
Revisiting subgroup membership testing on
pairing-friendly curves via the Tate pairing

Yu Dai1, Debiao He2�, Dmitrii Koshelev3, Cong Peng2, and Zhijian Yang1

1 School of Mathematics and statistics, Wuhan University, Wuhan, China.
eccdaiy39@gmail.com, zjyang.math@whu.edu.cn

2 School of Cyber Science and Engineering, Wuhan University, Wuhan, China.
hedebiao@whu.edu.cn, cpeng@whu.edu.cn

3 Department of Mathematics, University of Lleida, Catalonia, Spain.
dimitri.koshelev@gmail.com

Abstract. In 2023, Koshelev proposed an efficient method for subgroup
membership testing on a list of non-pairing-friendly curves via the Tate
pairing. In fact, this method can also be applied to certain pairing-
friendly curves, such as the BLS and BW13 families, at a cost of two small
Tate pairings. In this paper, we revisit Koshelev’s method to enhance its
efficiency for these curve families. First, we present explicit formulas for
computing the two small Tate pairings. Compared to the original formu-
las, the new versions offer shorter Miller iterations and reduced storage
requirements. Second, we provide a high-speed software implementation
on a 64-bit processor. Our results demonstrate that the new method is up
to 62.0% and 22.4% faster than the state-of-the-art on the BW13-310 and
BLS24-315 curves, respectively, while being 14.1% slower on BLS12-381.
When precomputation is utilized, our method achieves speed improve-
ments of up to 34.8%, 110.6%, and 63.9% on the BLS12-381, BW13-310,
and BLS24-315 curves, respectively.

Keywords: pairing-friendly curves· subgroup membership testing· Tate
pairing.

1 Introduction

A cryptographic pairing on an elliptic curve E over a prime field Fp is a bilinear
and non-degenerate map of the form e : G1 ×G2 → GT , where G1, G2 and GT

are three subgroups with the same large prime order r. More specifically, the two
input groups G1 and G2 are distinct subgroups of E(Fpk) and the output group
GT is subgroup of a finite field Fpk , where k is the smallest positive integer such
that r | (pk−1). Over the last two decades, pairings have been widely used in the
design of various cryptographic protocols. Nowadays, the research on pairings
remains active, driven largely by their applications in Zero-Knowledge Succinct
Non-Interactive Arguments of Knowledge (zk-SNARKs), such as Groth16 [23]
and PlonK [20]. In pairing-based cryptographic protocols, participants often need
to perform exponentiation operations in one or more pairing groups. However,

2 Yu Dai, Debiao He �, Dmitrii Koshelev, Cong Peng, and Zhijian Yang

these groups usually lie in a larger group with non-trivial cofactors for most of
mainstream pairing-friendly curves. As a result, this can lead to small subgroup
attacks: if a participant performs group exponentiationon an element of non-
prime order with a secret key, it may expose partial information about the secret
key. We refer the readers to [6] for details.

In order to resist small subgroup attacks in pairing-based cryptographic pro-
tocols, it is essential to ensure that a given element belongs to a specific sub-
group. This process is called subgroup membership testing. Given a candidate
element g claimed to be a member of Gi (i ∈ {1, 2, T}), the naive method in-
volves checking whether gr is equal to the identity element of Gi. However, the
cost of this method is expensive as the size of the prime r is large in practice. In
2020, Scott [41] proposed an efficient method of subgroup membership testings
on the BLS12 curves via efficiently computable endmoriphisms. This method is
about 2×, 4× and 4× as fast as the naive one for G1, G2 and GT membership
testings, respectively. Subsequently, Dai et al. [13] generalized Scott’s method
such that it can be applied to a large class of pairing-friendly curves. In more de-
tail, Dai et al.’s method requires about log r/2, log r/φ(k) and log r/φ(k) group
operations for G1, G2 and GT membership testings respectively, where φ(k) is
the Euler phi function of k. In particular, the number of group operations for G2

can be further reduced to around log r/(2φ(k)) on some special pairing-friendly
curves [12]. It should be also noted that the cost of G2 membership testing might
be free if it is allowed to execute the testing during pairing computation.

Recently, Koshelev [32] proposed a novel method for subgroup membership
testing on non-pairing-friendly curves via the Tate pairing. This method imposes
specific requirements for the group structure of elliptic curves. To be precise,
given an elliptic curve E over a finite field Fp with a large prime divisor r,
it follows from [43, Theorem 4.1] that E(Fp) ∼= Ze1 ⊕ Ze2·r for some integers
e1 and e2 with e1 | e2. Koshelev stated that if e2 | (p − 1) one can perform
subgroup membership testing for E(Fp)[r] via two Tate pairings of orders e1
and e2, respectively. In particular, if E(Fp) is cyclic, i.e., e1 = 1, it only requires
computing one e2-order pairing. For example, the given method is well-suited
for Jubjub [18] and Bandersnatch [34]. Since e1 ∈ {1, 2} and e2 ∈ {2, 8} on
these curves, the length of the Miller loop is extremely short, and thus the whole
pairing computation amounts only to its final exponentiation. Curiously, the
latter can be also performed effciently when e2 ≤ 11 according to [29]. It should
be noted that Koshelev [33] subsequently generalized his method such that it
can be applied to certain curves with e2 ∤ (p − 1), e.g., Ed448-Goldilocks [26].
Unfortunately, this generalization may be inefficient as it involves operations in
an extension field Fpd , where d is the smallest degree such that the exponent of
the group E(Fpd)[e∞2] divides pd − 1.

In fact, Koshelev’s method is also suitable for G1 membership testing on a list
of mainstream pairing-friendly curves, such as the Barreto-Lynn-Scott(BLS) [8]
family and complete families from [19, Construction 6.6] with embedding degrees
13 and 19. The latter is also referred to as BW curves in the literature, as
they are constructed via the Brezing-Weng method [9]. However, when applying

Title Suppressed Due to Excessive Length 3

Koshelev’s method to these curves, the computational cost of the Miller loop
cannot be ignored. For example, the sizes of e1 and e2 are both approximately
1/4 that of the prime r for the BLS12 curves, making Koshelev’s method more
computationally expensive than Scott’s method.

1.1 Our contributions

The goal of this work is to illustrate how to efficiently apply Koshelev’s method
to accelerate G1 membership testing in the BLS, BW13 and BW19 families. Our
contributions are summarized as follows.

• We present an efficient algorithm for computing the two Tate pairings re-
quired for subgroup membership testing on our target curves. The new algo-
rithm requires approximately log e2 Miller’s iterations. In addition, we also
demonstrate how to perform the the final exponentiation of the e1-order
Tate pairing.

• Using the RELIC cryptographic toolkit [1], we present a high-speed software
implementation across a list of mainstream curves, including BLS12-381,
BLS12446, BW13-310, BLS24-315, BLS24-509 and BLS48-575. The experi-
mental results show that
1. in the general case, our method achieves speed improvements of up to

62.0%, 22.4%, 46.2% and 80.6% on the BW13-310, BLS24-315, BLS24-
509 and BLS48-575 curves, respectively, while being approximately 14.6%
and 41.4% slower on BLS12-381 and BLS12-446 curves, respectively;

2. when precomputation is utilized, our method is approximately 34.8%,
10.6%, 110.6%, 63.9%, 98.1% and 123.1% faster than the previous leading
work on the BLS12-381, BLS12-446, BW13-310, BLS24-315, BLS24-509
and BLS48-575 curves, respectively.

Organization of the Paper. The remainder of this paper is organized as
follows. In Section 2, we give some preliminaries about elliptic curves used in this
work. Section 3 introduces existing methods for subgroup membership testing on
elliptic curves. In Section 4, we present new formulas for subgroup membership
testings that suitable for the BLS, BW13 and BW19 families. Section 5 offers
a comprehensive performance comparison between our implementation and the
previous fastest one. Finally, we draw our conclusion in Section 6.

2 Preliminaries

In this section, we first review some basic concepts about elliptic curves and
Tate pairings. Then we introduce some parameterized pairing-friendly curves.

2.1 Ordinary elliptic curves

Let Fp be a prime field with p > 3 a large prime. An elliptic curve E over
Fp in the short Weierstrass form is defined by the equation y2 = x3 + ax + b,

4 Yu Dai, Debiao He �, Dmitrii Koshelev, Cong Peng, and Zhijian Yang

where a, b ∈ Fp such that 4a3 + 27b2 ̸= 0. The j-invariant of E is given by

j(E) = 1728 4a3

4a3+27b2 . The group E(Fp) consists of Fp-rational points (x, y) that
satisfy the curve equation, together with the identity point O. The order of
E(Fp), which is denoted as #E(Fp), is equal to p + 1 − t, where t is the trace
of the p-power Frobenius map π : (x, y) → (xp, yp). If t = 0, then the curve
E is said to be supersingular ; otherwise it is ordinary. Let r be a large prime
such that r ∥ #E(Fp), and let E[r] be the r-torsion group of E. The embedding
degree k of E with respect to r and p is the smallest positive integer such that
E[r] ⊆ E(Fpk). If k > 1, then k is the smallest integer such that r|(pk − 1). In
this case, the group E[r] = G1 ⊕G2, where G1 and G2 are defined as follows:

G1 = E(Fp)[r] and G2 = E(Fpk)[r] ∩Ker(π − [p]).

