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Abstract. Bitcoin enables decentralized, pseudonymous transactions, but balancing privacy with ac-
countability remains a challenge. This paper introduces a novel dual accountability mechanism that
enforces both sender and recipient compliance in Bitcoin transactions. Senders are restricted to spend-
ing Unspent Transaction Outputs (UTXOs) that meet specific criteria, while recipients must satisfy
legal and ethical requirements before receiving funds. We enhance stealth addresses by integrating
compliance attributes, preserving privacy while ensuring policy adherence. Our solution introduces
a new cryptographic primitive, Identity-Based Matchmaking Signatures (IB-MSS), which supports
streamlined auditing. Our approach is fully compatible with existing Bitcoin infrastructure and does
not require changes to the core protocol, preserving both privacy and decentralization while enabling
transaction auditing and compliance.

1 Introduction

Bitcoin has transformed financial transactions by enabling pseudonymous, decentralized exchanges without
intermediaries. This model empowers users to manage assets autonomously and conduct global transactions
freely. However, as cryptocurrency adoption grows, so too does the tension between privacy and regulatory
compliance—particularly with Anti-Money Laundering (AML) and Know Your Customer (KYC) require-
ments. While Bitcoin offers pseudonymity, its transparent public ledger exposes transaction histories to
public scrutiny, making it increasingly difficult to preserve user privacy while adhering to legal standards.

To address privacy concerns, stealth addresses [19,32,36] were introduced. These allow recipients to gen-
erate one-time-use addresses that are not directly linked to their public Bitcoin addresses. This obfuscation
ensures that third parties cannot easily trace the recipient of a transaction, providing a layer of privacy
by breaking the linkability of transactions. Stealth addresses thus help preserve recipient anonymity within
Bitcoin’s inherently transparent system.

However, while stealth addresses enhance privacy, they fall short in addressing the equally critical need
for accountability. They do not provide mechanisms to ensure that transactions comply with legal or ethical
standards, nor can they enforce policy-based criteria in complex regulatory environments. For example:

– Donations to organizations in restricted regions: NGOs operating in politically sensitive regions
may need to ensure that donations come from legitimate, legally compliant sources to avoid funding
from illicit entities. Traditional stealth addresses ensure donor privacy but lack the ability to verify
that the funds originate from vetted and legally approved sources. This leaves the NGO vulnerable to
unknowingly accepting illegal donations, exposing it to serious legal risks.

– Compliance in cross-border remittances: Individuals sending remittances across borders often face
regulatory scrutiny, especially in cases involving countries under sanctions or financial restrictions. For
example, sending funds to a sanctioned country could violate international regulations. While stealth
addresses can maintain privacy by hiding recipient details, they provide no way to enforce compliance
with such regulations, potentially leading to unlawful transactions.
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– Ensuring AML compliance for cryptocurrency exchanges: Cryptocurrency exchanges must com-
ply with AML/KYC regulations, which require them to validate the identities of both senders and
recipients. Traditional stealth addresses obscure participants for privacy but do not allow for built-in
verification of AML/KYC compliance, leaving exchanges struggling to balance regulatory adherence
with user privacy.

– Private investments in regulated markets: Investors participating in private transactions, such
as venture capital investments or equity crowdfunding, often require anonymity for various reasons
(e.g., protecting strategic financial interests). However, these transactions must comply with securities
laws, which require verification of accredited investor status or legal financial limits. Traditional stealth
addresses provide anonymity but lack mechanisms to ensure that only accredited or verified investors
participate in these transactions.

In response to these challenges, we propose an enhanced form of stealth addresses that goes beyond
privacy protection to incorporate accountability. Our solution integrates a novel cryptographic primitive
(Identity-Based Matchmaking Signatures) into stealth addresses, embedding compliance attributes directly
within the transaction. This ensures that both privacy and accountability are preserved.

Specifically, our approach introduces a dual accountability mechanism:

1. Sender Accountability: The recipient can only spend funds if the sender has met specific criteria, such
as originating from a permitted country or complying with AML regulations.

2. Recipient Accountability: The sender can ensure that the recipient satisfies legal or ethical require-
ments, preventing the transfer of funds to sanctioned or restricted entities.

Our solution integrates seamlessly with the existing Bitcoin infrastructure, requiring no changes to the
Bitcoin Core protocol. The only addition is a Certification Authority (CA), which issues compliance cer-
tificates to users, verifying that both senders and recipients meet the necessary standards. The CA can be
implemented in centralized or decentralized formats, depending on the regulatory context or user preference.

Our contributions. This paper introduces a comprehensive framework for enhancing accountability in Bit-
coin transactions through the use of stealth addresses with attributes, underpinned by a novel cryptographic
primitive, Identity-Based Matchmaking Signatures (IB-MSS). Our key contributions are as follows:

– We introduce the IB-MSS primitive, which integrates dual accountability attributes into stealth addresses
for both the sender and the recipient. Inspired by Matchmaking Encryption (ME) [6], where decryption
requires both parties’ attributes to satisfy each other’s policies, our IB-MSS adapts this concept to
signatures. This enables signature verification only when both the sender’s and recipient’s attributes
fulfill each other’s specified policies, ensuring dual accountability.
Building upon non-interactive key distribution [27] and digital signature schemes, we present the detailed
construction of IB-MSS in Section 4.

– We explore the integration of a Certification Authority (CA) to validate sender and recipient attributes.
We discuss centralized and decentralized implementations of this authority in Section 4.3.

– We provide, in Section 5, an implementation of stealth addresses with attributes using IB-MSS and bench-
mark its performance. Our implementation is inspired by Cerulli et al.’s work on verifiably encrypted
threshold key derivation [14].

In Section 2.1, we also introduce potential enhancements, such as time-locked stealth addresses and stealth
transactions with embedded messages.

In Section 4.4, we discuss a viable new framework for sender accountability, ensuring that UTXOs are only
spent by senders who meet predefined criteria. This might be achieved by enabling the recipient to generate
a zero-knowledge proof of the sender’s attributes. We also discuss suitable extensions to incorporate recipient
accountability by leveraging cryptographic techniques such as group signatures [5], ring signatures [30], and
attribute-based signatures [25]. This ensures that senders can verify the recipient’s eligibility while preserving
their privacy.
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1.1 Notation

Let N be the set of all natural numbers; for n ∈ N, we write [n] to denote the set {1, . . . , n}. We use
calligraphic letters to denote sets (such as X ). Throughout the paper, we use the abbreviation PPT to refer
to probabilistic polynomial time. Given a PPT algorithm A, we denote by A(x) the probability distribution
of the output of A when run on input x. If algorithm A has oracle access to a set of oracles O, we denote by
QO the set of queries made by A to an oracle O ∈ O.

