
creases as s becomes smaller (and x becomes closer to 1) but we expect that
most applications of this result will only use small values of x. In particular, the
error seems negligible when x ⩽ 1/4 which is probably the more useful regime
for this algorithm. In particular, our application in Section 5 only requires values
of x which are significantly smaller than 1/4.

4.2 An approximation formula

Having observed in the previous section that the GSA gives reasonably accurate
values for (5), we now give a simple approximation for it. The motivation is
twofold. First, from a theoretical perspective, it is difficult to understand the
behaviour of (5), even assuming the GSA. By finding a much simpler formula,
we can better understand its dependency on the various parameters. Second,
when using (5) in an optimizer to compute complexity estimates of attacks (such
as in [21]), the cost of evaluating this formula can quickly become prohibitive.
Indeed, evaluating (5) takes time O(k) to evaluate, compared to O(1) to the
formula that we give.

Theorem 3. Let 0 < k < n and 0 < β ⩽ k. Let b1, . . . ,bk ∈ Rn be a BKZ-β
reduced basis of a lattice L and b̃1, . . . , b̃k be the Gram-Schmidt vectors of the
basis. Let s > 0 and α = ∥b1∥/s. If Heuristic 1 holds and Hβ > 1 then

ln

(
k∏

i=1

ρ∥b̃i∥/s(Z)

)
≈ A+B + C

where

A = (k0 + 1) ln(α)− k0(k0 + 1) ln(Hβ),

B =
E1

(
πα2H

−4(k0+1)
β

)
− E1(πα

2)

2 ln(Hβ)
,

C =
E1

(
πα−2H

4(k0+1)
β

)
− E1

(
πα−2H4k

β

)
2 ln(Hβ)

where k0 = max
(
−1,min

(
k − 1,

⌊
ln(α)

2 ln(Hβ)

⌋))
.

Remark 2. We have experimentally observed that B and C are usually much
smaller than A. Nevertheless, B and C significantly increase the precision of the
formula for larger values of s. Ignoring B and C for a moment, we see that A
“smoothly” interpolates between two extremes:
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Fig. 1. Comparison between (5)+BKZ and (5)+GSA for various values of n and β.
For each experiment, N = 5 bases are chosen at random and BKZ-β reduced. The
plots show both the absolute values and the ratio between the two complexities. See
Section 4.1 for details.
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(a) n = 100, β = 50 (q-ary)
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(b) n = 100, β = 60 (q-ary)
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(c) n = 100, β = 70 (q-ary)
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Fig. 2. Comparison between (5)+BKZ and (5)+GSA for various values of n and β.
For each experiment, N = 5 q-ary basis are chosen at random and BKZ-β reduced.
The plots show both the absolute values and the ratio between the two complexities.
See Section 4.1 for details.

– When k0 = −1 (small values of α, i.e. large values of s), A = 0 so the
complexity bound is constant.

– When k0 = k−1 (large values of α, i.e. small values of s), then we must have
ln(α) ⩾ (k − 1)2 lnHβ and therefore the complexity is at least k

2 lnα. Since
α = ∥b1∥/s and b1 = Hk−1

β vol(L)1/k by the GSA, then the complexity is at
least k2

2 lnHβ+ln vol(L). Since, very roughly, lnHβ = 1
β lnβ, the complexity

of the algorithm will already be more than 2n, by which point this sampler
becomes worse than that of [3].

Proof (Proof of Theorem 3). Using Heuristic 1, we have that ∥b̃i∥/s ≈ αH
−2(i−1)
β .

Therefore,

ln

(
k∏

i=1

ρ∥b̃i∥/s(Z)

)
≈

k−1∑
i=0

ln ραH−2i
β

(Z)

Now check that

αH−2i
β ⩾ 1 ⇔ i ⩽

ln(α)

2 ln(Hβ)
.

We let

k0 = max

(
−1,min

(
k − 1,

⌊
ln(α)

2 ln(Hβ)

⌋))
.



Then by Lemma 1 we have

k−1∑
i=0

ln ραH−2i
β

(Z) ≈
k0∑
i=0

ln
(
αH−2i

β ·
(
1 + 2 exp(−πα2H−4i

β )
))

+

k−1∑
i=k0+1

ln
(
1 + 2 exp(− π

α2H
4i
β )
)

One easily checks that

k0∑
i=0

ln
(
αH−2i

β

)
= (k0 + 1) ln(α)− k0(k0 + 1) ln(Hβ).