The group E(Fp) ∼= Ze1 ⊕ Ze2·r for some integers e1 and e2 with e1 | e2. If
E is an ordinary curve with j-invariant 0 or 1728, then the cofactor e1 is the
largest integer such that e21 | #E(Fp) and e1 | (p − 1) [39, Proposition 3.7]. As
a result, the cofactor e2 = me1, where m = #E(Fp)/(r · e21). For any integer n
satisfying that n | (p− 1) and n | #E(Fp), i.e., n is a divisor of e2, the reduced
Tate pairing of order n on E(Fp) is defined as

Tn : E(Fp)[n]× E(Fp)/nE(Fp)→ µn

(P,R)→ fn,P (R)(p−1)/n,

where µn ⊆ F∗
p is the group of n-th roots of unity in F∗

p and fn,P is a rational
function with divisor div(fn,P) = (n)P − (nP)− (n− 1)O. The Tate pairing Tn

on E satisfies the following properties:

1. Bilinearity: For any P1, P2 ∈ E(Fp)[n] and R1, R2 ∈ E(Fp),

Tn(P1, R1 +R2) = Tn(P1, R1) · Tn(P1, R2),

Tn(P1 + P2, R1) = Tn(P1, R1) · Tn(P2, R1).

2. Non-degeneracy: Let P ∈ E(Fp)[n]. If Tn(P,R) = 1 for all R ∈ E(Fp),
then P = O. Let R ∈ E(Fp). If Tn(P,R) = 1 for all P ∈ E(Fp)[n], then
R ∈ nE(Fp).

3. Compatibility: Let P ∈ E(Fp)[n] and R ∈ E(Fp). For all separable endo-
morphisms α on E,

Tn(α(P), R) = Tn(P, α̂(R)),

where α̂ is the dual of α, i.e., α ◦ α̂ = [deg(α)].

Throughout this paper, we assume the curve E is ordinary with j-invariant 0. In
this case, the parameter a = 0 and p ≡ 1 mod 3 [43, Proposition 4.33]. Therefore,
there exists an efficiently computable endomorphism ϕ on E:

ϕ :E → E

(x, y)→ (ω · x, y),

Title Suppressed Due to Excessive Length 5

Algorithm 1 Miller’s Algorithm

Input: P ∈ E(Fp)[n], R ∈ E(Fp), m =
l∑

i=0

mi2
i with mi ∈ {0, 1}

Output: fm,P (R)
1: T ← P , f ← 1
2: for i = l − 1 down to 0 do
3: f ← f2 · ℓT,T (R)

ν2T (R) , T ←− 2T

4: if mi = 1 then
5: f ← f · ℓT,P (R)

νT+P (R) , T ← T + P

6: end if
7: end for
8: return f

where ω is a primitive cube root of unity in F∗
p. The dual of ϕ is given as

ϕ̂ : (x, y)→ (ω2 ·x, y). By the property of compatibility of Tate pairing, we have

Tn(ϕ(P), R) = Tn(P, ϕ̂(R)).

The endomorphism ϕ is also called the GLV endomorphism as it was used by
Gallant, Lambert and Vanstone [22] to accelerate elliptic curve scalar multipli-
cation.

The computation of the Tate pairing Tn(P,R) can be divided into two phases:
the Miller loop and the final exponentiation. In more detail, the first phase
involves computing fn,P (R) and the second one aims to raise fn,P (R) to the
power of (p − 1)/n. The computation of fn,P (R) can be executed via Miller’s
algorithm [36], which is actually based on the following equation:

fi+j,P = fi,P · fj,P ·
ℓiP,jP

ν(i+j)P
, (1)

where ℓiP,jP represents the straight line through iP and jP , and ν(i+j)P denotes
the vertical line through (i+ j)P . In the following, we refer to fn,P as the Miller
function.

2.2 Parameterized families of pairing-friendly curves

A cryptographic pairing is a bilinear and non-degenerate map from G1 × G2

to GT , where GT represents the r-th roots of unity in F∗
pk . Pairing-friendly

curves are specifically designed to facilitate high-performance implementations of
pairing computations at the required security levels. These curves typically have
a low embedding degree k and a small value of ρ, where ρ = log p/ log r. Table 1
summarizes some popular parameterized families of pairing-friendly curves with
ρ < 2 and embedding degree k ranging from 12 to 48, including the BW13,
BW19, BLS12, BLS24, and BLS48 families. All these curves have a j-invariant
0, meaning they can be defined by the equation y2 = x3 + b for some b ∈ F∗

p.

6 Yu Dai, Debiao He �, Dmitrii Koshelev, Cong Peng, and Zhijian Yang

Table 1: Polynomial parameters of BW13, BW19, BLS12, BLS24 and BLS48
families. The symbol Φk(z) represents the k-th cyclotomic polynomial.

family-k p r t e1 e2 m

BLS12 (z − 1)2(z4 − z2 + 1)/3 + z Φ12(z) z + 1 (z−1)
3

z − 1 3

BW13 1
3
(z+1)2(z26−z13 + 1)−z27 Φ78(z) −z14 + z + 1 (z2−z+1)

3
z2 − z + 1 3

BW19 1
3
(z+1)2(z38−z19 + 1)−z39 Φ114(z) −z20 + z + 1 (z2−z+1)

3
z2 − z + 1 3

BLS24 (z − 1)2(z8 − z4 + 1)/3 + z Φ24(z) z + 1 (z−1)
3

z − 1 3

BLS48 (z − 1)2(z16 − z8 + 1)/3 + z Φ48(z) z + 1 (z−1)
3

z − 1 3

Table 2: A list of pairing-friendly curves derived from the BLS, BW13 and BW19
families.

curve b z ⌈log p⌉ ⌈log r⌉ ρ ⌈log pk⌉

BLS12-381 4 −263 − 262 − 260 − 257 − 248 − 216 381 255 1.5 4569

BLS12-446 1 −274−273−263−257 − 250−217−1 446 299 1.5 5376

BW13-310 −17 −211 − 27 − 25 − 24 310 267 1.17 4027

BW19-286 31 −27 − 24 − 1 286 259 1.11 5427

BLS24-315 1 −231 − 230 + 221 + 220 + 1 315 253 1.25 7543

BLS24-509 1 −251 − 228 + 211 − 1 509 409 1.25 12202

BLS48-575 4 232 − 218 − 210 − 24 575 512 1.125 27572

Due to the decrease of the asymptotic complexity for computing discrete
logarithms in finite fields under the attacks of number field sieve and its vari-
ants [5,28,31], the parameters of pairing-friendly curves should be selected care-
fully to reach the desired security level. In Table 2, we list the key parameters of
specific pairing-friendly curves derived from the above families, which are suit-
able for implementing pairing-based protocols across various security levels. To
be precise, BLS12-381 is one of the most popular curves in practice, which is
widely used for digital signatures and zero-knowledge proofs; BLS12-446, BLS24-
509 and BLS48-575 are believed to be the best choice for pairing computations
at the 128-bit, 192-bit and 256-bit security levels, respectively [2,24,35]; BW13-
310 and BW19-286 provide fast performance of group exponentiation in G1

at the 128-bit security level [10]; BLS24-315 [16] is suitable for constructing
zero-knowledge succinct non-interactive arguments of knowledge that based on

Title Suppressed Due to Excessive Length 7

KZG [30] polynomial commitment, e.g., PLONK [20]. For more information on
selecting pairing-friendly curves, we refer to Guillevic’s blog [25].

3 Efficient Methods for Subgroup Membership Testing
on Elliptic Curves

In this section, we recall the efficient methods for subgroup membership testing
on elliptic curves in the existing literature.

3.1 Method I: subgroup membership testing via the efficiently
computable endomorphism

Scott [41] proposed the first non-trivial method forG1 membership testing specif-
ically designed for the BLS12 family. After that, EI Housni, Guillevic and Piel-
lard [17] confirmed that this method was also suitable for the BLS24 and BLS48
families. In 2023, Dai et al. [13] further generalized Scott’s method such that it
can be applied to a large class of pairing-friendly curves. In essence, this method
requires that pairing-friendly curves are equipped with an efficiently-computable
endomorphism. In particular, for ordinary curves with j-invariant 0, Dai et al.’s
method can be summarized as follows. Let the GLV endomorphism ϕ on G1 act
as a scalar multiplication by λ1, and define a two dimensional lattice Lϕ as

Lϕ = {(b0, b1) ∈ Z2|b0 + b1 · λ1 ≡ 0 mod r}.

We denote by Res(g0, g1) the resultant of the two polynomials g0 and g1. Let
a = (a0, a1) ∈ Lϕ such that

gcd
(
#E(Fp),Res(a0 + a1X,X2 +X + 1)

)
= r. (2)

Dai et al. observed that

R ∈ G1 ⇔ R ∈ E(Fp) and a0R+ a1ϕ(R) = O.

For efficiency, we expect that ∥a∥∞ is as small as possible. According to [42, The-
orem 7], there exists a shortest vector v in Lϕ such that ∥v∥∞ ≈

√
r. Fortunately,

the condition (2) is generally mild, allowing the target short vector a can be al-
ways selected as v for many popular pairing-friendly curves. Consequently, this
method requires approximately log r/2 bit group operations, which is roughly
twice as fast as the naive one.

3.2 Method II: subgroup membership testing via the Tate pairing

Taking advantage of the non-degeneracy of Tate pairing, Koshelev [32] proposed
a new method for subgroup membership testing on elliptic curves. The essence
of this method is captured in the following theorem.

8 Yu Dai, Debiao He �, Dmitrii Koshelev, Cong Peng, and Zhijian Yang

Theorem 1. [32, Lemma 1] Let E be an elliptic curve defined over Fp with
E(Fp) ∼= Ze1 ⊕ Ze2·r and e2 | (p − 1). Let P1, P2 ∈ E(Fp) with orders e1 and
e2 respectively, such that E(Fp)[e2] = ⟨P1⟩ ⊕ ⟨P2⟩. Given a random non-identity
point R ∈ E(Fp), then R ∈ E(Fp)[r] if and only if

Te1(P1, R) = 1 and Te2(P2, R) = 1.

