
Black-Box Timed Commitments
from Time-Lock Puzzles

Hamza Abusalah1 and Gennaro Avitabile1

IMDEA Software Institute, Madrid, Spain.
{hamza.abusalah,gennaro.avitabile}@imdea.org

Abstract. A Timed Commitment (TC) with time parameter t is hid-
ing for time at most t, that is, commitments can be force-opened by any
third party within time t. In addition to various cryptographic assump-
tions, the security of all known TC schemes relies on the sequentiality
assumption of repeated squarings in hidden-order groups. The repeated
squaring assumption is therefore a security bottleneck.
In this work, we give a black-box construction of TCs from any time-
lock puzzle (TLP) by additionally relying on one-way permutations and
collision-resistant hashing.
Currently, TLPs are known from (a) the specific repeated squaring as-
sumption, (b) the general (necessary) assumption on the existence of
worst-case non-parallelizing languages and indistinguishability obfusca-
tion, and (c) any iteratively sequential function and the hardness of the
circular small-secret LWE problem. The latter admits a plausibly post-
quantum secure instantiation.
Hence, thanks to the generality of our transform, we get i) the first TC
whose timed security is based on the the existence of non-parallelizing
languages and ii) the first TC that is plausibly post-quantum secure.
We first define quasi publicly-verifiable TLPs (QPV-TLPs) and construct
them from any standard TLP in a black-box manner without relying on
any additional assumptions. Then, we devise a black-box commit-and-
prove system to transform any QPV-TLPs into a TC.

1 Introduction

Time-lock puzzles (TLPs) introduced by Rivest, Shamir, and Wagner [RSW96]
allow one to commit to a message by generating a message-dependent puzzle
that ensures the message remains hidden for a certain time. In particular, a TLP
consists of a puzzle generation algorithm Gen and a solving algorithm Solve. On
input a message m and a time parameter t, Gen generates a puzzle z. On input
an honestly-generated puzzle z, Solve retrieves the message m. A TLP must
satisfy (1) correctness: Solve always recovers the correct message from honestly-
generated puzzles (2) hardness: the message remains hidden for any massively
parallel adversary running in time much less than t and (3) efficiency: while
Solve runs in time t, Gen must run in time polylog(t).

In [RSW96], a very efficient construction whose security is based on the
repeated squaring assumption is proposed. This assumption states that given a

https://orcid.org/0000-0002-7524-3133
https://orcid.org/0009-0004-6975-0851

2 H. Abusalah and G. Avitabile

group element g, an integer t, and an RSA modulus N , it is hard to compute
g2

t

mod N . The puzzle of [RSW96] works as follows: Gen(t,m) outputs z =

(m + g2
t

mod N, g,N), while Solve computes g2
t

to extract m. We stress that
while correctness of TLPs guarantees solvability for honestly generated puzzles,
it guarantees nothing for maliciously crafted puzzles. Furthermore, a TLP per
se does not come with an algorithm that decides whether a TLP is honestly
generated or not. For example, given the puzzle of [RSW96], one can retrieve m
via t repeated squarings modular N , but cannot efficiently verify whether N is
an RSA modulus or not.

A standard commitment scheme is a 2-phase interactive protocol between a
sender and a receiver such that at the end of the commit phase, the sender is
bound to a message m (binding) and the receiver learns nothing about m (hid-
ing). In the open phase, the sender reveals m to the receiver, which either accepts
or rejects. Boneh and Naor [BN00] introduced timed commitments (TCs) which
add a time dimension to standard commitments and overcome the limitations
of TLPs. In a TC with time parameter t, the commit phase can be force-opened
in sequential time t without executing the efficient open phase. This is useful
in scenarios where the sender refuses to run the open phase. As a result, the
message m is only guaranteed to remain hidden for time at most t.

A TC must satisfy (standard) binding, t-hiding, publicly-verifiable forced
openings, and well-formedness. t-hiding requires that a massively parallel (adver-
sarial) receiver running in time much less than t learns nothing about the com-
mitted message. Well-formedness requires that if the commit phase terminates
successfully, the receiver is guaranteed that the commitment can be forced-open
in time t via a force-open algorithm. Publicly-verifiable forced openings guarantee
that the force-open algorithm, in addition to m, outputs a proof π that allows
anyone in possession of the transcript of the commit phase to quickly verify that
m is the committed message. A TC must also be efficient, meaning that the
commit phase must take time polylog(t).

Similar to TLPs hardness, t-hiding of TCs guarantees that the secrecy of m
is preserved for a certain amount of time t. The main difference between TLPs
and TCs is that, unlike TCs, TLPs fall short of providing public verifiability
and well-formedness. That is, TLPs do not provide any means of verifying the
correctness of solutions without re-solving the puzzle, and furthermore, puzzles
are not guaranteed to be solvable in time t when maliciously generated.

Known TCs and their limitations. Various constructions of TCs [BN00, KLX20,
TCLM21, CJ23] have been proposed. Some of them feature useful additional
properties such as non-interactive commit phase and CCA security [KLX20,
TCLM21, CJ23], or homomorphic properties [TCLM21, CJ23]. Later, we discuss
these constructions in the related work section. Nevertheless, they all follow a
similar blueprint. To achieve t-hiding, all these constructions rely, in a non-
black box way, on the repeated-squaring-based puzzle of [RSW96]. They ensure
well-formedness by proving in zero knowledge (ZK), with either a proof system
for NP or with one tailored to the specific language of interest, that the TLP
was computed correctly. Moreover, to achieve public verifiability, they crucially

Black-Box Timed Commitments from Time-Lock Puzzles 3

rely on repeated squaring. For example, a common technique to ensure public
verifiability [TCLM21, CJ23, FKPS21, BDD+21, BDD+23] is to exploit proofs
of exponentiation (e.g., [Pie19, Wes19]) which allow to efficiently check that a
value y is equal to g2

t

modulo N without executing t squarings.
Consequently, all known TC constructions are based on the single repeated

squaring assumption. This limitation is significant as it is known that repeated
squaring is not necessary to obtain TLPs. Indeed, Bitansky et al. constructed
TLPs based on the existence of worst-case non-parallelizing languages and suc-
cinct randomized encodings [BGJ+16]. Non-parallelizing languages are necessary
for timed-based primitives, such as TLPs and TCs, and are implied by the re-
peated squaring assumption [BGJ+16, JMRR21].

1.1 Our Contributions

The state of affairs in which all known TCs rely on the single sufficient-but-not-
necessary assumption of repeated squarings in unknown-order groups is rather
unsatisfactory and creates a single point of failure. In this work, we diverge from
all known designs of TCs and give a black-box transformation of any TLP into
a TC. By black-box we mean that the TLP (and any other underlying crypto-
graphic primitive) is used only as an oracle. There has been a significant amount
of research dedicated to obtaining black-box constructions for various crypto-
graphic primitives [IKLP06, CDMW09, PW09, LP12, GLOV12, Kiy14, HV16,
KOS18, Kiy20, COS22]. The benefit of the black-box approach is immediate: bas-
ing TCs on TLPs in a black box manner widens the class of known constructions
of TCs and allows translating advances in TLPs to TCs. Furthermore, black-box
constructions have the advantage that their complexity does not depend on the
complexity of the implementation of the underlying primitives1.

More specifically, we make the following contributions:

– We provide a formal definition of timed commitments. Previous works ei-
ther gave a rather high-level description of such properties [BN00], or were
tailored to the non-interactive setting [KLX20, CJ23].

– Along the way, we define and construct quasi publicly verifiable time-lock
puzzles (QPV-TLPs), a novel tool we believe could be of independent in-
terest. Roughly, a QPV-TLP is a TLP where the receiver, if the puzzle is
well-formed, is able to provide a convincing proof of correctness of the so-
lution which can be quickly verified. We show how to lift any TLP to a
QPV-TLP with black-box use of the TLP itself and without relying on any
additional assumptions.

– Relying on QPV-TLPs, we construct a black-box TC assuming the ex-
istence of TLPs, collision-resistant hash functions, and one-way permuta-
tions. Our construction has a five-round commit phase and a non-interactive

1 To better understand this aspect consider a TC which uses a generic (non-black-box)
ZK protocol to prove that the circuit computing a TLP was correctly executed. The
complexity of this TC would crucially depend on the number of gates of such circuit.

4 H. Abusalah and G. Avitabile

open phase. Additionally binding, well-formedness, and public verifiability
of forced openings hold w.r.t. unbounded adversaries. Our construction does
not require any setup.

– By weakening the well-formedness guarantee to computational, we can get
a TC assuming the existence of TLPs and one-way functions. Since TLPs
imply one-way functions [BGJ+16], this shows that TLPs imply TCs. Thus,
instantiating the TLP with the one of [BGJ+16], we get the first TC whose
timed security relies on the weakest complexity assumption of the existence
of worst-case non-parallelizing languages. This comes at the cost of the strong
cryptographic assumption of indistinguishability obfuscation [BGI+01].

– Using the recent TLP of [AMZ24] as a building block in our transform, we
get the first post-quantum secure TC: [AMZ24] constructs TLPs2 whose
security relies on any iteratively sequential function f and the hardness of
the circular small-secret LWE problem. By instantiating f based on [LM23],
their TLP is plausibly post-quantum secure.

1.2 Technical Overview

A straw-man approach to generically construct a TC from a TLP is the fol-
lowing. To achieve well-formedness, the sender proves with a generic ZK proof
system that the TLP is correctly computed. To get public verifiability, the re-
ceiver uses a succinct non-interactive argument (SNARG) to prove that it solved
the TLP correctly. SNARGs succinctness guarantees that verifying the proof is
much faster than solving the puzzle. Apart from being non-black-box, this con-
struction has other shortcomings. Indeed, known SNARGs (for P) require setups
(e.g., [CJJ22, HJKS22, CGJ+23, Kiy23]) and the only general assumption they
are known from is iO [SW14, WW24]. Additionally, SNARGs are only compu-
tationally sound, thus constructing a TC following this approach will inherently
give computational public verifiability, unlike our construction that achieves it
against unbounded adversaries. We propose a different approach that guarantees
public verifiability by lifting the TLP to a QPV-TLP, and proves well-formedness
in a black-box way.

Publicly verifiable time-lock puzzles. Publicly verifiable time-lock puzzles (PV-
TLPs), introduced by Freitag et al. [FKPS21], are an intermediate notion be-
tween TLPs and TCs. Unlike TCs, PV-TLPs are not guaranteed to be well-
formed. However, after having solved the puzzle, whether the puzzle has a solu-
tion m or not, the solver produces a proof allowing anyone to efficiently verify
that m is the correct solution or that the puzzle is malformed. PV-TLPs are
a good candidate building block to construct TCs as the public verifiability of
the TC essentially follows from that of the underlying PV-TLP. Unfortunately,

2 In the TLP constructions of [AMZ24], if a one-time public-coin setup is allowed,
the TLP generation runs in time polylog(t), otherwise it runs in time

√
t. The

(in)efficiency of puzzle generation of the TLP translates to the (in)efficiency of the
commit phase of our TC construction.

Black-Box Timed Commitments from Time-Lock Puzzles 5

all known PV-TLPs [FKPS21, BDD+21, BDD+23] are based on the repeated
squaring assumption and random oracles.

Quasi publicly verifiable time-lock puzzles. We notice that the property of pro-
viding a proof that is convincing even for invalid puzzles is not necessary to
construct a TC. Indeed, to satisfy well-formedness the TC has to prove that
the underlying TLPs are correctly generated, meaning that the receiver will not
have to solve invalid puzzles. Therefore, we introduce the notion of quasi publicly
verifiable time-lock puzzles (QPV-TLP), where the receiver is only guaranteed
to produce a convincing proof when the puzzle is well-formed. Remarkably, this
simple modification allows us to rely exclusively on the existance of TLPs. We
point out that QPV-TLPs are different from one-sided3 PV-TLPs, which are also
only known from repeated squaring [FKPS21]. Even though they both provide
sound proofs only for well-formed puzzles, one-sided PV-TLPs are additionally
required to output accepting proofs for malformed puzzles while still remaining
sound w.r.t. honest puzzles. We remark that our QPV-TLP is perfectly sound
while PV-TLPs are only computationally sound [FKPS21, BDD+21, BDD+23].

Our QPV-TLP. Our QPV-TLP is very straightforward. Given any TLP, to
generate a puzzle for a message m and time t, we compute z = (z0, z1) where
z0 := Gen(t,m; r0) and z1 := Gen(t, r0; r1) with random coins r0, r1. To solve z,
we solve z0 and z1 in parallel using Solve, and output m as the message, and r0
as the proof. To verify the correctness of a claimed message, it suffices to check
that z0 = Gen(t,m; r0). If a puzzle is correctly generated, the solver is always
able obtain the message and convincing proof. Additionally, our QPV-TLP is
perfectly sound. This follows from the fact that TLPs are injective, and thus z0
cannot belong to the support of both Gen(t,m0) and Gen(t,m1) with m0 ̸= m1.

TLPs as over-extractable commitments. As pointed out in [LPS17], TLPs can be
related to the notion of extractable commitments [PW09] with over-extraction. A
commitment scheme is said to be extractable if there exists an efficient extractor
that, having black-box access to a malicious sender that successfully terminates
the commit phase, extracts the committed value. An extractable commitment
suffers from over-extraction if the extractor may output an arbitrary value when
the commitment is invalid.4 TLPs can be seen as over-extractable commitments
where extraction is carried out in straight-line by brute-forcing the puzzle, but
there is no guarantee on the extracted value if the puzzle is malformed.

