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Abstract—In contemporary times, there are many situa-
tions when users need to verify that their information is
correctly reserved by servers. At the same time, the servers
need to maintain the transparency logs. Many algorithms
are designed to solve this problem. For example, Certificate
Transparency (CT) is designed to help reserving certificates
issued by Certificate Authority (CA), CONIKS is designed
to bring key transparency to end users, etc. However, they
either suffer high append time or imbalanced Inclusion-proof
cost and Consistency-proof cost. To find an optimal solution,
we constructed two different but similar authenticated data
structures to deal with two different lookup protocols. We
propose ATS (Advanced Transparency System) to use only
linear storage cost to reduce append time and balance the
time cost of server’s and users’. When solving the value-
lookup problem, this system allows servers can append users’
information with only constant-level time and realize radical-
level Inclusion proof and Consistency proof. When solving
the key transparency problem, this system needs logarithmic-
level time complexity to perform the append operation and
acceptable Inclusion proof and Consistency proof.

Index Terms—key management, transparency log, authenti-
cated data structure, merkle tree, chunking

I. Introduction

Nowadays, people show more and more interest in safely
preserving information. [1], [2], [3], [4], [5], [7], In practical
terms, whether it is the storing of website certificates [8],
[9], [10], [11], [12], [13], [14], [15], [16], [17], [19] the end-user
key verification service [23], [22], [6], [18], [19], [24], [25],
[26], [27] or other situations [28] it is necessary to maintain
the user’s public key in a reasonable way to ensure that
its content is safe and secure. Clients will conduct some
operations to add information to a public key/certificate-
preserving system, as well as checking if their information
is in the server. The data management tool in these
situations is called transparency logs. To make sure the
information provided by users are safely preserved, the
transparency logs should satisfy the characteristics below:

Transparency logs should remain consistent. Neither
clients nor servers have the access to delete or modify the
previous information in the log. Some malicious servers
can change the information in the transparency log.
So, there must be someone to monitor all the data to
make sure the server’s behavior is appropriate. However,
most clients don’t have the time to do the monitoring
and it doesn’t need so many monitorings. In this way,
introducing some auditors into this system can help. A

client can also be a auditor volunteerly. This protocol can
convince that the server processes information legally.

User infomation shouldn’t be maintained separately.
[20] For example, in Certificate Transparency [8], [9], [10],
[11], if having no precautions taken, malicious servers may
build several Merkle Trees with different user information
preserved in different trees. In this way, even if each
Merkle Tree remains consistent, clients will still fail to
find all users’ information since they don’t have access to
other Merkle Trees. To deal with this problem, users can
gossip with each other to make sure that each user’s digest
remains the same.

There are two kind of requirements for lookup proof.
Some requires key-value lookup proof, others only need to
lookup values in the system. The first one requires higher
functionality than the second, in return, clients can bear
larger time complexity or space complexity.

To achieve these characteristics, many systems and data
structures are designed. Each systems is superior in some
certain operations. For instance, CT can support consis-
tency proof and value-based lookup proof in logarithmic-
sized time complexity. However, it can’t support efficient
non-membership proof and key-value proof since it uses
chronological tree as its data structure. By contrast,
CONIKS supports key-value proof with membership and
non-membership proofs by using lexicographic tree. But
auditors need to download linear-sized data in order to
make sure that the log is consistent. So, it becomes
inefficient when the number of clients becomes larger.
Also, since it does not save historical versions, clients have
to do the monitoring for every epoch to make sure that
their data haven’t been changed. As a result, this requires
a lot of storage space on the user’s computer.