We use the symbol = to assign the output value of the algorithm on the right-hand side to the variable
on the left-hand side. When x is chosen uniformly from a set X , we write x←$ X . If A is an algorithm, we
write y←$ A(x) to denote a run of A on input x with output y and random tape r←$ {0, 1}λ.

We denote the security parameter by λ ∈ N, and an arbitrary positive polynomial by poly(·). Every
algorithm takes the security parameter λ as input (in unary, i.e., 1λ). When an algorithm has multiple
inputs, 1λ is typically omitted. A function ν : N → R is called negligible if, for every positive polynomial
poly(·) and for all sufficiently large λ, it holds that ν(λ) ≤ 1

poly(λ) . We use negl(λ) to denote an unspecified

negligible function. In the remainder of the paper, we consider the function e : G1 × G1 → G2 as a type-1
pairing.

2 Stealth addresses

Bitcoin’s public ledger makes all transactions visible, exposing user activity to analysis. This compromises the
pseudonymity of traditional addresses, as they can be traced back to individuals. Stealth addresses counter
this by breaking the visible link between sender and recipient.

Basic Stealth Address Protocol (BSAP) Introduced in 2011 [19], stealth addresses create temporary,
one-time-use public addresses to enhance transaction privacy. For simplicity, we use multiplicative notation.
Let G be a group of prime order p with generator g. Alice (the sender) and Bob (the receiver) have pub-
lic/secret key pairs (pkA, skA) and (pkB, skB), where pkA = ga, pkB = gb, skA = a, and skB = b for a, b←$ Zp.
Using the Diffie-Hellman protocol, they establish a shared secret k:

– k = H(gskAskB) = H(gab) = H(pkaB) = H(pkbA),
– Alice uses gk as the recipient’s address,

– Bob spends funds sent to gk using k as his private key.

While this protocol provides privacy by generating one-time-use addresses, the static nature of the address
reduces privacy over multiple transactions. Both parties also share the ability to compute the private key,
which limits security.

Improved Stealth Address Protocol (ISAP) Proposed in 2013 [32] and adopted in Bitcoin in 2014 [36],
ISAP improves upon BSAP by introducing more dynamic addresses:

– Alice generates a fresh key pair (r,R), where R = gr and r←$ Zp. She computes k = H(pkrB) = H(grb) =
H(Rb),

– She computes Q = gk · pkB and creates a transaction with Q and embeds R (either in OP RETURN or as
part of the transaction signature’s randomness [40]) to ensure stealthiness,

– Bob monitors the blockchain for transactions containing R′, computes k′ = H(R′b), and reconstructs the
recipient address Q′ = gk

′ · pkB. If Q′ = Q, he can spend the transaction using k′ + b.

While ISAP improves privacy by creating fresh addresses, Bob must use his private spending key for
monitoring the blockchain, which introduces a security risk.
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Dual Key Stealth Address Protocol (DKSAP) DKSAP mitigates ISAP’s security concerns by intro-
ducing two separate key pairs for tracking and spending:

– Bob holds two key pairs: a tracking key pair (ptkB, stkB) with stkB = s and ptkB = gs, and a spending
key pair (pkB, skB),

– Alice generates (r,R) and computes k = H(ptkrB),
– She calculates Q = gk · pkB and creates a transaction with Q and R,
– Bob monitors the blockchain using the tracking key stkB to find R′, computes k′ = H(R′s), and recon-

structs Q′ = gk
′ · pkB. If Q′ = Q, Bob can spend the transaction using his spending key.

By separating the tracking and spending keys, Bob can outsource transaction monitoring without com-
promising his private spending key, enhancing both security and privacy.

2.1 Enhancements of Stealth Addresses

While stealth addresses enhance privacy in Bitcoin, our work extends their functionality with additional
cryptographic features. We integrate concepts such as Identity-Based Encryption (IBE) and time-lock mech-
anisms, enabling the inclusion of hidden information within stealth addresses to support more advanced use
cases.

A practical application of this is the creation of time-locked stealth transactions, where cryptographic
puzzles are embedded in the shared key k. These puzzles ensure that the recipient can only spend the
transaction after a certain time has passed. For example:

k = H(pkrB, “101101”) = H(gbr, “101101”).

where pkB is the recipient’s public key, r is a random value chosen by the sender, and gbr is the Diffie-
Hellman shared key. The value “101101” serves as a time-lock condition.

Unlike traditional time-lock methods, where the lock time is visible, this approach embeds the time con-
straint within the stealth address. Only the recipient, who computes k, can identify the time-lock, preserving
privacy while preventing censorship due to visible lock times.

To further refine time control, we can use a puzzle based on repeated squaring [31]:

H(pkrB, 2
e) = H(gbr, 2e),

where e = 2t mod ϕ(n), with t representing the desired lock time, and n = pq being the product of two
large primes p and q chosen by Alice. This ensures that only after time t can the recipient unlock and spend
the funds.

The same cryptographic puzzle string used in time-locked addresses can double as a covert message,
ensuring confidentiality. This dual-use of k for time-locking and discreet communication allows only the
intended recipient to decode and access the message, such as “42”, for example:

k = H(pkrB, “42”) = H(gbr, “42”).

Incorporating IBE into k adds further flexibility by allowing identity-specific transactions. In IBE, a sender
encrypts data so that only a recipient matching a specific identity (e.g., an email address) can decrypt it.
The receiver needs a decryption key tied to their identity, issued by a trusted authority.

In the Boneh-Franklin IBE scheme [12], the trusted authority generates a decryption key for the identity
id as H ′(id)s, where s is the authority’s secret key. The sender, knowing the recipient’s identity id and the
authority’s master public key mpk = gs, encrypts the message as follows:

c = (gt,m⊕ e(H ′(id), gs)t),

where t is a random value. The recipient, with the decryption key H ′(id)s, can retrieve the message m by
using the pairing properties:

4



e(H ′(id)s, gt) = e(H ′(id), gs)t.