For any a ⩽ b integers, y > 0 and x ̸= 1, we have

b∑
i=a

ln
(
1 + 2 exp(−yx4i)

)
≈ 2

b∑
i=a

exp(−yx4i) (6)

≈ 2

∫ b+1

a

exp(−yx4t) d t (7)

= 2

∫ x4(b+1)

x4a

exp(−yu)

4 ln(x)u
du by the change u = x4t

=
E1(yx

4a)− E1(yx
4(b+1))

2 ln(x)
by (2).

Therefore,

k0∑
i=0

ln
(
1 + 2 exp(−πα2H−4i

β )
)
≈

E1

(
πα2H

−4(k0+1)
β

)
− E1(πα

2)

2 ln(Hβ)

and

k−1∑
i=k0+1

ln
(
1 + 2 exp(− π

α2H
4i
β )
)
≈

E1

(
πα−2H

4(k0+1)
β

)
− E1

(
πα−2H4k

β

)
2 ln(Hβ)

.

4.3 How accurate is the approximation?

We now compare the formula of Theorem 3 with the upper bound (5) on the
complexity where we use the GSA (Heuristic 1) for the values of the ∥b̃i∥. We
will refer to the latter by “(5)+GSA” as we did in Section 4.1.

We observe that both (5)+GSA and the formula from Theorem 3 only depend
on k, x = vol(L)1/k/s and β. Therefore, we plot the complexity curves as a
function of x. We will plot all results in logarithimic scale (base 2) since this is
the most relevant scale for our applications. For each set of parameter, we plot
both the absolute values and the difference. As discussed in Section 4, the upper
bound (5) is only tight for values of s that satisfy s ⪆ vol(L)1/k, i.e. x ⩽ 1.
Therefore we only plot the curves over the interval [0, 1].



The curves can be found in Figure 3. The bottom figures confirm that the
difference between Theorem 3 and (5)+GSA is minimal. Indeed, we can see that
up to k = 1000, the logarithm of the ratio between the two quantities is less than
0.16, meaning that the approximation is correct within a multiplicative factor
1.1. This factor should be negligible for virtually all applications given that the
complexities grows exponentially in k, as can be seen on the top figures.

We observe in Figure 3 that as k increases, the error between the approxima-
tion formula and the (5)+GSA seems to increase slowly and be almost constant
over the range of x (except for very small values of x). We do not have a clear
explanation for this phenomenon which could be due to the approximation made
in the proof either at step (6) or (7).
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Fig. 3. Top pictures: (logarithm) of the complexity upper bound given by (5)+GSA,
for different values of k and β, plotted as a function of x. Bottom pictures: (logarithm)
of the ratio between the complexity given by Theorem 3 and that given by (5)+GSA,
for the same values of k and β.

5 Applications to dual attack on LWE

In this section, we revisit the complexity estimates from [21] using our approx-
imation formula (Theorem 3). The approach in [21] is to write an optimizer
that uses an approximate formula to find the best parameters and to then re-
evaluate the complexity for the best parameters using (5)+GSA. Indeed, recall
that (5)+GSA takes time O(n) to compute (compared to O(1) for the approxi-
mation) which becomes prohibitive when n ≈ 1000 in the dual attack. However,



this strategy can lead to sub-optimal parameter choices if the approximate for-
mula for the sampler is not good enough.

5.1 High-level overview of the attack

In this section, we give a succint presentation of the attack in [21]. We focus
on the high-level description and how the Gaussian sampler plays a role. In this
attack, we are given m LWE samples which we represent in matrix form by
(A,b) where A ∈ Zm×n

q is chosen uniformly at random, and b = As+ e where
s ∈ Zn

q is the unknown secret that we are trying to recover, and e ∈ Zm
q has

its components sampled independently from a distribution χe. Typically χe will
either be a modular discrete Gaussian, or a centered binomial. In all applications,
χe will take very small values with high probability. Here, the number of samples
m is a parameter of the attack and is typically around 2n, see [21, Sections 4.4
and 7] for more discussion on this point.

The first step of the attack is to split the secret s into two parts sguess ∈
Znguess
q and sdual ∈ Zndual

q where n = nguess + ndual. The matrix A ∈ Zm×n
q is

correspondingly split into two parts:

A =
[
Aguess Adual

]
, s =

[
sguess
sdual

]
.