After knowing the advantages and disadvantages of
these two methods, a viable option for balancing the
speed of both users and servers is to combine the two
trees (chronological tree and lexicographic tree) together
using some methods. There are some algorithms getting
inspiration from it. For example, in Enhanced Certificate
Transparency(ECT) , it asks its auditors to make sure
that the operations made on the two trees stay the same.
The time required for auditor to monitor values is related
to the number of appends between epochs. Since servers
can’t assume that this number is low, the time complexity
of auditors could be huge and sometimes unacceptable.
Another algorithm is Merkle2 [19], with chronological tree



in their outer layer and lexicographic tree in their inner
layer to record all the previous version. The main obstacle
for this algorithm is its storage space. It needs O(nlogn)
space complexity for the storaging, which is the bottleneck
of it. Comparing the two systems, ECT has the advantage
that it does not require the clients to monitor, and because
it queries directly on the lexicographic tree, its lookup
proof efficiency is higher than that of Merkle2’s. Also,
since the two trees are separated, the space complexity is
only O(N). However, for Merkle2, it is less demanding on
the auditor’s computing power because its monitoring cost
for auditors is not based on the number of values appended
between each epoch and has a lower time complexity than
ECT.

In addition, there is another path that also eliminates
the need for clients to monitor themselves and lowers the
monitoring cost of auditors. Append-Only Authenticated
Dictionaries(AAD) successfully did this. This algorithm
combines the properties of bilinear maps and cyclic groups
to construct bilinear accumulators and performs (non-
)membership proofs and disjointness proofs and subset
proofs through the properties of polynomials and cyclic
groups. However, the cost of performing the FFT when
computing polynomial multiplication is very high, so its
append cost is also very high. And due to its high append
cost, it is also very challenging to implement into practical
applications.

Currently, for most algorithms, append cost always
takes at least O(log n) time, but this is very bad if there are
far more appends than queries in real application scenarios
(e.g., in the securities trading domains). So, we began to
wonder if there could be a system that made the append
cost much smaller and kept the proofs in an acceptable
range for these certain areas? To address this problem,
we propose ATS System, which significantly boosts the
speed when append times are far more than proofs. To
meet different conditions of security level, we construct
four systems —- ATSBase, ATS1, ATS2, ATS2∗, which
balance the benefits and defects of each kind of operations.

In TABLE I, E stands for the number of epochs and
P stands for the number of appends between epochs. The
table compares the space and time complexity for all the

A. Summary of our techniques

Motivations. There have been a lot of transparency
systems constructed nowadays. However, nearly all of
them are built on Merkle Trees. However, this brings them
a natural flaws that their append cost will be at least
log-level since they use the tree-like data structure. From
it, we can see that their appending time are all larger
or equal to log(n). From the table, However, a chunking
structure can easily surpass these in appending operation.
So, we decided to construct our system based on chunking
algorithm and expect to find some breakthrough in the
efficiency of appending.

TABLE I
Time Complexity for each system

Systems Storage Append Auditor Owner Lookup
CT n logn logn logn -
CONIKS n logn/

E ∗ n
log2 n - E logn logn

ECT n logn P logn - logn

Merkle2 n logn log2 n logn log2 n log2 n

AAD λn λ log3 n logn - log2 n
ATSBase n Constant

√
n

√
n −

ATS1 n Constant M M −
ATS2 n logn

√
n

√
n

√
n ∗ logn

ATS2∗ n logn
√
n ∗ logn

√
n

√
n ∗ logn

The Data Structure. We propose four different sys-
tems with two different data structure constructions. In
ATSBase and ATS1, we use chunking structure only
in order to maximumly lower the time complexity for
appending operation while meeting the requirement of
value verifying. To meet the requirement of key-value pair
inserting and querying, we also utilize a data structure
of prefix tree inside chunking structure. In this way, the
time complexity of appending time is still only O(log n)
while the auditor’s proof will be larger than ECT for the
situation where appending numbers are much larger than
proof numbers.

II. System overview
This system is designed to maintain the values or key-

value pairs provided by transparency logs. For ATSBase

and ATS1, the system maintains values only. For ATS2

and ATS2∗, this system supports the operation of querying
the value of a certain key (user ID).

In this section, we will go over the Authenticated Data
Structure of ATSBase, ATS1, ATS2 and ATS2∗ and their
operations respectively.

A. Overview of System Members
Similar to Merkle2, the ATS systems consist of three

members, Server, Auditors, and Clients. We divide the
time in different epochs, and next we will describe the
responsibilities of each member in the epochs.

Server. Server’s job is to maintain transparency logs
to make it easier for clients to query others for key and
value. However, server is untrusted, so it needs to provide
Clients and Auditors with interfaces for making proofs to
ensure that it doesn’t change the clients’ data. Also, the
server needs to ensure that each ID has only one value in
the database (clients can have multiple IDs). It requires
a digital signature for each operation behavior.