Goyal et al. [GLOV12] constructed weakly extractable commitments which
are extractable in a weaker sense meaning that the extraction can fail with
probability 1/2 but without over-extraction. To commit to a message m, the

3 One-sided PV-TLPs are a weaker primitive than PV-TLPs. They are defined and
constructed in [FKPS21]. They use a one-sided PV-TLP and a random oracle to get
a PV-TLP.

4 We say that a commitment invalid if it does not have any valid decommitment.
Otherwise, the commitment is valid.

6 H. Abusalah and G. Avitabile

sender computes a 2-out-of-2 secret sharing of m and commits to the shares sep-
arately using a statistically binding commitment. Then, the receiver challenges
the sender to open one of the two commitments. The commit phase terminates
successfully if and only if the sender correctly decommits the challenged com-
mitment. To extract the committed value, it suffices to rewind the sender so that
it decommits both commitments and to then reconstruct the message starting
from the revealed shares. If the sender does not provide a valid decommitment,
the extractor outputs ⊥, denoting that the extraction was not successful.

As a starting point to get well-formedness, we can apply the above idea by
replacing the statistically binding commitment with a TLP. When challenged
to open a puzzle, the sender provides the message and randomness used to
generate the puzzle. The receiver then checks that on input the message and
the randomness, the TLP generation algorithm Gen gives the same puzzle. To
extract the committed value, it suffices to solve the unopened puzzle. Unlike
[GLOV12], our extraction strategy still suffers from over-extraction. Indeed, our
extraction proceeds in straight-line and, since there is no efficient way to decide
whether a TLP is malformed, it could be possible to extract a garbage value.
Nonetheless, the probability of over-extracting is now at most 1/2.

A black-box proof of well-formedness. A natural idea to amplify the success
probability of the extraction is parallel repetition. The committer samples λ
different 2-out-of-2 secret sharings of m and commits to them in 2λ TLPs. Then,
the receiver asks the sender to open one of the two commitments for each of the λ
repetitions. However, a cheating sender could use a different message in different
repetitions, making a successful commit phase meaningless. We address this issue
by proving, using a black-box commit-and-prove system, that the TLPs across
the different repetitions all commit to the same message m.

In a black-box commit-and-prove system, a sender commits to a message
m so that later it can prove a predicate ϕ over the committed m in ZK with
black-box use of cryptographic primitives. Constant-round black-box commit-
and-prove systems [GLOV12, KOS18, Kiy20, COS22] can be constructed using
the powerful MPC-in-the-head paradigm introduced by Ishai et al. [IKOS07]. Let
us first briefly describe how to construct a black-box commit-and-prove system
with constant soundness error using a 3-party 2-private MPC protocol (e.g.,
[GMW87]). The sender first commits to the shares of a 3-out-of-3 secret sharing
of m := m1 ⊕ m2 ⊕ m3. Then, to prove that the committed message satisfies
a predicate ϕ, the sender runs in its head the MPC protocol computing the
functionality ϕ′(m1,m2,m3) := ϕ(m1 ⊕m2 ⊕m3) and commits to the resulting
MPC views. Then, the receiver asks the sender to decommit to the shares mi,mj

and to the views viewi, viewj for random i, j with i ̸= j. The receiver checks that
(1) the decomittment information are correct, (2) viewi and viewj are consistent
with each other and the output is 1 in both views, and (3) for δ ∈ {i, j}, mδ is
the input of party δ in viewδ. Constant soundness follows from the binding of
the commitment and the perfect correctness of the MPC, while ZK follows from
the perfect 2-privacy of the MPC.

Black-Box Timed Commitments from Time-Lock Puzzles 7

To get our TC, we start from the above protocol and modify it as follows: (1)
to allow the receiver to force-open the commitment, we commit to the shares of
the message with a TLP, (2) we repeat in parallel the above black-box commit-
and-prove and define ϕ as the predicate that ensures that the same message
is committed across all repetitions. To define the predicate, we use a clever
technique proposed by Khurana et al. [KOS18]. Instead of committing to m, the
sender commits to m||r, where r is some random value. The receiver replies with a
random value α, and the sender sends γ := rα+m to the receiver. We set ϕ(m||r)
as the predicate checking that γ is computed correctly. By the Schwartz-Zippel
lemma, if m||r ̸= m′||r′ then rα+m ̸= r′α+m′ with overwhelming probability.
Therefore, the fact that γ is a global value guarantees consistency of the message
committed across the repetitions.

The resulting TC consists of five rounds, the first two of which are dedicated
to defining ϕ and committing to (the shares of) m||r, while the last three consist
of the black-box commit-and-prove showing that ϕ(m||r) = 1 in all repetitions.
Intuitively, well-formedness follows from the fact that an accepting commit phase
indicates that the vast majority of the unopened TLPs across the repetitions are
well-formed, and that they all open to the same message. Thus, when solving
all the unopened puzzles, the receiver would retrieve the committed message
in many repetitions. Additionally, the use of a QPV-TLP instead of a regular
TLP immediately gives public verifiability of forced openings. The resulting TC
achieves t-hiding only in the presence of an honest receiver. Intuitively, this is
because the underlying black-box commit-and-prove is only honest-verifier ZK.
Nonetheless, we can get full-fledged t-hiding with a minor modification to the
protocol following the approach of Goldreich and Kahan [GK96] to lift an honest-
verifier ZK proof to a ZK proof. Namely, we make the receiver commit, with a
two-round statistically hiding commitment, to all of its challenges in the second
round and to reveal them in the fourth round. Notice that this modification does
not increase the number of rounds.

Public verifiability flavors and efficiency of forced openings. Our TC achieves a
very strong flavor of public verifiability. Namely, given an arbitrary transcript of
the commit phase, which can even be generated by a computationally unbounded
malicious sender without interacting with a receiver, we require that it is infea-
sible to provide two valid force-open proofs for different messages. As a result,
the receiver needs to solve all the puzzles during the force-open phase.

However, we can formulate a weaker but meaningful notion that enables a
much more efficient force-open procedure. In particular, instead of an arbitrarily
generated transcript of the commit phase, we consider a commitment from an
accepting commit phase that the malicious sender run with an honest receiver.
The well-formedness proof contained in the transcript guarantees that the vast
majority of the repetitions contain the same message and, more importantly, the
value γ can be used to check whether the message extracted from a repetition is
consistent with the ones contained in the other (unsolved) puzzles. Thus, as soon
as the receiver finds a repetition where the extracted message is consistent with γ,
it will be sure that m is committed in the vast majority of repetitions. Therefore,

8 H. Abusalah and G. Avitabile

the force-open procedure can output mi||ri together with the proof of the QPV-
TLP solved from the i-th repetition. Due to the perfect correctness of the MPC, it
is easy to show that, with overwhelming probability, λ−O(log2(λ)) repetitions
are correctly computed. Thus, the probability that the receiver samples more
than log(λ) repetitions such that γ ̸= αri + mi or the unsolved QPV-TLP is
malformed is negligible.

The above observation is also made in [KOS18], where the extractor of their
black-box commit-and-prove stops rewinding the prover as soon as it can extract
a message that is consistent with γ from one of the repetitions. Interestingly, this
feature of the extraction strategy used in the security proofs of [KOS18] can be
exploited to improve the concrete efficiency of our TC. Indeed, in our case the
extraction happens in straight-line and it is part of the actual protocol.

TLPs imply TCs. In this work, we have focused on getting a TC whose security
guarantees (except t-hiding) hold against unbounded adversaries. Our TC relies
on TLPs, collision-resistant hashing, and one-way permutations.

However, by weakening the well-formedness guarantee to computational, it
is possible to get a t-hiding TC without relying on statistically hiding commit-
ments. For example, we can use the technique shown in Sect. 4.1.2 of [CLP20]
(which is inspired by [Lin13]) to lift honest-verifier ZK arguments to ZK. The
idea is to replace the challenge sent by the receiver in the fourth round of our
honest-receiver construction by a coin tossing protocol. The result of such coin
tossing is used as the receiver’s challenge to finalize the remaining execution.
The coin tossing protocol is based on the extractable commitment of Sect. 4 of
[PW09] which allows the simulator to extract the receiver’s share and bias the
coin tossing to its advantage. In this coin tossing, the receiver first commits to
a random string using the extractable commitment, the sender replies with its
random share, and the receiver opens the commitment. The final challenge is
computed by xoring the two shares.

The extractable commitment of [PW09] is a black-box construction from sta-
tistically binding commitments. By instantiating the statistically binding com-
mitments in the resulting TC as a two-round protocol from one-way functions,
we get a TC whose only assumption is the existence of TLPs, since TLPs imply
one-way functions [BGJ+16]. As a result, by instantiating the TLP with the one
of [BGJ+16] we get the first TC from general assumptions. Namely, the weakest
timed assumption of the existence of worst-case non-parallelizing languages, in
addition to indistinguishability obfuscation.

This alternative transformation to lift honest-verifier ZK to ZK leads to a
constant increase of the number of rounds in the resulting TC. For the sake
of clarity, since the main focus of our work is not to minimize the number of
rounds, we have here illustrated a simple approach to base TCs solely on TLPs.
Nonetheless, it is conceivable that ZK delayed-input black-box commit-and-prove
[KOS18, COS22] could be applied in our setting as well, allowing to have TCs
solely based on TLPs in five rounds. Indeed, in delayed-input ZK protocols the
predicate to be proved can be decided even in the last round of the protocol.
Therefore, the ZK delayed-input black-box commit-and-prove can start right

Black-Box Timed Commitments from Time-Lock Puzzles 9

away, in parallel with the exchange of messages used to decide the predicate
in our TC. The constructions of [KOS18, COS22] are ZK arguments with four
rounds, which become five when the underlying statistically binding commit-
ments are instantiated from one-way functions instead of one-way permutations.

A remark on strongly extractable commitments. Strongly extractable commit-
ments (sExtCom) are extractable commitments (ExtCom) that do not suffer
from over-extraction [Kiy14]. In an sExtCom, if the extractor outputs ⊥ it means
that the commitment is invalid. We stress that in an sExtCom, a successful com-
mit phase does not guarantee that the commitment is valid, which is required by
TCs. Therefore, even though there exist black-box techniques to get an sExtCom
from an ExtCom (e.g., [LP12, Kiy14]), they generally do not give a TC when
the ExtCom is replaced with a TLP.

1.3 Related Work

Timed commitments. The first (interactive) timed commitment was proposed
by Boneh and Naor [BN00]. Their TC relies on a less standard assumption,
stronger than repeated squaring, called the generalized Blum-Blum-Shub as-
sumption. Katz et al. [KLX20] introduced and constructed non-interactive TCs.
Their TC is also non-malleable under a CCA-like notion. Their TC relies on
repeated squaring and uses generic non-interactive zero knowledge (NIZK) to
prove well-formedness. It requires a trusted setup and it is inefficient as com-
mitting takes time t. Additionally, it does not provide public verifiability of
forced openings. Thyagarajan et al. [TCLM21] constructed the first CCA-secure
non-interactive TC with transparent setup. Their construction is based on the
repeated squaring assumption in class groups and is also linearly homomorphic.
Its security is proven in the random oracle model. Chvojka and Jager [CJ23]
proposed several CCA-secure non-interactive TCs, which all require a trusted
setup. They provided constructions with either linear or multiplicative homo-
morphisms. All their constructions rely on the repeated squaring assumption.

Publicly verifiable time-lock puzzles. Freitag et al. [FKPS21] introduced publicly
verifiable time-lock puzzles (PV-TLPs). Their PV-TLP is non-malleable5 and it
is based on strong trapdoor VDFs which are only known from repeated squaring
[Pie19]. Additionally, they require the (non-programmable auxiliary input) ran-
dom oracle model and a mild form of setup. Baum et al. [BDD+21, BDD+23]
formalize the security of timed primitives in the UC framework [Can01]. They
construct PV-TLPs based on the (programmable) random oracle model and
strong trapdoor VDFs. They prove that their UC notion can only be achieved
in the (programmable) random oracle model.

5 We refer the reader to [FKPS21] for a comparison between their non-malleability
notions and the CCA-like notion of [KLX20].

10 H. Abusalah and G. Avitabile

2 Preliminaries

Notation. We use N to denote the set of natural numbers. Let n ∈ N, we denote
the set {1, . . . , n} as [n]. For a finite set S, we let s← S denote the sampling of
s uniformly at random from S. Let A be a probabilistic algorithm, by y ← A(x)
we denote that y is the output of A on input x, while by y = A(x; r) we denote
that y is the output of A when it is run with input x and random coins r. We
model multi-stage algorithms A := (A0,A1, . . . ,Ak) as stateful algorithms, i.e.,
Ai receives the state of Ai−1. However, when the state contains data of interest
that we wish to highlight, we give it explicitly and keep the rest of the state
implicit. For a tuple of interactive randomized algorithms (S,R), let

– (ys, yr) ← ⟨S(xs) ↔ R(xr)⟩ denote the interactive protocol between S and
R on private inputs xs and xr, respectively. Their respective private outputs
are ys and yr.