According to Theorem 1, subgroup membership testing on elliptic curves can
be accomplished at a cost of two Tate pairings of orders e1 and e2, respectively.
If E(Fp) is cyclic, i.e., e1 = 1, it only requires computing the e2-order Tate
pairing. In addition, Koshelev also demonstrated that if ei ≤ 11 for i ∈ {1, 2},
then the final exponentiation part of the ei-order Tate pairing can be sped up by
using the Euclidean-type algorithm [29]. In particular, if ei = 2, then the final
exponentiation is equivalent to computing the Legendre symbol, which can be
further accelerated using the algorithms presented in [3, 27].

3.3 Summary

The above two methods differ significantly in terms of applicability, efficiency
and storage requirements. Specifically, Method I is tailored for pairing-friendly
curves, while Method II was originally developed for non-pairing-friendly curves
such as Jubjub [18] and Bandersnatch [34]. In summary, the main differences
between the two methods are summarized as follows:

1. Method I is well-suited for elliptic curves equipped with efficiently com-
putable endmoriphisms, while Method II is applicable when the curve pa-
rameters meet the condition e2 | (p− 1).

2. The computational cost of Method I primarily arises from scalar multiplica-
tion with a bit length of approximately log r/2. In contrast, the computa-
tional cost of Method II mainly comes from the two Tate pairing computa-
tions of orders e1 and e2, respectively.

3. Method I does not increase storage requirements since the parameter of the
endomorphism ϕ is often provided to accelerate elliptic curve scalar mul-
tiplication in pairing-based systems. As a comparison, Method II requires
storing two points P1 and P2 such that E(Fp)[e2] = ⟨P1⟩ ⊕ ⟨P2⟩.

It is clear that Method I is suitable for the BLS, BW13 and BW19 families.
Fortunately, we notice that these families also meet the condition e2 | (p −
1), making Method II applicable as well. However, despite the relatively small
sizes of e1 and e2 in these families, the computational cost of the Miller loop
remains non-negligible. In addition, the technique of [29] can not be exploited
to speed up the final exponentiation as ei ≫ 11 for i ∈ {1, 2}. To the best
of our knowledge, Method I is still considered the state-of-the-art of subgroup
membership testing (for G1) on pairing-friendly curves. This method has been
implemented in MIRACL [40] and RELIC [1].

Title Suppressed Due to Excessive Length 9

4 Small Tate Pairing Computations in the BLS, BW13
and BW19 Families

In this section, we revisit Method II and study how to reduce its computational
cost and storage requirements when applied to the BLS, BW13 and BW19 fam-
ilies.
Notations. We represent the points R and ϕ̂(R) in affine coordinates as (xR, yR)
and (x̂R, yR) respectively, and the pointR in Jacobian coordinates as (XR, YR, ZR),
where

xR = XR/Z
2
R, yR = YR/Z

3
R.

We denote by a, m, mu, s, su, i, r and z the costs of addition, multiplication,
multiplication without reduction, squaring, squaring without reduction, inver-
sion, modular reduction and group exponentiation by |z| in Fp, respectively.

4.1 Faster formulas for computing small Tate pairings

We first introduce the following lemma to illustrate how to generate a basis of
E(Fp)[e2].

Lemma 1. Let P be a random point of E(Fp)[e2] with order e2. Let ωe2(·, ·)
be the Weil pairing of order e2 on E. If ωe2(P, ϕ(P)) ̸= 1, then E(Fp)[e2] =
⟨P ⟩ ⊕ ⟨mϕ(P)⟩.

Proof. Since ϕ is an automorphism on E and e2 = e1 ·m, the order of mϕ(P)
is equal to e1. By [43, Theorem 3.9], the condition ωe2(P, ϕ(P)) ̸= 1 means that
ϕ(P) ̸∈ ⟨P ⟩ and thus P and mϕ(P) are linearly independent. By the fact that
E(Fp)[e2] ∼= Ze1 ⊕ Ze2 , we conclude that E(Fp)[e2] = ⟨P ⟩ ⊕ ⟨mϕ(P)⟩. ⊓⊔

Based on this observation, we can compute the two Tate pairings efficiently,
which is summarized as the following theorem.

Theorem 2. Let the point P be defined as Lemma 1. Given a random non-
identity point R ∈ E(Fp), then R ∈ G1 if and only if

Te2(P, ϕ̂(R))m = 1 and Te2(P,R) = 1.

Proof. By Lemma 1, {P,mϕ(P)} is a basis of E(Fp)[e2]. Then, it follows from The-
orem 1 that R ∈ G1 if and only if

Te1(mϕ(P), R) = 1 and Te2(P,R) = 1.

Sine e1 | e2, from [21, Exercise 26.3.8] and by the bilinearity of Tate pairing, we
have

Te1(mϕ(P), R) = Te2(mϕ(P), R) = Te2(ϕ(P), R)m.

Furthermore, since Te2(ϕ(P), R) = Te2(P, ϕ̂(R)), we conclude that

Te1(mϕ(P), R) = Te2(P, ϕ̂(R))m,

which completes the proof of the theorem. ⊓⊔

10 Yu Dai, Debiao He �, Dmitrii Koshelev, Cong Peng, and Zhijian Yang

Theorem 2 presents new formulas for subgroup membership testing for G1 in
the BLS, BW13 and BW19 families. Even though it still requires computing
two Tate pairings, the evaluations of the two Miller functions can be shared,
significantly reducing the total number of Miller’s iterations. In addition, this
method benefits from low storage requirements since the Tate two pairings share
the same first pairing argument.

We now introduce an alternative method tailored to the BW13 and BW19
families. First, it can be seen from Table 1 that the parameters e1 = (z2−z+1)/3
and e2 = (z2 − z + 1) in the two families. We denote by λ1 and λ2 the two
eigenvalues of ϕ on E[e1]. It is easy to prove that

λ1 = −z, λ2 = z − 1.

Based on this observation, we can determine the λ1- and λ2- eigenspaces of the
endomorphism ϕ acting on E[e1], which is summarized as the lemma below.

Lemma 2. Let Q be a random point of E[e1] with order e1 in the BW13 or
BW19 family. Define H1 = E[e1] ∩Ker(ϕ− λ1) and H2 = E[e1] ∩Ker(ϕ− λ2).
Let Q1 = ϕ(Q) − λ2Q and Q2 = ϕ(Q) − λ1Q. Then Q1 ∈ H1 and Q2 ∈ H2.
In particular, if Q = R1 + R2, where R1 and R2 are generators of H1 and H2

respectively, then ⟨Q1⟩ = H1 and ⟨Q2⟩ = H2

Proof. By the definition of Q1, we have

ϕ(Q1) = ϕ2(Q)− λ2ϕ(Q), λ1Q1 = λ1ϕ(Q)− λ1λ2ϕ(Q). (3)

Since the two characteristic values λ1 and λ2 satisfy that

λ1 + λ2 = −1 mod e1, λ1λ2 = 1 mod e1,

it follows from Eq. (3) that

ϕ(Q1)− λ1Q1 =ϕ2(Q)− (λ1 + λ2)ϕ(Q) + λ1λ2ϕ(Q).

=ϕ2(Q) + ϕ(Q) +Q

=O,

which implies that Q1 ∈ H1. Moreover, since Q = R1 +R2 we get

Q1 =ϕ(R1)− λ2R1 = (λ1 − λ2)R1.

It is straightforward to prove that

(−2z + 1)

3
(λ1 − λ2) + 4e1 = 1.

In order to ensure the parameter p is an integer, the seed z must meet the
condition z ≡ 2 mod 3 in the BW13 and BW19 families. Then, we have (−2z +
1)/3 ∈ Z and thus gcd(λ1−λ2, e1) = 1, which implies that the order ofQ1 is equal
to e1. Thus we have ⟨Q1⟩ = H1. Likewise, we can also prove that ⟨Q2⟩ = H2,
which completes the proof of the lemma. ⊓⊔

Title Suppressed Due to Excessive Length 11

Let Q3 be a point of E(Fp) with order m = 3 in the BW13 or BW19 family, and
let P1 = Q1, P2 = Q2 +Q3. It follows from Lemma 2 that {P1, P2} is a basis of
E(Fp)[e2]. Moreover, the points P1 and P2 also satisfy that

ϕ(P1) = −zP1, ϕ(P2) = (z − 1)Q2 +Q3 = (z − 1)P2. (4)

Based on Eq. (4), we present a new formulas for computing the two small Tate
pairings required for G1 membership testing in the BW13 and BW19 families.

Theorem 3. Let E be a curve in the BW13 or BW19 family. Let P1 and P2 be
defined as above. Given a random non-identity point R ∈ E(Fp), then R ∈ G1 if
and only if (

fz+1
−z,P1

(R) · f−z(ϕ̂(R)) · (yR − yP1)
)(p−1)/e1

= 1 and(
fz+1
−z,P2

(R) · f−z(ϕ(R)) · (yR − yP2))
(p−1)/e2 = 1.

Proof. Since ϕ(P1) = −zP1, we can deduce that

fz2−z+1,P1
(R) = fz2,P1

(R) · f−z,P1
(R) · ℓz2P1,−zP1

(R)

= f−z+1
−z,P1

(R) · f−z,ϕ(P1)(R) · (yR − yP1).

Furthermore, it follows from [44, Theorem 1] that f−z,ϕ(P1)(R) = f−z,P1(ϕ̂(R)),
which implies that

fz2−z+1,P1
(R) = f−z+1

−z,P1
(R) · f−z,P1(ϕ̂(R)) · (yR − yP1).