The algorithm will now exhaustively try all values s̃guess ∈ Znguess
q and check

which one is correct. Check that

b−Aguess · s̃guess = Aguess · (sguess − s̃guess) +Adual · sdual + e.

Recall that the components of e are sampled from χe which is small, so we expect
∥e∥ to be relatively small. Consider the lattice

Lq(Adual) = AdualZndual
q + Zm.

The intuition behind the attack is that:

– If sguess = s̃guess then b−Aguess · s̃guess ∈ Lq(Adual)+e and since e has small
norm, this means that b−Aguess · s̃guess is close to the lattice Lq(Adual).

– If sguess ̸= s̃guess then one can show that with high probability over the choice
of A, the vector Aguess · (sguess− s̃guess) is far from the lattice Lq(Adual) and
therefore b−Aguess · s̃guess is far from to the lattice Lq(Adual).

Therefore, the attack reduces to the problem of estimating the distance between
a given vector x and the lattice Lq(Adual). The usual approach to do so is to
first sample a large number N of vectors w1, . . . ,wN in the dual lattice

L⊥
q (Adual) =

{
x ∈ Zm : xTAdual = 0 mod q

}
according to a discrete Gaussian of width s (a parameter of the attack). We then
consider the sum

gW (x) =
1

N

N∑
j=1

cos(2π⟨x,wj⟩/q)



which can be shown to corrolate with the distance from x to Lq(Adual). Therefore
it suffices to compute gW for all guesses b−Aguess · s̃guess and to keep the highest
one. While the naive way of computing all those sums is slow, a better algorithm
using the discrete Fourier transform is possible.

A critical point in the analysis above is the number of samples N : it needs
to be large enough for the values of gW to correctly estimate the distance to
Lq(A) and how large depends on the width s of the discrete Gaussian according
to which we sample the wi. Intuitively, a smaller value of s will require a smaller
number of samples N , but will increase the complexity of the Gaussian sampler.
Since [21] uses the sampler from [28], it is critical to have an accurate and quick
to compute estimate of the complexity of the sampler given a width s.

5.2 Applications

Our approach is first to modify the code6 to use our new approximate formula.
This requires a few more changes since the optimizer of [21] enforces the condi-
tion7 that s ⩾ ∥b1∥

2q [21, Section 4.4]. Furthermore, the optimizer of [21] always
picks the smallest possible value of s. This approach does not work in our case
because our condition s ⩾ qk/n−1 is much weaker8 than ∥b1∥

2q , and results in very
small values of s and sampling time which is too high. We instead modified the
code to search for the value of s in the interval ∥b1∥

q · [0.4, 0.5] which experimen-
tally seems to give the best results. Our new complexity estimates are given in
Table 1. We included the value of x = qndual/m−1/s in the table due make the
correspondence with Section 4. Indeed, recall that the complexity of the sam-
pler only depends on x = vol(L)1/d/t where d is the dimension of the lattice
and t is the width of the discrete Gaussian. In the algorithm of [21], d = m,
vol(L) = qndual and t = qs. Note that similarly to [21], we use the formula of
Theorem 3 in the optimizer to find the best set of parameters but we compute
the final estimates using (5)+GSA. Therefore, the only potential inaccuracies
come from errors due to the GSA (see last paragraph of this section).

We observe some significant improvements in the complexity compared to
[21], especially without modulus switching, thanks to the smaller values of s
that our formula is able to handle. However, when looking in detail at the re-
sults, we also observe that the optimizer of [21] has some limitations. Indeed,
the algorithm brute forces all possible values of m, β and nguess but since the
search space is too large, it only evaluates values on a grid with some signifcant
steps on the β and nguess axis. As a result, the various complexity terms (BKZ,
guessing and sampling complexity) do not balance well in the final complexity
and lead to sub-optimal results. This is why our second approach is to modify
the optimizer to perform a coarse-grid search for promising parameter sets, and
6 The code for the complexity estimates in [21] is available as an artifact.
7 Beware that the algorithm of [21] actually samples at qs and not s.
8 By the Gaussian heuristic, which essentially holds true for random q-ary lattices [21,

Corollary 2], λ1 ≈ qk/n
√

n
2πe

. For a BKZ-β reduced basis, ∥b1∥ ⩾ λ1 and in fact
∥b1∥ ≫ λ1 unless β is close to n. Hence, ∥b1∥

2
≫ qk/n for most lattices.

https://artifacts.iacr.org/eurocrypt/2024/a5/


then do a refined local search around those candidates. The results are available
Table 2 and show much more signifcant improvements, including for estimates
with modulus switching.