By adapting this IBE structure, the shared key k can be modified as follows:

k = H(pkrB, e(H
′(id), gs)r) = H(gbr, e(H ′(id)s, gr)).

This adaptation allows the sender to restrict the transaction to a specific recipient identity, providing
additional security and control. In the context of IBE, the identity id can represent not just simple identifiers
like email addresses, but also complex attributes or conditions required for the recipient to access the funds.
For example, id could be defined as id = “manager ∧ after Jan 2028”, meaning the recipient must be a
manager and can only access the funds after January 2028. In this case, the trusted authority issues the
decryption key only when both conditions are met. This attribute-based approach extends the flexibility of
stealth addresses, enabling conditional access based on roles, time constraints, or other attributes, making
them suitable for sophisticated use cases.

This solution requires no changes to Bitcoin’s Core or transaction structure. The recipient runs a program,
similar to current stealth address handling, to identify transactions they can decrypt. The only addition is
an external authority for issuing decryption keys when the conditions are satisfied. This ensures enhanced
privacy and accountability without disrupting standard transaction processes.

3 Related Works

Considerable progress has been made in formalizing stealth addresses and implementing efficient solutions
for Bitcoin and Ethereum.

Formalization. Stealth addresses have seen significant formalization efforts, beginning with the work of Fleis-
chhacker et al. [18], who introduced Digital Signatures with Re-Randomizable Keys. This model established
a strong unforgeability notion, allowing adversaries to query a key re-randomization oracle while maintaining
security.

Meiklejohn and Mercer [26] advanced this by proposing stealth keys, where a shared secret and nonce
allow one-time public and private key derivation, with indistinguishability guarantees between derived and
freshly generated keys. Fauzi et al. [16] extended this model to support Updatable Public Keys, ensuring
that public keys could be refreshed without revealing whether they were newly generated or updated, further
strengthening the privacy of stealth addresses.

Backes et al. [9] introduced Signatures with Flexible Keys, allowing users to transform public keys into
equivalent forms, while maintaining indistinguishability, even when an adversary has access to the random-
ness used in key generation.

Liu et al. [23] identified a vulnerability in deterministic wallets that could expose the master secret key if
a single one-time key were compromised. They proposed Key-Insulated and Privacy-Preserving Signatures
(PDPKS) to address key exposure risks. This work was extended by Pu et al. [29], who introduced Stealth
Signatures, providing stronger protection against key exposure and offering a post-quantum secure construc-
tion. Our IB-MSS design builds on these advancements, particularly the formalization of stealth addresses
without key exposure.

A recent approach to enhance recipient privacy is the Silent Payments protocol [22]. This protocol operates
similarly to stealth addresses but differs in how the one-time-use address is constructed. Instead of using her
private key skA, Alice uses the private key corresponding to one of the UTXOs used in the payment. This
eliminates the need for the nonce R required in ISAP, ensuring that the stealth address remains dynamic.
While Silent Payments remove the need for R, the recipient still needs to monitor the blockchain to identify
transactions sent to them. Like the original stealth address protocols, Silent Payments use the Diffie-Hellman
protocol. Thus, the enhancements we introduce in Sec. 2.1, as well as the Accountable Stealth Address with
Attributes protocol (Sec. 4), can also be applied to Silent Payments.
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Implementation. On the implementation side, the development of stealth addresses for blockchains has also
progressed. Wahrstätter et al. [39] introduced BaseSap, a protocol designed for programmable blockchains,
using the Secp256k1 elliptic curve. Their implementation leverages view tags to optimize transaction parsing,
enabling more efficient handling of stealth addresses in decentralized applications.

Recent privacy-focused efforts, such as Privacy Pools by Buterin et al. [13], proposed in response to
sanctions on Tornado Cash [37], further highlight the need for privacy-preserving systems that allow users to
prove compliance with legal frameworks. Privacy Pools aim to enable users to demonstrate that their funds
are not connected to illicit activities while maintaining privacy. However, challenges in preventing illegal
transactions through privacy tools remain [34].

4 Accountable Stealth Addresses with Attributes

In this work, we introduce a method to add accountability to Bitcoin transactions using stealth addresses.
Our approach ensures that both the sender and recipient must satisfy specific conditions before a transaction
can be spent. These conditions are embedded in the shared secret k, which binds the policy requirements to
the transaction.

Example Scenario. Consider a scenario where Bob wants to receive funds only from citizens of country X,
and Alice wants to send money only to recipients from country Y . A certification authority (CA) provides
certificates that confirm citizenship.

Before sending the transaction, Alice obtains a certificate from the CA confirming her citizenship in the
country X. This certificate is represented as H1(X)s, where H1 is a cryptographic hash function modeled as
a Random Oracle, and s is the CA’s secret key. Alice also needs assurance that Bob is a citizen of country
Y .

To fulfill both conditions (Alice being from country X and Bob from country Y ), Alice computes the
shared secret:

k = H2(e(H1(X)s, H1(Y ))),

where H2 is a cryptographic hash function, and e is a bilinear pairing. With this shared secret, Alice creates
a stealth address that Bob will use to receive the funds.

Spending the Transaction. For Bob to spend the funds, he needs his own certificate confirming his citizenship
in country Y , represented as H1(Y )s. Using this, Bob computes the shared secret:

k = H2(e(H1(X), H1(Y )s)).

Due to the properties of bilinear pairings, Bob’s computed shared secret will match the one Alice created.
This allows Bob to complete the transaction and spend the funds.

Ensuring Accountability. The accountability mechanism ensures that the shared secret k can only be derived
if both the sender and recipient meet the required conditions. If the sender does not satisfy the recipient’s
conditions, the transaction cannot be detected by the recipient because the shared secret will not match.
This ensures that non-compliant transactions are effectively ignored by recipients adhering to the protocol.
If a recipient attempts to spend a transaction without meeting the specified conditions, they cannot prove
compliance, and the protocol will not allow the transaction to be completed.

Formalization of the Scheme. We formalize this approach using a new cryptographic primitive called Identity-
Based Matchmaking Stealth Signatures (IB-MSS), based on the Stealth Signatures model proposed by [29].
Unlike previous approaches, our model does not require any tracking information, focusing solely on ensuring
accountability and privacy in transactions.