Clients. Clients will store his value into the server and
need to check that his data is stored correctly in the server
(not being maliciously deleted, changed or added). This
part can be done automatically by the clients software
instead of being done manually by clients.

Auditors. Auditors need to check in each epoch if the
transparency logs are add-only and gossip with others to



get the relevant values in the system. They need to ensure
that the server does not manipulate the data in a malicious
way, so that the server is consistent across users. They are
required to sign for the correctness of the transparency logs
after each validation to ensure the trustworthiness of the
server. If the server maliciously fakes the logs, they will
issue a statement to that effect, signing off on the fakery.
Clients can also monitor the behavior of the server as a
member of auditors.

B. ATSbase and ATS1’s Operations
In this section, we will describe the operations in

ATSBase and ATS1. To make this system safe and
reliable, they provides the following operations (Note that
all the proofs with ”Next” belongs to the ATS1 system
to check the data in the second chunk and ensure their
accuracy and integrity):

• Append(val): This operation supports the clients to
insert their values into the database. Once inserted
into the system, they can’t change or delete the value
of the same ID. The specific appending details will
be discussed in the Section III.A.

• Extension_Proof(_Next)(⟨ver1, ver2⟩): This opera-
tion is designed to ensure that the data in the previous
version is a subset of the subsequent version for the
first chunk structure. We will discuss the details in
the Section III.B.

• Membership_Proof(_Next)(ID): Because the server
may change the value of a specific ID user, the user
needs to prove that a user exists in the server. So,
this operation verifies that a user’s value exists. The
correctness of the value is determined by a series of
hashes returned by the server. However, note that the
ID in the Membership_Proof_Next operation is not
[0,n) and the exact procedure is given in the Section
III.C.

• *Concordancy_Proof(ID): This operation is only
available in ATS1. The purpose of this operation is
to verify the consistency of the structure of the two
blocks, i.e., whether the server deletes information
when it is added to the other block. Because the
server is untrustworthy, it is possible for the server
to add a modified message to the second block while
maintaining two blocks at the same time. Therefore,
auditors should make sure that the clients’ informa-
tion in the second block should be consistent with
the first block. The procedure of it will be provided
in Section III.D.

C. ATS2(∗)’s Operations
In this section, we will describe the operations in ATS2.

To make this system safe and reliable, ATS2 provides the
following operations:

• Append(⟨ID, val⟩): This operation supports the
clients to insert their ID-Value pairs into the
database. They may change or delete the value of the

same ID in ”ATS”2 system. The specific appending
details will be discussed in the Section IV.D.

• Extension_Proof(⟨ver1, ver2⟩): This operation is de-
signed to ensure that the data in the previous version
is a subset of the subsequent version for the first chunk
structure. We will discuss the details in the Section
IV.E.

• Monitoring_Proof: This operation guarantees that
the all the key-value pairs have not been modified
by the server. The specific process of it will be shown
in Section IV.F.

• Lookup_Protocol(ID): This operation is used to
lookup the value for each ID. Similar to Merkle2,
the server will return all the values added by the
same ID. Also, it will provide a dividing point for
the values later or no later than the current epoch
so that they can check the membership of the value.
The exact procedure is given in the Section IV.H.

III. ATSbase and ATS1’s Authenticated Data Structure
A. Data Structure Overview

In this data structure, we record only the values and
do not consider maintaining key-value pairs, as shown in
Figure 1. We number all users sequentially from 0 and
their values are denoted by ”V al”i. To maximize insertion
efficiency, we maintain all values using only the *chunking
algorithm*. Assuming that the maximum number of users
is N , the size of each chunk will be ⌊

√
N⌋. However, this

means that the data structure needs to be reconstructed
for every 2n+1 new users added. By doing this, the average
complexity of the server will be O(N) for each added user,
which is unacceptable.