An interesting observation can be made on both Table 1 and Table 2: the
values of x required for the sampler are all very small. Indeed, the largest value of
x used by the algorithm is less than 0.01. Recall that in Section 4.1 we compared
the complexity of the sampler BKZ-reduced basis against an approximation using
the GSA. We saw a notable increase in the approximation error when x gets
close to 1, but also a negligible error when x ⩽ 0.2. While it is difficult to
extrapole results to dual attack (that use β ≈ 1000) from limited experimental
results (β = 70), we note that in all our experiments, the error was consistently
negligible when x ⩽ 0.2. This suggests that in this parameter regime, we can
hope that the complexity estimates are indeed accurate.

Table 1. Dual attack cost estimates and their parameters as described in [21, Sec-
tion 4.4] modified as described in Section 5. All costs are logarithms in base two. Note
that the cost of attacks with modulus switching are optimistic estimates of what an
algorithm with modulus switching could give if the algorithm of [21] was extended
with modulus switching. This table only contains improvements on the sam-
pler complexity.

No modulus switching
Scheme attack m nguess ndual β s x attack [21]
Kyber512 182 963 15 497 541 0.200 0.097 185
Kyber768 267 1419 21 747 849 0.250 0.087 273
Kyber1024 366 1925 31 993 1202 0.250 0.079 376

With modulus switching
Kyber512 141 763 141 371 381 0.190 0.082 141
Kyber768 201 1119 201 567 599 0.240 0.077 202
Kyber1024 273 1575 261 763 867 0.240 0.064 279

6 On the Gaussian mass of random q-ary lattices

In this section, we give probabilistic estimates on the value of ρ1/s(L̂) when L
is a random q-ary lattice (see Section 2.4 for more details). These bounds are
related to the smoothing parameter of lattices and are useful to argue about
the tightness of the complexity bound in Section 3. We are not aware of any
such results in the literature for these classes of random lattices. However, a
closely related result is available in [14] which studies matrices with each entry
independently and identically distributed from an integer Gaussian distribution.

Lemma 3. For any n ∈ N, 1 ⩽ k ⩽ n, prime power q and s > 0,

EL∼L⊥
n,k,q

[
ρ1/s(L̂)

]
⩽ ρ1/s(Zn) + qk−nρq/s(Zn),



Table 2. Dual attack cost estimates and their parameters as described in [21, Sec-
tion 4.4] modified as described in Section 5. All costs are logarithms in base two. Note
that the cost of attacks with modulus switching are optimistic estimates of what an
algorithm with modulus switching could give if the algorithm of [21] was extended with
modulus switching. This table contains improvements on the optimizer and
the sampler.

No modulus switching
Scheme attack m nguess ndual β s x attack [21]
Kyber512 181 1023 15 497 539 0.200 0.079 185
Kyber768 266 1504 22 746 843 0.240 0.070 273
Kyber1024 366 1985 31 993 1199 0.250 0.070 376

With modulus switching
Kyber512 136 778 133 379 381 0.190 0.081 141
Kyber768 199 1164 197 571 602 0.230 0.068 202
Kyber1024 270 1520 269 755 857 0.240 0.070 279

VL∼L⊥
n,k,q

[
ρ1/s(L̂)

]
⩽ q1+k−nρq/s(Zn)ρ1/s(Zn).

Proof. Recall that if L = Lq(A) then L̂ = 1
qL

⊥
q (A). Therefore, L ∼ Ln,k,q is

equivalent to L̂ ∼ 1
qL

⊥
n,k,q. Therefore we can use Theorem 2 to get that

EL∼Ln,k,q

[
ρ1/s(L̂)

]
= EL∼L⊥

n,k,q

[
ρ1/s(

1
qL)

]
= EL∼L⊥

n,k,q

[
ρq/s(L)

]
= ρq/s(qZn) + qk−nρq/s(Zn \ qZn)

⩽ ρ1/s(Zn) + qk−nρq/s(Zn)

To estimate the variance, we use Corollary 1 to get that

VL∼Ln,k,q

[
ρ1/s(L̂)