– yr ← outR(⟨S(xs)↔ R(xr)⟩) denote the private output of R in the protocol.
– trans(⟨S(xs) ↔ R(xr)⟩) denote the transcript of the protocol, i.e., all the

messages S and R exchanged during the protocol.
– viewR(⟨S(xs)↔ R(xr)⟩) denote the view of R in the protocol, i.e., all inputs,

incoming and outgoing messages, and random coins of R during the protocol.

2.1 Timed Commitments

A timed commitment (TC) is an interactive protocol between a sender S and a
receiver R defined as follows. We define some specific properties of TCs. Sound-
ness guarantees that after a valid commit phase the force-open algorithm will
give the committed message m and a convincing proof for m, public verifiability
guarantees that, for any arbitrary commitment, it is unfeasible to provide two ac-
cepting force-open proofs w.r.t. different messages, and t-hiding guarantees that
a massively parallel malicious receiver running in time less than t learns nothing
about the committed message. We formalize the TC definition of [BN00] and
give different flavors of some of their notions.

Definition 1. A tuple of PT algorithms (S,R,FOpen,FVerify) where S = (Sc,So)
and R = (Rc,Ro) are the (stateful) sender and (stateful) receiver respectively, is
an (interactive) timed commitment scheme for message and commitment spaces
M = (Mλ)λ∈N, C = (Cλ)λ∈N such that ⊥ /∈Mλ ∪ Cλ if the following holds:

1. Commit Phase: (d, c)← ⟨Sc(1λ, t,m)↔ Rc(1
λ, t)⟩: On common input a se-

curity λ and a time parameter t, the receiver Rc runs an interactive protocol
with the sender Sc, which has a message m ∈ Mλ as additional input. Rc

outputs a commitment c ∈ Cλ ∪ {⊥} and Sc outputs a decommitment d. (If
c ̸= ⊥, the commit phase is valid, otherwise, it is invalid.)

2. Open Phase: m′ ← outRo(⟨So(d)↔ Ro(c)⟩): The sender So on input a decom-
mitment d, and the receiver Ro on input a commitment c, run an interactive
protocol which results in Ro outputting a message m′ ∈Mλ ∪ {⊥}. (m′ ̸= ⊥
indicates a valid open phase, otherwise, it is invalid.)

Black-Box Timed Commitments from Time-Lock Puzzles 11

3. (m,π)← FOpen(1λ, 1t, c): On input a security parameter λ, a time parame-
ter t, and a commitment c, it outputs a message/proof pair (m,π).

4. b := FVerify(1λ, t, c,m, π): On input a security parameter λ, a time parameter
t, a commitment c, a message m, and a proof π, FVerify accepts (b = 1) or
rejects (b = 0).

We require correctness of honest and forced openings, soundness, public ver-
ifiability, t-hiding, and statistical binding:

– Correctness of honest openings: For every λ, t ∈ N and m ∈Mλ,

Pr

[
m′ = m

∣∣∣∣ (d, c)← ⟨Sc(1λ, t,m)↔ Rc(1
λ, t)⟩

m′ ← outRo(⟨So(d)↔ Ro(c)⟩)

]
= 1 .

– Correctness of force openings: For every λ, t ∈ N and m ∈Mλ,

Pr

[
FVerify(1λ, t, c,m′, π) = 1 ∧
m′ = m

∣∣∣∣ (d, c)← ⟨Sc(1λ, t,m)↔ Rc(1
λ, t)⟩

(m′, π)← FOpen(1λ, 1t, c)

]
= 1 .

– Efficiency: FOpen runs in time t·poly(λ), while FVerify as well as Sc,So,Rc,Ro

run in time poly(log t, λ).

– Soundness: For every λ, t ∈ N and every unbounded malicious (stateful)
sender S̃ := (S̃c, S̃o), there exists a negligible function negl(·) such that

Pr

 c ̸= ⊥ ∧
(FVerify(1λ, t, c,m, π) = 0
∨ (m′ ̸= ⊥ ∧m′ ̸= m))

∣∣∣∣∣∣
(d̃, c)← ⟨S̃c ↔ Rc(1

λ, t)⟩
m′ ← outRo(⟨S̃o(d̃)↔ Ro(c)⟩)
(m,π)← FOpen(1λ, 1t, c)

 ≤ negl(λ) .

– Public verifiability: For every λ, t ∈ N and every unbounded adversary A,
there exists a negligible function negl(·) such that

Pr

FVerify(1λ, t, c,m0, π0) = 1 ∧
FVerify(1λ, t, c,m1, π1) = 1 ∧
m0 ̸= m1

∣∣∣∣∣∣ (c,m0, π0,m1, π1)← A

 ≤ negl(λ) .

– Statistical binding: For every λ, t ∈ N and every unbounded malicious (state-
ful) sender S̃ := (S̃c, S̃o, S̃

′
o), there exists a negligible function negl(·) such that

Pr

 c ̸= ⊥ ∧
m,m′ ̸= ⊥ ∧
m ̸= m′

∣∣∣∣∣∣
(d̃, c)← ⟨S̃c ↔ Rc(1

λ, t)⟩
m← outRo(⟨S̃o(d̃)↔ Ro(c)⟩)
m′ ← outRo(⟨S̃′o(d̃)↔ Ro(c)⟩)

 ≤ negl(λ) .

– t-hiding: A timed commitment is t-hiding with gap ϵ < 1 if there exists a poly-
nomial t̃(·), such that for every polynomial t(·) ≥ t̃(·) and every polynomial-
size distinguisher D := (Dλ)λ∈N of depth(Dλ) ≤ t(λ)ϵ, there exists a negligible
function negl(·) such that for every λ ∈ N and m0,m1 ∈Mλ,

Pr
[
b′ = b

∣∣ b← {0, 1}; b′ ← outDλ
(⟨Sc(1λ, t,mb)↔ Dλ⟩)

]
≤ 1

2
+ negl(λ) .

12 H. Abusalah and G. Avitabile

We also define a weaker version of t-hiding called honest-receiver t-hiding,
where the receiver is honest but curious, that is, it follows the protocol’s speci-
fication but tries to distinguish the committed value. We define honest-receiver
hiding for public-coin protocols, where the messages sent from the receiver to
the sender are sampled uniformly at random.

Definition 2 (Honest-receiver t-hiding). A timed commitment is honest-
receiver t-hiding with gap ϵ < 1 if there exists a polynomial t̃(·), such that for
every polynomial t(·) ≥ t̃(·), there exists a polynomial-size simulator Sim :=
(Simλ)λ∈N of depth(Simλ) < t(λ)ϵ such that for every polynomial-size distin-
guisher D := (Dλ)λ∈N of depth(Dλ) < t(λ)ϵ, there exists a negligible function
negl(·) such that for every λ ∈ N and message m ∈Mλ,∣∣Pr[Dλ(trans(⟨Sc(1λ, t,m)↔ Rc(1

λ, t)⟩)) = 1
]
− Pr[Dλ(Simλ) = 1]

∣∣ ≤ negl(λ).

Finally, we define weak public verifiability. In the weak public verifiability
game, the commitment is not directly provided by the adversary but it is the
result of a commit phase run with an honest receiver. Notice that this weak
property basically gives the same guarantees of (regular) public verifiability when
commitment transcripts come from a trusted source.6

Definition 3 (Weak public verifiability). A timed commitment is weakly
publicly verifiable if for every λ, t ∈ N and every unbounded malicious (stateful)
sender S̃ := (S̃c, S̃fo), there exists a negligible function negl(·) such that,

Pr

FVerify(1λ, t, c,m0, π0) = 1 ∧
FVerify(1λ, t, c,m1, π1) = 1 ∧
c ̸= ⊥ ∧ m0 ̸= m1

∣∣∣∣∣∣ (d̃, c)← ⟨S̃c ↔ Rc(1
λ, t)⟩

(c,m0, π0,m1, π1)← S̃fo(d̃)

 ≤ negl(λ).

2.2 Time-lock Puzzles

We recall the definition of time-lock puzzle given in [BGJ+16].

Definition 4 (Time-lock puzzles [BGJ+16]). A time-lock puzzle TLP is a
pair of algorithms (Gen,Solve) that works as follows:

– z ← Gen(1λ, t, s) is a probabilistic algorithm that takes as input a security
parameter λ ∈ N, a difficulty parameter t ∈ N, and a solution s ∈ {0, 1}λ,
and outputs a puzzle z.

– s := Solve(1λ, 1t, z) is a deterministic algorithm that takes as input the se-
curity parameter λ, the difficulty parameter t, and a puzzle z. It outputs a
solution s.

6 To reduce trust one might require that, for each round, each party signs its outgoing
messages, together with all the messages (both incoming and outgoing) exchanged so
far. In this setting, the digital signatures act as a certificate to verify that the tran-
script actually comes from a protocol run by two specific parties. Another technique
to reduce trust is to use decentralized TLS oracles [ZMM+20].

Black-Box Timed Commitments from Time-Lock Puzzles 13

We require correctness and hardness.

– Correctness: For every security parameter λ, difficulty parameter t, and so-
lution s ∈ {0, 1}λ:

Pr
[
Solve(1λ, 1t, z) = s

∣∣z ← Gen(1λ, t, s)
]
= 1

– Efficiency: Gen runs in time poly(log t, λ) while Solve runs in time t ·poly(λ).
– Hardness: A time-lock puzzle TLP = (Gen,Solve) is hard with gap ϵ < 1

if there exists a polynomial t̃, such that for every polynomial t(·) ≥ t̃(·),
polynomial-size A := (A)λ∈N of depth(A) ≤ t(λ)ϵ, there exists a negligi-
ble function negl(·), such that for every λ ∈ N, and every pair of solutions
s0, s1 ∈ {0, 1}λ,

Pr
[
b← A(z)

∣∣ b← {0, 1}; z ← Gen(1λ, t, sb)
]
≤ 1

2
+ negl(λ).

2.3 Secure Multi-party Computation

We give a definition of secure multi-party computation protocols based on the
ones given by Ishai et al. [IKOS07]. We consider MPC protocols Πϕ that realize
any deterministic N -party functionality ϕ whose output is a bit (received by all
parties), and we assume that every party implicitly takes the functionality ϕ to
be computed as input. We define the concept of consistent views as well as the
properties that Πϕ has to satisfy below.

Definition 5 (Consistent Views). Let Πϕ be an N -party MPC protocol for
functionality ϕ. We say viewi and viewj with i, j ∈ [N] s.t. i ̸= j are consistent
if the outgoing messages that can be subsumed from viewi are identical to the
incoming messages contained in viewj and vice versa.

Definition 6 (Perfect Correctness). Let Πϕ be an N -party MPC protocol
for functionality ϕ. We say Πϕ has perfect correctness if for all private inputs
to the parties (x1, . . . , xN), the probability that the output of a party in an honest
execution of Πϕ is different from ϕ(x1, . . . , xN) is 0.

Definition 7 (2-Privacy). Let Πϕ be an N -party MPC protocol for function-
ality ϕ. We say Πϕ has perfect 2-privacy if there exists a simulator SimMPC such
that for any input of the parties (x1, . . . , xN) and corrupted (semi-honest) par-
ties i, j ∈ [N], SimMPC((i, j), (xi, xj), ϕ(x1, . . . , xn)) is identically distributed to
the joint view (viewi, viewj).

3 Our Constructions

In Sect. 3.1, we define quasi publicly verifiable TLPs (QPV-TLPs) and we give a
black-box construction from any standard TLP in Sect. 3.2. In Sect. 3.3, we give
a black-box construction of TCs with honest-receiver t-hiding from any QPV-
TLPs. In Sect. 3.4, we lift such construction to full t-hiding. This establishes our
main result: a black-box timed commitment from any standard TLP. Finally, in
Sect. 3.5 we show a version of our TCs that features a more efficient force-open.

14 H. Abusalah and G. Avitabile

3.1 Quasi Publicly Verifiable TLPs

We define the concept of quasi publicly verifiable time-lock puzzle as a time-lock
puzzle satisfying some additional properties.

Definition 8. A quasi publicly verifiable time-lock puzzle is a tuple of algorithms
(Gen,Solve,Verify) that works as follows:

– z ← Gen(1λ, t, s) is a probabilistic algorithm that on input a security param-
eter λ ∈ N, a difficulty parameter t ∈ N and a solution s ∈ {0, 1}λ, outputs
a puzzle z.

– (s, π) ← Solve(1λ, 1t, z) is a probabilistic algorithm that takes as input the
security parameter λ, the difficulty parameter t, and a puzzle z. It outputs a
solution s and a proof π.

– b := Verify(1λ, t, z, s, π) is a deterministic algorithm that on input the secu-
rity parameter λ, the difficulty parameter t, a puzzle z, a solution s, and a
proof π, outputs a bit b indicating acceptance (b = 1) or rejection (b = 0).

We require the same correctness (considering only the solution s output by Solve),
the same hardness, and same efficiency properties of a regular TLP. Additionally,
we require efficient verification, completeness, and perfect soundness.

– Efficient verification: Verify runs in time poly(log t, λ).
– Completeness: For every security parameter λ, difficulty parameter t, and

s ∈ {0, 1}λ,

Pr
[
Verify(1λ, t, z, Solve(1λ, 1t, z)) = 1

∣∣z ← Gen(1λ, t, s)
]
= 1.

– Perfect soundness: For all λ, difficulty parameter t, ∄ s0, s1 ∈ {0, 1}λ, π0, π1,
and z such that s0 ̸= s1∧Verify(1λ, t, z, s0, π0) = 1∧Verify(1λ, t, z, s1, π1) = 1.