In this case, there are two solutions. One is to specify
the chunk size as a constant that is approximately equal
to the root of the maximum number of users to be
accommodated. The other is to dynamically construct the
chunk structure. In the first solution, it’s easier to realize
and more certain since the size of chunks is a constant.
Also, it doesn’t need to care about the consistency proofs
of the problem I’ll discuss next. The first one is ATSBase.
However, it’s not the optimal one when the number of
users is large because it needs to go through much more
chunks if the chunk size is small. So, we will introduce the
second method next.

We reconstruct the chunk structure every time when the
total number of users becomes 2m, so that the average cost
of constructing a chunk is 2m+1

2m = 2, and the equalized
complexity required to reconstruct the chunks becomes
O(1).

But this leads to another problem. Because every time
the number of users reaches 2m, the server needs to
reconstruct the chunk structure, which can cause the
server to lag. To solve that, we construct another chunk
structure together with the first one. In the first data
structure, the size of the chunk equals to the largest integer
power of 2 less than or equal to N . In the second data



Fig. 1. This diagram depicts the process of maintaining the data structures in ATS1. Take N to be 7,8,9 and demonstrate each. We define
H[a,b] as H(V ala, V ala+1, ..., V alb). In this figure, ATSbase can be regarded as the upper side of each structure.

structure, the size of the chunk equals to the smallest
integer power of 2 greater than N . In practice, we maintain
both structures simultaneously.

For each user added, we add the value of that user to the
first data structure, and two values immediately following
the one already added to it to the second data structure.
Whenever the number of users exceeds an integer power
of 2, we deprecate the first data structure and treat
the second one as the first one. At the same time, we
create a new chunk structure, adding the values of the
first and second users to it. In this way, we maintain
both chunk structures at the same time for each addition,
guaranteeing a time complexity of O(1) for each step,
instead of an equalized O(1) complexity. However, in this
way we need to construct log2n chunk structures, each
storing n data, which will result in a space complexity
of O(nlogn) if we use a two-demensional array with fixed
size. In order to minimize the loss of space in this section,
we can implement the chunks through a rolling array. This
makes the space complexity O(n).

B. Extension Proofs
The extension proofs ensure that this system is only

additive. The implementation is as follows:
This system provides an interface to query whether the

former version of two versions is a subset of the latter
version. That is, the user specifies two versions ⟨ver1,
ver2⟩, and the server needs to give the proof whether all
the data in ver2 contains all the data in ver1.

Assume that there are n users now, so the chunk
size is ⌊

√
n⌋. And assume that the last user ID that

has been added before ver1 is ID1, and the last user
ID that has been added before ver2 is ID2. Notate
all chunk hashes prior to ID1 as C0, C1, ..., Cm and all
the hashes of element in that chunk as E0, E1, ..., Ek.

Also, notate ID1 in the chunk as id1, ID2 in the
chunk as id2, Hash(...Hash(Hash(A0, A1), ...), Am) as
H(A1, A2, ..., Am). So, we determine whether the system
keeps append-only by calculate this:

H(C0, C1, ..., Cm,H(E0, E1, ..., Eid1
))

Then, we can compare this value with the total value
of Hash to determine whether the data in ver1 state is
correct or not. Then, we can categorise the other works
into 2 scenarios:

1) When ID1 and ID2 are in the same chunk: The
server will first send a label which stands for doing the
first kind of operation to clients. Then, it needs to provide
all the chunk hashes of the first ⌊

√
ID1⌋ chunks (excluding

the chunk where ID1 is located) and all the hashes of the
elements in the chunk where ID1 and ID2 is located. The
client software will provide will calculate

H(C0, C1, ..., Cm,H(E0, E1, ..., Eid2
))

and see if it equals to the total Hash value which is
gossiped by clients and auditors. In this way, we can judge
whether the dataset of ver2 contains all the elements in
ver1.