Our scheme guarantees that transactions created under this protocol are indistinguishable from standard
Bitcoin transactions. No additional tracking data is embedded, ensuring that stealth addresses remain fully
private and compliant with the existing Bitcoin infrastructure.
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4.1 Identity-Based Matchmaking Stealth Signatures

We define a new primitive called Identity-Based Matchmaking Stealth Signatures (IB-MSS). In IB-MSS, a
sender generates a one-time public key using a retrieval key related to their identity, obtained from a Public
Key Generator (PKG), and coupled with the receiver’s identity. Symmetrically, the receiver can recover the
one-time secret key related to the same one-time public key by using their retrieval key, also obtained from
the PKG, and coupled with the sender’s identity. The formalization of this concept is inspired by the former
work on Matchmaking Encryption by Ateniese et al. [6]. We follow a similar algorithmic structure.

We formalize two main properties: unforgeability and unlinkability. Unforgeability ensures that no ex-
ternal adversary can forge a signature verifiable from such a one-time public key. Unlinkability ensures
that no external adversary can distinguish between a public key generated from a standard digital signa-
ture scheme’s key generation algorithm and a one-time public key generated from the IB-MSS, even if the
respective one-time secret key is leaked.

The description of IB-MSS follows. We implicitly assume that all the algorithms after KGen take mpk as
input.

LetM be the message space. An Identity-Based Matchmaking Stealth Signature scheme Π is composed
of a tuple of algorithms (MKGen,KGen,SKGen,RKGen,OPKGen,OSKGen,Sign,Vrfy), described as follows:

MKGen(1λ): On input the security parameter 1λ, the randomized master key generator outputs a master
public key mpk, and a master secret key msk.

KGen(1λ): On input the security parameter 1λ, the randomized key generation algorithm outputs a pub-
lic/private key pair (pk, sk).

SKGen(msk, σ): On input the master secret key msk and a sender identity σ ∈ {0, 1}∗, the deterministic
sender key generator outputs a sender retrieval key srk.

RKGen(msk, ρ): On input the master secret key msk and a receiver identity ρ ∈ {0, 1}∗, the deterministic
receiver key generator outputs a receiver retrieval key rrk.

OPKGen(srk, ρ): On input a sender retrieval key srk and a receiver identity ρ ∈ {0, 1}∗, the deterministic
one-time public key generator outputs a one-time public key opk.

OSKGen(opk, rrk, σ): On input a one-time public key opk, a receiver retrieval key rrk, and a sender identity
σ ∈ {0, 1}∗, the deterministic one-time secret key generator outputs a one-time secret key osk, or ⊥
indicating failure.

Sign(osk,m): On input a one-time secret key osk and a message m ∈M, the randomized signing algorithm
outputs a signature τ .

Vrfy(opk,m, τ): On input a one-time public key opk, a message m ∈M, and a signature τ , the deterministic
verification algorithm outputs 1 (valid) or 0 (invalid).

Definition 1 (Correctness). An Identity-Based Matchmaking Stealth Signature scheme is correct if, for
all messages m ∈M, for all σ, ρ ∈ {0, 1}∗,

Pr

Vrfy(opk,m,Sign(osk,m)) = 1

∣∣∣∣∣∣∣∣∣∣
(mpk,msk)←$ MKGen(1λ);

srk = SKGen(msk, σ);
rrk = RKGen(msk, ρ);
opk = OPKGen(srk, ρ);

osk = OSKGen(opk, rrk, σ)

 = 1.

Definition 2 (Unforgeability). An Identity-Based Matchmaking Stealth Signature scheme Π satisfies ex-
istential unforgeability w.r.t. chosen message attacks if, for all valid PPT adversaries A,

Pr
[
EUFCMAΠ

A (λ) = 1
]
≤ negl(λ).

Let O = {SKGen(msk, ·),RKGen(msk, ·),OSKGenO,SignO}. EUFCMAΠ
A (λ) proceeds as follows:
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EUFCMAΠ
A (λ)

(mpk,msk)←$ MKGen(1λ)

QSignO := ∅
QOSKGenO := ∅

(i∗,m∗, τ∗)←$ AO(mpk)

(opk∗, osk∗) = QOSKGenO[i∗]

if Vrfy(opk∗,m∗, τ∗) = 1 ∧
(i∗,m∗) /∈ QSignO

return 1

else return 0

OSKGenO(σ, ρ)
rrk = RKGen(msk, ρ)

srk = SKGen(msk, σ)

opk = OPKGen(srk, ρ)

QOSKGenO := QOSKGenO ∪ {(opk, osk)}
return opk

SignO(i,m)

(opk, osk) = QOSKGenO[i]

τ ←$ Sign(osk,m)

QSignO := QSignO ∪ {(i,m)}
return τ

Adversary A is valid if, for all σ′ ∈ QSKGen(msk,·), ρ
′ ∈ QRKGen(msk,·), and all (m′′, σ′′, ρ′′) ∈ QSignO, it

holds that σ′′ ̸= σ′ and ρ′′ ̸= ρ′.

Definition 3 (Unlinkability). An Identity-Based Matchmaking Stealth Signature scheme Π satisfies un-
linkability if, for all valid PPT adversaries A = (A0,A1), the following holds:

Pr
[
UNLINKΠ

A (λ) = 1
]
≤ 1

2
+ negl(λ).

Let O = {SKGen(msk, ·),RKGen(msk, ·),OSKGenO}. UNLINKΠ
A (λ) follows:

UNLINKΠ
A (λ)

(mpk,msk)←$ MKGen(1λ)

QOSKGenO := ∅

(snd, rcv, st)←$ AO
0 (mpk)

(opk0, osk0)←$ KGen(1λ)

srk = SKGen(msk, snd)

rrk = RKGen(msk, rcv)

opk1 = OPKGen(srk, rcv)

osk1 = OSKGen(opk1, rrk, snd)

b←$ {0, 1}

b′←$ AO
1 (opkb, oskb, st)

return b
?
= b′

OSKGenO(σ, ρ)
rrk = RKGen(msk, ρ)

srk = SKGen(msk, σ)

opk = OPKGen(srk, ρ)

osk = OSKGen(opk, rrk, σ)

QOSKGenO := QOSKGenO ∪ {(σ, ρ)}
return (opk, osk)

A is valid if for all σ∗ ∈ QSKGen(msk,·), and all ρ∗ ∈ QRKGen(msk,·), σ∗ ̸= snd ̸= ρ∗, σ∗ ̸= rcv ̸= ρ∗, and
(snd, rcv) /∈ QOSKGenO, (rcv, snd) /∈ QOSKGenO.