3.2 Quasi Publicly Verifiable TLP from any TLP

In this section, we show how to build a quasi publicly verifiable time-lock puzzle
TLPqpv = (Gen,Solve,Verify) from any time-lock puzzle TLP = (TLP.Gen,TLP.Solve).
The construction is given in Fig. 1.

Theorem 1. If (TLP.Gen,TLP.Solve) is a time-lock puzzle, then (Gen,Solve,Verify)
of Fig. 1 is a quasi publicly verifiable time-lock puzzle.

Remark 1. An alternative construction would be to replace z0, z1 in Fig. 1 by
z0 ← TLP.Gen(1λ, t, s||r1) and z1 := TLP.Gen(1λ, t, s; r1). This has the disadvan-
tage that the solution space of z0 is twice as large as that of z1. The advantage,
however, is that one needs to only solve one puzzle (z0) and recompute z1.

Proof (of Theorem 1). Due to lack of space, we defer the proof to the full version.
⊓⊔

Black-Box Timed Commitments from Time-Lock Puzzles 15

– z := (z0, z1) ← Gen(1λ, t, s): On input a security parameter λ, a difficulty
parameter t, and a solution s ∈ {0, 1}λ, do:
• r ← {0, 1}λ
• z0 := TLP.Gen(1λ, t, s; r)
• z1 ← TLP.Gen(1λ, t, r).

– (s, π) := Solve(1λ, 1t, z): On input a puzzle z = (z0, z1), do
• s := TLP.Solve(1λ, 1t, z0)
• π := TLP.Solve(1λ, 1t, z1).

– b := Verify(1λ, t, z, s, π): On input a puzzle z = (z0, z1), a solution s, and a
proof π, set b = 1 if and only if z0 = TLP.Gen(1λ, t, s;π).

Fig. 1: A black-box construction of QPV-TLP from any (standard) TLP.

3.3 Timed Commitment with Honest-Receiver t-hiding

In this section, we give a compiler that starting from a QPV-TLP, a non-
interactive statistically binding commitment scheme SBCom = (Com,Dec), and
a secure MPC protocol Πϕ for a functionality ϕ defined below, gives a timed
commitment with honest-receiver t-hiding. Πϕ computes the following boolean
functionality

ϕ(α, γ, x1, x2, x3) := 1 iff γ = αr+m where m||r := x1⊕x2⊕x3 ∧ |m| = |r| (1)

where ϕ, α, γ are known to all parties and xi is the private input of party i.
All our underlying primitives are used in a black-box way. Furthermore, MPC

protocols are information-theoretic constructions, and black-box non-interactive
statistically binding commitments can be realized from any one-way permutation
[Gol01]. We assume that the messages to be committed to belong to a field
F ⊆ {0, 1}λ. The commit and open phases and the FOpen and FVerify algorithms
are depicted in Fig. 2 and Fig. 3 respectively.

Theorem 2. Let TLPqpv = (Gen,Solve,Verify) be a quasi publicly verifiable TLP
(Def. 8), SBCom = (Com,Dec) a non-interactive statistically binding and com-
putationally hiding commitment scheme, and Πϕ a 3-party secure MPC (as
defined in Sect. 2.3) for ϕ defined in (1), then HRTC = (S = (Sc,So),R =
(Rc,Ro),FOpen,FVerify) defined in Fig. 2 and Fig. 3 is an honest-receiver t-
hiding timed commitment for message space Mλ = F ⊆ {0, 1}λ.

We prove Theorem 2 by proving several lemmas, one for each of the proper-
ties required in Def. 1. Correctness of honest openings and correctness of force
openings are easily verified by inspection.

Lemma 1. HRTC is efficient if TLPqpv is a QPV-TLP.

Proof (of Lemma 1). First, FOpen runs in time t · poly(λ): its running time
is dominated by λ parallel invocations of TLPqpv.Solve, each of which runs in

16 H. Abusalah and G. Avitabile

Commit Phase: (dec, com)← ⟨Sc(1
λ, t,m)↔ Rc(1

λ, t)⟩

Step 1: Sc does the following:
1. Sample randomness r ← F \ {0}
2. ∀i ∈ [λ], sample vi,1, vi,2 ← {0, 1}2λ and compute vi,3 = vi,1⊕vi,2⊕(m||r)
3. ∀i ∈ [λ], j ∈ [3], sample randomness βi,j and compute zi,j := TLPqpv.Gen(

1λ, t, vi,j ;βi,j)
4. Send (zi,j)i∈[λ],j∈[3] to Rc.

Step 2: Rc samples α← F \ {0} and sends it to Sc.
Step 3: Sc does the following:

1. Compute γ := rα+m
2. ∀i ∈ [λ], j ∈ [3]:

(a) Run Πϕ in the head, with public inputs α and γ, and vi,j as
the private input to party j in the i-th execution of Πϕ. Let
viewi,1, viewi,2, viewi,3 be the views of the i-th execution

(b) Compute (ci,j , di,j)← Com(1λ, viewi,j)
3. Send (ci,j)i∈[λ],j∈[3] and γ to Rc.

Step 4: ∀i ∈ [λ], Rc samples random ai, bi ∈ [3] with ai ̸= bi and sends
(ai, bi)i∈[λ] to Sc.

Step 5: Sc sends (vi,ai , viewi,ai , βi,ai , di,ai , vi,bi , viewi,bi , βi,bi , di,bi)i∈[λ] to Rc.

Output of the commit phase: Sc and Rc output dec and com where
– Sc sets dec = (vi,k, βi,k)i∈[λ],k∈[3]\{ai,bi}.
– Rc performs the following checks ∀i ∈ [λ], δ ∈ {ai, bi}:

1. Dec(1λ, ci,δ, viewi,δ, di,δ) = 1
2. TLPqpv.Gen(1λ, t, vi,δ;βi,δ) = zi,δ
3. viewi,ai and viewi,bi are consistent
4. (vi,δ, 1) is the input/output pair of Pδ defined by viewi,δ.

If the checks are successful, Rc sets

com = (zi,1, zi,2, zi,3, α, γ, ai, bi, vi,ai , βi,ai , vi,bi , βi,bi)i∈[λ] (2)

otherwise, com = ⊥.

Open Phase: m← outRo(⟨So(dec)↔ Ro(com)⟩)

Decommitment: So sends dec to Ro.

Output of the open phase: If for more than λ/2 repetitionsa i ∈ [λ], there
exists a fixed m′ ∈ F s.t. TLPqpv.Gen(1λ, t, vi,k;βi,k) = zi,k where k ∈ [3] \
{ai, bi} and vi,ai ⊕ vi,bi ⊕ vi,k = m′||ri for any ri ∈ {0, 1}λ, then Ro outputs
m = m′. Otherwise, m = ⊥.

a Allowing up to λ/2 inconsistent positions in the open phase ensures that a
(potentially malicious) accepting commit phase corresponds to a valid commit-
ment, i.e., there exists a valid decommitment for it.

Fig. 2: Commit and open phases of HRTC.

Black-Box Timed Commitments from Time-Lock Puzzles 17

(m,π)← FOpen(1λ, 1t, com): Perform the following steps:
1. Initialize the set I = ∅ and parse com as in (2)
2. In parallel, ∀i ∈ [λ] and k ∈ [3] \ {ai, bi}, run (vi,k, πi,k) ←

TLPqpv.Solve(1λ, 1t, zi,k). If TLPqpv.Verify(1λ, t, zi,k, vi,k, πi,k) = 1, then
I = I ∪ {i}.

3. If there exists J ⊆ I s.t. |J | > λ/2 and ∀j ∈ J it holds
that vj,aj ⊕ vj,bj ⊕ vj,k = m′||rj where k ∈ [3] \ {aj , bj},
rj ∈ {0, 1}λ arbitrary and m′ ∈ F fixed, then set m = m′ and
π := (J, (vj,k, πj,k))j∈J,k∈[3]\{aj ,bj}; otherwise return m = π = ⊥.

b := FVerify(1λ, t, com,m, π): If either m = ⊥ or π = ⊥ return 0. Otherwise, parse
com as in (2) and π := (J, (v∗j , π

∗
j)j∈J) and set b = 1 iff |J | > λ/2 and ∀j ∈ J :

1. zj,aj = TLPqpv.Gen(1λ, t, vj,aj ;βj,aj)

2. zj,bj = TLPqpv.Gen(1λ, t, vj,bj ;βj,bj)

3. TLPqpv.Verify(1λ, t, zj,k, v
∗
j , π

∗
j) = 1 for k ∈ [3] \ {aj , bj}

4. vj,aj ⊕ vj,bj ⊕ v∗j = m||rj for any rj ∈ {0, 1}λ.

Fig. 3: FOpen and FVerify algorithms of HRTC.

time t · poly(λ). Second, FVerify runs in time poly(log t, λ): its running time is
dominated by O(λ) invocations of TLPqpv.Gen and TLPqpv.Verify, each of which
runs in time poly(log t, λ). Finally, Sc,So,Rc,Ro all run in time poly(log t, λ) as
all the primitives they invoke either take time poly(λ) (e.g. SBCom and MPC in
the head) or poly(log t, λ) (e.g. TLPqpv.Gen and TLPqpv.Verify). ⊓⊔

Lemma 2. HRTC is sound if TLPqpv is a QPV-TLP, SBCom is a non-interactive
statistically biding commitment, and Πϕ is a secure 3-party MPC.

Proof (of Lemma 2). For simplicity, in the following proof, we treat both SBCom
and TLPqpv as perfectly binding. This means that once the sender commits to a
view (with SBCom) or a share (with TLPqpv), it is impossible for the sender to
later decommit to a different value than the one initially committed to. While
TLPqpv is indeed perfectly binding (a proof of this is given in Lemma 4), SBCom
is only statistically binding. However, the statistical binding property of SBCom
ensures that each commitment defines a string such that, except with negligible
probability, only that specific string can be decommitted to later. Therefore, the
soundness error of our construction when using statistically binding commit-
ments is at most negligibly larger than that of using perfectly binding commit-
ments (i.e., this difference accounts for the negligible probability that the sender
breaks the binding of one of the commitments).

Let us call a repetition i ∈ [λ] bad if ϕ(α, γ, vi,1, vi,2, vi,3) = 0 or ∃u ∈ [3] s.t.
the time-lock puzzle zi,u is malformed. We argue that conditioned on com ̸= ⊥,
the probability that a repetition is bad at most 1

3 . First, observe that the receiver
detects a malformed puzzle with probability at least 1

3 . Indeed, the receiver
would ask the sender to provide vi,u, βi,u s.t. zi,u = TLPqpv.Gen(1λ, t, vi,u;βi,u)

18 H. Abusalah and G. Avitabile

with probability 1
3 (i.e., see the second verification check performed by Rc when

deciding the output of the commit phase in Fig. 2).
Second, if ϕ(α, γ, vi,1, vi,2, vi,3) = 0, then the receiver will also detect it with

probability at least 1
3 . Indeed, if within a repetition ϕ(α, γ, vi,1, vi,2, vi,3) = 0, by

the perfect correctness of Πϕ, for all choices of vi,1, vi,2, vi,3, the outputs of all
3 parties in any honest execution of Πϕ must be 0. Therefore, considering the
inputs (vi,j)j∈[3] and views (viewi,j)j∈[3] committed by the sender in Step 1 and
Step 3 of the commit phase respectively, either in all the views the output is 0, or
there exists two views which are malformed (i.e, they are either inconsistent with
each other or have different inputs w.r.t. the ones committed in Step 1). In the
former case, the receiver would always reject, while in the latter it would reject
with probability at least 1

3 (i.e., see the third and fourth verification checks
performed by Rc when deciding the output of the commit phase in Fig. 2).
Therefore, the probability that, given that com ̸= ⊥, a repetition i ∈ [λ] is bad
is at most 1

3 .
Let us now consider the probability that, conditioned on com ̸= ⊥, more than

log2(λ) repetitions are bad. Such probability is at most (13)
log2(λ) < (12)

log2(λ) =

(1λ)
log(λ), which is negligible.
Let S ⊆ [λ] be the set containing the indices of the repetitions that are

not bad. For every i ∈ S where vi,1 ⊕ vi,2 ⊕ vi,3 = mi||ri with |mi| = |ri|, it
holds that γ = αri + mi. By the Schwartz-Zippel lemma, with overwhelming
probability over the choice of α, there must exist (m, r) such that mi = m and
ri = r for all i ∈ S. Recall that ∀i ∈ S and k ∈ [3] s.t. ai, bi ̸= k we have that
zi,k is well-formed. The correctness and the completeness of TLPqpv guarantee
that whenever a puzzle is correctly generated, the solution/proof pair output by
TLPqpv.Solve will be accepting and will contain the committed value. Thus, since
|S| ≥ λ − log2(λ) except with negligible probability, the force open phase and
the open phase will agree on the same message m on more than λ

2 positions (i.e.,
m′ = m) and FVerify will output 1 on input the message/proof pair returned by
FOpen. ⊓⊔

Lemma 3. HRTC is publicly verifiable if TLPqpv is a QPV-TLP.