2) When ID1 and ID2 are not in the same chunk:
The server will first send a label which stands for doing
the second kind of operation to clients. Then, it needs to
provide all the chunk hashes of the first ⌊

√
ID1⌋ chunks

(excluding the chunk where ID1 is located), all the hashes
of the elements in the chunk where ID1 or ID2 is located,
and the hash values of all the chunks between ID1,ID2
(excluding the chunk where ID1,ID2 is located). Notate
ID2 and all elements hashes in that chunk whose position
is before it as G0, G1, ..., Gid2

and all the total hashes of



chunks between ID1 and ID2 as F0, F1, ..., Ft. In this way,
we can calculate

H(C0, C1, ..., Cm,H(E0, E1, ..., Ek),

F0, F1, ..., Ft,H(G0, G1, ..., Gid2
))

and see if it equals to the total Hash value which is
gossiped by clients and auditors. If both values are the
same, it means that the data of ver2 is an extension of
that of ver1. Otherwise, it isn’t and the security of the
server needs further investigation.

For Fig. 1, if we want to check whether the data in user
volume 7 is a subset of the data in focus of user volume
8, the server will give us in the same chunk, H[0,1], H[2,3],
H[4,5], H[6], H[7], and at this time, we can verify that the
computed H[0,6] is the value of the previous gossip; and
at the same time, we can verify that H[0,7] is the value
of the gossip as well. value. Because this data structure is
arranged in chronological order, we can finish its extension
proof.

For ATS1, since we maintain two chunk structures
simultaneously, we need to check both of them.

C. Membership Proofs
Membership proofs ensure that user information is

verifiable in the system. That means that, other users
can use certain information to confirm that a particular
user’s information can be verified to exist in the system.

When doing Membership Proofs, the server issues
the user a hash of all the elements of the chunk in
which the entered ID is located, as well as the chunk
hashes of all other chunks. We notate the value of
the user numbered ID V alID, the block before the
block in which the ID is located as C0, C1, ..., Cm, the
block after the block in which the ID is located as
Cm+1, Cm+2, ..., Ck, and the elements in the block except
V alID are E0, E1, ...EID−1, EID+1, ..., Et.

In order to determine whether a user exists in the
database, we need to calculate:

H(H(C0, C1, ..., Cm),H(E0, E1, ..., V alID, ..., Ek),

Cm+1, Cm+2, ..., Ck)

Further, we compare it with the total hash value at
this point to see if it is equal, if it is equal, then it proves
that this user information exists in the current database,
otherwise it does not exist.

For example, in Figure 1, we want to check if the user
with ID 6 and value V al6 exists when the number of users
is 9. The server will provide H[0,3],H[4],H[5],H[7]andH[9].
After getting all the value, we calculate:

H(H[0,3],H(H[4],H[5],H(V al6),H[7]),H[9])

If this value is the same as the value coming out of
gossip, the value is considered to exist, otherwise it does
not.

D. Concordancy Proofs
This section is only for ATS1. Because this data

structure is dynamically constructed with two chunks to
avoid the surge in arithmetic demand at 2n brought about
by reconfiguration, the user needs to supervise the server’s
behaviour of maliciously modify data in the second chunk.
Which is, clients and auditors need to make sure that
the data in previous chunk structure and the latter one
remains consistent.

For Users, each time the server rebuilds, the user
will receive a notice whether or not to accept do the
membership proof. If they accept, then the server will
deliver all the user data for the chunk in which the client
is located and all the chunk hashes for the other chunks
in this chunk structure. This way, for each refactoring,
he can perform a membership proof to ensure that his
values have not been maliciously tampered with due to
alternating chunks. For a database of 1,000,000 users, a
user only needs to perform the operation for 20 times
maximumly.

For Auditors, they can randomly check a chunk in
the current version in each of their operations. For each
operation, the server needs to provide all the hashes
elements of in the current-version data in one chunk and
the chunk hashes of the other chunks in this version. At the
same time, it needs to provide all the elements of all the
chunks that contain those elements and the chunk hashes
of the other chunks in the previous version. By calculating
the values in the previous chunk and comparing it with the
gossiped value, we can know whether the server provides
the correct values for the previous version. Then, we can
compare the values in the previous version and the current
version so that we can make sure that the values given by
the server stay the same. Then, we need to calculate the
values in the current version to make sure that the value
provided in the server is indeed the Hashes in the current
chunk. It can be proved that when the number of users
reaches 1,000,000, about 7,000 such operations need to be
performed.

IV. ATS2(∗)’s Authenticated Data Structure
As shown in Figure 2, this data structure consists of a

chunk structure and a merkle tree.