4.2 IB-MSS from IB-NIKD

We now show how to instantiate IB-MSS from any Identity-Based Non-Interactive Key Distribution (IB-
NIKD) scheme as defined by Paterson and Srinivasan [27], in combination with an EUF-CMA signature
scheme where pk = gsk, g is a generator of a group G of order q, and sk←$ Zq.
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IB-NIKD Definition [27]. Let SHK be a shared key space. An IB-NIKD scheme Π is a tuple of algorithms
(Setup,Extract,SharedKey) described as follows:

Setup(1λ): On input the security parameter, this randomized algorithm outputs a master public key mpk
and a master secret key msk.

Extract(mpk,msk, id) : On input the master public key mpk, the master secret key msk, and an identifier
id ∈ {0, 1}∗, outputs a private key rkid.

SharedKey(mpk, rkidA , idB): On input the master public key mpk, a private key rkidA , and an identifier idB ∈
{0, 1}∗, this deterministic algorithm outputs a shared key k ∈ SHK.

Definition 4 (Correctness). An IB-NIKD is correct if, ∀idA, idB ∈ {0, 1}∗,

Pr[SharedKey(mpk, rkidA , idB) = SharedKey(mpk, rkidB , idA)] = 1,

where (mpk,msk)←$ Setup(1λ), rkidA ←$ Extract(mpk,msk, idA), and rkidB ←$ Extract(mpk,msk, idB).

Definition 5 (IND-Security). An IB-NIKD scheme Π is IND-secure if, for all valid PPT adversaries A,

Pr
[
IND-SKA

Π(λ) = 1
]
≤ 1

2 + negl(λ).

Let O = {Extract(mpk,msk, ·),RevealO}. IND-SKA
Π(λ) follows:

IND-SKΠ
A (λ)

(mpk,msk)←$ Setup(1λ)

(idA, idB , st)←$ AO(mpk)

b←$ {0, 1}
rkidA ←$ Extract(mpk,msk, idA)

if b = 0

k = SharedKey(mpk, rkidA , idB)

else

k←$ SHK

b′←$ AO(mpk, idA, idB , k, st)

return b
?
= b′

RevealO(idA∗ , idB∗)

rkidA∗ ←$ Extract(mpk,msk, idA∗)

return SharedKey(mpk, rkidA∗ , idB∗)

The adversary A is valid if, for all id∗ ∈ QExtract(mpk,msk,·), id
∗ ̸= idA ∧ id∗ ̸= idB, and (idA, idB) /∈ QRevealO

and (idB , idA) /∈ QRevealO.

EUF-CMA Signature Scheme. A signature scheme is a tuple of algorithms Π = (KGen,Sign,Vrfy) with
message spaceM, described as follows:

KGen(1λ): On input the security parameter, outputs a verification key/signing key pair (vk, sk).
Sign(sk,m): On input a signing key sk and a message m ∈M, outputs a signature τ .
Vrfy(vk,m, τ): On input a verification key vk and a message m ∈M, outputs 1 if the signature verifies, and

0 otherwise.

Definition 6 (Correctness). A signature scheme Π is correct if, for all m ∈ M, Pr[Vrfy(vk,m, τ) = 1],
where (vk, sk)←$ KGen(1λ) and τ ←$ Sign(sk,m).

Definition 7 (EUF-CMA). A signature scheme Π is existentially unforgeable under chosen message at-
tacks if, for all valid PPT adversaries A,

Pr

[
Vrfy(vk,m, τ) = 1

∣∣∣∣ (vk, sk)←$ KGen(1λ);
(m, τ)←$ ASign(sk,·)(vk)

]
≤ negl(λ).

The adversary A is valid if, for all m∗ ∈ QSign(sk,·), m
∗ ̸= m.
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Let ΠSIG be an EUF-CMA signature scheme with message space M, and assume KGen(1λ) outputs (pk =
gsk, sk←$ Zq), whereG is a group of order q. LetΠNIKD be an Identity-Based Non-Interactive Key Distribution
scheme with key space SHK = Zq. We construct our IB-MSS scheme ΠIBMSS as follows:

MKGen(1λ): Output (mpk,msk)←$ ΠNIKD.Setup(1
λ).

KGen(1λ): Output (pk(= gsk), sk)←$ ΠSIG.KGen(1
λ).

SKGen(msk, id) and RKGen(msk, id): Output ΠNIKD.Extract(msk, id).
OPKGen(srk, ρ): Compute k = ΠNIKD.SharedKey(mpk, srk, ρ) and output gk.
OSKGen(opk, rrk, σ): Compute k = ΠNIKD.SharedKey(mpk, rrk, σ). If gk = opk, output k, else output ⊥.
Sign(osk,m): Output ΠSIG.Sign(osk,m).
Vrfy(opk,m, τ): Output ΠSIG.Vrfy(opk,m, τ).

In the following theorem, we state that ΠIBMSS satisfies the security properties we need.

Theorem 1. Assuming that ΠNIKD is IND-secure and ΠSIG is EUF-CMA secure, the IB-MSS scheme ΠIBMSS

described above satisfies correctness, unforgeability, and unlinkability.

Proof. We will prove that the IB-MSS scheme ΠIBMSS satisfies correctness, unlinkability, and unforgeability
under the assumptions that ΠNIKD is IND-secure and ΠSIG is EUF-CMA secure.
Correctness. By the correctness of ΠNIKD, for any sender identity σ and receiver identity ρ, the shared keys
computed by both parties are equal:

k = ΠNIKD.SharedKey(mpk, srk, ρ) = ΠNIKD.SharedKey(mpk, rrk, σ),

where srk = ΠNIKD.Extract(mpk,msk, σ) and rrk = ΠNIKD.Extract(mpk,msk, ρ).
The one-time public and secret keys are then:

opk = gk, osk = k.