Proof (of Lemma 3). Assume A outputs com = (zi,1, zi,2, zi,3, α, γ, ai, bi, vi,ai
, βi,ai

,
vi,bi , βi,bi)i∈[λ] and two proof/message pairs (m0, π0 = (v0i,k, π

0
i,k)i∈[λ]) and (m1, π1 =

(v1i,k, π
1
i,k)i∈[λ]) with m0 ̸= m1 and that are accepting w.r.t. com. This means that

for more than λ/2 repetitions vi,ai
⊕vi,bi ⊕v0i,k = m0||r0i and vi,ai

⊕vi,bi ⊕v1i,k =

m1||r1i . Thus, there must be at least one repetition i ∈ [λ] s.t. v0i,k ̸= v1i,k and
TLPqpv.Verify(1λ, t, zi,k, v

0
i,k, π

0
i,k) = 1 and TLPqpv.Verify(1λ, t, zi,k, v

1
i,k, π

1
i,k) = 1,

which contradicts the perfect soundness of TLPqpv. ⊓⊔

Lemma 4. HRTC is statistically binding if TLPqpv is a QPV-TLP.

Proof (of Lemma 4). Assume that the malicious sender provides two valid de-
commitments dec0 = (v0i,k, β

0
i,k)i∈[λ] and dec1 = (v1i,k, β

1
i,k)i∈[λ] to m0 and m1, re-

spectively, such that m0 ̸= m1, for the same com = (zi,1, zi,2, zi,3, α, γ, ai, bi, vi,ai ,

Black-Box Timed Commitments from Time-Lock Puzzles 19

βi,ai , vi,bi , βi,bi)i∈[λ]. This means that for more than λ/2 repetitions vi,ai⊕vi,bi⊕
v0i,k = m0||r0i and vi,ai

⊕ vi,bi ⊕ v1i,k = m1||r1i . Thus, there exists at least one
repetition i ∈ [λ] such that v0i,k ̸= v1i,k and zi,k = TLPqpv.Gen(1λ, t, v0i,k;β

0
i,k) and

zi,k = TLPqpv.Gen(1λ, t, v1i,k;β
1
i,k), which contradicts the correctness of TLPqpv.

Indeed, the correctness property of TLPs guarantees that they are injective. For
the reader’s convenience we report again here the proof of this fact, as we have al-
ready shown in the proof of perfect soundness of TLPqpv (see Sect. 3.2). Any puz-
zle z, even if maliciously generated, belongs to the support of TLPqpv.Gen(1λ, t, s)
for at most one solution s. Assume, for the sake of contradiction, that there exists
a z belonging to the support of both TLPqpv.Gen(1λ, t, s0) and TLPqpv.Gen(1λ, t, s1)
with s0 ̸= s1. Let s = TLPqpv.Solve(1λ, 1t, z). If s ̸= s0, this contradicts the cor-
rectness of TLPqpv.Solve regarding puzzles in the support of TLPqpv.Gen(1λ, t, s0).
If s = s0, it contradicts the correctness of TLPqpv.Solve regarding puzzles in the
support of TLPqpv.Gen(1λ, t, s1). Hence, for any puzzle z, there exists at most
one solution s, and if a solution s exists, then s = TLPqpv.Solve(1λ, 1t, z). ⊓⊔

Lemma 5. HRTC is honest-receiver t-hiding if SBCom is a non-interactive com-
putationally hiding commitment, TLPqpv is a QPV-TLP, and Πϕ is a secure
3-party MPC.

Proof (of Lemma 5). The simulator Sim proceeds as follows:

1. Sample random α, γ ← F \ {0}
2. ∀i ∈ [λ] sample random ai, bi ← [3] with ai ̸= bi
3. ∀i ∈ [λ], j ∈ {ai, bi}, k ∈ [3] \ {ai, bi} sample vi,j ← {0, 1}2λ and set vi,k to

garbage, say vi,k = 02λ

4. ∀(i, j) ∈ [λ] × [3] sample randomness βi,j and compute zi,j := TLPqpv.Gen(
1λ, t, vi,j ;βi,j)

5. ∀i ∈ [λ], k ∈ [3] \ {ai, bi}, compute (viewi,ai
, viewi,bi) ← SimMPC((ai, bi),

(vi,ai , vi,bi), 1) and set viewi,k := 0ℓ where ℓ is the size of a view
6. ∀(i, j) ∈ [λ]× [3] compute (ci,j , di,j)← Com(1λ, viewi,j)
7. Output the protocol’s transcript (zi,1, zi,2, zi,3, α, ci,1, ci,2, ci,3, γ, ai, bi, vi,ai ,

viewi,ai
, βi,ai

, di,ai
, vi,bi , viewi,bi , βi,bi , di,bi)i∈[λ].

Notice the running time of Sim is essentially independent of t. We prove indis-
tinguishability from a regular transcript via a series of indistinguishable hybrids.

H0 : This is identical to the sender in the commit phase of Fig. 2 except that,
instead of receiving α, (ai, bi)i∈[λ] from the receiver, the sender itself samples
samples random α ← F \ {0} and for all i ∈ [λ], ai, bi ← [3] with ai ̸= bi.
Formally, H0 is defined as follows:

1. Sample random r, α← F \ {0} and set γ := rα+m
2. ∀i ∈ [λ] sample random ai, bi ∈ [3] with ai ̸= bi
3. ∀i ∈ [λ] sample vi,1, vi,2 ← {0, 1}2λ and compute

vi,3 = vi,1 ⊕ vi,2 ⊕ (m||r)
4. ∀i ∈ [λ], j ∈ [3], sample randomness βi,j and compute

zi,j := TLPqpv.Gen(1λ, t, vi,j ;βi,j)

20 H. Abusalah and G. Avitabile

5. ∀i ∈ [λ], j ∈ [3], run Πϕ in the head, with public inputs α and γ,
and vi,j as the private input to party j in the i-th execution of Πϕ.
Let viewi,1, viewi,2, viewi,3 be the views of the i-th execution

6. ∀i ∈ [λ], j ∈ [3], compute (ci,j , di,j)← Com(1λ, viewi,j)
7. Output the protocol’s transcript: (zi,j , α, ci,j , γ, ai, bi, vi,ai

, viewi,ai
,

βi,ai , di,ai , vi,bi , viewi,bi , βi,bi , di,bi)i∈[λ],j∈[3]

H1 : This is identical to H0 except that for all i ∈ [λ] and j ∈ {ai, bi}, the shares
vi,j are randomly sampled before drawing the remaining share depending on
m||r. In more details, Step 3 of H0 is modified as follows. The remaining
steps remain unchanged. Formally, H1 is defined as follows:

...
3. ∀i ∈ [λ], j ∈ {ai, bi}, k ∈ [3]\{ai, bi}, sample vi,j ← {0, 1}2λ and set

vi,k = vi,ai
⊕ vi,bi ⊕ (m||r)

...

Hi
2 : This hybrid is parameterized by i ∈ {0, . . . , λ}. We define H0

2 := H1. For
i ≥ 1 Hi

2 be identical to Hi−1
2 except that in the i-th repetition of the

unopened party in Step 6 of H1, instead of committing to viewi,k where
k ∈ [3] \ {ai, bi}, commit to a garbage value, say 0. Formally, ∀i ∈ [λ], Hi

2 is
defined as follows:

...
6. ∀j ∈ [λ] and k ∈ [3] \ {aj , bj} :
• (cj,aj

, dj,aj
)← Com(1λ, viewj,aj

)
• (cj,bj , dj,bj)← Com(1λ, viewj,bj)
• If j ≤ i:(cj,k, dj,k) ← Com(1λ, 0ℓ) where ℓ := |viewj,aj | =
|viewj,bj |, i.e., views are padded and are of size ℓ.
• If j > i: (cj,k, dj,k)← Com(1λ, viewj,k).

...

Hi
3 : This hybrid is parameterized by i ∈ {0, . . . , λ} and we define H0

3 := H2.
For i ≥ 1, Hi

3 is identical to Hi−1
3 except that in i-th repetition where

k ∈ [3] \ {ai, bi}, instead of committing with TLPqpv to the input vi,k of
the unopened party in Step 4 of Hλ

2 , we commit to a garbage value, say 0.
Formally, ∀i ∈ [λ], Hi

3 is defined as follows:

...
4. ∀j ∈ [λ] and k ∈ [3] \ {aj , bj} :
• zj,aj

:= TLPqpv.Gen(1λ, t, vj,aj
;βj,aj

)
• zj,bj := TLPqpv.Gen(1λ, t, vj,bj ;βj,bj)
• If j ≤ i: zj,k := TLPqpv.Gen(1λ, t, 02λ;βj,k)
• If j > i: zj,k := TLPqpv.Gen(1λ, t, vj,k;βj,k).

Black-Box Timed Commitments from Time-Lock Puzzles 21

...

H4 : H4 is identical to Hλ
3 except that in Step 5 of Hλ

3 for all i ∈ [λ] we compute
the opened views as (viewi,ai

, viewi,bi)← SimMPC((ai, bi), (vi,ai
, vi,bi), 1). For-

mally, H4 is defined as follows:

...
5. ∀i ∈ [λ] : (viewi,ai

, viewi,bi)← SimMPC((ai, bi), (vi,ai
, vi,bi), 1)

...

H5 : H5 is identical to H4 except that γ in Step 1 is sampled uniformly at
random. Formally, H5 is defined as:

1. Sample random α, γ ← F \ {0}
...

Notice that H0 coincides with the distribution of the transcript of an honest
commit phase and H5 is identical to Sim. We now introduce the following claims.

Claim 1 H1 is perfectly indistinguishable from H0.

Claim 2 If SBCom is computationally hiding, then for every i ∈ [λ], Hi
2 is

computationally indistinguishable from Hi−1
2 .

Claim 3 If TLPqpv is hard, then for every i ∈ [λ], Hi
3 and Hi−1

3 are indistin-
guishable for every poly-size distinguisher with depth upper-bounded by tϵ.

Claim 4 If Πϕ is perfectly 2-private, then H4 is perfectly indistinguishable from
Hλ

3 .

Claim 5 H5 is perfectly indistinguishable from H4.

Proof (of Claim 1). It follows from the fact that for any x ∈ {0, 1}2λ and all
i, j, k ∈ [3] s.t. i ̸= j ̸= k where vi, vj ← {0, 1}2λ and vk = vi ⊕ vj ⊕ x, any pair
(va, vb) with a, b ∈ [3] s.t. a ̸= b is uniformly distributed in {0, 1}2λ×{0, 1}2λ. ⊓⊔

Proof (of Claim 2). Assume there exists a poly-sized distinguisher D which is
able to distinguish between Hi

2 and Hi−1
2 with non-negligible probability, we can

use D to build an adversary A that wins the hiding game of SBCom with the
same probability. A plays in the hiding game with m0 = viewi,k and m1 = 0ℓ

and gets back from the challenger a commitment c. A constructs the transcript
regularly except that for the i-th repetition it sets ci,k = c. It then forwards
the transcript to D and outputs whatever D outputs. Notice that if b = 0 in
the hiding game, then A perfectly simulates Hi−1

2 , and if b = 1 then A perfectly
simulates Hi

2. Therefore, A wins the hiding game with the same probability with
which D distinguishes between Hi

2 and Hi−1
2 . ⊓⊔

22 H. Abusalah and G. Avitabile

Proof (of Claim 3). Assume there exists a poly-sized distinguisher D whose depth
is bounded by tϵ which is able to distinguish between Hi

3 and Hi−1
3 with non-

negligible probability, we can use D to build an adversary A that breaks the
hardness of TLPqpv with the same probability. A plays in the hardness game with
s0 = vi,k and s1 = 02λ and gets back from the challenger a puzzle z. A constructs
the transcript regularly except that for the i-th repetition it sets zi,k = z. It
then forwards the transcript to D and outputs whatever D outputs. Notice that
if b = 0 in the hardness game, then A perfectly simulates Hi−1

3 , and if b = 1
then A perfectly simulates Hi

3. Notice that constructing the transcript keeps the
depth of A bounded since the MPC protocol, the commitment algorithm, and the
puzzle generation algorithm all run in polynomial time essentially independent
of t. Therefore, A wins the hardness game with the same probability with which
D distinguishes between Hi

3 and Hi−1
3 . ⊓⊔

Proof (of Claim 4). It directly follows from the perfect indistinguishability of a
pair of real views and a pair of simulated views of Πϕ. ⊓⊔

Proof (of Claim 5). It follows from the fact that for any m ∈ F and random
α, r ∈ F \ {0} the value γ = rα+m is uniformly distributed in F \ {0}. ⊓⊔

The proof is concluded by observing that it simply follows from the proofs of
Claims 1 -5, since all of the hybrids are indistinguishable by a poly-size distin-
guisher whose depth is bounded by tϵ. ⊓⊔

3.4 t-Hiding Timed Commitment

To lift our honest-receiver t-hiding timed commitment to a t-hiding timed com-
mitment we adopt the approach used by Goldreich and Kahan [GK96] to get a
constant-round ZK proof from a constant-round honest-verifier ZK proof. Basi-
cally, we have the receiver commit, with a two-round statistically-hiding com-
mitment (SHCom), to all of its random challenges at the beginning of the pro-
tocol, and then open these commitments in the subsequent rounds. Two-round
statistically-hiding commitments can be constructed from collision-resistant hash-
ing [HM96]. We describe the commit phase of our t-hiding TC in Fig. 4.

The verification of the commit phase and its output, of the open phase, and
the FOpen,FVerify algorithms are identical to the ones described in Sect. 3.3.