A. Chunk Structure
In Figure 2, the data structure on the lower side is that

of the chunking aspect chosen for ATS2 system. As it
shows, we choose the structure of the ATSBase system for
the chunk data structure to ensure stronger security of
the data structure and less burden on auditors and users.
In this way, the clients and auditors don’t need to do the
concordance proof, which costs a lot of time for them.
The Chunk Structure is arranged in chronological order,
so it is relatively easy to check the operations related to
time. However, it is difficult to save key-value pairs and



Fig. 2. This diagram depicts the process of maintaining the data structures in ATS2. Assuming a chunk size of 2, a total number of
operations of 5 is simulated. VUF stands for verifiable unpredictable function. In the whole data structure, Compressed Prefix Tree is
utilized in the inner layer and Chunk Data Structure is utilized in the outer layer. In the figure, E stands for the number of epochs and P
stands for the number of append operations in epochs

cannot perform non-membership proofs, which makes its
use highly limited.

B. Merkle Tree
In Figure 2, the data structure on the upper side is

that of the chunking aspect chosen for ATS2 system. In
the implementation, we use a prefix tree. The prefix tree
stores the user’s key-value pairs in dictionary form. The
construction of the prefix tree is described below:

• The leaf nodes of the prefix tree are hashes of each
user’s information.

• The parent nodes are calculations of hashes of the
children nodes.

To fix the maximum length of the key, we encrypt
the user’s key using the verifiable unpredictable func-
tion(VUF). The encryption length is 2logn (N is the fixed
maximum number of users). The explanation of this will
be discussed in the Appendix.

The advantage of a prefix tree is that it is easy to query
information about key-value pairs since each of its nodes
is categorised by the hash value of the user’s key. However,
due to its unique structure, it is not easy to query time-
related information, such as, it is not easy to perform
extension proofs.

C. Combination of Chunk Structure and Merkle Tree
As in Fig. 2, the overall structure of ATS2 is shown.

This data structure has two layers, the chunking algorithm
is the outer layer and the Merkle Tree is in the inner layer.
Intuitively, the benefit is that it maintains a certain degree
of temporal ordering while allowing for querying key-value
pairs. For each block, the overall information maintained
is the hashes of all the elements in that chunk and the root

value of the merkle tree. This information is maintained
if and only if a block’s elements are full.
D. Append Operation

In append operation, both chunk structure and Merkle
Tree will be operated in order to maximize the advantages
of them which have discussed above.

• For chunk structure, a key-value pair is added with
O(1) complexity in the chronological way for each
operation. The Hash value should be calculated with
the key, the number of append operation and the
value of the key which are shown in the figure 2.

• For Merkle Tree, each time a new key is added,
the current-chunk Merkle tree’s index stays at an
empty node which has the longest common prefix
in the Merkle tree. After reaching the empty node,
the value of that leaf node will be updated with same
values in chunk structure’s append operation and the
value of each parent node is computed retrospectively
by following the rules of arithmetic for each node
of the prefix tree upwards. However, it’s hard to
know whether clients’ information in the prefix tree
is consistent with the one in chunk structure if the
prefix tree is not fixed. We also notice that the only
prefix tree that’s not fixed is the one of the last chunk.
So, to make the history persistent, we use the data
structure of persistent prefix tree for the last chunk.
Since each appending operation changes only logn
nodes in the tree, it requires a time complexity of
O(logn).

In conclusion, the total time complexity for adding a
key-value pair will be O(logn).

Take Carol’s append operation for example. When Carol
appends his key-value pair into the database, the chunk



structure will add hash of the key ”Carol”, together with
his number ”2” and his value V al2 in it. Then, the
corresponding prefix tree will add this hash value to the
left node of the root since ”0” is a prefix of an empty node
for the second prefix tree. Then, the process of appending
is finished.

E. Extension Proofs
A data structure that maintains a transparent log needs

to ensure that it does not change previous data. Extension
proofs are used to check this requirement. The extension
proofs for ATS2 are very similar to those for ATS1Base,
and the differences are covered next.