Since (opk, osk) is a valid key pair in ΠSIG, and ΠSIG is correct, any signature τ = ΠSIG.Sign(osk,m) will
verify:

ΠSIG.Vrfy(opk,m, τ) = 1,

for all messages m ∈M. Thus, the IB-MSS scheme is correct.
Unlinkability. Assume, for contradiction, that there exists a PPT adversary A that can distinguish between
a key pair generated by the IB-MSS scheme and a random key pair with non-negligible advantage ϵ.

We construct an adversary ANIKD that breaks the IND-security of ΠNIKD:

1. Setup:
– ANIKD receives mpk from the IND-security challenger.
– Forwards mpk to A.

2. Oracle Simulation:
– Key Generation (SKGen, RKGen): Use the extraction oracle to obtain and return keys.
– One-Time Key Generation (OSKGenO):
• For all (σ, ρ), compute osk = ΠNIKD.SharedKey(mpk, srk, ρ) and opk = gosk; return (opk, osk).

3. Challenge Phase:
– Adversary A outputs (snd, rcv, st).
– ANIKD sends (snd, rcv) to the IND-security challenger.
– Receives challenge key k∗ (either real or random).
– Sets osk∗ = k∗ and opk∗ = gosk

∗
.

– Provides (opkb, oskb, st) to A, where:
• If b = 0, (opkb, oskb) = (opk∗, osk∗).
• If b = 1, generate (opkb, oskb)←$ ΠSIG.KGen(1

λ).
4. Finalization:

– A outputs a guess b′.
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– ANIKD outputs 0 if b′ = 0 (real shared key), else 1.

If A distinguishes between the cases with advantage ϵ, then ANIKD distinguishes whether k∗ is real or
random with the same advantage, breaking the IND-security of ΠNIKD.
Unforgeability. Unforgeability of ΠIBMSS follows from the IND-security of ΠNIKD and the EUF-CMA secu-
rity of ΠSIG. The proof proceeds via a hybrid argument.

H0(λ) This is the standard unforgeability game for ΠIBMSS.
H1(λ) Identical to H0(λ), except that for a random query i∗ to OSKGenO, the key pair (opki∗ , oski∗) is

generated using ΠSIG.KGen(1
λ) instead of using SharedKey.

Suppose there exists an adversary A that can distinguish between H0 and H1 with non-negligible advan-
tage ϵ. We construct an adversary ANIKD that breaks the IND-security of ΠNIKD.

1. Initialization:
– Receive the master public key mpk from the IND-SK challenger and forward it to A.
– Initialize QSignO := ∅, QOSKGenO := ∅, and set j := 0.
– Choose a random index i∗ for a future OSKGenO query.

2. Oracle Simulations:

a. Key Generation Oracles (SKGen, RKGen):
For identity queries id, forward id to the Extract oracle and return the private key rkid to A.

b. One-Time Key Generation Oracle (OSKGenO):
Upon receiving a query (σ, ρ) from A:
– Check if an entry (opk′, σ′, ρ′) exists in QOSKGenO with σ′ = σ and ρ′ = ρ. If it exists, return opk′

to A.
– Otherwise, increment j := j + 1.
– If j = i∗ (Challenge Query):
• Send (σ, ρ) as challenge identities to the IND-SK challenger.
• Receive the challenge shared key k.
• Set osk′ := k and opk′ := gosk

′
.

– If j ̸= i∗:
• Compute rkσ←$ ΠNIKD.Extract(mpk,msk, σ).
• Compute osk′ := ΠNIKD.SharedKey(mpk, rkσ, ρ).
• Set opk′ := gosk

′
.

– Add (opk′, σ, ρ) to QOSKGenO and return opk′ to A.
c. Signing Oracle (SignO):

Upon receiving a query (i,m) from A:
– Retrieve (opki, oski) corresponding to the i-th query in QOSKGenO.
– If i ̸= i∗:
• Compute τ := ΠSIG.Sign(oski,m) and return τ to A.

– If i = i∗:
• Since A is valid, it does not query SignO on i∗.

3. Adversary’s Forgery:
If A outputs a valid forgery (i∗,m∗, τ∗):
– Verify if ΠSIG.Vrfy(opki∗ ,m

∗, τ∗) = 1.
– If valid: Output b′ = 0 (guessing k is real).
– Else: Output b′ = 1 (guessing k is random).

If k is real (as in H0), A can forge with probability ϵ, so ANIKD outputs b′ = 0 with probability related to
ϵ.

If k is random (as in H1), forging under opk′ requires breaking the EUF-CMA security of ΠSIG, which is
negligible. - Therefore, ANIKD distinguishes between the two cases, breaking the IND-security of ΠNIKD.

Assuming A cannot distinguish between H0 and H1, any forgery under H1 can be used to break the
EUF-CMA security of ΠSIG.
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1. Constructing ASIG:
– Receives opk∗ from the EUF-CMA challenger.
– Generates (mpk,msk)← ΠNIKD.Setup(1

λ).
– Chooses σ∗ and ρ∗ not queried by A.
– Sets i∗ corresponding to (σ∗, ρ∗) and assigns opki∗ := opk∗.
– Simulates oracles as before, ensuring A does not receive signatures under opki∗ .

2. Adversary’s Forgery:
– If A outputs a forgery (i∗,m∗, τ∗), ASIG outputs (m∗, τ∗) to the EUF-CMA challenger.

If A can forge in H1, ASIG breaks the EUF-CMA security of ΠSIG.
Therefore, the unforgeability of ΠIB-MSS holds under the IND-security of ΠNIKD and the EUF-CMA

security of ΠSIG.

4.3 Certification Authority

In our protocol, a Certification Authority (CA) ensures that participants comply with specific regulations,
such as AML/KYC requirements, while preserving privacy. The CA facilitates secure generation of shared
secrets between parties based on certified attributes, enabling both privacy and regulatory compliance.
We examine two CA models: centralized and decentralized, both constructed using our IB-MSS scheme
instantiated from any IB-NIKD ΠNIKD (Section 4.2).

Centralized CA A centralized CA, such as a major exchange (e.g., Coinbase or Kraken), performs Know
Your Customer (KYC) procedures to verify user identities for compliance. The CA issues certificates that
confirm specific attributes, such as user identity or location, after users complete KYC.