Theorem 3. Let TLPqpv = (Gen,Solve,Verify) be a QPV-TLP (Def. 8), SBCom =
(Com,Dec) a non-interactive statistically binding and computationally hiding
commitment scheme, SHCom a two-round statistically hiding and computation-
ally binding commitment scheme, and Πϕ a 3-party secure MPC for functionality
ϕ defined in (1), then TC = (S = (Sc,So),R = (Rc,Ro),FOpen,FVerify), where
S and R are defined in Fig. 4 and FOpen,FVerify are defined Fig. 3, is a (fully
fledged) t-hiding timed commitment scheme (Def. 1).

We only prove t-hiding and soundness, as the proofs of public verifiability
and binding are identical to the construction in Sect. 3.3 – see Lemmas 3 and 4.

Black-Box Timed Commitments from Time-Lock Puzzles 23

Commit Phase: (dec, com)← ⟨Sc(1
λ, t,m)↔ Rc(1

λ, t)⟩

Step 1: Sc does the following:
1. Sample randomness r ← F \ {0}
2. ∀i ∈ [λ]:

(a) Sample vi,1, vi,2 ← {0, 1}2λ and compute vi,3 = vi,1 ⊕ vi,2 ⊕ (m||r)
(b) ∀j ∈ [3], sample randomness βi,j and compute zi,j := TLPqpv.Gen(

1λ, t, vi,j ;βi,j)
(c) Compute the first message σi[1] of the two-round SHCom

3. Send (zi,j)i∈[λ],j∈[3], (σi[1])i∈[λ] to Rc.
Step 2: Rc does the following:

1. ∀i ∈ [λ],
(a) Sample random ai, bi ∈ [3] with ai ̸= bi
(b) Commit using SHCom to (ai, bi) by computing the second message

σi[2] of the two-round SHCom. (σi = (σi[1], σi[2]) commits to (ai, bi).)
2. Sample random α← F \ {0}
3. Send α, (σi[2])i∈[λ] to Sc

Step 3: Sc does the following:
1. Compute γ = rα+m.
2. ∀i ∈ [λ], j ∈ [3]:

(a) Run Πϕ in the head, with public input α and γ, and vi,j as the private
input to party j in the i-th execution of Πϕ. Let viewi,1, viewi,2, viewi,3

be the views of the i-th execution
(b) Compute (ci,j , di,j)← Com(1λ, viewi,j)

3. Send (ci,j)i∈[λ],j∈[3] and γ to Rc.
Step 4: ∀i ∈ [λ], Rc computes decommitment yi to (ai, bi) w.r.t. σi and sends

(yi)i∈[λ] to Sc.
Step 5: If ∀i ∈ [λ], yi is a valid decommitment to (ai, bi) w.r.t. σi, Sc sends

(vi,ai , viewi,ai , βi,ai , di,ai , vi,bi , viewi,bi , βi,bi , di,bi)i∈[λ] to Rc. Otherwise, Sc

aborts.

The output of the commit phase, i.e., (dec, com), as well as the open phase are
identical to those in Fig. 2.

Fig. 4: Commit phase of TC.

Lemma 6. TC is t-hiding if SBCom is a non-interactive computationally hiding
commitment scheme, SHCom is a two-round computationally binding commit-
ment scheme, TLPqpv is a quasi publicly verifiable time-lock puzzle, and Πϕ is a
3-party secure MPC for functionality ϕ defined in (1).

Proof (of Lemma 6). Our proof strategy involves constructing a bounded-depth
simulator Sim that, with black-box access to a malicious (bounded-depth) re-
ceiver R∗

c , is able to simulate its view. Such simulated view is indistinguishable
from the one coming from a commit phase with an honest sender for every
possible message m ∈ Mλ. Let ≈ denote that two distributions are indistin-
guishable by a polynomial-size distinguisher whose depth is bounded by tϵ. We

24 H. Abusalah and G. Avitabile

then observe that for all m0,m1 ∈ Mλ: viewR∗
c
(⟨Sc(1λ, t,m0) ↔ R∗

c (1
λ, t)⟩) ≈

SimR∗
c ≈ viewR∗

c
(⟨Sc(1λ, t,m1) ↔ R∗

c (1
λ, t)⟩). Therefore, viewR∗

c
(⟨Sc(1λ, t,m0) ↔

R∗
c (1

λ)⟩) ≈ viewR∗
c
(⟨Sc(1λ, t,m1)↔ R∗

c (1
λ)⟩), i.e., the existence of this simulator

implies t-hiding. We first describe a simplified simulator Sim:

1. ∀i ∈ [λ], compute the first message σi[1] of SHCom; ∀i ∈ [λ], j ∈ [3], com-
pute zi,j := TLPqpv.Gen(1λ, t, 02λ;βi,j) for random βi,j ; send (σi[1])i∈[λ] and
(zi,j)i∈[λ],j∈[3] to R∗

c .
2. receive ∀i ∈ [λ] from R∗

c its statistically hiding commitment σi[2] to (ai, bi),
and the value α.

3. ∀i ∈ [λ], j ∈ [3], compute (ci,j , di,j) ← Com(1λ, 0ℓ) ; sample a random γ ←
F \ {0}; send (ci,j)i∈[λ],j∈[3] and γ to R∗

c .
4. receive ∀i ∈ [λ] from R∗

c the decommitments yi w.r.t. σi to the challenge
indices (ai, bi); abort if any of the decommitments is not valid.

5. Rewind Phase: repeatedly rewind R∗
c back to Step 3, until R∗

c decommits
to (a′i, b

′
i)i∈[λ] = (ai, bi)i∈[λ]. In particular, instead of Steps 3 and 4, do the

following:
(a) ∀i ∈ [λ], compute (viewi,ai , viewi,bi) ← SimMPC((ai, bi), (vi,ai , vi,bi), 1)

and viewi,k := 0ℓ for k ∈ [3] \ {ai, bi}; ∀i ∈ [λ], j ∈ [3], compute
(ci,j , di,j) ← Com(1λ, viewi,j); sample a random γ ← F \ {0}; send γ
and (ci,j)i∈[λ],j∈[3] to Rc.

(b) receive ∀i ∈ [λ] from R∗
c the decommitments y′i w.r.t. σi to the challenge

indices (a′i, b′i); if any of the decommitments y′i is not valid, execute again
Step 5a (with fresh randomness).

(c) if ∃i ∈ [λ] s.t. (ai, bi) ̸= (a′i, b
′
i), output ambiguous. Otherwise, exit rewind

phase and proceed to Step 6.
6. send (vi,ai , viewi,ai , βi,ai , di,ai , vi,bi , viewi,bi , βi,bi , di,bi)i∈[λ] to R∗

c .

Akin to what happens in the the protocol by Goldreich and Kahan [GK96],
the simple simulation strategy of Sim suffers from the problem that Sim may
not terminate in expected polynomial time. The issue stems from the fact that
SBCom is only computationally hiding. Let p0 be the probability with which R∗

c

correctly decommits (σi)i∈λ when it receives commitments (ci,j)i∈λ,j∈[3] to 02λ

(i.e., Step 3). Similarly, let p1 be probability with which R∗
c correctly decom-

mits (σi)i∈λ when (some of the) (ci,j)i∈λ,j∈[3] are commitments to the output of
SimMPC as in Step 5 of Sim. Although |p0− p1| is negligible due to the computa-
tional hiding of SBCom, this (negligible) difference in the behaviour of R∗

c may
cause Sim to run in exponential time.

To solve this issue, we can use the same technique of [GK96] to modify the
simple simulator above to ensure that it does not run for too long. This technique
involves first estimating, via a polynomial number of rewinds, the value of p0 and
using such value to limit the total the number of rewinds. Since this technique
identically applies to our setting, we omit its description and refer the reader
to [GK96, Lin16] for more details. For the rest of the proof we can ignore such
subtlety and refer to the simplified simulator above. Indeed, the modifications
introduced by the technique of [GK96] do not involve the simulation strategy
itself, but they only take care of the running time of the simulator.

Black-Box Timed Commitments from Time-Lock Puzzles 25

It remains to show that the output of Sim and the view of R∗
c in an interaction

with honest Sc are indistinguishable by a polynomial-size distinguisher whose
depth is bounded by tϵ. We show this via a sequence of indistinguishable hybrids.
Let H0 be the real world interaction between Sc and R∗

c (i.e., Fig. 4).

H1 : H1 is identical to H0 except that H1 behaves like Sim in the sense that it
runs the rewind phase in the same way as Sim, and outputs ambiguous under
the same conditions. However, H1 is provided with m, and it commits (via
TLPqpv) to an honest secret sharing of m||r and commits (via Com) to honest
views from the MPC in the head. Formally, H1 is defined as follows:

1. sample randomness r ← F \ {0}; ∀i ∈ [λ], compute the first mes-
sage σi[1] of SHCom, sample vi,1, vi,2 ← {0, 1}2λ and compute vi,3 =
vi,1⊕vi,2⊕(m||r); ∀i ∈ [λ], j ∈ [3], sample random βi,j and compute
zi,j := TLPqpv.Gen(1λ, t, vi,j ;βi,j) ; send (σi[1])i∈[λ] and (zi,j)i∈[λ],j∈[3]

to R∗
c .

2. receive ∀i ∈ [λ] from R∗
c its statistically hiding commitment σi[2]

to (ai, bi), and the value α.
3. ∀i ∈ [λ], run Πϕ in the head, with public inputs α and γ, and vi,j

as the private input to party j in the i-th execution of Πϕ. Let
viewi,1, viewi,2, viewi,3 be the views of the i-th execution;

4. ∀i ∈ [λ], j ∈ [3], compute (ci,j , di,j) ← Com(1λ, viewi,j); send
(ci,j)i∈[λ],j∈[3] and γ := rα+m to R∗

c .
5. receive ∀i ∈ [λ] from R∗

c the decommitments yi w.r.t. σi to the
challenge indices (ai, bi); abort if any of the decommitments is not
valid.

6. Rewind Phase: repeatedly rewinds R∗
c back to Step 3:

(a) ∀i ∈ [λ], run Πϕ in the head, with public inputs α and γ, and
vi,j as the private input to party j in the i-th execution of Πϕ.
Let viewi,1, viewi,2, viewi,3 be the views of the i-th execution

(b) ∀i ∈ [λ], j ∈ [3], compute (ci,j , di,j)← Com(1λ, viewi,j)
(c) send (ci,j)i∈[λ],j∈[3] and γ := rα+m to R∗

c .
(d) receive ∀i ∈ [λ] from R∗

c the decommitments y′i w.r.t. σi to the
challenge indices (a′i, b

′
i); if any of the decommitments y′i is not

valid, execute again Step 6a (with fresh randomness).
(e) If ∃i ∈ [λ] s.t. (ai, bi) ̸= (a′i, b

′
i), output ambiguous. Otherwise,

exit the rewind phase and proceed Step 7.
7. send (vi,ai , viewi,ai , βi,ai , di,ai , vi,bi , viewi,bi , βi,bi , di,bi)i∈[λ] to R∗

c .

Hi
2 : This hybrid is parameterized by i ∈ {0, . . . , λ}. We define H0

2 := H1 and let
Hi

2 be identical to Hi−1
2 except that in Step 6b, Hi

2 computes (ci,δ, di,δ) ←
Com(1λ, viewi,δ) and (ci,k, di,k) ← Com(1λ, 0ℓ) for δ ∈ {ai, bi} and k ∈ [3]
s.t. ai, bi ̸= k. Formally, Hi

2 is defined as follows:

26 H. Abusalah and G. Avitabile

...
(6b) ∀j ∈ [λ] and k ∈ [3] \ {aj , bj}:

• (cj,aj
, dj,aj

)← Com(1λ, viewj,aj
)

• (cj,bj , dj,bj)← Com(1λ, viewj,bj)
• If j ≤ i:(cj,k, dj,k)← Com(1λ, 0ℓ)
• If j > i: (cj,k, dj,k)← Com(1λ, viewj,k).

...

H3 : This is identical to Hλ
2 except that in Step 6a, the MPC views are simulated.

Formally, H3 is defined as follows:

...
(6a) ∀i ∈ [λ], compute (viewi,ai , viewi,bi)← SimMPC((ai, bi), (vi,ai , vi,bi), 1)

and viewi,k := 0ℓ for k ∈ [3] \ {ai, bi}
...

Hi
4 : This hybrid is parameterized by i ∈ {0, . . . , 3λ}. We define H0

4 := H3. For
i ≥ 1, Hi

4 is identical to Hi−1
4 except that, instead of committing to a share

of m||r, all the puzzles up until the i-th of the 3λ puzzles sent in Step 1
commit to 02λ. Hi

4 is formally defined as follows:

1. sample randomness r ← F\{0}; ∀ℓ ∈ [λ], compute the first message
σℓ[1] of SHCom and sample vℓ,1, vℓ,2 ← {0, 1}2λ and compute vℓ,3 =
vℓ,1 ⊕ vℓ,2 ⊕ (m||r).
∀k ∈ [3λ]:
• u =

⌈
k
3

⌉
, δ = (k − 1) mod 3 + 1, sample randomness βu,δ

• if k ≤ i, zu,δ = TLPqpv.Gen(1λ, t, 02λ;βu,δ)
• else zu,δ = TLPqpv.Gen(1λ, t, vu,δ;βu,δ)

send (σu[1])u∈[λ] and (zu,δ)u∈[λ],δ∈[3] to R∗
c .

...