Thus, the e1-order pairing Te1(P1, Q) can be expressed as

Te1(P1, Q) = Te2(P1, Q) =
(
fz+1
−z,P1

(R) · f−z(ϕ̂(R)) · (yR − yP1
)
)(p−1)/e1

.

Similarly, we can also prove that

Te2(P2, Q) =
(
fz+1
−z,P2

(R) · f−z(ϕ(R)) · (yR − yP2
))(p−1)/e2 .

Finally, the result immediately follows from Theorem 1. ⊓⊔

Comparison: Theorems 2 and 3 describe two distinct methods for G1 mem-
bership testing, both of which are suitable for the BW13 and BW19 families.
Each method has its own strengths. To be precise, the first method (proposed
in Theorem 2) requires less storage requirements, while the second one (pro-
posed in Theorem 3) benefits from shorter Miller loop for a single Tate pairing
computation and thus more suitable for parallel computation.

Remark 1. It should be noted that the technique proposed in Theorem 3 is not
suitable for the BLS family since the action of endomorphism ϕ can not be
extracted from the Miller function.

In the following, we only analyze the computational cost of the two Tate
pairing computations based on the first method as it is suitable for all target
pairing-friendly curves.

12 Yu Dai, Debiao He �, Dmitrii Koshelev, Cong Peng, and Zhijian Yang

4.2 Miller’s iteration without precomputation

Since the technique of denominator elimination [7] can not be applied to curves
with embedding degree one, vertical line evaluations in Algorithm 1 cannot be
ignored. To minimize these evaluations, the authors in [15] suggest performing
Miller’s iteration via the modified Miller function gm,P with divisor

div(gm,P) = m(P) + (−mP)− (m+ 1)(O).

They outlined the optimal strategy for computing pairings on these curves as
follows:

1. Combine two consecutive doubling steps into one quadrupling step, saving
two vertical line evaluations.

2. Combine one doubling and one addition/subtraction step into a single doubling-
addition/subtraction step, also saving two vertical line evaluations.

Moreover, in order to delay inversion operation in Fp, it is necessary to up-
date the numerators and denominators of the modified Miller function at each
Miller’s iteration. Based on the above observation, it was discussed in [14] that

the computations the Miller function evaluations at the two points R and ϕ̂(R)

at a shared Miller loop. Specifically, the two functions gm,P (R) and gm,P (ϕ̂(R))
can be written as

gm,P (R) =
Nm(R)

Dm(R)
, gm,P (ϕ̂(R)) =

Nm(ϕ̂(R))

Dm(ϕ̂(R))
.

Since g1,P = x− xP , we initially set that

d1 = N1(R) = xR − xP , d2 = N2(R) = x̂R − xP , d3 = yR − yP ,

D1(ϕ̂(R)) = 1 and D2(ϕ̂(R)) = 1.
(5)

Observing that fe2,P = ge2−1,P , we actually need to compute the following four
values at the shared Miller loop:

Ne2−1(R), De2−1(R), Ne2−1((ϕ̂(R)) and De2−1((ϕ̂(R)).

This computation mainly involves the following six subroutines: SDBL, SADD,
SSUB, SDADD, SDSUB and SQPL. To be precise, on the input of the tuple (Nm(R),

Dm(R), Nm(ϕ̂(R)), Dm(ϕ̂(R), T) where T = mP , the outputs of the six subrou-
tines are given as follows:

SDBL : (N2m(R), D2m(R), N2m(ϕ̂(R)), D2m(ϕ̂(R), 2T);

SADD : (Nm+1(R), Dm+1(R), Nm+1(ϕ̂(R)), Dm+1(ϕ̂(R), T + P);

SSUB : (Nm−1(R), Dm−1(R), Nm−1(ϕ̂(R)), Dm−1(ϕ̂(R), T − P);

SDADD : (N2m+1(R), D2m+1(R), N2m+1(ϕ̂(R)), D2m+1(ϕ̂(R), 2T + P);

SDSUB : (N2m−1(R), D2m−1(R), N2m−1(ϕ̂(R)), D2m−1(ϕ̂(R), 2T − P);

SQPL : (N4m(R), D4m(R), N4m(ϕ̂(R)), D4m(ϕ̂(R), 4T).

Title Suppressed Due to Excessive Length 13

Table 3: The updating functions and the precomputed values for different sub-
routines. The symbols λR and λR1,R2

represent the slopes of the lines ℓR,R and
ℓR1,R2

, respectively.

subroutines the updating functions the precomputed values

SDBL g2m,P = g2m,P · x−x2T
y+λT (x−x2T)−y2T

λT , x2T , y2T

SADD gm+1,P = gm,P · y−λT,P (x−xP)−yP
x−xT

λT,P , xT

SSUB gm−1,P = gm,P · x−xT−P

y−λP,−T (x−xP)−yP
λP,−T , xT−P

SDADD g2m+1,P = g2m,P · y−y2T−λP,2T (x−x2T)

y−y2T+λT (x−x2T)
λP,2T , λT , x2T , y2T

SDSUB g2m−1,P = g2m,P · y−λ2T,−P (x−x2T)−y2T
(y+λT (x−x2T)−y2T)(x−xP)

λ−P,2T , λT , x2T , y2T

SDSUBL g2m−1,P =
g2m,P

x−xT
(2m = e2) xT

SQPL g4m,P = g4m,P · (y−y2T−λ2T (x−x2T))2

y−y2T+λT (x−x2T)
λT , λ2T , x2T , y2T

In Table 3, we present the updating functions that can be used to execute
the six subroutines. The authors in [14] have demonstrated how to perform the
subroutines SADD, SDADD and SQPL. As a supplement, we present explicit formulas
of the subroutines SDBL, SSUB and SDSUB, which is summarized in Appendix A.
Write e2 − 1 in a non-adjacent form (NAF) as e2 − 1 =

∑l
i=0 ni2

i. If n0 = −1,
we have the following relations:

ge2−1,P =
g2e2

2 ,P
· Z2

e2
2 Q

x · Z2
e2
2 Q
−X e2

2 Q

.

Hence, it is quite convenient to perform the last iteration of the shared Miller
loop as follows:

A = Z2
e2
2 Q, B = A · xR −X e2

2 Q, C = A · x̂R −X e2
2 Q, Ne−1(R) = N2

e/2(R) ·A,

Ne−1(ϕ̂(R))=N2
e/2(ϕ̂(R))·A,De−1(R)=D2

e/2(R)·B,De−1(ϕ̂(R))=D2
e/2(ϕ̂(R))·C,

which requires 6m + 5s + 2a. We denote the above subroutine as SDSUBL such
that it can be distinguished from the general SDSUB. In Algorithm 2, we present
pseudo-code for computing fe2,P (R) and fe2,P (ϕ̂(R)).

4.3 Miller’s iteration with precomputation

It is well known that the computation of Miller function can be further sped up
in the scenario that the first pairing argument is fixed as a system parameter.
This technique was investigated by Costello and Stebila [11]. It was also applied

14 Yu Dai, Debiao He �, Dmitrii Koshelev, Cong Peng, and Zhijian Yang

Algorithm 2 Shard Miller loop for two small Tate pairings

Input: the points P,R ∈ E(Fp), e2 − 1 =
l∑

i=0

ni2
i with ni ∈ {−1, 0, 1}

Output: N1, D1, N2, D2 such that fe2,P (R) = N1/D1, fe2,P (ϕ̂(R)) = N2/D2

1: N1 ← xR − xP , D1 ← 1, N2 ← x̂R − xP , D2 ← 1, d1 ← N1, d2 ← N2,
d3 ← yP − yR, T ← P , i← l − 1

2: if n0 = −1 then j ← 1 else j ← 0 end if
3: while i ≥ j do
4: if ni = 0 and i ̸= j then
5: T,N1, D1, N2, D2 ← SQPL(T,R,N1, D1, N2, D2), i← i− 1
6: if ni = 1 then
7: T,N1, D1, N2, D2 ← SADD(T,R,N1, D1, N2, D2)
8: elif ni = −1 then
9: T,N1, D1, N2, D2 ← SSUB(T,R,N1, D1, N2, D2)

10: end if
11: i← i− 1
12: elif ni = 1 then
13: T,N1, D1, N2, D2 ← SDADD(T,R,N1, D1, N2, D2), i← i− 1
14: elif ni = −1 then
15: T,N1, D1, N2, D2 ← SDSUB(T,R,N1, D1, N2, D2), i← i− 1
16: else
17: T,N1, D1, N2, D2 ← SDBL(T,R,N1, D1, N2, D2), i← i− 1
18: end if
19: end while
20: if n0 = −1 then
21: N1, D1, N2, D2 ← SDSUBL(T,R,N1, D1, N2, D2)
22: end if
23: return N1, D1, N2, D2

to optimize the algorithm of public-key compression for isogeny-base cryptog-
raphy [38]. For computing the two Miller functions fe2,P (R) and fe2,P (ϕ̂(R)),
we can precompute all the parameters of line functions that only depend on the
public point P at the shared Miller loop. In this situation, it is convenient to
use affine coordinates such that line functions can be represented in a simple
form. In Table 3, we list the percomputed values across different subroutines.
On this basis, in Algorithm 3 we show how to generate a lookup table Tab to
store all the above precomputed values that required for computing fe2,P (R)

and fe2,P (ϕ̂(R)). As a consequence, it only needs to evaluate line functions at

the two points R and ϕ̂(R) and then accumulate them at each shared Miller’s
iteration. In Algorithm 4, we present pseudo-code for computing fe2,P (R) and

fe2,P (ϕ̂(R)) on input of the precomputed table Tab, the public parameter P and
the candidate point R.