Similarly, the extension proofs of ATS2 query whether
the information stored in the current block structure is the
same as that of the previous block. However, the auditors
should also make sure that the values in prefix trees don’t
change. In this way, each item will be bound with the
current root value of the current prefix tree.

In each chunk, we notate the value of each user
E0, E1, ...Em and each root value of the prefix tree
Rt0, Rt1, ..., Rtm. Then, for each chunk, we maintain the
following value:

H(E0||Rt0, E1||Rt1, ..., Em||Rtm)

The server needs to provide all the values used in
ATSBase’s as well as all the root values in the needed
chunks. Obtaining these values, we do the same operation
as the ATSBase’s to verify if data in the current version
is an extension of a previous version’s.

This is the extension proof for ATS2 and its time
complexity is O(

√
n) since the data provided by the server

is in radial level. However, it can’t defend the attack which
changes the values in a version the current chunk and
changes it back when the number of current chunk hasn’t
changed. In this way, the values in the current chunk
may not be correct. Even if it’s not a serious problem for
medical or share transaction scene since they don’t have
to monitor the current data and the data are needed to
verify much fewer times, we need to provide a way for
auditors to verify the last chunk’s correctness.

So, besides the similar extension proofs of the
ATSBase’s, we also need auditing to ensure that the
current prefix tree is also append-only. In this way, we
need to use Persistent Prefix Tree to record the historical
versions. However, since the previous versions are being
verified and can’t be easily modified, we only need to
maintain the Persistent Prefix Tree of the last chunk. In
this way, there will be at most

√
n nodes that need to be

operated extension proofs for each version. Then, we have
two options:

• Auditors audit all the extension proofs for current
chunk, which costs O(

√
n ∗ log n) in total.

• Each auditor randomly verifies one key-value pair
in the current chunk, which needs O(log n) for each

operation. The expectation for the times verifying all
the pairs is

∑m
i=1

m
i , which m stands for the number

of users in the current chunk.
So, the total time complexity of extension proofs will be
nearly O(

√
n ∗ log n) for each epoch in ATS2∗.

F. Monitoring Proofs
We have to ensure that each key-value pair is not

modified.
For each key-value pair, it must be included in a chunk.

For monitoring proof, we perform membership proof on
the prefix tree related to that chunk. At the same time,
we need to check its chunk structure to make sure that
the server provides the correct values.

• First, the server provides the authenticated path for
the key-value pair that wants to be verified, together
with the chunk hashes and elements in the chunks.

• Then, the clients or auditors can verify whether the
value is correctly

G. Signature Chains
In extension proofs and monitoring proofs, we prevent

attackers from deleting or modifying key-value pairs.
However, attackers still can add incorrect key-value pairs
without being noticed. So, like Merkle2, we implement
signature chains to prevent this situation.

For multiple values corresponding to a single id, for
the latter value, we store the location of the previous
value and sign it with the private key corresponding to
the previous value, so that anyone can use the previous
value to verify the signature. This ensures that each value
on the signature chains is authentic.

Also, there’s another way of signing for users to lookup
the latest value to the key easier. We may change the
signature chains to use the first value corresponding to
the key (instead of the previous value) for signing, so that
the first value and the last value can be easily used.

H. Lookup Protocol
This protocol need the system to find all values corre-

sponding to the given key.
The server looks up the key in the prefix tree corre-

sponding to each of the chunking structure and give all
its occurrences. The user verifies that the signature chains
are correct.

For the prefix trees where the key exists, a membership
proof is performed; for the prefix trees where the id does
not exist, a non-membership proof is performed. In this
way, whether the signature chains are correct can be easily
verified.

Since membership proof and non-membership proof
both require the root hash of the prefix tree, not only the
authentication path on the prefix tree should be provided,
but also the hash value of the total Hash value of the first
to the second last element and value of last element of each
chunking algorithm should be given to recalculate the root



hash of each chunks. By calculating the gossiped value
using the given hashes, we can verify whether the root
hashes of the prefix tree given by the server are correct.

Let the number of values corresponding to the key be
l, which stands for the length of the signature chains is l,
and each chunk of total chunking structure has to perform
a (non-)membership proof. The total time complexity is
O(l +

√
n ∗ log n).