Hi
5 : This hybrid is parameterized by i ∈ {0, . . . , 3λ}. We define H0

5 := H3. For
i ≥ 1, Hi

5 is identical to Hi−1
5 except that , instead of committing to an MPC

view, all the commitments up until the i-th of the 3λ commitments sent in
Step 4 commit to 02λ. Hi

5 is formally defined as follows:

...
4 ∀k ∈ [3λ]:
• u =

⌈
k
3

⌉
, δ = (k − 1) mod 3 + 1

• if k ≤ i, (cu,δ, du,δ)← Com(1λ, 0ℓ);
• else (cu,δ, du,δ)← Com(1λ, viewu,δ)

send (cu,δ)u∈[λ],δ∈[3] and γ := rα+m to R∗
c .

Black-Box Timed Commitments from Time-Lock Puzzles 27

...

H6 This hybrid is identical to H3λ
5 , but γ is sampled uniformly at random.

Notice that H6 is identical to Sim. We now introduce the following claims.

Claim 6 If SHCom is computationally binding, then H1 is statistically indistin-
guishable from H0.

Claim 7 If SBCom is computationally hiding, then for every i ∈ [λ], Hi
2 is

computationally indistinguishable from Hi−1
2 .

Claim 8 If Πϕ is perfectly 2-private, then H3 is identically distributed to Hλ
2 .

Claim 9 If TLPqpv is hard, then for every i ∈ [3λ], Hi
4 and Hi−1

4 are indistin-
guishable for every poly-size distinguisher with depth upper-bounded by tϵ.

Claim 10 If SBCom is computationally hiding, then for every i ∈ [3λ], Hi
5 is

computationally indistinguishable from Hi−1
5 .

Claim 11 H6 is perfectly indistinguishable from H3λ
5 .

Proof (of Claim 6). Conditioned on not outputting ambiguous, the output distri-
bution of H1 is identical to H0. It remains to show that H1 outputs ambiguous
only with negligible probability. Assuming that there exists an infinite series
of inputs that makes H1 output ambiguous with non-negligible probability, one
can easily construct an adversary A for the binding of SHCom. A runs H1 on
such an input and looks for i ∈ λ s.t.(ai, bi) ̸= (a′i, b

′
i) and both pairs have a

valid decommitment sent by Rc
∗ when interacting with H1. A simply re-uses

such decommitments in the binding game. The only subtlety is that H1 runs
in expected polynomial time, whereas A must run in strict polynomial time.
Nevertheless, this issue can be addressed by simply truncating H1 to twice its
expected running time. By Markov’s inequality, this adjustment decreases the
attack’s success probability against the binding of SHCom of at most 1/2, which
remains non-negligible. ⊓⊔

Proof (of Claim 9). If there exists a polynomial-size distinguisher Dλ, whose
depth is bounded by tϵ, distinguishing with noticeable probabilityHi

4 fromHi−1
4 ,

then we can use D to build a bounded-depth adversary A against the hardness
property of TLPqpv. A runs the instructions of Hi−1

4 with one change. That is,
when A has to compute the i-th puzzle at Step 1 it plays in the hardness game of
TLPqpv by sending s0 equal to a share of m||r and s1 = 02λ and uses the puzzle
z that it gets back from the challenger as the i-th puzzle of the simulation.
When the simulation concludes, then A invokes D on the output generated by
the simulator, and outputs whatever D outputs. Notice that when b = 0 in the
hardness game, A perfectly simulates Hi−1

4 , otherwise it perfectly simulates Hi
4.

Therefore, A wins the hardness game with the same probability with which D
distinguishes between Hi

4 and Hi−1
4 . The only subtlety is that Hi−1

4 runs in
expected polynomial time essentially independent of t, whereas A must run in
strict polynomial time essentially independent of t. Nevertheless, this issue can
be addressed by simply truncating the running time of Hi−1

4 . ⊓⊔

28 H. Abusalah and G. Avitabile

The proof of Claim 7 and 10 are analogous to the one of 2, with the only
difference that we have to truncate the running time of Hi−1

2 . The proofs of
Claim 8 and 11 are identical to the ones of 4 and 5 respectively.

The proof is concluded by observing that it simply follows from the proofs
of Claims 6 -11, since all of the hybrids are indistinguishable by a poly-size
distinguisher whose depth is bounded by tϵ. ⊓⊔

Lemma 7. HRTC is sound if TLPqpv is a quasi publicly verifiable TLP, SBCom
is a non-interactive statistically biding commitment scheme, SHCom is a two-
round statistically hiding commitment scheme, and Πϕ is a 3-party secure MPC.

Proof (of Lemma 7). The only difference with Lemma 2 is the presence of sta-
tistically hiding commitments going from the receiver to the malicious sender.
Since such commitments statistically convey no information about the receiver’s
challenges, soundness is argued similarly. ⊓⊔

3.5 A More Efficient Force-Open

By carefully modifying FOpen and FVerify, we can get a much more efficient
force-open phase of our TC constructions (Sects. 3.3 and 3.4). In the modified
TC scheme, commitments can be force opened by solving log(λ), instead of λ,
puzzles. The intuition is that after a valid commit phase, the value γ can be used
to check if, after having solved the puzzle associated with a certain repetition
i ∈ [λ], the recovered message is the right one. By right we mean that the sender
did not cheat in the i-th repetition and thus the recovered message coincides
with the one committed in (the vast majority of) the other repetitions.

In a nutshell, FOpen force-opens random repetitions until it finds one where
γ is consistent with the recovered message m and the proof π given in output
by TLPqpv.Solve is accepting. Since, with overwhelming probability, there are at
most log2(λ) bad repetitions (i.e., where γ is not consistent with m or π is not
accepting) after a valid commit phase (see the proof of Lemma 2), the proba-
bility of only finding bad repetitions with more than log(λ) tries is negligible.
Whenever FOpen finds a good repetition, it outputs the repetition’s index i and
the recovered message m, along with the share and the proof given in output
by TLPqpv.Solve. Then, FVerify just verifies that: (1) m coincides with the one
reconstructed from the shares of the i-th repetition, (2) m is consistent with γ,
and (3) the proof is accepting w.r.t. the unopened puzzle of the i-th repetition.

However, this efficiency improvement comes at the price of only satisfying
weak public verifiability. Recall that in the weak public verifiability game (Def. 3),
the commitment is not directly provided by the adversary but it is the result of
a commit phase run with the honest receiver. Intuitively, we can only get weak
public verifiability with this modification because the commitment (transcript)
com could be simulated by an adversary not interacting with a receiver at all.
Therefore, every repetition could possibly contain a different message while still
being consistent w.r.t. γ. The modified FOpen and FVerify are in Fig. 5.

Black-Box Timed Commitments from Time-Lock Puzzles 29

(m,π)← FOpen(1λ, 1t, com): Perform the following steps:
1. Set I := [λ] and parse com as in (2).
2. Sample random i ← I. Let k ∈ [3] be s.t. ai, bi ̸= k and compute

(vi,k, πi,k)← TLPqpv.Solve(1λ, 1t, zi,k)
3. Check if v = vi,ai ⊕ vi,bi ⊕ vi,k can be parsed as m||r so that γ = αr+m
4. Check if TLPqpv.Verify(1λ, t, zi,k, vi,k, πi,k) = 1
5. If all the checks are successful output m and proof π = (vi,k, πi,k, i, k).

Otherwise, update I = I \ {i}. If |I| ≥ λ − log(λ), go back to Step 2,
otherwise output (⊥,⊥).

b := FVerify(1λ, t, com,m, π): Set b = 1 iff all the following checks are successful:
1. Parse com as in (2) and π as (vi,k, πi,k, i, k)
2. Check that TLPqpv.Verify(1λ, t, zi,k, vi,k, πi,k) = 1
3. Parse vi,ai⊕vi,bi⊕vi,k as m||r with |m| = |r| and check that γ = αr+m.

Fig. 5: Modified FOpen and FVerify algorithms.

Theorem 4. Let TLPqpv = (Gen,Solve,Verify) be a quasi publicly verifiable TLP
(Def. 8), SBCom = (Com,Dec) a non-interactive statistically binding and com-
putationally hiding commitment scheme, SHCom a two-round statistically hiding
and computationally binding commitment scheme, and Πϕ a 3-party secure MPC
for functionality ϕ defined in (1), then the scheme HRTC from Sect. 3.3 (respec-
tively TC from Sect. 3.4) where the algorithms FOpen and FVerify are modified
as reported in Fig. 5 is honest-verifier (respectively t-hiding) timed commitment
scheme with weak public verifiability.

To prove the above theorem, we only need to argue soundness and weak
public verifiability of the modified schemes. Indeed, we do not need to prove
(honest-receiver) t-hiding and binding again as these property only involve the
commit and open phases, which are left unaltered.

Lemma 8. C ∈ {HRTC,TC} where the algorithms FOpen and FVerify are mod-
ified as reported in Fig. 5 is sound if TLPqpv is a QPV-TLP, SBCom is a non-
interactive statistically biding commitment scheme, Πϕ is a 3-party secure MPC.

Proof (of Lemma 8). Let us call a repetition i ∈ [λ] bad if ϕ(α, γ, vi,1, vi,2, vi,3) =
0 or ∃ u ∈ [3] such that the TLP zi,u is malformed. Recall that conditioned on
com ̸= ⊥, the probability that a repetition is bad at most 1

3 (see the proof
of Lemma 2). As a result, if the commit phase is successful, i.e., com ̸= ⊥,
the probability that at least log2(λ) repetitions are bad is at most (13)

log2(λ) <

(12)
log2(λ) = (1λ)

log(λ), which is negligible. Therefore, the probability that all
log(λ) samples of FOpen are bad is at most (log

2(λ)
λ)log(λ), which is negligible7.

7 Notice that eliminating a bad repetition from the set of repetitions that may be
forced-open only further reduces the probability of encountering a bad repetition.
Indeed, log2(λ) < λ and n

k
> n−i

k−i
for any n, k > 1, n < k, and i ≥ 1.

30 H. Abusalah and G. Avitabile

Let S ⊆ [λ] be the set containing the indices of the repetitions that are
not bad, from the above discussion it follows that |S| ≥ λ− log2(λ) except with
negligible probability. For every i ∈ S where vi,1⊕vi,2⊕vi,3 = mi||ri for |mi| = ri,
it holds that γ = αri +mi. By the Schwartz-Zippel lemma, with overwhelming
probability over the choice of α, there must exist (m, r) such that mi = m and
ri = r for all i ∈ S. Recall that ∀i ∈ S and k ∈ [3] s.t. ai, bi ̸= k we have that
zi,k is well-formed. The correctness and the completeness of TLPqpv guarantee
that whenever a puzzle is correctly generated, the solution/proof pair output by
TLPqpv.Solve will be accepting and will contain the committed value. Recall that
a successful honest open phase outputs the same message m′ in more than λ/2
repetitions. Thus, since |S| ≥ λ− log2(λ), except with negligible probability, m′

coincides with the message m output by FOpen (recall that a repetition can only
be opened in one way since TLPqpv is perfectly binding). Additionally, FVerify
outputs 1 on input the message/proof pair returned by FOpen. ⊓⊔

Lemma 9. C ∈ {HRTC,TC} where the algorithms FOpen and FVerify are mod-
ified as reported in Fig. 5 is weak publicly verifiable if TLPqpv is a QPV-TLP.

Proof (of Lemma 9). Assume A outputs two accepting proof/message pairs
(m,π = (vi,k, πi,k, i, k)), and (m′, π′ = (vi′,k′ , πi′,k′ , i′, k′)) with m ̸= m′ for the
same com = (zi,1, zi,2, zi,3, α, γ, ai, bi, vi,ai , βi,ai , vi,bi , βi,bi)i∈[λ]. If i = i′, then
m = m′ since, due to the perfect soundness of TLPqpv, there exists only one pos-
sible share vi,k for which an accepting proof πi,k can be provided for the puzzle
zi,k. Together with vi,ai

, vi,bi , the share vi,k fixes the message m. Let us assume
i ̸= i′. As already discussed above, due to the perfect soundness of TLPqpv,
within each repetition ℓ ∈ [λ] there exists only a possible share vℓ,k for which
an accepting proof πℓ,k can be provided for the puzzle zℓ,k. Hence, the malicious
sender is bound to a single vℓ,k, which results in a single vℓ = vℓ,aℓ

⊕ vℓ,bℓ ⊕ vℓ,k
within each repetition. Thus at the end of the commit phase, the sender is bound
to a single vℓ in each repetition. By the Schwartz-Zippel lemma we know that,
with overwhelming probability over the choices of α, for every vℓ = mℓ||rℓ such
that γ = αrℓ + mℓ it must be that all mℓ are such that mℓ = m. Hence, with
overwhelming probability, the two force opening proofs provided by the adver-
sary will point to two repetition indices i and i′ which contain vi = m||r and
vi′ = m′||r′ such that m = m′. ⊓⊔

Acknowledgements

We thank Peter Chvojka and Ivan Visconti for insightful comments and discus-
sions. We thank the anonymous reviewers of TCC 2024 for their feedback. This
result is part of projects that have received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innova-
tion program under project PICOCRYPT (grant agreement No. 101001283), and
from the Spanish Government under projects PRODIGY (TED2021-132464B-
I00) and ESPADA (PID2022-142290OB-I00). The last two projects are co-funded
by European Union EIE, and NextGenerationEU/PRTR funds.