]
= VL∼L⊥

n,k,q

[
ρ1/s(

1
qL)

]
= VL

[
ρq/s(L)

]
= (qk−n − q2(k−n))

∑
x∈Zn\qZn

∑
u∈qZn

∑
α∈Zq\{0}

ρq/s(x)ρq/s(αx+ qu)

⩽ qk−n
∑

x∈Zn\qZn

∑
α∈Zq\{0}

ρq/s(x)ρq/s(αx+ qZn)

⩽ qk−n
∑

x∈Zn\qZn

∑
α∈Zq\{0}

ρq/s(x)ρq/s(qZn)

= (q − 1)qk−nρq/s(Zn \ qZn)ρq/s(qZn)

⩽ q1+k−nρq/s(Zn)ρ1/s(Zn).



Lemma 4. For any n ∈ N, 1 ⩽ k ⩽ n, prime power q and ξ > 1, if s = ξqk/n

then

ρ1/s(Zn) ⩽ (1 + ε)nf(s),

qk−nρq/s(Zn) ⩽ (1 + ε)nξ−nf
(
q1−k/n/ξ

)n
where f(x) = 1 + 2e−πx2

for all x ⩾ 0 and ε is defined in Lemma 1.

Proof. We will show the result when s ⩽ q. When s > q then the result follows
trivially since ρs is an increasing function of s. Let ε be as in Lemma 1. Clearly
s ⩾ 1 if s = ξqk/n so we can apply Lemma 1 to get that

ρ1/s(Zn) ⩽ (1 + ε)n
(
1 + 2e−πs2

)n
= (1 + ε)nf(s).

By Lemma 1, when s ⩽ q, we have that

qk−nρq/s(Zn) ⩽ qk−n(1 + ε)n( qs )
n
(
1 + 2e−π(q/s)2

)n
= qk−n(1 + ε)nξ−nqn−k

(
1 + 2e−π(q1−k/n/ξ)2

)n
= (1 + ε)nξ−n

(
1 + 2e−π(q1−k/n/ξ)2

)n
= (1 + ε)nξ−nf

(
q1−k/n/ξ

)n
.

Corollary 2. For any n ∈ N, 1 ⩽ k ⩽ n, prime power q, ξ > 1 and α, if
s = ξqk/n, qk/n ⩾ 2 and α > µ then

PrL∼L⊥
n,k,q

[
ρ1/s(L̂) > α

]
⩽

σ2

(α− µ)2

where

µ = 1.000007n + ξ−n · 1.000014n, σ2 = q · 1.000028n · ξ−n.

Proof. We will show the result when 2s ⩽ q. When s > q then the result follows
trivially since ρs is an increasing function of s.

Let f be defined as in Lemma 4 which is a decreasing function. Observe that
if 2s ⩽ q then 2ξqk/n ⩽ q, that is q1−k/n/ξ ⩾ 2. Therefore, f(q1−k/n/ξ) ⩽
f(2) ⩽ 1.000007. Similarly, if qk/n ⩾ 2 then s ⩾ 2 so f(s) ⩽ f(2). Also note
that for ε = 7× 10−6 we have (1 + ε)f(2) ⩽ 1.000014. Hence, by Lemma 3 and
Lemma 4

µ := EL∼L⊥
n,k,q

[
ρ1/s(L̂)

]
⩽ ρ1/s(Zn) + qk−nρq/s(Zn),

⩽ (1 + ε)nf(s)n + (1 + ε)nξ−nf
(
q1−k/n/ξ

)n



⩽ (1 + ε)nf(2)n + (1 + ε)nξ−nf (2)
n

⩽ 1.000007n + ξ−n · 1.000014n,

and

σ2 := VL∼L⊥
n,k,q

[
ρ1/s(L̂)

]
⩽ q1+k−nρq/s(Zn)ρ1/s(Zn)

⩽ q · (1 + ε)nξ−nf
(
q1−k/n/ξ

)n
· (1 + ε)nf(s)n

⩽ q · (1 + ε)nξ−nf (2)
n · (1 + ε)nf(2)n

⩽ q · 1.000028n · ξ−n.

Finally, we conclude by Chebyshev’s inequality.

The constants in Corollary 2 are somewhat arbitrary but allow for a greatly
simplified statement. It seems that the probability bound is not very sharp and
it would be interesting to see if the proof can be refined to obtain a stronger
statement.
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