Consider the case where Alice and Bob, both users of a centralized exchange C, have completed KYC and
now wish to transact. Alice must satisfy attribute σ, and Bob must satisfy attribute ρ. The CA C operates
as follows:

– C holds a master secret key msk and publishes a master public key mpk.
– Alice requests a private key (certificate) for her attribute σ, and C computesDA = ΠNIKD.Extract(msk, σ),

providing it to Alice.
– Bob similarly requests his certificate DB = ΠNIKD.Extract(msk, ρ) from C.

Decentralized CA In a decentralized setup, protocols like VetKeys [14], developed by DFINITY, enable
secure key derivation and policy compliance without relying on centralized authorities. VetKeys supports
on-chain key derivation and verification, allowing users to comply with policies through decentralized appli-
cations (DApps).

The process, depicted in Fig. 1, proceeds as follows:

– Alice generates a transport key pair (tpkA, tskA) and submits her transport public key tpkA along with
her policy attribute σ to a DApp D.

– The DApp verifies Alice’s compliance with the policy σ (e.g., using zero-knowledge proofs or on-chain
credentials).

– If compliant, the DApp nodes execute the VetKeys protocol to generate an encrypted derived key ekA,
which is stored on the blockchain.

– Alice retrieves ekA and, using her transport secret key tskA, recovers her derived keyDA = ΠNIKD.Extract(msk, σ).

Bob similarly obtains his derived key DB = ΠNIKD.Extract(msk, ρ).

Shared Secret Computation In both centralized and decentralized CA models, Alice and Bob use their
derived keys to compute a shared secret. They compute the same one-time stealth address secret key osk
using ΠNIKD.SharedKey(mpk, DA, ρ) and ΠNIKD.SharedKey(mpk, DB , σ) respectively.

This ensures compliance and privacy in both models.
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1) TKG() -> (tpk, tsk)

2) Tx = [tpk, id]U

Tx

3) Check if U allowed to k for id

4) EKDerive(mskI, id, tpk) -> eki
5) EKSVerify(mpkI, id, tpk, eki) -> 0/1

6) Combine(mpk, id, S, {mpkI,eki}i∈S) -> ek
7) EKVerify(mpk, id, tpk, ek) -> 0/1

ek

8) Recover(mpk, id, tsk,ek) -> k

Fig. 1. VetKeys scheme in the blockchain context.

4.4 Extensions and Accountability

Receiver-spendable stealth transactions and extension to multiple attributes. Our IB-MSS construction can
be extended to restrict spending of a transaction only to the receiver who possesses a specific public key pk.
Let srk be the sender retrieval key, and ρ be the recipient’s identity. In this case, the one-time public key opk
is computed as opk = gk · pk = gk+sk, where sk is the receiver’s secret key. The receiver, having knowledge
of sk, can compute k + sk, making them the only party able to spend the transaction.

This idea can be generalized to support multiple attributes by using a shared key in the exponent.
In a multi-attribute context, the user can request retrieval keys rkσ1 , . . . , rkσn for different attributes. The
one-time public key is then computed as:

opk = gH(k1,...,kn),

where H is a cryptographic hash function modeled as a random oracle, and ki = ΠNIKD.SharedKey(rkσi
, ρi).

Here, ρ1, . . . , ρn represent the receiver’s multiple attributes. This construction allows for flexible policy checks
based on attribute sets for both senders and recipients.

Recipient accountability. To ensure recipient accountability while preserving privacy, we can incorporate
cryptographic primitives like group signatures [5], ring signatures [30], and attribute-based signatures [25].
For instance, Bob can prove his membership in a trusted group or his possession of certain attributes by
signing his public key pk. Group and ring signatures allow for verification without revealing Bob’s identity,
ensuring anonymity. Similarly, attribute-based signatures verify that Bob satisfies specific criteria without
disclosing his exact attributes or identity. These methods provide recipient accountability while maintaining
privacy, linking verification to trusted group membership or defined attributes.

Sender accountability. In our IB-MSS scheme, a PKG trusted by an auditing entity generates a master public
key mpk and a receiver retrieval key rrk for the user, using her identity ρ and the PKG’s master secret key
msk. Let opk be the one-time public key generated using the sender identity σ and the receiver’s retrieval
key rrk.

The user identified by opk (from the trusted sender σ) can generate a non-interactive zero-knowledge
proof (NIZK) [11,21], proving knowledge of a retrieval key rrk such that opk was correctly generated from
rrk and σ. Formally, the relation is as follows:

Rtx = {(x = (mpk, σ, opk), w = rrk) : opk = gOSKGen(mpk,opk,σ,rrk)}.
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To further protect the sender’s privacy, more advanced primitives such as 1-out-of-n Proof-of-Partial
Knowledge (PPK) [15,7,20] can be employed. This allows the sender to prove that opk was generated from
an identity σi within a public certified set {σ1, . . . , σn}, without revealing which specific identity was used.
The formal relation is written as:

Rtx′ = {(x1 = (mpk, opk, σ1), . . . , xn = (mpk, opk, σn), w = (i, rrk)) :

opk = gOSKGen(mpk,opk,σi,rrk)}.

For cases involving multiple attributes, a t-out-of-n PPK [15,10,20,8] can be used. This allows the user
to prove that the transaction originated from t attributes out of a certified set, without revealing which t
attributes were involved. Letting the receiver compute osk = H(k1, . . . , kt) using a random oracle H, where
each shared key kj is derived using the sender’s attribute σij , the relation is:

Rtx′′ = {(x1 = (mpk, opk, σ1), . . . , xn = (mpk, opk, σn), w = ({ij}j∈[t], rrk)) :

opk = gH(k1,...,kt), kj = SharedKey(mpk, rrk, σij ), j ∈ [t]}.

5 Implementation and Experiments

We aim to illustrate the practicality of our proposed approach within the Bitcoin ecosystem, highlighting its
capability to achieve transaction accountability while preserving user privacy. To this end, we present in Sec-
tion 5.1 our IB-MSS instantiation from the Sakai-Ohgishi-Kasahara [33] IB-NIKD and Schnorr signatures [35]
(Section 4.2) together with a comprehensive performance evaluation of our implementation (Section 5.2).

Then, we describe, in Section 5.3 our instantiantion together with a detailed analysis of parsing time
costs in Bitcoin.