Title Suppressed Due to Excessive Length 15

Algorithm 3 Generating a lookup table for pairing computation with precom-
putation

Input: the point P ∈ E(Fp), e2 − 1 =
l∑

i=0

ni2
i with ni ∈ {−1, 0, 1}

Output: the lookup table Tab
1: T ← P , k ← 0, i← l − 1,
2: if n0 = −1 then j ← 1 else j ← 0 end if
3: while i ≥ j do
4: if ni = 0 and i ̸= j then
5: Tab[k]←λT , Tab[k + 1]←λ2T , Tab[k+2]← x2T ,Tab[k + 3]← y2T
6: T ← 4T , k ← k + 4, i← i− 1
7: if ni = 1 then
8: Tab[k]←λT,P , Tab[k+1]←xT , T←T +P , i← i+1, k ←k+2
9: elif ni = −1 then

10: Tab[k]←λP,−T , Tab[k+1]←xT−P , T←T−P , i←i+1, k←k+2
11: end if
12: i← i− 1
13: elif ni = 1 then
14: Tab[k]←λT , Tab[k+ 1]←λP,2T ,Tab[k+2]← x2T ,Tab[k+3]← y2T
15: T ← 2T + P , k ← k + 4, i← i− 1
16: elif ni = −1 then
17: Tab[k]←λT , Tab[k+1]←λ−P,2T , Tab[k+2]←x2T ,Tab[k+3]←y2T
18: T ← 2T − P , k ← k + 4, i← i− 1
19: else
20: Tab[k]←λT ,Tab[k+1]←x2T ,Tab[k+2]←y2T ,T←2T , k←k+3,i← i−1
21: end if
22: end while
23: if n0 = −1 then Tab [k]← xT end if
24: return Tab

4.4 The final exponentiation

In Algorithm 5, we summarize the process of subgroup membership testing
for G1 on our target curves. It should be noted that line evaluations vanish at
the candidate point R or ϕ̂(R) only if R ∈ ⟨P ⟩. Hence, one or more of the four
updated values in Algorithms 2 and 4 might be equal to zero. In this case, the
testing can be aborted early. Otherwise, we continue to performing the final
exponentiation part. In this phase, we first use the trick of Montgomery simul-
taneous inversion [37] to compute f1 = fe2,P (ϕ̂(R)) and f2 = fe2,P (R) such that
one inversion operation in Fp can be saved,

f1 =
N1 ·D2

D1 ·D2
, f2 =

N2 ·D1

D1 ·D2
. (6)

Then the computation of the two Tate pairings can be done by raising f1 and
f2 to the power of exp1 = (p − 1)/e1 and exp2 = (p − 1)/e2, respectively. We

16 Yu Dai, Debiao He �, Dmitrii Koshelev, Cong Peng, and Zhijian Yang

Algorithm 4 Shard Miller loop for two small Tate pairings with precomputation

Input: the lookup table Tab, the points P,R ∈ E(Fp), e2 − 1 =
l∑

i=0

ni2
i with

ni ∈ {−1, 0, 1}
Output: N1, D1, N2, D2 such that fe2,P (R) = N1/D1, fe2,P (ϕ̂(R)) = N2/D2

1: N1 ← xR − xP , D1 ← 1, N2 ← x̂R − xP , D2 ← 1, d1 ← N1, d2 ← N2,
d3 ← yR − yP , i← l − 1

2: if n0 = −1 then j ← 1 else j ← 0 end if
3: while i ≥ j do
4: if ni = 0 and i ̸= j then
5: t0 ← xR−Tab[k + 2], t1 ← x̂R−Tab[k + 2], t2 ← yR−Tab[k + 3]
6: t3 ← t2 + t0·Tab[k], t4 ← t2 + t1·Tab[k], t5 ← t2 − t0·Tab[k + 1]
7: t6← t2 +t1·Tab[k+1], D1← D4

1 · t3, D2 ← D4
2 · t4, N1← (N2

1 · t5)2
8: N2← (N2

2 · t6)2, i← i− 1, k ← k + 4
9: if ni = 1 then

10: t0 ← xR−Tab[k + 1], t1 ← x̂R−Tab[k + 1], t2←d1·Tab[k]
11: t3← d2·Tab[k], D1←D1 · t0, D2 ← D2 ·t1, N1← N1 ·(d3−t2)
12: N2← N1 ·(d3− t3), i← i− 1, k ← k+ 2
13: elif ni = −1 then
14: t0 ← xR−Tab[k + 1], t1 ← x̂R−Tab[k + 1], t2←d1·Tab[k]
15: t3←d2·Tab[k], N1←N1 · t0, N2 ← N2 ·t1, D1← D1 ·(d3−t2)
16: D2← D2 ·(d3 − t3), i← i−1, k ←k+2
17: end if
18: i← i− 1
19: elif ni = 1 then
20: t0 ← xR−Tab[k + 2], t1 ← x̂R−Tab[k + 2], t2 ← yR−Tab[k + 3]
21: t3 ← t2 + t0·Tab[k], t4 ← t2 + t1·Tab[k], t5 ← t2 − t0·Tab[k + 1]
22: t6← t2 −t1·Tab[k + 1], D1← D2

1 · t3, D2 ← D2
2 · t4, N1← N2

1 · t5
23: N2← N2

2 · t6, i← i− 1, k ← k + 4
24: elif ni = −1 then
25: t0 ← xR−Tab[k + 2], t1 ← x̂R−Tab[k + 2], t2 ← yR−Tab[k + 3]
26: t3←(t2+t0·Tab[k]) · d1, D1← D2

1 · t3, t4←(t2 + t1·Tab[k]) · d2
27: D2 ← D2

2 · t4, t5 ← t2 − t0·Tab[k + 1], t6 ← t2 − t1·Tab[k+ 1]
28: N1←N2

1 · t5,N2←N2
2 · t6, i← i− 1, k ← k+4

29: else
30: t0 ← xR−Tab[k + 1], t1 ← x̂R−Tab[k + 1], t2 ← yR−Tab[k + 2]
31: t3← t2 + t0·Tab[k], t4← t2 + t1·Tab[k], N1←N2

1 · t0,N2 ← N2
2 · t1

32: D1← D2
1 · t3, D2← D2

2 · t4, i← i− 1, k ← k + 3
33: end if
34: end while
35: if n0 = −1 then
36: t0←xR−Tab[k], t1← x̂R−Tab[k], N1←N2

1 , N2←N2
2 , D1←D2

1 · t0
37: D2←D2

2 · t1
38: end if
39: return N1, D1, N2, D2

Title Suppressed Due to Excessive Length 17

Algorithm 5 subgroup membership testing forG1 in the BLS, BW13 and BW19
families

Input: the candidate point R ∈ E(Fp)
Output: a bit 0 or 1. If R ∈ G1, then it returns 1; otherwise, it returns 0.
1: Computing N1, D1, N2, D2 by Algorithm 2 or Algorithm 4
2: if N1 = 0 or D1 = 0 or N2 = 0 or D2 = 0 then
3: return 0
4: else
5: h← (D1 ·D2)

−1

6: f1 ← (h ·D2 ·N1)
(p−1)/e1

7: f2 ← (h ·D1 ·N2)
(p−1)/e2

8: if f1 = f2 = 1 then
9: return 1

10: else
11: return 0
12: end if
13: end if

notice that the first exponent exp1 can be parameterized by a polynomial with
small integral coefficients for our target curves. For example, the exponent exp1
in the BLS12 family is given as

exp1 = |z5 − z4 − z3 + z2 + z + 2|.

Since it is sufficient to determine whether the pairing values are equal to 1 or
not for G1 membership testing, the computation of the first final exponentiation
can be replaced by checking that{

fz5+z2+z+2
1 = fz4+z3

1 , if z > 0,

f−z5+z4−z
1 = f−z3+z2+2

1 , if z < 0.

In Table 4, we present the exponent exp1 and the cost of the final exponentiation
by exp1 in the BLS, BW13 and BW19 families. However, when representing exp2
in the basis of z, we find that the coefficients are not small. For example, the
exponent exp2 in the BLS12 family is given as

exp2 = |81z50 + 108z40 + 45z30 + 6z20 + z0 + 1|,

where z0 = (z − 1)/3. Thus, it seems more efficient to compute f
exp2
2 directly.

One might attempt to accelerate the computation of the second final exponenti-
ation by raising the second pairing to the power of m such that the new exponent
can be also represented as a polynomial with small integral coefficients. Unfor-
tunately, it could result in invalid points passing the membership testing. For
instance, given R′ = R′

1 +R′
2 where R′

1 ∈ E(Fp)[m] and R′
2 ∈ G1, it is straight-

18 Yu Dai, Debiao He �, Dmitrii Koshelev, Cong Peng, and Zhijian Yang

Table 4: The exponent exp1 in the BLS, BW13 and BW19 families. The symbol
e1 represents the cost of the exponentiation by exp1.

family exp1 e1

BW13
|z26 − z13 − 3z12 − 3z11 + 3z9 + 3z8 − 3z6

−3z5 + 3z3 + 3z2 − 2| 26z+ 11m+ 3s

BW19
|z38 − z19 − 3z18 − 3z17 + 3z15 + 3z14 − 3z12 − 3z11

+3z9 + 3z8 − 3z6 − 3z5 + 3z3 + 3z2 − 2| 38z+ 15m+ 3s

BLS12 |z5 − z4 − z3 + z2 + z + 2| 5z+ 4m+ s

BLS24 |z9 − z8 − z5 + z4 + z + 2| 9z+ 4m+ s

BLS48 |z17 − z16 − z9 + z8 + z + 2| 17z+ 4m+ s

forward to see that

Te2(P,R
′)m = Te2(P,R

′
2)

m = Te2(P,mR′
2) = 1,

Te2(P, ϕ̂(R
′))m = Te2(P, ϕ̂(R

′
2))

m = Te2(P,mϕ̂(R′
2)) = 1.