Lookup For the Latest Key-Value Pair: The above
method looks up every value corresponding to the id, and
sometimes only the last value.

By changing the signature chains to use the first value
corresponding to the id (instead of the previous value),
the lookup only requires the first and last values and
membership proof. But we also need to prove that this is
indeed the first and last value, so we need non-membership
proof of the prefix tree to the left of the first value and
to the right of the last value.

In total, there are at most 2 membership proofs and
O(

√
n) non-membership proofs, with a total time com-

plexity of O(
√
n ∗ log n).

V. Applications of ATS
In this section, we will discuss two applications of

Advanced Transparency System:
First, in medical field, it can be widely used. In the

medical field, patient information is only needed when
the patient is queried for a specific purpose. However,
this situation is very rare, so it is more efficient to use
this data structure.

Second, it can also be applied in the financial field. In
the financial field, it is only necessary to check when the
supervisor believes that there is an abnormality. However,
the demand for append operations is very large. Therefore,
this system is also very good.
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Appendix A
Proof for Expected Verifying Times

We can simplify the problem to this:
If there are N numbers, each time we check one

randomly, what is the expectation for the times we need
to check all the numbers at least once?

Let’s consider selecting the first number. Since there
are n different numbers, the probability of choosing any
one number in the first try is 1

N  . Hence, on average, it’s
expected to select a new number with the expectation of
N ∗ 1

N , which is 1 in the first trial.
For the second new number, since the first number is

chosen, there are N1 numbers left. Therefore, the expected
number of trials to choose the second new number is N

N−1  .
This is because there’s a N−1

N chance of selecting a new
number.

After that, for ith new number, the expected number
of trials for each new number chosen will be N

N−i+1 .
So, in conclusion, the expected verifying times will be∑N
i=1

N
i

Appendix B
All Data Structures

Chunk Structure
In chunk structure, we maintain the information using

chunks. In each chunk, we maintain a total information
for all data in the chunk. In this way, it becomes more
efficient since we only need to look for information in

√
n

chunks.

Merkle Tree
Merkle Tree is a tree-like data structure to efficiently

verify the integrity and accuracy of data by combining the
hash values of data blocks into has values of larger data
blocks.

To authenticate the integrity and accuracy of data,
Merkle Tree can provide the authenticated path the clients
and auditors, which contains the all the node hashes which
are on the co-path of the given index.

Prefix Tree
A Prefix Tree is composed of nodes and edges. Each

node (except for the root) typically represents a character
of the string. The root node does not contain a character
or represents an empty string. Each node contains links or
references to other nodes. The connection between them is
a character. For any node in the tree, the string composed
by all the links on the parent path is a prefix of some keys.
Next are a couple of variants of this data structure:

Persistent Prefix Tree: After acknowledging the con-
struct method of prefix tree, consider the application
scenario of maintaining history versions. One way of
achieving this is recording all the history versions by
using n trees. (n is the number of the history versions)
However, it’s not optimal since it will need O(n log n)
space complexity to maintain the data. Thus, we need a
new data structure.

We find that only O(log n) nodes are changed in the tree
when adding a new value in the tree. So, we can build a
new root and link all the co-nodes which doesn’t change in
the modifying operation. So, we only need to add O(log n)
nodes to the tree for each operation. In this way, the space
complexity will be O(n log n) if there are n added values.
In ATS2∗, since we only need to maintain the persistent
prefix tree for last chunk, the total complexity will be
O(

√
n ∗ log n), which is smaller than O(n). So, the space

complexity for ATS2∗ is O(n).
Compressed Prefix Tree: In the prefix tree, many

nodes are not demanding since they don’t provide new
information. For example, after hashing using VUF, a key
will be hashed into a fixed-length string. Assume that it’s
the first key to be inserted, we find that it is not necessary
to insert all the characters in the string, since too many
nodes doesn’t provide more information than one node.
So, we employ a strategy that we create one new nodes
to the tree if and only if one of its prefix is different
from all the prefix inserted to the tree. Then, we create a
new node, which stands for all the characters except the
common prefix.

So, for a new inserting, we shall only create one more
node, which guarantees that the total space complexity
will be O(n) instead of O(n log n)