5.1 Our IB-MSS Instantiation

Let G1 and G2 be groups of prime order p, and let e : G1 ×G1 → G2 be a bilinear map.
We use the hash functions H1 : {0, 1}∗ → G∗

1 and H2 : G2 → Z∗
p modeled as random oracles. Additionally,

let χ : Z∗
p → {0, 1}∗ be a one-to-one mapping from Z∗

p to binary strings.
Our instantiation, ΠSOK, with message space {0, 1}∗ follows:

MKGen(1λ): Choose two generators g1 ∈ G1 and g2 ∈ G2. Output (mpk = (G1,G2, p, g1, g2, g
msk
1 ),msk←$ {0, 1}λ).

KGen(1λ): Sample sk←$ Zp and output (pk = gsk1 , sk).
SKGen(msk, id) and RKGen(msk, id): Output H1(id)

msk.
OPKGen(srk, ρ): Compute k = H2(e(srk, H1(ρ))) and output gk1 .
OSKGen(opk, rrk, σ): Compute k = H2(e(H1(σ), rrk)). If g

k
1 = pk, output k, else output ⊥.

Sign(osk,m): Sample r←$ Zp, compute s = r −H1(χ(g
r
1),m) · sk, and output τ = (R, s).

Vrfy(opk,m, τ): Parse τ as (R, s) and output 1 if R = gs1pk
H1(R,m), and 0 otherwise.

5.2 Implementation Details

The proof of concept is implemented using Python 3.10.10, leveraging Charm 0.50 [3]. Our scheme is based on
pairings and is instantiated using the SS512 curve.The experiments were conducted on a machine equipped
with an Intel Core i7-12700 CPU (2.10GHz) and 32GB of RAM, running ManjaroLinux 22.1.0. The source
code for our implementation is available on Anonymous GitHub [4].

Table 1 shows the time costs (in milliseconds) of the primary cryptographic operations. We conducted
100 independent runs for each operation, repeating each experiment ten times to extract minimum, average,
and maximum execution times. For the main cryptographic operations, such as Enc and RetrieveKey, the
average execution times were 1.823 ms and 1.762 ms, respectively.

14



Operation Minimum (ms) Average (ms) Maximum (ms)

Setup 1.228 1.250 1.298
SKGen 1.942 1.996 2.139
RKGen 1.951 1.995 2.155
Enc 1.741 1.823 1.916
RetrieveKey 1.738 1.762 1.911

Table 1. Time costs in milliseconds for computing cryptographic functions.

To further demonstrate the feasibility of our protocol, we executed two accountable stealth transactions
on the Bitcoin Testnet. These transactions were performed in both centralized [1] and decentralized [2]
settings, using a modified version of the VetKeys protocol for the decentralized scenario.

Our protocol ensures that no additional information is embedded in transactions, making them indistin-
guishable from standard Bitcoin transactions. As a result, the transaction fees remain equivalent to those
of standard Pay-to-Witness-Public-Key-Hash (P2WPKH) transactions. P2WPKH, introduced with the Seg-
regated Witness (SegWit) update through BIP141 [24], was chosen over Pay-to-Public-Key-Hash (P2PKH)
due to its lower transaction fees [17].

5.3 Parsing Time Costs

A crucial task for the recipient in our system is detecting which transaction was sent to them. The recipient
must parse through all transactions, compute the stealth address using their secret key and the nonce
extracted from the transaction, and verify whether it matches one of the output addresses. On average, this
process requires 3.07 ms per transaction, based on 100 trials. This time consists of 0.31 ms to retrieve the
transaction, 2.42 ms to compute the shared secret, and 0.34 ms to derive and check the stealth address. While
this time is short for individual transactions, parsing a large volume of transactions leads to a substantial
increase in time.

To estimate the parsing time on the Bitcoin network, we analyzed confirmed transactions from November
16, 2022, to November 16, 2023. As shown in Fig. 2, the 75th percentile for confirmed transactions per day,
week, and month are 462,392, 3,261,635, and 14,132,707, respectively. Based on these figures, the estimated
parsing times would be 23.64 minutes for a day, 2.77 hours for a week, and 12.04 hours for a month, as shown
in Table 2.
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Fig. 2. Violin plot depicting the daily, weekly, and monthly confirmed Bitcoin transactions between November 16,
2022, and November 16, 2023.
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Parsing Size # Transactions Time Cost

75th perc. monthly 14,132,707 12.04 hours
75th perc. weekly 3,261,635 2.77 hours
75th perc. daily 462,392 23.64 minutes

Table 2. Time required to parse transactions at the 75th percentile.

One method to reduce parsing time is the use of view tags, as seen in Monero [38]. A view tag is a small
identifier derived from the shared secret and embedded in the transaction data. This allows the recipient
to quickly determine whether a transaction belongs to them without performing the full stealth address
computation. This technique can reduce parsing time by 40% [28]. However, in our protocol, including view
tags would reveal part of the shared secret, compromising the stealthiness of the transaction, which is a key
feature of our design.

Another approach to reduce the recipient’s computational load is to use the DKSAP protocol. By sharing
a secret scanning key with a server, the recipient can delegate transaction monitoring. The server continuously
scans the blockchain for relevant transactions, which significantly reduces the computation required on the
recipient’s side.

In some cases, the sender can also provide specific details, such as the transaction ID or date. This
narrows down the range of transactions the recipient needs to check, making the parsing process faster by
limiting the search to a smaller set of transactions.

6 Conclusions and Open Problems

This paper introduced “stealth addresses with attributes,” an innovative extension of stealth address proto-
cols that enhances accountability while preserving privacy in Bitcoin transactions. By embedding compliance
attributes into the stealth address framework, we achieve both sender and recipient accountability without
compromising anonymity. The integration of Identity-Based Matchmaking Signatures (IB-MSS) further en-
sures verifiable compliance within Bitcoin’s existing infrastructure.

However, two main challenges remain. The first is the computational overhead of parsing and verifying
transactions with embedded attributes, which impacts scalability as transaction volumes grow. Future work
should focus on optimizing parsing and verification processes to handle larger loads efficiently. The second
challenge involves implementing practical and scalable zero-knowledge proofs for recipient accountability
within the IB-MSS framework. Addressing this is essential to ensuring the protocol remains efficient and
secure in real-world applications.
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