4.5 Computational cost

Let n1, n2, n3, n4, n5, n6, and n7 denote the number of the subroutines SDBL,
SADD, SSUB, SDADD, SDSUB, SDSUBL and SQPL in the execution of the shared Miller
loop. In Table 5, we summarize the operation counts of these subroutines on ordi-
nary curves with j-invariant 0. Assuming that the final exopnentiation by exp2 is
performed using the windowed squaring-and-multiplication algorithm, then the
total cost of G1 membership testing of the proposed algorithm is approximately

n1 ·SDBL+n2 ·SADD+n3 ·SSUB+n4 ·SDADD+n5 ·SDSUB+n6 ·SDSUBL+n7 ·SQPL︸ ︷︷ ︸
main part of the shared Miller loop

+ i+ 5m+ 3a︸ ︷︷ ︸
Eqs. 5 and 6

+ e1 + (nbits(exp2)− 1)s+
nbits(exp2)

(w + 1)
m+ (2w−1 − 1)m+ s︸ ︷︷ ︸

two final exponentiations

,

where nbits(exp2) represents the bit length of exp2 and w is the selected window
size. By selecting w = 4, we estimate the costs of G1 membership testings on
the seven candidate pairing-friendly curves, which is summarized in Table 6.

Title Suppressed Due to Excessive Length 19

Table 5: Costs of different subroutines required for computing fe2,P (R) and

fe2,P (ϕ̂(R)) for the seven candidate pairing-friendly curves.

subroutine without precomputation with precomputation

SDBL 11m+ 4mu + 8s+ su + 15a+ 3r 6m+ 4s+ 5a

SADD 15m+ 5mu + 3s+ 15a+ 3r 6m+ 4a

SSUB 14m+ 5mu + 4s+ 14a+ 3r 6m+ 4a

SDADD 16m+ 8mu + 10s+ su + 26a+ 6r 8m+ 4s+ 7a

SDSUB 18m+ 8mu + 10s+ su + 26a+ 6r 10m+ 4s+ 7a

SDSUBL 6m+ 5s+ 2a 2m+ 4s+ 2a

SQPL 14m+ 7mu + 15s+ 2su + 28a+ 6r 8m+ 8s+ 7a

Table 6: Costs of subgroup membership testings for G1 on the seven candidate
pairing-friendly curves.

curve (n1, n2, · · · , n7) z without precomputation with precomputation

BLS12-381(0, 2, 0, 3, 0, 0, 30) 5m+ 63s
597m+ 244mu +1119s
+63su + 948a+ 204r

375m+ 885s+ 239a

BLS12-446(0, 2, 0, 4, 0, 0, 35) 6m+ 74s
699m+ 287mu + 1314s
+74su + 1114a+ 240r

439m+ 1039s+ 281a

BW13-310 (0, 2, 2, 0, 2, 0, 10) 3m+ 11s
387m+ 106mu + 761s
+22su + 390a+ 84r

277m+ 665s+ 100a

BW19-286 (1, 2, 3, 1, 0, 0, 6) 2m+ 7s
335m+ 79mu + 667s
+14su + 281a+ 60r

244m+ 597s+ 74a

BLS24-315(1, 1, 1, 1, 0, 1, 14)10m+ 31s
415m+ 120mu + 803s
+30su + 464a+ 99r

297m+ 687s+ 120a

BLS24-509(0, 0, 0, 2, 1, 0, 24) 9m+ 50s
569m+ 192mu + 1299s
+51su + 750a+ 162r

401m+ 1113s+ 189a

BLS48-575(1, 0, 3, 0, 1, 0, 15) 9m+ 31s
553m+ 132mu + 1326s
+32su + 503a+ 108r

426m+ 1199s+ 129a

5 Implementation Results

We first present Magma code to verify the correctness of our proposed algorithms
and formulas. In order to compare the performance between our proposed algo-
rithms and the previous state-of-the-art techniques, we also provide high-speed
software implementation within the RELIC toolkit, which is a well known cryp-
tographic library that mainly implemented in the C programming language with

20 Yu Dai, Debiao He �, Dmitrii Koshelev, Cong Peng, and Zhijian Yang

ASM acceleration for the lower prime field arithmetic. The library provides the
state-of-the-art implementations of pairing group operations on different pairing-
friendly curves, including all the curves listed in Table 2 except BW13-310 and
BW19-286. Recently, Dai et al. [14] also used RELIC to implement pairing group
operations on BW13-310. Thus, we have integrated our code into RELIC to en-
sure fair performance comparisons. All of the benchmarks were taken on an
3.00GHZ Intel(R) Core(TM) i7-9700 CPU running at Ubuntu 22.04 LTS aver-
aged over 104 executions with the TurboBoost disabled and HyperThreading
turned off. The main compiler used was GCC version 11.4.0, with optimization
flags-O3-funroll-loops-march=native -mtune=native. In Fig. 1, we present

BLS12-381 BLS12-446 BW13-310 BLS24-315 BLS24-509 BLS48-575
0

80

160

240

320

400

480

560

286

432

93

115

361

305

126

188

42
54

165

137

73

109

62 60

182

282

94

135

66 66

205

296

cl
o
ck

cy
cl
es
(×

1
0
3
)

The exponentiation by e2
The exponentiation by e1
Miller loop with precomputation
Miller loop without precomputation

Fig. 1: Timings of each building blocks for two small Tate pairing computations
on a list of pairing-friendly curves.

the timing result (measured in ×103 clock cycles) of each building block for two
small Tate pairing computations on our target curves. In Fig. 2, we compare the
performance of G1 membership testing on these curves between our work and the
previous leading work. The results show that our method without prcomputation
is about 62.0%, 22.4%, 46.2% and 80.6% faster than the previous fastest method
on the BW13-310, BLS24-315, BLS24-509 and BLS48-575 curves, respectively.
However, it is around 14.6% and 41.4% slower on the BLS12-381 and BLS12-
446 curves. Moreover, the performance advantage of our method can be further
extended with prcomputation. In this case, our method is about 34.8%, 10.6%,
110.6%, 63.9%, 98.1% and 123.1% faster than the previous fastest method on
the BLS12-381, BLS12-446, BW13-310, BLS24-315, BLS24-509 and BLS48-575
curves, respectively. It should be noted that the previous fastest method can not
be sped up via percomputation.

To summarize, our method is well-suited for curves with a small value of
ρ (ρ = log p/ log r ≥ 1), such as BW13-310 and BLS48-575. Indeed, by the fact
that e1 ≈ e2 and p ≈ e1 · e2 · r for our chosen curves, it is easy to deduce

Title Suppressed Due to Excessive Length 21

that 2 log e2/ log r ≈ ρ − 1. Recall that the previous fastest method requires
approximately log r/2 group operations, while our one involves around log e2
Miller’s iterations and two group exponentiations in Fp. Thus, the value of ρ− 1
approximately represents the ratio of the computational costs between the two
methods.

BLS12-381 BLS12-446 BW13-310 BLS24-315 BLS24-509 BLS48-575
0

300

600

900

1,200

1,500

1,800

395

478

358

295

1,092

1,595

453

676

221 241

747

883

293

432

170 180

551

715cl
o
ck

cy
cl
es
(×

10
3
)

Our work with precomputation
Our work without precomputation
The previous leading work

Fig. 2: Timings of G1 membership testing on a list of pairing-friendly curves
between our work and the previous leading work.

6 Conclusion

In this paper, we revisited subgroup membership testing for G1 on pairing-
friendly curves via the Tate pairing. We first introduced faster formulas that
suitable for the BLS, BW13 and BW19 families such that the computations of
the two Tate pairings only require around log e2 Miller’s iterations. The new
formulas also benefit from less storage requirements. Moreover, we also pro-
vided a high performance software implementation for our proposed algorithm
and compared it to the previous leading work across several popular pairing-
friendly curves. Our results exhibited a significant performance advantage over
the previous fastest one on BW13-310, BLS24-315, BLS24-509 and BLS48-575.
With precomputation, our method also outperforms the previous fastest one on
BLS12-381 and BLS12-446.