Black-Box Timed Commitments from Time-Lock Puzzles 31

References

AMZ24. Shweta Agrawal, Giulio Malavolta, and Tianwei Zhang. Time-lock puzzles
from lattices. In Leonid Reyzin and Douglas Stebila, editors, Advances
in Cryptology - CRYPTO 2024 - 44th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 18-22, 2024, Proceedings,
Part III, volume 14922 of Lecture Notes in Computer Science, pages 425–
456. Springer, 2024.

BDD+21. Carsten Baum, Bernardo David, Rafael Dowsley, Jesper Buus Nielsen,
and Sabine Oechsner. TARDIS: A foundation of time-lock puzzles in
UC. In Anne Canteaut and François-Xavier Standaert, editors, EURO-
CRYPT 2021, Part III, volume 12698 of LNCS, pages 429–459, Zagreb,
Croatia, October 17–21, 2021. Springer, Heidelberg, Germany.

BDD+23. Carsten Baum, Bernardo David, Rafael Dowsley, Ravi Kishore, Jes-
per Buus Nielsen, and Sabine Oechsner. CRAFT: Composable random-
ness beacons and output-independent abort MPC from time. In Alexan-
dra Boldyreva and Vladimir Kolesnikov, editors, PKC 2023, Part I, vol-
ume 13940 of LNCS, pages 439–470, Atlanta, GA, USA, May 7–10, 2023.
Springer, Heidelberg, Germany.

BGI+01. Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit
Sahai, Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscat-
ing programs. In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS,
pages 1–18, Santa Barbara, CA, USA, August 19–23, 2001. Springer, Hei-
delberg, Germany.

BGJ+16. Nir Bitansky, Shafi Goldwasser, Abhishek Jain, Omer Paneth, Vinod
Vaikuntanathan, and Brent Waters. Time-lock puzzles from randomized
encodings. In Madhu Sudan, editor, ITCS 2016, pages 345–356, Cam-
bridge, MA, USA, January 14–16, 2016. ACM.

BN00. Dan Boneh and Moni Naor. Timed commitments. In Mihir Bellare, editor,
CRYPTO 2000, volume 1880 of LNCS, pages 236–254, Santa Barbara, CA,
USA, August 20–24, 2000. Springer, Heidelberg, Germany.

Can01. Ran Canetti. Universally composable security: A new paradigm for cryp-
tographic protocols. In 42nd FOCS, pages 136–145, Las Vegas, NV, USA,
October 14–17, 2001. IEEE Computer Society Press.

CDMW09. Seung Geol Choi, Dana Dachman-Soled, Tal Malkin, and Hoeteck Wee.
Simple, black-box constructions of adaptively secure protocols. In Omer
Reingold, editor, TCC 2009, volume 5444 of LNCS, pages 387–402.
Springer, Heidelberg, Germany, March 15–17, 2009.

CGJ+23. Arka Rai Choudhuri, Sanjam Garg, Abhishek Jain, Zhengzhong Jin, and
Jiaheng Zhang. Correlation intractability and snargs from sub-exponential
ddh. In Helena Handschuh and Anna Lysyanskaya, editors, Advances in
Cryptology – CRYPTO 2023, pages 635–668, Cham, 2023. Springer Nature
Switzerland.

CJ23. Peter Chvojka and Tibor Jager. Simple, fast, efficient, and tightly-
secure non-malleable non-interactive timed commitments. In Alexandra
Boldyreva and Vladimir Kolesnikov, editors, PKC 2023, Part I, volume
13940 of LNCS, pages 500–529, Atlanta, GA, USA, May 7–10, 2023.
Springer, Heidelberg, Germany.

CJJ22. Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. SNARGs for P
from LWE. In 62nd FOCS, pages 68–79, Denver, CO, USA, February 7–10,
2022. IEEE Computer Society Press.

32 H. Abusalah and G. Avitabile

CLP20. Rohit Chatterjee, Xiao Liang, and Omkant Pandey. Improved black-
box constructions of composable secure computation. Cryptology ePrint
Archive, Report 2020/494, 2020. https://eprint.iacr.org/2020/494.

COS22. Michele Ciampi, Emmanuela Orsini, and Luisa Siniscalchi. Four-round
black-box non-malleable schemes from one-way permutations. In Eike Kiltz
and Vinod Vaikuntanathan, editors, TCC 2022, Part II, volume 13748 of
LNCS, pages 300–329, Chicago, IL, USA, November 7–10, 2022. Springer,
Heidelberg, Germany.

FKPS21. Cody Freitag, Ilan Komargodski, Rafael Pass, and Naomi Sirkin. Non-
malleable time-lock puzzles and applications. In Kobbi Nissim and Brent
Waters, editors, TCC 2021, Part III, volume 13044 of LNCS, pages 447–
479, Raleigh, NC, USA, November 8–11, 2021. Springer, Heidelberg, Ger-
many.

GK96. Oded Goldreich and Ariel Kahan. How to construct constant-round zero-
knowledge proof systems for NP. J. Cryptol., 9(3):167–190, 1996.

GLOV12. Vipul Goyal, Chen-Kuei Lee, Rafail Ostrovsky, and Ivan Visconti. Con-
structing non-malleable commitments: A black-box approach. In 53rd
FOCS, pages 51–60, New Brunswick, NJ, USA, October 20–23, 2012. IEEE
Computer Society Press.

GMW87. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental
game or A completeness theorem for protocols with honest majority. In
Alfred Aho, editor, 19th ACM STOC, pages 218–229, New York City, NY,
USA, May 25–27, 1987. ACM Press.

Gol01. Oded Goldreich. The Foundations of Cryptography - Volume 1: Basic Tech-
niques. Cambridge University Press, 2001.

HJKS22. James Hulett, Ruta Jawale, Dakshita Khurana, and Akshayaram Srini-
vasan. SNARGs for P from sub-exponential DDH and QR. In Orr Dunkel-
man and Stefan Dziembowski, editors, EUROCRYPT 2022, Part II, vol-
ume 13276 of LNCS, pages 520–549, Trondheim, Norway, May 30 – June 3,
2022. Springer, Heidelberg, Germany.

HM96. Shai Halevi and Silvio Micali. Practical and provably-secure commitment
schemes from collision-free hashing. In Neal Koblitz, editor, CRYPTO’96,
volume 1109 of LNCS, pages 201–215, Santa Barbara, CA, USA, Au-
gust 18–22, 1996. Springer, Heidelberg, Germany.

HV16. Carmit Hazay and Muthuramakrishnan Venkitasubramaniam. On the
power of secure two-party computation. In Matthew Robshaw and
Jonathan Katz, editors, CRYPTO 2016, Part II, volume 9815 of LNCS,
pages 397–429, Santa Barbara, CA, USA, August 14–18, 2016. Springer,
Heidelberg, Germany.

IKLP06. Yuval Ishai, Eyal Kushilevitz, Yehuda Lindell, and Erez Petrank. Black-box
constructions for secure computation. In Jon M. Kleinberg, editor, 38th
ACM STOC, pages 99–108, Seattle, WA, USA, May 21–23, 2006. ACM
Press.

IKOS07. Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-
knowledge from secure multiparty computation. In David S. Johnson and
Uriel Feige, editors, 39th ACM STOC, pages 21–30, San Diego, CA, USA,
June 11–13, 2007. ACM Press.

JMRR21. Samuel Jaques, Hart Montgomery, Razvan Rosie, and Arnab Roy. Time-
release cryptography from minimal circuit assumptions. In Avishek Ad-
hikari, Ralf Küsters, and Bart Preneel, editors, Progress in Cryptology –

https://eprint.iacr.org/2020/494

Black-Box Timed Commitments from Time-Lock Puzzles 33

INDOCRYPT 2021, pages 584–606, Cham, 2021. Springer International
Publishing.

Kiy14. Susumu Kiyoshima. Round-efficient black-box construction of composable
multi-party computation. In Juan A. Garay and Rosario Gennaro, edi-
tors, CRYPTO 2014, Part II, volume 8617 of LNCS, pages 351–368, Santa
Barbara, CA, USA, August 17–21, 2014. Springer, Heidelberg, Germany.

Kiy20. Susumu Kiyoshima. Round-optimal black-box commit-and-prove with suc-
cinct communication. In Daniele Micciancio and Thomas Ristenpart, edi-
tors, CRYPTO 2020, Part II, volume 12171 of LNCS, pages 533–561, Santa
Barbara, CA, USA, August 17–21, 2020. Springer, Heidelberg, Germany.

Kiy23. Susumu Kiyoshima. Holographic snargs for p and batch-np from (poly-
nomially hard) learning with errors. In Guy Rothblum and Hoeteck Wee,
editors, Theory of Cryptography, pages 333–362, Cham, 2023. Springer Na-
ture Switzerland.

KLX20. Jonathan Katz, Julian Loss, and Jiayu Xu. On the security of time-lock
puzzles and timed commitments. In Rafael Pass and Krzysztof Pietrzak,
editors, TCC 2020, Part III, volume 12552 of LNCS, pages 390–413,
Durham, NC, USA, November 16–19, 2020. Springer, Heidelberg, Germany.

KOS18. Dakshita Khurana, Rafail Ostrovsky, and Akshayaram Srinivasan. Round
optimal black-box “commit-and-prove”. In Amos Beimel and Stefan Dziem-
bowski, editors, TCC 2018, Part I, volume 11239 of LNCS, pages 286–313,
Panaji, India, November 11–14, 2018. Springer, Heidelberg, Germany.

Lin13. Yehuda Lindell. A note on constant-round zero-knowledge proofs of knowl-
edge. Journal of Cryptology, 26(4):638–654, October 2013.

Lin16. Yehuda Lindell. How to simulate it - a tutorial on the simulation proof
technique. Cryptology ePrint Archive, Paper 2016/046, 2016. https://
eprint.iacr.org/2016/046.

LM23. Russell W. F. Lai and Giulio Malavolta. Lattice-based timed cryptogra-
phy. In Helena Handschuh and Anna Lysyanskaya, editors, Advances in
Cryptology - CRYPTO 2023 - 43rd Annual International Cryptology Con-
ference, CRYPTO 2023, Santa Barbara, CA, USA, August 20-24, 2023,
Proceedings, Part V, volume 14085 of Lecture Notes in Computer Science,
pages 782–804. Springer, 2023.

LP12. Huijia Lin and Rafael Pass. Black-box constructions of composable proto-
cols without set-up. In Reihaneh Safavi-Naini and Ran Canetti, editors,
CRYPTO 2012, volume 7417 of LNCS, pages 461–478, Santa Barbara, CA,
USA, August 19–23, 2012. Springer, Heidelberg, Germany.

LPS17. Huijia Lin, Rafael Pass, and Pratik Soni. Two-round and non-interactive
concurrent non-malleable commitments from time-lock puzzles. In Chris
Umans, editor, 58th FOCS, pages 576–587, Berkeley, CA, USA, Octo-
ber 15–17, 2017. IEEE Computer Society Press.

Pie19. Krzysztof Pietrzak. Simple verifiable delay functions. In Avrim Blum,
editor, ITCS 2019, volume 124, pages 60:1–60:15, San Diego, CA, USA,
January 10–12, 2019. LIPIcs.

PW09. Rafael Pass and Hoeteck Wee. Black-box constructions of two-party proto-
cols from one-way functions. In Omer Reingold, editor, TCC 2009, volume
5444 of LNCS, pages 403–418. Springer, Heidelberg, Germany, March 15–
17, 2009.

RSW96. R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and timed-
release crypto. Technical report, USA, 1996.

https://eprint.iacr.org/2016/046
https://eprint.iacr.org/2016/046

34 H. Abusalah and G. Avitabile

SW14. Amit Sahai and Brent Waters. How to use indistinguishability obfuscation:
deniable encryption, and more. In David B. Shmoys, editor, 46th ACM
STOC, pages 475–484, New York, NY, USA, May 31 – June 3, 2014. ACM
Press.

TCLM21. Sri Aravinda Krishnan Thyagarajan, Guilhem Castagnos, Fabien Laguil-
laumie, and Giulio Malavolta. Efficient CCA timed commitments in class
groups. In Giovanni Vigna and Elaine Shi, editors, ACM CCS 2021, pages
2663–2684, Virtual Event, Republic of Korea, November 15–19, 2021. ACM
Press.

Wes19. Benjamin Wesolowski. Efficient verifiable delay functions. In Yuval Ishai
and Vincent Rijmen, editors, EUROCRYPT 2019, Part III, volume 11478
of LNCS, pages 379–407, Darmstadt, Germany, May 19–23, 2019. Springer,
Heidelberg, Germany.

WW24. Brent Waters and David J. Wu. Adaptively-sound succinct arguments for
NP from indistinguishability obfuscation. In Bojan Mohar, Igor Shinkar,
and Ryan O’Donnell, editors, Proceedings of the 56th Annual ACM Sym-
posium on Theory of Computing, STOC 2024, Vancouver, BC, Canada,
June 24-28, 2024, pages 387–398. ACM, 2024.

ZMM+20. Fan Zhang, Deepak Maram, Harjasleen Malvai, Steven Goldfeder, and Ari
Juels. DECO: Liberating web data using decentralized oracles for TLS.
In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors,
ACM CCS 2020, pages 1919–1938, Virtual Event, USA, November 9–13,
2020. ACM Press.

	Black-Box Timed Commitments from Time-Lock Puzzles