References

1. Aranha, D.F., Gouvêa, C.P.L.: Relic is an efficient library for cryptography, https:
//github.com/relic-toolkit/relic

2. Aranha, D.F., Fotiadis, G., Guillevic, A.: A short-list of pairing-friendly curves
resistant to the special TNFS algorithm at the 192-bit security level. Cryptology
ePrint Archive, Paper 2024/1223 (2024), https://eprint.iacr.org/2024/1223

https://github.com/relic-toolkit/relic
https://github.com/relic-toolkit/relic
https://eprint.iacr.org/2024/1223

22 Yu Dai, Debiao He �, Dmitrii Koshelev, Cong Peng, and Zhijian Yang

3. Aranha, D.F., Hvass, B.S., Spitters, B., Tibouchi, M.: Faster constant-time evalu-
ation of the kronecker symbol with application to elliptic curve hashing. In: Pro-
ceedings of the 2023 ACM SIGSAC Conference on Computer and Communications
Security – CCS 2023. p. 3228–3238. Association for Computing Machinery, New
York, NY, USA (2023). https://doi.org/10.1145/3576915.3616597

4. Azarderakhsh, R., Fishbein, D., Grewal, G., Hu, S., Jao, D., Longa,
P., Verma, R.: Fast software implementations of bilinear pairings. IEEE
Transactions on Dependable and Secure Computing 14(6), 605–619 (2017).
https://doi.org/10.1109/TDSC.2015.2507120

5. Barbulescu, R., Gaudry, P., Kleinjung, T.: The tower number field sieve.
In: Iwata, T., Cheon, J.H. (eds.) Advances in Cryptology – ASIACRYPT
2015. pp. 31–55. Springer Berlin Heidelberg, Berlin, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48800-3 2

6. Barreto, P.S.L.M., Costello, C., Misoczki, R., Naehrig, M., Pereira, G.C.C.F.,
Zanon, G.: Subgroup security in pairing-based cryptography. In: Lauter,
K., Rodŕıguez-Henŕıquez, F. (eds.) Progress in Cryptology – LATIN-
CRYPT 2015. pp. 245–265. Springer International Publishing, Cham (2015).
https://doi.org/10.1007/978-3-319-22174-8 14

7. Barreto, P.S.L.M., Kim, H.Y., Lynn, B., Scott, M.: Efficient algorithms for
pairing-based cryptosystems. In: Yung, M. (ed.) Advances in Cryptology —
CRYPTO 2002. pp. 354–369. Springer Berlin Heidelberg, Berlin, Heidelberg (2002).
https://doi.org/10.1007/3-540-45708-9 23

8. Barreto, P.S.L.M., Lynn, B., Scott, M.: On the selection of pairing-friendly
groups. In: Matsui, M., Zuccherato, R.J. (eds.) Selected Areas in Cryptography
– SAC 2003. pp. 17–25. Springer Berlin Heidelberg, Berlin, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24654-1 2

9. Brezing, F., Weng, A.: Elliptic curves suitable for pairing based cryp-
tography. Designs, Codes and Cryptography 37(1), 133–141 (2005).
https://doi.org/10.1007/s10623-004-3808-4

10. Clarisse, R., Duquesne, S., Sanders, O.: Curves with fast computations in the first
pairing group. In: Krenn, S., Shulman, H., Vaudenay, S. (eds.) Cryptology and
Network Security. pp. 280–298. Springer International Publishing, Cham (2020).
https://doi.org/10.1007/978-3-030-65411-5 14

11. Costello, C., Stebila, D.: Fixed argument pairings. In: Abdalla, M., Barreto,
P.S.L.M. (eds.) Progress in Cryptology – LATINCRYPT 2010. pp. 92–108. Springer
Berlin Heidelberg, Berlin, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
14712-8 6

12. Dai, Y., He, D., Peng, C., Yang, Z., an Zhao, C.: Revisiting pairing-friendly curves
with embedding degrees 10 and 14. Cryptology ePrint Archive, Paper 2023/1958
(2023), https://eprint.iacr.org/2023/1958

13. Dai, Y., Lin, K., Zhao, C.A., Zhou, Z.: Fast subgroup membership testings for G1,
G2 and GT on pairing-friendly curves. Designs, Codes and Cryptography 91(10),
3141–3166 (2023). https://doi.org/10.1007/s10623-023-01223-7

14. Dai, Y., Zhang, F., Zhao, C.A.: Don’t forget pairing-friendly curves
with odd prime embedding degrees. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems 2023(4), 393–419 (2023).
https://doi.org/10.46586/tches.v2023.i4.393-419

15. Dai, Y., Zhou, Z., Zhang, F., Zhao, C.A.: Software implementation of optimal
pairings on elliptic curves with odd prime embedding degrees. IEICE Transactions
on Fundamentals of Electronics, Communications and Computer Sciences 105(5),
858–870 (2022). https://doi.org/10.1587/transfun.2021EAP1115

https://doi.org/10.1145/3576915.3616597
https://doi.org/10.1109/TDSC.2015.2507120
https://doi.org/10.1007/978-3-662-48800-3_2
https://doi.org/10.1007/978-3-319-22174-8_14
https://doi.org/10.1007/3-540-45708-9_23
https://doi.org/10.1007/978-3-540-24654-1_2
https://doi.org/10.1007/s10623-004-3808-4
https://doi.org/10.1007/978-3-030-65411-5_14
https://doi.org/10.1007/978-3-642-14712-8_6
https://doi.org/10.1007/978-3-642-14712-8_6
https://eprint.iacr.org/2023/1958
https://doi.org/10.1007/s10623-023-01223-7
https://doi.org/10.46586/tches.v2023.i4.393-419
https://doi.org/10.1587/transfun.2021EAP1115

Title Suppressed Due to Excessive Length 23

16. El Housni, Y., Guillevic, A.: Families of SNARK-friendly 2-chains of elliptic curves.
In: Dunkelman, O., Dziembowski, S. (eds.) Advances in Cryptology – EURO-
CRYPT 2022. pp. 367–396. Springer International Publishing, Cham (2022)

17. El Housni, Y., Guillevic, A., Piellard, T.: Co-factor clearing and subgroup member-
ship testing on pairing-friendly curves. In: Batina, L., Daemen, J. (eds.) Progress
in Cryptology – AFRICACRYPT 2022. pp. 518–536. Springer Nature Switzerland,
Cham (2022). https://doi.org/10.1007/978-3-031-17433-9 22

18. Electric Coin Company: What is jubjub?, https://bitzecbzc.github.io/

technology/jubjub

19. Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves.
Journal of Cryptology 23(2), 224–280 (2010)

20. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: Permutations over
lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryptology
ePrint Archive, Paper 2019/953 (2019), https://eprint.iacr.org/2019/953

21. Galbraith, S.: Mathematics of Public Key Cryptography. Cambridge University
Press (2018), https://www.math.auckland.ac.nz/~sgal018/crypto-book/main.
pdf, version 2

22. Gallant, R.P., Lambert, R.J., Vanstone, S.A.: Faster point multiplication on elliptic
curves with efficient endomorphisms. In: Kilian, J. (ed.) Advances in Cryptology
— CRYPTO 2001. pp. 190–200. Springer Berlin Heidelberg, Berlin, Heidelberg
(2001)

23. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fis-
chlin, M., Coron, J.S. (eds.) Advances in Cryptology – EUROCRYPT
2016. pp. 305–326. Springer Berlin Heidelberg, Berlin, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49896-5 11

24. Guillevic, A.: A short-list of pairing-friendly curves resistant to special TNFS at
the 128-bit security level. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V.
(eds.) Public-Key Cryptography – PKC 2020. pp. 535–564. Springer International
Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-45388-6 19

25. Guillevic, A.: Pairing-friendly curves (2021), https://members.loria.fr/

AGuillevic/pairing-friendly-curves/

26. Hamburg, M.: Ed448-goldilocks, a new elliptic curve. Cryptology ePrint Archive,
Paper 2015/625 (2015), https://eprint.iacr.org/2015/625

27. Hamburg, M.: Computing the jacobi symbol using Bernstein-Yang. Cryptology
ePrint Archive, Paper 2021/1271 (2021), https://eprint.iacr.org/2021/1271

28. Joux, A., Pierrot, C.: The special number field sieve in Fpn . In: Cao, Z., Zhang,
F. (eds.) Pairing-Based Cryptography – Pairing 2013. pp. 45–61. Springer Inter-
national Publishing, Cham (2014). https://doi.org/10.1007/978-3-319-04873-4 3

29. Joye, M., Lapiha, O., Nguyen, K., Naccache, D.: The eleventh power
residue symbol. Journal of Mathematical Cryptology 15(1), 111–122 (2020).
https://doi.org/10.1515/jmc-2020-0077

30. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polyno-
mials and their applications. In: Abe, M. (ed.) Advances in Cryptology - ASI-
ACRYPT 2010. pp. 177–194. Springer Berlin Heidelberg, Berlin, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-17373-8 11

31. Kim, T., Barbulescu, R.: Extended tower number field sieve: A new complexity for
the medium prime case. In: Robshaw, M., Katz, J. (eds.) Advances in Cryptology –
CRYPTO 2016. pp. 543–571. Springer Berlin Heidelberg, Berlin, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53018-4 20

https://doi.org/10.1007/978-3-031-17433-9_22
https://bitzecbzc.github.io/technology/jubjub
https://bitzecbzc.github.io/technology/jubjub
https://eprint.iacr.org/2019/953
https://www.math.auckland.ac.nz/~sgal018/crypto-book/main.pdf
https://www.math.auckland.ac.nz/~sgal018/crypto-book/main.pdf
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-030-45388-6_19
https://members.loria.fr/AGuillevic/pairing-friendly-curves/
https://members.loria.fr/AGuillevic/pairing-friendly-curves/
https://eprint.iacr.org/2015/625
https://eprint.iacr.org/2021/1271
https://doi.org/10.1007/978-3-319-04873-4_3
https://doi.org/10.1515/jmc-2020-0077
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-662-53018-4_20

24 Yu Dai, Debiao He �, Dmitrii Koshelev, Cong Peng, and Zhijian Yang

32. Koshelev, D.: Subgroup membership testing on elliptic curves via the Tate
pairing. Journal of Cryptographic Engineering 13(1), 125–128 (Apr 2023).
https://doi.org/10.1007/s13389-022-00296-9

33. Koshelev, D.: Correction to: Subgroup membership testing on elliptic curves via
the Tate pairing. Journal of Cryptographic Engineering 14(1), 127–128 (Apr 2024).
https://doi.org/10.1007/s13389-023-00331-3

34. Masson, S., Sanso, A., Zhang, Z.: Bandersnatch: a fast elliptic curve built
over the BLS12-381 scalar field. Designs, Codes and Cryptography (2024).
https://doi.org/10.1007/s10623-024-01472-0

35. Mbiang, N.B., Aranha, D.D.F., Fouotsa, E.: Computing the optimal ate pair-
ing over elliptic curves with embedding degrees 54 and 48 at the 256-bit se-
curity level. International Journal of Applied Cryptography 4(1), 45–59 (2020).
https://doi.org/10.1504/IJACT.2020.107167

36. Miller, V.S.: The Weil pairing, and its efficient calculation. Journal of Cryptology
17(4), 235–261 (2004). https://doi.org/10.1007/s00145-004-0315-8

37. Montgomery, P.L.: Speeding the pollard and elliptic curve methods of factorization.
Mathematics of computation 48(177), 243–264 (1987)

38. Naehrig, M., Renes, J.: Dual isogenies and their application to public-key compres-
sion for isogeny-based cryptography. In: Galbraith, S.D., Moriai, S. (eds.) Advances
in Cryptology – ASIACRYPT 2019. pp. 243–272. Springer International Publish-
ing, Cham (2019). https://doi.org/10.1007/978-3-030-34621-8 9

39. Schoof, R.: Nonsingular plane cubic curves over finite fields. Journal of combi-
natorial theory, Series A 46(2), 183–211 (1987). https://doi.org/10.1016/0097-
3165(87)90003-3

40. Scott, M.: Miracl–multiprecision integer and rational arithmetic c/c++ library.
41. Scott, M.: A note on group membership tests for G1, G2 and GT on BLS pairing-

friendly curves. Cryptology ePrint Archive, Report 2021/1130 (2021), https://
ia.cr/2021/1130

42. Vercauteren, F.: Optimal pairings. IEEE Transactions on Information Theory
56(1), 455–461 (2009). https://doi.org/10.1109/TIT.2009.2034881

43. Washington, L.: Elliptic curves: Number theory and cryptography, second edition.
CRC Press, Boca Raton (2008)

44. Zhao, C.A., Zhang, F., Huang, J.: A note on the ate pairing. International Journal
of Information Security 7(6), 379–382 (2008)

A Explicit Formulas

Notations. We use the notation × to denote field multiplication without re-
duction. We write for λR and λR1,R2

the slopes of the lines ℓR,R and ℓR1,R2
,

respectively.
In this section, we analyze the computational costs of the subroutines SDBL,

SSUB and SDSUB on ordinary curves with j-invariant 0. Let T = mP be in Jaco-
bian coordinates for some point P and non-zero integer m. Using the formulas
provided in [4, Setion 4.3], the point 2T can be computed via the sequence of
operations

A=X2
T , B = A/2, C = A+B,D = C2, E = Y 2

T , F = XT · E,X2T = D − 2F,

U0 = C × (F −X2T), U1 = E × E, Y2T = (U0 − U1) mod p, Z2T = YT · ZT .

https://doi.org/10.1007/s13389-022-00296-9
https://doi.org/10.1007/s13389-023-00331-3
https://doi.org/10.1007/s10623-024-01472-0
https://doi.org/10.1504/IJACT.2020.107167
https://doi.org/10.1007/s00145-004-0315-8
https://doi.org/10.1007/978-3-030-34621-8_9
https://doi.org/10.1016/0097-3165(87)90003-3
https://doi.org/10.1016/0097-3165(87)90003-3
https://ia.cr/2021/1130
https://ia.cr/2021/1130
https://doi.org/10.1109/TIT.2009.2034881

Title Suppressed Due to Excessive Length 25

Assuming that the computation of U0 − U1 requires 2a, then the total cost of
the point doubling is 2m+mu + 3s+ su + 7a+ r. If P ̸= T , the authors of [4]
also provide explicit formulas to compute T + P by a mixed addition:

A=Z2
T , θ=yP ·A·ZT−YT , β=xP ·A−XT , B=β2, C=β ·B,D=XT ·B,ZT+P =ZT ·β,

XT+P =θ2−2D − C,U0=θ×(D−XT+P), U1=YT × C, YT+P =(U0−U1) mod p,

which comes at a cost of 6m+ 2mu + 3s+ 8a+ r.

A.1 SDBL

The modified Miller function g2m,P can be obtained from gm,P as follows:

g2m,P = g2m,P ·
x− x2T

y − λ−T (x− x2T)− y2T
.

Writing the point 2T in Jacobian coordinates, then the functions N2m(x, y) and
D2m(x, y) can be expressed as

N2m(x, y) = N2
m(x, y) · Z2T · (x · Z2

2T −X2T),

D2m(x, y) = D2
m(x, y) · (yZ3

2T − Y2T + 3/2X2
T · (x · Z2

2T −X2T)).

We first compute the point 2T = (X2T , Y2T , Z2T). Then the values N2m(R),

D2m(R), N2m(ϕ̂(R)) and D2m(ϕ̂(R)) can be obtained by performing the follow-
ing sequence of operations at a costs of 9m+ 3mu + 5s+ 8a+ 2r:

A = Z2
2T , B = A · Z2T , C1 = A · xR −X2T , C2 = A · x̂R −X2T , L1 = C1 · Z2T ,

L3=C2 · Z2T , U0=yR ×B,U1=
3

2
X2

T×C1, U2=
3

2
X2

T×C2, E=(U0+U1) mod p,

F = (U0 + U2) mod p, L2 = E − Y2T , L4 = F − Y2T , N2m(R) = N2
m(R) · L1,

D2m(R)=D2
m(R) ·L2, N2m(ϕ̂(R))=N2

m(ϕ̂(R)) ·L3, D2m(ϕ̂(R))=D2
m(ϕ̂(R)) ·L4,

where 3
2X

2
T is given during the computation of 2T . In total, the subroutine SDBL

requires 11m+ 4mu + 8s+ su + 15a+ 3r.

A.2 SSUB

The modified Miller function gm−1,P can be obtained from gm,P as follows:

gm−1,P = gm,P ·
x− xT−P

y − λ−T,P (x− xP)− yP
.

Then, the two functions Nm−1(x, y) and Dm−1(x, y) can be expressed as

Nm−1(x, y) = Nm(x, y) · (x · Z2
T−P −XT−P),

Dm−1(x, y)= Dm(x, y) · ZT−P ·
(
(y − yP) · ZT−P + θT−P · (x− xP)

)
,

26 Yu Dai, Debiao He �, Dmitrii Koshelev, Cong Peng, and Zhijian Yang

where θT−P = −yP ·Z3
T −YT can be obtained during the computation of T −P .

Thus, the values of Nm−1(R), Dm−1(R), Nm−1(ϕ̂(R)) and Dm−1(ϕ̂(R)) can be
computed via the following sequence of operations at a cost of 8m+ 3mu + s+
6a+ 2r:

A=Z2
T−P , L1=xR ·A−XT−P , L3= x̂R ·A−XT−P , U0=d3×ZT−P , U1=d1×θT−P ,

U2 = d2 × θT−P , B = (U0 + U1) mod p, C = (U0 + U2) mod p, L2 = B · ZT−P ,

L4 = C · ZT−P , Nm−1(ϕ̂(R)) = Nm(ϕ̂(R)) · L3, Dm−1(ϕ̂(R)) = Dm(ϕ̂(R)) · L4,

Nm−1(R) = Nm(R) · L1, Dm−1(R)=Dm(R) · L2,

where d1, d2 and d3 are given at the initial stage of the Miller loop (Line 1 in
Algorithm 2). In total, the subroutine SSUB requires 14m+5mu+4s+14a+3r.

A.3 SDSUB

The modified Miller functions gm,P and g2m−1,P satisfy the following relation:

g2m−1,P = g2m,P ·
y − λ2T,−P (x− x2T)− y2T

(y − λ−T,−T (x− x2T)− y2T)(x− xP)
.

Then, the two functions N2m−1(x, y) and D2m−1(x, y) can be expressed as

N2m−1(x, y) = N2
m(x, y)

(
(yZ3

2T − Y2T) · β2T−P − (xZ2
2T −X2T) · θ2T−P

)
,

D2m−1(x, y)= D2
m(x, y)·(x−xP) · β2T−P ·

(
(yZ3

2T−Y2T) +
3

2
X2

T (xZ
2
2T −X2T)

)
,

where β2T−P = xP ·Z2
2T −X2T , θ2T−P = −yP ·Z3

2T − Y2T . In order to compute

N2m−1(R), D2m−1(R), N2m−1(ϕ̂(R)) and D2m−1(ϕ̂(R)), we first compute 2T =
(X2T , Y2T , Z2T) and 2T −P = (X2T−P , Y2T−P , Z2T−P). During this process, the
intermediate variables Z2

2T , Z
3
2T , β2T−P , θ2T−P and 3

2X
2
T can be obtained. Thus,

we compute the above four updated values by performing the following sequence
of operations:

A1=xR · Z2
2T −X2T , A2= x̂R · Z2

2T −X2T , B=yR · Z3
2T − Y2T , C=

3

2
X2

T ·β2T−P ,

U0= B × β2T−P , U1=A1× θ2T−P , U2 =A2 × θ2T−P , U3= C ×A1, U4= C ×A2,

E=(U0+U3)modp, F=(U0+U4)modp, L1=(U0−U1)modp, L3=(U0−U2)modp,

L2 = d1 · E,L4 = d2 · F,N2m−1(R) = N2
m(R) · L1, D2m−1(R) = D2

m(R) · L2,

N2m−1(ϕ̂(R)) = N2
m(ϕ̂(R)) · L3, D2m−1(ϕ̂(R)) = D2

m(ϕ̂(R)) · L4,

which requires 10m+ 5mu + 4s+ 11a+ 4r. In total, the subroutine SDSUB can
be executed at a cost of 18m+ 8mu + 10s+ su + 26a+ 6r.

	Revisiting subgroup membership testing on pairing-friendly curves via the Tate pairing

